
Random Sort

M. Schmittmann

May 2, 2008

Abstract

This article provides a formal definition of the Random Sort sort-
ing algorithm as well as its complexity properties and theoretical and
practical performance. Also a reference is made to the effect quantum
(co)processors will have on the complexity-related issues which are inher-
ently linked to the Random Sort-algorithm.

1 Definition

The Random Sort sorting algorithm can be defined very elegantly with the
following pseudo-code:

while(!sorted) { shuffleList(X) }

where
sorted := ¬∃xn, xn+1 ∈ X ⇒ xn+1 < xn

This is a relatively simple algoritm, which can be described in practically
every programming language. Implementations of the shuffleList function
are native for most applications, a few examples have been given in appendix
A. For the shuffling of elements in X, a RNG1 has to be available. Many of
them and their underlying theories have been widely discussed about, see [1, 3]
for valid examples. Of course they could also be implemented as entities flipping
coins or – preferably – hardware implementations of based on nuclear decay of
radioactive elements [4].

2 Complexity

2.1 Worst Case

Very interesting things can happen when applying Random Sort to an unordered
list. The hypothetical case where every iteration of the algorithm yields an
unsorted list is theoretically possible, the worst case complexity is therefore
O(∞).

1Random Number Generator

1



2.2 Average Case

It is hard to define an average case complexity for this algoritm, since the sorted-
ness of the list being sorted does not per-sé gradually increase or decrease with
every iteration of the algorithm. Incrementing the length of the list however
will exponentially decrease the chance of the algorithm being successful and
therefore incrementing the time the sorting will probably take:

2.3 Best Case

As with most sorting algoritms, best case will be O(n), when the input list is
already sorted.

3 Performance

Considering the nature of the Random Sort algorithm all states of the list being
sorted come down to two essential states: sorted and unsorted. There is no
degree of sortedness, nor is there any way of succesfully deriving a next state
from the current state of the system or list. Any transition could result in the
list being sorted. The next table demonstrates how the numbers of (unique)
elements, and (unique) (sorted) states relate:

elements 1 2 2 3 3 3 4 4 4 4 . . .
unique elements 1 1 2 1 2 3 1 2 3 4 . . .
unsorted states 0 0 1 0 4 5 0 8 10 11 . . .

sorted states 1 2 1 6 2 1 12 4 2 1 . . .
unique states 1 2 2 6 6 6 12 12 12 12 . . .

In practice, for small lists this means there is a fairly good chance Random
Sort will produce a sorted list in a considerate amount of time, since the number
of unsorted states is lower and the probability of reaching the sorted state is
higher. But as shown in 2.1, even for a list with 2 unique elements the time

2



required to sort the list could be infinite.

The performance of the algoritm is somewhat dependant on the quality of
the RNG, and trivially also on the capacities of the hardware being used.

4 Quantum computing and Random Sort

Considering all all elements of the list are unique, there is 1 state which satisfies
the isSorted condition as specified in 1. Theoretically, using quantumcom-
puting algorithms[2] that can simultaneously observe all possible states (since
sorting is not NP-hard), the ordered state could be found by quantum interfer-
ence.

Quantum interference is not specifically applicable on Random Sort – or even
on sorting algorithms –, but will render the sorting algorithms mostly useless.

5 Conclusions

Random Sort is an interesting sorting technique, if it can even be called a sorting
algorithm. Most algorithms are built for efficiëncy, so it is interesting to have
a counterpart in the form of the ultimate inefficiënt algorithm with an unique
complexity class for worst-case scenario’s.

3



References

[1] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo random
number generator. SIAM Journal on Computing, 15(2):364–383, 1986.

[2] A. Ekert and R. Jozsa. Quantum computation and Shor’s factoring algo-
rithm. Reviews of Modern Physics, 68(3):733–753, 1996.

[3] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Meth-
ods. Siam, 1992.

[4] J. Walker. HotBits: Genuine random numbers, generated by radioactive
decay. Online at http://www. fourmilab. com/hotbits, 1999.

4



APPENDIX

A Example in a modern language

A.1 C++

#include <cstdlib>
#include <ctime>

void randomSort(int x[], int length) {
srand(time(0));
while(!isSorted(x,length)) do {
shuffleList(x,length);

}
}

bool isSorted(x[], int length) {
for(int i=0; i < length - 1; length++) {
if (x[i] > x[i+1]) {
return false;

}
}
return true;

}

void shuffleList(int x[], int length) {
for (int i=0; i<(length-1); i++) {
int r = i + (rand() % (length-i));
int temp = x[i];
x[i] = x[r];
x[r] = temp;

}
}

5


