
Glenn Johnson

ASP.NET in
60 Minutes a Day

b 430234 FM.qxd 7/1/03 8:58 AM Page iii

Acknowledgments xxiii
About the Author xxv
Introduction xxvii

Chapter 1 Introducing ASP.NET 1
Problems with Older Versions of Active Server Pages 2
The Benefits of ASP.NET 2
What Language Should Be Used? 3
Choosing the Appropriate Development Environment 6

The Operating System 6
The Database Server 6
The Version Control Software 7
The Visual Studio .NET Edition 7

Visual Studio .NET Professional Edition 7
Visual Studio .NET Enterprise Developer Edition 8
Visual Studio .NET Enterprise Architect Edition Contents 8

Software Selection Conclusions 9
The Software Installation Location 9
Developer Permission Assignments 10

Setting up the Development Environment 11
Installing Windows 11
Configuring Internet Information Server 11
Other Software 11
Installing SQL Server 2000 Developer Edition 12

Creating the SQL Server Service Account 13
SQL Server Installation 13
Adding a SQL Server Login for Your Use 15
SQL Server Stored Procedure Debugging 16

Installing Visual Studio .NET 18
Installing Visual SourceSafe Server 19

Contents

ix

b 430234 FM.qxd 7/1/03 8:58 AM Page ix

Installing Visual SourceSafe Client 19
Windows 2000 Administration 20
Visual SourceSafe Administration 21

Summary 30

Chapter 2 Solutions, Projects, and the Visual Studio .NET IDE 33
Planning and Creating the Visual Studio .NET

Solution Structure 33
Folder Structure 34
Virtual Directory Creation 35

Virtual Directory via Web Sharing 35
Virtual Directory via Internet Information Services (IIS) 37

Visual Studio .NET Project Creation 38
Adding the Solution to Visual SourceSafe 40
The Visual Studio .NET Integrated

Development Environment (IDE) 45
The Visual Studio .NET Windows 46

Start Window 47
Solution Explorer 48
Class View 49
Toolbox 49
The Server Explorer 50
Task List 51
Output Window 51
Command Window 52
Object Browser 53
Macro Explorer 54
Code or Text Editor 54

Getting Help 55
Visual Studio .NET Help 55
Help on the Web 56

Summary 59

Chapter 3 Exploring ASP.NET and Web Forms 63
Web Forms 63
Two ASP.NET Programming Models 65
Simple ASP.NET Page 65
Server Controls 68

HTML Server Controls 69
Web Server Controls 70
Server Control Recommendations 70
Server Control Event Programming 70

ViewState 70
Correcting Multiple Entries 72

Use the IsPostBack Property 72
Turn off ViewState 73

Post Back 73
Responding to Events 74
Event Handler Procedure Arguments 76

x Contents

b 430234 FM.qxd 7/1/03 8:58 AM Page x

Code-Behind Page 76
Accessing Controls and Events on the Code-Behind Page 78
Web Form Designer Generated Code 80

Life Cycle of a Web Form and Its Controls 81
Page Layout 82

FlowLayout 82
GridLayout 82
Selecting the Proper Layout 83

Summary 94

Chapter 4 The .NET Framework and Visual Basic .NET
Object Programming 97
Definitions 97
The .NET Framework 99

Assemblies 100
Microsoft Intermediate Language 102
Metadata 104

Common Language Runtime 105
Core Execution Engine 105
Namespaces 106
Common Type System 107
Common Language Specification 109

Base Class Library 110
System Data Types 110
System Data Type or Visual Basic .NET Data Type? 111

Visual Basic .NET Object-Oriented Programming 112
Classes 112

Abstraction 112
Class Creation 113
Class Visibility Modifiers 113
Working with Class Members 114
Encapsulation 116
Events 118
What Is a Constructor? 119
Me Keyword 120
Shared Methods and Variables 120
Inheritance 121
Overriding Methods 122
MyBase Keyword 123
Abstract Methods and Classes 124
Polymorphism 125

Modules 125
Structures 126
Interfaces 127
Enumerations 131
Working with Collections 131
Referencing External Code Libraries 132
Summary 138

Contents xi

b 430234 FM.qxd 7/1/03 8:58 AM Page xi

Chapter 5 Working with Web Server Controls 141
The Web Server Control Hierarchy 142

System.Web.UI.Control 142
ClientID 143
Controls 143
EnableViewState 144
ID 144
NamingContainer 145
Page 146
Parent 146
Site 146
TemplateSourceDirectory 147
UniqueID 147
Visible 147

System.Web.UI.WebControls.WebControl 148
AccessKey 148
Attributes 148
BackColor, BorderColor, and ForeColor 149
BorderStyle 150
BorderWidth 151
ControlStyle and ControlStyleCreated 151
CssClass 152
Enabled 152
Font 152
Height, Width 153
Style 154
TabIndex 154
ToolTip 155

Label Control 155
TextBox Control 155
Button and LinkButton Control 156
HyperLink Control 158
Image and ImageButton Controls 159
CheckBox and RadioButton Controls 160
ListControl Abstract Class 162
The RadioButtonList and CheckBoxList Controls 163
DropDownList and ListBox Controls 166
Validation Controls 167

BaseValidator Class 168
RequiredFieldValidator 168
BaseCompareValidator 169
CompareValidator 169
RangeValidator 169
RegularExpressionValidator 170
CustomValidator 170

Client-Side Validation Examples 171
Server-Side Validation Examples 172

xii Contents

b 430234 FM.qxd 7/1/03 8:58 AM Page xii

ValidationSummary 173
Using Cancel Buttons with Validation 174
Test Server Validation 179

Summary 180

Chapter 6 Using Data-Bound Web Controls 185
Data-Binding Basics 186
Single Value Data Binding 186
Repeated Value Data Binding 188

Repeated Binding Control Properties 188
DataSource 188
DataMember 189
DataTextField 189
DataTextFormatString 189
DataValueField 193

Repeated Binding Control Methods 193
Repeated Binding Control Events 193
Mapping Fields to the Control 193

Dynamic Field Mapping 194
Templated Field Mapping 194
Using the Eval Method 196

Data Bound Controls 196
ListBox and DropDownList Control 196
Repeater Control 197
DataList Control 205
DataGrid Control 219

Summary 238

Chapter 7 Building User Controls and Custom Web Controls 241
User Controls 242

Creating a User Control 242
Adding a User Control to a Page 243
Accessing Data from the User Control 243
Positioning User Controls 244
User Control Events 245
Dynamically Loading Controls 247
Raising Events to the Page 248

Web Server Controls 250
Creating and Compiling a Control Library 250
Creating a Simple Control 251
The HTMLTextWriter 252

Write 252
WriteLine and WriteLineNoTabs 253
WriteBeginTag and WriteAttribute 253
WriteFullBeginTag 254
WriteStyleAttribute 254
RenderBeginTag and RenderEndTag 255
AddAttribute and AddStyleAttribute 256

Contents xiii

b 430234 FM.qxd 7/1/03 8:58 AM Page xiii

Adding Properties to the Server Control 256
Working with ViewState Data 258
Adding Methods to the Server Control 258
Adding Child Controls to the Server Control 259
Adding the Custom Control Builder 263
Raising Events 264
Retrieving Postback Data 266
Composite Controls 269
Inheriting from Existing Controls 274

Summary 284

Chapter 8 Data Access with ADO.NET 289
Connected versus Disconnected Data 290
ADO.NET Data Providers 291

SQL Data Provider 291
OleDb Data Provider 291
Odbc Data Provider 291
Oracle Data Provider 291

ADO.NET Data Namespaces 292
Primary Data Objects 293

Provider-Specific Data Objects 293
Connection 293
Command 300
DataReader 305
DataAdapter 308

Non-Provider-Specific Data Classes 310
DataSet 311
DataTable 312
DataView 315

Modifying Table Data 318
Setting the Primary Key 318
Adding DataRow Objects 319
Deleting Rows 321
Editing Rows 322

Using the DataGrid to Modify Data 323
Editing a DataRow with the DataGrid 325
Adding a DataRow with the DataGrid 327
Deleting a DataRow with the DataGrid 330

Updating the Data Store 330
Paging the DataGrid 333
Sorting Data with the DataGrid 334
Summary 338

Chapter 9 Working with XML Data 343
XML in the .NET Framework 344
The XML Document Object Model 344
XML Namespace 345

xiv Contents

b 430234 FM.qxd 7/1/03 8:58 AM Page xiv

XML Objects 345
XmlDocument and XmlDataDocument 346
XPathDocument 348
XmlConvert 348
XPathNavigator 348
XmlNodeReader 348
XmlTextReader 348
XmlTextWriter 348
XmlValidatingReader 349
XslTransform 349

Working with XML Documents 349
Creating a New XmlDocument from Scratch 349
Parsing XmlDocument Using the DOM 351
Parsing XmlDocument Using the XPathNavigator 352
Searching the XmlDocument Using the DOM 353
Searching XPathDocument Using the XPathNavigator 357
Writing a File Using the XmlTextWriter 359
Reading a File Using the XmlTextReader 362
XslTransform 363
The ASP.NET XML Web Control 367
DataSets and XML 367

Reading an XML Document into the DataSet 368
Writing an XML Document from the DataSet 370

Using the XmlDataDocument with a DataSet 371
Validating XML Documents 373

XmlValidatingReader 373
Summary 380

Chapter 10 Streams, File Access, and Serialization 383
Stream Classes 384

Stream 385
FileStream 387

FileStream Constructor 387
FileStream Examples 389

Null Stream 393
MemoryStream 394

MemoryStream Constructor 394
MemoryStream Examples 395

NetworkStream 397
NetworkStream Constructor 397
NetworkStream Example 398

CryptoStream 400
CryptoStream Constructor 400
CryptoStream Encryption Example 401
CryptoStream Decryption Example 402

Contents xv

b 430234 FM.qxd 7/1/03 8:58 AM Page xv

BufferedStream 403
BufferedStream Constructor 404
BufferedStream Example 404

Response.OutputStream 405
Stream Helper Classes 406

BinaryWriter 407
BinaryReader 407
TextWriter and TextReader 407
StreamWriter 408
StreamReader 408
HttpWebRequest 408

File Classes 409
File Class 409
FileInfo Class 412
File Uploading with the File Field Control 414

Directory Classes 416
Directory Class 416

Get All File and Folder Entries 417
Get Computer Drive List 417

DirectoryInfo Class 418
Isolated Storage 420
Serialization 422

Binary Serialization 424
SOAP Serialization 425
XML Serialization 429
Final Notes on Serialization 431

Summary 435

Chapter 11 Working with GDI+ and Images 439
Understanding How the Browser Retrieves Images 440

Building the Image Engine 441
Image 443
Bitmap 446
Using the Bitmap Class to Resize an Image 446
Uploading Images to a Database 448
Retrieving Images from the Database 451

GDI+ 457
GDI+ Helper Data Types 457

Point/PointF 457
Rectangle/RectangleF 457
Size/SizeF 458
Color 458

Pen 458
Brush 458
Graphics 458
Drawing an Image on the Fly 463
Adding Drawing Code 465

xvi Contents

b 430234 FM.qxd 7/1/03 8:58 AM Page xvi

Fonts 467
FontFamilies 467
Font Metrics 468
Fonts 468

Creating a Text Bitmap on the Fly 468
Enumerating the Colors 470
Enumerating the FontFamilies 470
Enumerating the FontStyles 471
Loading the Font Sizes 471
Rendering the Text 471

Summary 476

Chapter 12 ASP.NET Applications 479
ASP.NET Applications 481

The Global.asax File 481
Application_Start 481
Application_End 482
Session_Start 482
Session_End 482

The HttpApplication Class 482
The HttpContext Class 484
Pipeline Processing of the Request 484

The HTTP Handler 486
Built-in HTTP Handlers 486
Creating an HTTP Handler 486
Installing the HTTP Handler 487

The HTTP Module 489
Creating an HTTP Module 489
Installing the HTTP Module 490

Maintaining State 491
Application State Data 492
Session State Data 493
Request State Data 495
Cache 496

Cache Dependency 496
Cache Timeout 499

Static Variables 499
Web Configuration File 499
Error Handling 500
Page Navigation 503

HyperLink and HyperLink Control 503
Window.Open 504
Response.Redirect 506
Server.Transfer 507
Object-Oriented Approach 507
Panels 509

Summary 518

Contents xvii

b 430234 FM.qxd 7/1/03 8:58 AM Page xvii

Chapter 13 Site Security 521
Understanding Security Basics 522

Authentication 523
Authorization 524
Impersonation 524
Delegation 524

Windows Security 525
Workgroup Environment 525
Domain Environment 526
NTFS File System 527

Internet Information Server Security 529
Authentication Methods 529

Anonymous 529
Basic 530
Digest 530
Integrated Windows 531
Certificate 531

IP Address and Domain Name Restrictions 532
Secure Communications 532

How SSL Works 533
Client Certificates 534
Secure Sockets Layer (SSL) Setup 534

ASP.NET Security 539
ASP.NET Request Processing Account 540
ASP.NET Authentication 541

Default (IIS) 542
Windows 542
Passport 542
Forms 543

Forms Authorization 547
Windows Authorization 550
Identity and Principal 550

Identity 551
Principal 552

Forms Authentication Example Using Database Access 553
Database Setup 553
The Project File and Folder Structure 555
Web.config Settings 555
Login Page Authentication 556
Attaching the Roles to the Principal 559

Declarative Security Authorization 560
Imperative Security 561
Imperative Security versus Declarative Security 562

Code Access Security Basics 563
Evidence 563
Code Access Permissions 564

xviii Contents

b 430234 FM.qxd 7/1/03 8:58 AM Page xviii

Working with Code Access Security 565
Code Groups 565
Security Policy Levels 565
Requested Permissions 566
Exception Handling 568
Security Policy Administration 569
Testing Code Access Security 570

Summary 575

Chapter 14 Performance Tuning and Application Instrumentation 579
Load Testing 580
Performance Tuning in a Development Environment 581
Identifying Bottlenecks 581
Performance and Instrumentation Tools 582

Debug 582
Assert 582
Write, WriteLine 583
WriteIf, WriteLineIf 584
Fail 584

Trace 584
Switches 585

BooleanSwitch 585
TraceSwitch 586

Debug Monitor Utility 587
TraceListener 588

DefaultTraceListener 588
TextWriterTraceListener 589
EventLogTraceListener 589

Web Trace 591
Page-Level Trace 591
Application-Level Trace 592
Using Trace in Components 593

Performance Monitor 594
Performance Counters 597

Application Center Test 600
Performance Tips 604

String Concatenation 604
StringBuilder 607
Caching 608

Page Caching 609
Object Caching 610
Graphics Caching 611

ViewState 612
Database Performance 612

Stored Procedures 613
Indexes 613
Calculated Fields 613

Summary 617

Contents xix

b 430234 FM.qxd 7/1/03 8:58 AM Page xix

Chapter 15 Building and Versioning .NET Components 621
Building Reusable Components 622

Creating the Class Library Project 622
Using the Component 625

Setting a Reference to the Component 625
Calling the Component 625
Locating the Component at Run Time 627

Assembly Versioning 628
Private Assemblies 630
Side-by-Side Versioning 632
Strong-Named Assemblies 633

Creating a Strong-Named Assembly 633
Using Strong-Named Assemblies 636
Fusion Log Viewer (FusLogVw.exe) 637

Shared Assemblies 639
Assembly-Binding Policies 642

Microsoft .NET Framework Configuration Tool 644
Publisher Policies 645

Probing for Assemblies 646
Cross-Language Inheritance 647
Summary 659

Chapter 16 Creating Web Services 663
The Role of Web Services 664

Business Scenarios 665
Show Me the Money 665

Web Service Basics 665
Simple Object Access Protocol (SOAP) 667

SOAP Message 667
SOAP Header 668
SOAP Fault 669

Web Service Description Language 670
Universal Description Discovery Integration 673
Discovery with Disco 674

Static Discovery 674
Dynamic Discovery 675
The Disco.exe Utility 675

Web Service Proxies 677
Consuming a Web Service 678

Create the Project 678
Set a Web Reference 678
Executing the Web Server Method 682
Adding More Web Service Functionality 684
Additional Web Service Settings 686

Credentials 686
URL 686
Proxy (Firewall) 687
Timeout 687

xx Contents

b 430234 FM.qxd 7/1/03 8:58 AM Page xx

Executing an Asynchronous Method 687
Asynchronous Execution Using a Synchronization Object 687
Asynchronous Execution Using a Callback Function 689

Building a Visual Studio .NET Web Service 690
Create the Project 690
Create the TextToImage Class 690
Creating the ImageURL Page 694

Registering the Web Service with a UDDI Registry 695
Create the Technology Model (tModel) 695
Add the Service Information 696
Understanding the UDDI Menu Hierarchy 698

Summary 705

Chapter 17 Deployment and Migration 709
Migration 710

ASP and ASP.NET Coexistence 710
ASP to ASP.NET Changes 711

Subprocedures Require Parentheses 713
Server-Side Script Blocks 713
Set and Let 716
Request Object 717
Method Arguments 720
Single Language per Page 721
Option Explicit 722
Variables and Strong Typing 722
Include Files 722

Using COM Components 724
AspCompat Switch 725
Early Binding versus Late Binding 726

Deployment 728
XCopy Deployment 728

FTP Deployment 728
What to Copy 728
Copy Project Button 729

Web Setup Project 729
ASP.NET Registration Utility (aspnet_regiis.exe) 731

Summary 733

Appendix A 737

Index 741

Contents xxi

b 430234 FM.qxd 7/1/03 8:58 AM Page xxi

b 430234 FM.qxd 7/1/03 8:58 AM Page xxii

I would like to thank Donis Marshall of Gearhead Press for giving me the
opportunity to write this book. I would also like to thank Jerry Olsen for his
patience during the writing and editing of this book.

Thanks to everyone at Wiley Publishing, Inc. for their help in getting this
book to the market, especially to Ben Ryan, Kathryn Malm, and Vincent
Kunkemueller, for their support and patience. This book is substantially better
due to all of your input.

Most importantly, thanks and love to my wife, Susan, and my sons, Gary
and Randy. Your patience and understanding has been greatly appreciated.
The only promise that I can make is that the next book will be just as stressful,
but since we are now veterans at this, it won’t feel as bad.

Acknowledgments

xxiii

b 430234 FM.qxd 7/1/03 8:58 AM Page xxiii

b 430234 FM.qxd 7/1/03 8:58 AM Page xxiv

Glenn Johnson is a Microsoft Certified Trainer, Microsoft Certified Solution
Developer, Microsoft Certified Systems Engineer, and Microsoft Certified
Database Administrator. Glenn has an electronics background and has worked
with computers since his first Radio Shack Color Computer (circa 1984). He
was the Director of Information Technology and Technical Support for a Tyco
International company in Westlake, Ohio, and the Advanced Education Group
Training Manager for Xerox Connect in Cleveland, Ohio. Although Glenn has
held many management positions, his true love is teaching.

Glenn is currently the owner of Glenn Johnson Technical Training (http://
GJTT.com) in Avon Lake, Ohio, and provides contract training, consulting, and
programming, primarily in .NET technologies. He also provides Web hosting
and may be reached at GlennJohnson@GJTT.com.

About the Author

xxv

b 430234 FM.qxd 7/1/03 8:58 AM Page xxv

b 430234 FM.qxd 7/1/03 8:58 AM Page xxvi

Active Server Pages (ASP) technology has grown in popularity since the tech-
nology was introduced, primarily due to its ease of development. Users have
flocked to get onto the ASP bandwagon and have been using it to write code
for Web sites of all different sizes. With such a success, why is there a need to
change? How can a change make ASP better?

ASP.NET is the latest version of Active Server Pages technology. ASP.NET
provides a platform that allows developers to continue writing code in a text
editor program, if the developer chooses. In addition, code can be written in
Visual Studio .NET, which provides many more options.

This book provides you with an approach to the latest version of Active
Server Page technology.

How This Book Is Organized

This book is organized into 17 chapters with a bonus chapter found on the Web
site, each of which contains a brief chapter opener followed by several ques-
tions that are commonly asked by students when they are being taught in a
real-world classroom environment. Next, the chapter goes into its subject’s
details, presenting many examples along the way. Thereafter, a lab exercise
builds on the reading. The chapter ends with a brief summary of several of the
key points that were made in the chapter. The chapters are briefly summarized
here.

Introduction

xxvii

b 430234 FM.qxd 7/1/03 8:58 AM Page xxvii

Chapter 1: Introducing ASP.NET
This chapter examines the problems associated with Active Server Pages, fol-
lowed by a look at the benefits of ASP.NET and programming language
choices. Then, this chapter covers the setting up of the development environ-
ment, which is used extensively in this book.

Chapter 2: Solutions, Projects, and the
Visual Studio. NET IDE
This chapter starts by covering the creation of a folder structure, creation of
projects in the folder structure, and storage of these projects in Visual Source-
Safe. The last part of this chapter covers the Visual Studio integrated develop-
ment environment (IDE), its customization, and methods of getting Visual
Studio .NET help.

Chapter 3: Exploring ASP.NET and Web Forms
This chapter explores Web Forms. Web Forms bring the structure and fun back
to Web development! The chapter starts by looking at the two programming
models for ASP.NET, then at how ASP.NET uses server controls, and then at
the HTML and Web Controls. It finishes by looking at the view state and post
back procedures.

Chapter 4: The .NET Framework and
Visual Basic .NET Object Programming
This chapter covers the .NET Framework as well as many aspects of object
programming, such as inheritance with Visual Basic .NET. This chapter can be
especially useful for traditional Visual Basic programmers, who may be accus-
tomed to using objects, but may not have experience creating objects.

Chapter 5: Working with Web Server Controls
This chapter identifies many of the common properties that are available
through inheritance. After that, many of the server controls that are available
in Visual Studio .NET are looked at in detail.

Chapter 6: Using Data-Bound Web Controls
This chapter looks at methods of binding data for the purpose of presenting
the data to the user. Since database access hasn’t been covered yet, the source

xxviii Introduction

b 430234 FM.qxd 7/1/03 8:58 AM Page xxviii

of the data in this chapter will primarily come from an ArrayList. It’s impor-
tant to understand the data binding basics, which will be somewhat consistent
regardless of whether the data source is an ArrayList, an Extensible Markup
Language (XML) file, or a database.

Chapter 7: Building User Controls and
Custom Web Controls
This chapter covers user controls. After that, the chapter looks at creating
custom Web controls from scratch, and it finishes by exploring the ability to
inherit from existing Web server controls.

Chapter 8: Data Access with ADO.NET
This chapter starts by comparing connected and disconnected data and then
covers the primary ADO.NET objects, looking at details and examples. After
covering the objects, this chapter covers different methods of performing data
manipulation, sorting, and filtering using the DataGrid control.

Chapter 9: Working with XML Data
This chapter looks at Microsoft’s approach to XML in the .NET Framework.
The chapter examines the XML classes and then presents various ways of
implementing these classes.

Chapter 10: Streams, File Access, and Serialization
This chapter explores streams in detail. After that, it covers file and folder
classes. Finally, this chapter covers serialization.

Chapter 11: Working with GDI+ and Images
This chapter starts by looking at the image and bitmap classes. These classes
can be used to work with images by using most of the techniques that have
been defined in previous chapters. The latter part of the chapter looks closely
at GDI+ and the ability to create images on the fly.

Chapter 12: ASP.NET Applications
This chapter explores several aspects of ASP.NET application programming.
The first section covers the global.asax file and the HttpApplication class. Next,

Introduction xxix

b 430234 FM.qxd 7/1/03 8:58 AM Page xxix

the chapter explores HTTP handlers and modules. After that, state management
in an ASP.NET application is explored in detail. This chapter also covers several
other items that come in handy when connecting pages together.

Chapter 13: Site Security
This chapter covers many of the aspects that ensure that only authorized peo-
ple have access to private data.

Chapter 14: Performance Tuning and
Application Instrumentation
The topics covered in this chapter are not meant to replace formal load testing.
Instead, they are intended to help the developer to think about performance
before formal load testing. This chapter focuses on a developer’s ability to
optimize the software, although the developer’s ability to identify potential
hardware bottlenecks can also play a key role in determining the hardware
that should be provided in a production system.

Chapter 15: Building and Versioning .NET Components
This chapter covers the methods of creating components, or reusable assem-
blies, by first creating a component and then using it. After that, the versioning
of assemblies is discussed. This chapter also explores the differences between
private and shared assemblies. Much of the discussion is spent on exploring
strong names and binding policies. This chapter finishes by looking at cross-
language inheritance.

Chapter 16: Creating Web Services
One of the best features of Visual Studio .NET is its ability to work with Web
services seamlessly. This chapter explores Web services from the Visual Studio
.NET perspective by looking at some of the Web service basics and then con-
suming an existing Web service. The balance of the chapter focuses on creating
a Web service.

Chapter 17: Deployment and Migration
This first part of this chapter explores some of the methods of migrating from
ASP code to ASP.NET. The chapter then examines methods of using COM com-
ponents based on both early and late binding techniques. The last part of this
chapter covers some of the methods of deploying ASP.NET Web applications.

xxx Introduction

b 430234 FM.qxd 7/1/03 8:58 AM Page xxx

Bonus Chapter: Mobile Computing
This chapter, which is available on the Web site for this book, covers the Mobile
Internet Toolkit, which can be used to solve many of the problems that are
associated with the diverse selection of mobile devices that are on the market
today.

Who Should Read This Book?

This book is intended to be read in a linear fashion by a person who has had
some Visual Basic programming and HTML experience, and who is now try-
ing to expand into ASP.NET. This book does not cover basic programming
constructs such as if-then statements and syntactical constructs. This book is
intended to fill in the gaps that a Visual Basic developer may have by covering
object-oriented programming in detail, and examining inheritance, encapsula-
tion, and polymorphism as it relates to ASP.NET and Visual Basic .NET. Read-
ers who are already familiar with the .NET Framework and Visual Basic .NET
may choose to skim the some of the chapter.

Evaluators of this book for use in a school curriculum should consider plac-
ing this course directly after a Visual Basic .NET prerequisite course.

Tools You Will Need

The following is a list of software that is required to successfully complete all
of the book’s labs. Most labs can be done without Visual SourceSafe, but this a
good time to bite the bullet and get onto a version control system. Chapter 1
covers installation of this software, while Chapter 2 covers the setting up of
Visual SourceSafe and project configuration.

■■ Windows (2000 or .NET) Professional or Server

■■ Internet Information Server 5.0+ (included in Windows Professional
and Server)

■■ Visual Studio .NET Enterprise Architect Edition 2002+

■■ Mobile Internet Toolkit (included with Visual Studio .NET 2003+)

■■ SQL Server 2000+ Developer Edition

■■ Visual SourceSafe 6c+

Introduction xxxi

b 430234 FM.qxd 7/1/03 8:58 AM Page xxxi

What’s on the Web Site?

The Web site contains copies of the sample code that is used throughout this
book. Be sure to check the Web site for updates to the code, as well as tips and
tricks that may be added to the materials. The URL to access the book’s Web
site is www.wiley.com/compbooks/60minutesaday.

xxxii Introduction

b 430234 FM.qxd 7/1/03 8:58 AM Page xxxii

1

Around 1996 and 1997, a new platform called Active Server Pages (ASP) was
introduced to the world. ASP allowed users to execute code written in a script-
ing language, such as VBScript or JScript, on the server, which could access
databases and programmatically create Web pages that could be delivered to
the Web browser.

Active Server Pages version 1.0 was first introduced with Internet Informa-
tion Server (IIS) 3.0 as part of Windows NT Service Pack 3. Version 2.0 was
released in December 1997 as part of Windows NT Service Pack 4. The Win-
dows NT 4.0 Option Pack included ASP 2.0 with IIS 4.0 and Personal Web
Server (PWS) for NT 4.0 Workstation and Windows 9x. ASP Version 3.0 was
released with IIS 5.0 in Windows 2000. Finally, we have ASP.NET, which is
packaged with the .NET Framework Software Development Kit (SDK) 2,
which is a free download from Microsoft. The .NET Framework SDK is also
installed when Visual Studio .NET is installed.

ASP is not a language; it’s a platform that can host scripting languages like
VBScript and JScript. This platform runs on a Web server, typically IIS, but ASP
is also available from third-party vendors for use on other Web servers.

This chapter will look at some of the problems associated with Active Server
Pages, followed by a look at the benefits of ASP.NET and programming

Introducing ASP.NET

C H A P T E R

1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 1

language choices. Then, this chapter will cover the setting up of the develop-
ment environment, which will be used extensively in this book.

Problems with Older Versions of
Active Server Pages

One of the problems with programming traditional Active Server Pages is that
the server-side code is mixed in with the HTML and client-side code. We have
somehow managed to migrate back to unmanageable spaghetti coding. It’s
hard to believe that this has become an acceptable method of programming
large-scale enterprise applications.

Due to the nature of HTML behavior, many of the ASP development envi-
ronments required the creation of tables, and nested tables, in order to obtain
the desired position of controls such as text boxes and buttons.

Another problem with traditional ASP programming is that the code is
interpreted rather than compiled, resulting in slower performance.

ASP exposed an object called the session object. This object was very easy to
use, but programmers often ran into problems when an additional Web server
was added, thereby creating a Web farm. The problem is that session state is
not shareable within a Web farm environment.

ASP also uses late binding when making calls to compiled COM compo-
nents, resulting in slower performance.

The Benefits of ASP.NET

To say that ASP.NET is just the latest version of ASP is an understatement.
ASP.NET represents an exciting new platform for creating Web sites with
the .NET Framework, using any .NET language. Some of the benefits of
ASP.NET are:

Structure. ASP.NET brings structure back into programming by offering
a code-behind page, which separates the client-side script and HTML
from the server-side code.

Layout control. Using Web Forms in ASP.NET and positioning controls
such as text boxes and buttons is easy, and Visual Studio .NET will cre-
ate the appropriate HTML code for the target browser that is selected.
For instance, to be compatible with most browsers, Visual Studio .NET
will create tables, and nested tables to obtain the desired positioning of
the controls. If the application only needs to be compatible with the lat-
est versions of Internet Explorer, then Visual Studio .NET will position
the controls using DHTML.

2 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 2

Compiled code. ASP.NET solves the problem of running interpreted
script by compiling the server-side code into IL (Intermediate Lan-
guage). IL code is significantly faster than interpreted script.

Early binding. ASP.NET also uses early binding when making calls to
COM components, resulting in faster performance.

Security. ASP.NET has an enhanced security infrastructure that can be
quickly configured and programmed to authenticate and authorize Web
site users.

Performance. ASP.NET contains performance enhancements, such as
page and data caching.

Diagnostics. ASP.NET offers an enhanced tracing and debugging option,
which will save time when you are ready to get the system running.

Session state. ASP.NET has an improved session object. Session state can
be configured to be shared among all servers in a Web farm.

.NET Framework. Since ASP.NET uses the .NET Framework, ASP.NET
also inherits the features of the .NET Framework, such as:

■■ Automatic memory cleanup via garbage collection

■■ Cross-language inheritance

■■ A large object-oriented base class library

■■ The use of ADO.NET to access databases

Web services. ASP.NET also provides the Web service infrastructure. It is
possible to create a Web service with very few lines of code.

What Language Should Be Used?

ASP.NET can be used with any of the .NET-compliant languages that are
available. The release of Visual Studio .NET contains managed C++, Visual
Basic .NET, and C# (C Sharp). Microsoft also released J# in June 2002. There are
also many third-party languages. This means that you can use the language
that you are the most comfortable with.

Listed below is a small Hello World program, written in Visual Basic .NET
and saved to a file called hi-vb.aspx in the root Web directory (typically
c:\inetpub\wwwroot\).

<% @Language=”VB” %>

<html>

<body>

<%

response.write(“Hello World from VB”)

Introducing ASP.NET 3

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 3

%>

</body>

</html>

Here is the C# version of the same program, saved to a file called hi-cs.aspx
in the root Web directory.

<% @Language=”C#” %>

<html>

<body>

<%

Response.Write(“Hello World from C#”);

%>

</body>

</html>

So what’s the difference? Notice the language directive on the first line. Also,
notice that “response.write” is all lowercase in the Visual Basic .NET example.
Visual Basic .NET is not case sensitive, which means that “RESPONSE.WRITE”
could be typed and the program would still work. In the C# example, notice
“Response.Write” is used. C# is case sensitive, and the response object was cre-
ated with “Response”, so “response” or “RESPONSE” or anything other than
“Response” will fail. The same holds true for the “Write” method.

In Visual Basic .NET, a command terminates with a carriage return, but in
C#, a command terminates with a semicolon.

There are indeed syntactical differences, but how about performance? All
.NET languages will compile their source code to Microsoft Intermediate Lan-
guage (MSIL or IL) before they are executed. The following is a snippet of the
main part of the IL code that was produced from the Visual Basic .NET sample:

// Here is the Visual Basic .NET version snippet.

IL_0000: ldarg.1

IL_0001: ldstr “\r\n<html>\r\n <body>\r\n\t”

IL_0006: callvirt instance void

[System.Web]System.Web.UI.HtmlTextWriter::Write(string)

IL_000b: ldarg.0

IL_000c: callvirt instance class

[System.Web]System.Web.HttpResponse

[System.Web]System.Web.UI.Page::get_Response()

IL_0011: ldstr “Hello World from VB”

IL_0016: callvirt instance void

[System.Web]System.Web.HttpResponse::Write(string)

IL_001b: ldarg.1

IL_001c: ldstr “ \r\n </body>\r\n</html>\r\n\r\n”

IL_0021: callvirt instance void

[System.Web]System.Web.UI.HtmlTextWriter::Write(string)

IL_0026: ret

4 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 4

Here is the same code snippet, produced from the C# sample:

// Here is the C# version snippet.

IL_0000: ldarg.1

IL_0001: ldstr “\r\n<html>\r\n <body>\r\n\t”

IL_0006: callvirt instance void

[mscorlib]System.IO.TextWriter::Write(string)

IL_000b: ldarg.0

IL_000c: call instance class

[System.Web]System.Web.HttpResponse

[System.Web]System.Web.UI.Page::get_Response()

IL_0011: ldstr “Hello World from C#”

IL_0016: callvirt instance void

[System.Web]System.Web.HttpResponse::Write(string)

IL_001b: ldarg.1

IL_001c: ldstr “ \r\n </body>\r\n</html>\r\n\r\n”

IL_0021: callvirt instance void

[mscorlib]System.IO.TextWriter::Write(string)

IL_0026: ret

One might argue that since every .NET language compiles to IL code, they
all run at the same speed. If you look at the two snippets of code, you will see
that there are differences. Since the samples are different, they certainly won’t
run at the same speed. In reality, the faster language will be the language that
creates the most optimized IL code. Although there are differences in code and
performance between the .NET languages, the difference is usually not great
enough to justify using one .NET language over another .NET language.

Although the older versions of ASP could be coded with VBScript, JScript,
or other third-party scripting languages, most programmers used VBScript.
This makes Web development with ASP.NET using Visual Basic .NET a nat-
ural migration path. Visual Basic .NET is considered by many to be the easiest
of the .NET languages to learn, primarily due to its case-insensitive, easily
read syntax. This book will use Visual Basic .NET exclusively.

Classroom Q & A
Q: Can Visual Basic .NET do everything that all of the other languages,

such as C# can do?
A: Yes, with a few exceptions. Some .NET languages, such as C#,

allow overloaded operators, but Visual Basic .NET does not. Also,
Visual Basic .NET does not directly support unsigned integers.
There are workarounds to accomplish similar functionality, and
none of these items are used enough to warrant the move to
another language.

Introducing ASP.NET 5

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 5

Q: Is there a wizard that can be used to upgrade my ASP code to
ASP.NET?

A: No, there isn’t. In ASP, all variables are a special data type called a
variant. When objects are created, they are assigned to a variant.
Because a variant can hold anything, there is no easy way for a
wizard to perform any type checking and correction. Also, in many
cases, you will want to rewrite your code to take advantage of the
new ASP.NET features.

Q: Does Visual Studio .NET have a way to restore a file to its original
state, even if I have made lots of changes and saves during the
day?

A: By itself, no, but Visual Studio .NET Developer and Enterprise
Architect editions ship with Visual SourceSafe, which allows the
tracking of changes to documents, and yes, the rollback of
changes. In Lab 1, you will install Visual SourceSafe.

Choosing the Appropriate Development
Environment

Before proceeding with ASP.NET development, it is important that the devel-
opment environment be set up properly. There are certainly many ways to set
up a computer, each having advantages and disadvantages. This section will
look at the software requirements first, and then at installation locations for
the software. Finally, this section will look at the permissions that are required
for development work.

The Operating System
When choosing the version of Windows, it’s best to select either the Profes-
sional (2000 or XP) or the Server (2000 or .NET) version. Windows 95 cannot be
used, and although Widows 98, ME, and XP Home can be used, there will be
limitations, especially in the area of security.

When developing a server product, it may be better to use the Windows Server
product rather than the Professional version. This can help minimize the sur-
prises that always seem to pop up when the product is released to production.

The Database Server
Microsoft has two database products, Access and SQL Server. SQL Server
should always be used for Web applications because SQL Server is designed to

6 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 6

be scalable and to perform well in a multiuser environment. Microsoft released
Visual Studio .NET with a SQL Server provider that squeezes every ounce of
performance and functionality from SQL Server.

SQL Server has several editions for production use, but there is also a devel-
oper edition, which is the edition that should be used. The SQL Server Devel-
oper Edition has all of the features that the SQL Server Enterprise Edition has,
except that the licensing prohibits production deployment.

The Version Control Software
The need for a version control system is often overlooked. Even in a single-
developer environment, it is important to have a version control system in
place. If you haven’t been using a version control system, this is a good time to
bite the bullet and give it a try.

Microsoft’s version control system is called Visual SourceSafe. Visual
SourceSafe tracks changes that are made to documents, using its own data-
base. The Visual SourceSafe database is efficient, storing only changes between
document versions rather than complete copies of documents. The Visual
SourceSafe database can be located on your machine, but is usually best to
place the database on a server that is accessible to all of the developers.

Not only does Visual SourceSafe provide the version control for documents,
it also provides an enhanced locking mechanism for use in a multideveloper
environment.

Visual Studio .NET was released with version 6c of Visual SourceSafe. This
version integrates nicely with Visual Studio .NET, and the use of this version
or higher is recommended.

The Visual Studio .NET Edition
Visual Studio .NET needs to be installed, but which version should be
installed? Visual Studio is available in the Professional, Enterprise Developer,
and Enterprise Architect Edition. This section will look at the contents of each
edition.

Visual Studio .NET Professional Edition

Visual Studio .NET Professional Edition contains the following:

■■ C#, Visual Basic .NET, Managed C++, J# .NET

■■ Web services

■■ Web Forms

■■ Windows Forms

Introducing ASP.NET 7

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 7

■■ Mobile Web Forms

■■ Pocket PC and CE.NET-based applications

■■ .NET Framework and the common language runtime

■■ Visual Basic .NET Upgrade Wizard

■■ Visual Studio integrated development environment

■■ Rapid Application Development (RAD) for the server

■■ Visual Studio .NET Debugger

■■ Dynamic Help

■■ Task List

■■ HTML Designer

■■ SQL Server 2000 Desktop Engine

■■ Visual Database Tools

■■ XML Designer

Visual Studio .NET Enterprise Developer Edition

Visual Studio .NET Enterprise Developer Edition contains everything from
Visual Studio .NET Professional, plus the following:

■■ Visual SourceSafe 6c

■■ Application Center Test

■■ Enterprise templates and frameworks

■■ Microsoft .NET-based reference applications

■■ Visual Studio Analyzer

■■ Licensed Development Versions of:

■■ Windows 2000 Standard Server

■■ SQL Server 2000

■■ Microsoft Commerce Server

■■ Microsoft Host Integration Server

■■ Microsoft Exchange Server

Visual Studio .NET Enterprise Architect Edition Contents

Visual Studio .NET Enterprise Architect includes everything from Visual Stu-
dio .NET Enterprise Developer edition, plus the following:

8 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 8

■■ Microsoft Visio-based database modeling

■■ Microsoft Visio-based UML application modeling

■■ Enterprise template project type

■■ Licensed Developer Version of BizTalk Server

Software Selection Conclusions
The Enterprise Developer and Enterprise Architect editions of Visual Studio
.NET contain licensed developer editions of Windows 2000 Server, SQL Server
2000, and Visual SourceSafe 6c. This software is needed for the computer
setup. If you don’t have licensed copies of this software, then obtaining a min-
imum of Visual Studio .NET Enterprise Developer Edition may make the most
sense.

The recommended (not minimum) software requirements for this course
are:

■■ Windows (2000 or .NET) Server

■■ Internet Information Server 5.0+ (included in Windows Pro and Server)

■■ Visual Studio .NET Enterprise Architect Edition

■■ SQL Server 2000+ Developer Edition

■■ Visual SourceSafe 6c+

Note that the focus of this section is on setting up the development environ-
ment, but other items that need to be considered are:

■■ Proper backup strategy

■■ Testing strategy

■■ Deployment strategy

The Software Installation Location
It’s possible to install all of this software on one machine, but ideally you
should install Visual SourceSafe (VSS) on its own server. When working in a
team environment, a separate Visual SourceSafe server with the appropriate
disaster recovery plan should always be implemented. Figure 1.1 shows a dia-
gram of a typical development environment.

Previous versions of Visual Studio recommended running a shared version of
Internet Information Server (IIS) on a central server. With Visual Studio .NET, it’s
preferable to install Internet Information Server on each developer’s machine.
This allows all the developers to debug their Web project at the same time, since
Internet Information Server can only be debugged by one person at a time.

Introducing ASP.NET 9

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 9

Figure 1.1 Diagram of a typical development environment.

Running SQL Server on each developer’s machine will allow each devel-
oper to have better control of schema updates. If SQL Server were on a single
machine, one developer could make a schema change that would cause the
other developers’ code to break. The other developers would have to drop
everything and fix their code. With SQL Server on each developer’s machine,
the developers can decide when the schema updates should be applied, so
each developer has better control of the timing. The schema can be checked
into VSS by generating a script from within SQL Enterprise Manager, or by
writing code to extract the schema.

Developer Permission Assignments
There are many software packages on the market that work fine, as long as the
user is logged on with an account that has administrative permissions. If the
user is logged on with a standard user account, the software will not operate.
This suggests that the developer wrote and tested this software while logged
on with an administrative account.

If you are logged on with administrative permissions and someone finds a
way to get you to unknowingly execute malicious code, the code will have the
same permissions that you currently have. This means that the malicious code
could also be running with administrative permissions. The solution to these
problems is to do development with a standard user account, adding only
those permissions that are required for you to do your job.

Developer Machine

Windows (2000 or .NET) Server
Internet Information Server 5.0+
SQL Server 2000+ Developer Edition
Visual Studio .NET Enterprise Architect Edition

Windows 2000 Server
Visual SourceSafe 6c+

Developer Machine

Developer Machine

10 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 10

Use the administrator account for the initial machine setup, and as soon as
that is done switch over to a standard user account. That’s a good approach.
Throughout this book, every attempt will be made to use a standard account
for development work, using the minimum required security.

Setting up the Development Environment

This section will cover the important aspects setting up and configuring the
development environment. You will actually perform the installation and con-
figuration of this software in the lab at the end of this chapter.

Installing Windows
Consider performing a default installation of Windows, with one exception:
the formatting of the hard drive. After the installation is complete, make any
changes that are required.

When installing Windows, it’s important that the drive(s) be formatted as
NTFS (NT File System). This is best done during the initial install, but you can
change to NTFS later by issuing the following command from the command
prompt:

convert d: /fs:NTFS

where d: is the drive that you need to convert.
Why NTFS? Because NTFS is secure. If you use the FAT or FAT32 format, you

cannot assign permissions to files and folders. You will also find that an NTFS
drive is much more resistant to corruption than a FAT- or FAT32-formatted drive.

Configuring Internet Information Server
If you have chosen to install Windows (2000 or XP) Professional, Internet
Information Services is not installed by default. Even if you are installing Win-
dows (2000 or .NET) Server, you may want to select only the IIS components
that you need. You can select Internet Information Services on the Windows
Components screen and click the Details button. Notice that the only six com-
ponents that are required are the Common Files, Documentation, Front Page
Server Extensions, IIS Snap-In, SMTP Service (email), and World Wide Web
Service. Figure 1.2 shows the components that are required.

Other Software
As soon as you finish installing Windows 2000, add any drivers that your sys-
tem requires. If you were running on Windows 9x, you will need to obtain
updated drivers for your new operating system.

Introducing ASP.NET 11

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 11

Figure 1.2 Required Internet Information Server components.

Be careful with the order in which you install your software. One problem
that Windows has been plagued with is commonly called DLL hell. To experi-
ence DLL hell first hand, a user would do something like the following. Don’t
actually perform these steps!

1. Install all of your newest applications first and test them.

2. Next, install all of your oldest applications and test them.

3. Retest the newest applications, and note the applications that fail.

When the older software packages are installed, they overwrite some of the
DLL files that were installed by the newer applications. The symptom is that the
old software works, while the new software does not! It’s best to always install
your oldest software first, and work your way toward the newest software.

If you need Visual Studio 6 installed in order to work on existing projects,
this is a good time to install it. Visual Studio 6 can run on the same machine as
Visual Studio .NET without any problems. Be sure to apply the latest Visual
Studio 6 service pack.

If you need to use Microsoft Office on your machine, this is a good time to
install it, too.

Installing SQL Server 2000 Developer Edition
This first part of this section will cover the creation of a SQL Server Service
Account, which will be assigned to the SQL services during the installation.
After that, is the actual installation of SQL Server will be covered. After the
installation has been completed, this section will cover the creation of a SQL
Server account that you will use during development. The last part of this sec-
tion deals with testing the installation in order to ensure that a SQL Server
stored procedure can be debugged.

12 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 12

Creating the SQL Server Service Account

Before you install SQL Server, you should create an account that will be
assigned to the SQL Server services. It’s good to create a new account, maybe
called ServiceAccount, and assign this account to any service that needs
an account. If you are in a domain environment, this account should be a
domain account. If you’re not in a domain, create a local ServiceAccount. The
created account needs to be placed into the local Administrators group. This
account also needs Logon as a Service rights, but this right will be assigned
automatically when you assign the account to the services.

Figure 1.3 shows the setup of the ServiceAccount in a nondomain environ-
ment, while Figure 1.4 shows the setup of the ServiceAccount in a domain
environment using Active Directory.

SQL Server Installation

The SQL Server installer will prompt you for the following items:

Location of the Installation. Settings are Local Computer or Remote Com-
puter. It’s usually better to perform Local Computer installations, because
a Remote Computer installation will install the database engine, but the
SQL Server Client Tools will not be installed. The last option is called Vir-
tual Server (grayed out), which is available for clustered servers.

Figure 1.3 Local configuration of ServiceAccount in nondomain environment.

Introducing ASP.NET 13

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 13

Figure 1.4 Domain configuration of ServiceAccount in domain environment.

Installation Selection. Allows you to create a new instance of SQL Server
or upgrade or remove existing components. Installing an instance of SQL
Server is similar to creating an isolated copy of SQL Server on your
machine. After you install your first instance (Default instance), you can
install additional instances to have isolated copies of SQL Server on your
machine. The primary benefit of creating new instances of SQL Server is
to have isolated administration. There is a small performance hit associ-
ated with creating multiple instances of SQL Server on a machine.

Assign Service Account. If you select the option for using the Local Sys-
tem account, you will not be able to debug SQL stored procedures. It’s
good to assign an account to these services, because if SQL Server needs
to access any external resources, such as a file on a remote machine, or
an email system, the assigned account is the account that will be used
for authorization. Do not use the Administrator account because chang-
ing the password for the Administrator account will require you to
update the password on the SQL Server services. Figure 1.5 displays the
location where you will assign the ServiceAccount as previously
described. Be sure to always use the same account for both services.

Authentication Mode. Notice that the default setting is Windows
Authentication mode (see Figure 1.6). While this setting is good for
client/server applications, Mixed Mode security is usually preferred for
Internet applications. Windows Authentication, which is also referred to

14 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 14

as Trusted Security or Integrated Security, uses your Windows account for
SQL authentication. This means that you don’t need to explicitly log on
to SQL Server. This is a great feature, but when you are working with
Internet and multitier applications, it’s usually preferable to use a single
standard SQL account for all user access to a database. Setting the
authentication mode to Mixed Mode will allow you to use Windows
accounts and standard SQL Server accounts. When Mixed Mode is
selected, an account called sa (system administrator) is created. You need
to assign a password to this account. Although you have the option to
assign a blank password, the first password that a hacker would try is
the blank password because this was the default password on previous
versions of SQL Server, and many administrators neglected to change it.

Once the setup has been completed, you should apply the latest service
packs for SQL Server.

Adding a SQL Server Login for Your Use

A new account needs to be added to SQL Server that will be used for develop-
ing and debugging. This can be done using the SQL Enterprise Manager. The
security group called Debugger Users already exists on your machine. This
group can be added to SQL Server, and assigned the appropriate permissions
(see Figure 1.7). Later in this chapter, you will cover the creation of a standard
Windows account for development use, and that account will be added to the
Debugger Users group.

To debug stored procedures, the execute permission must be granted to the
Debugger Users account for the sp_sdidebug extended stored procedure. This
extended stored procedure is located in the master database (see Figure 1.8).

Figure 1.5 Assigning the service account to each SQL Server service.

Introducing ASP.NET 15

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 15

Figure 1.6 Configuring the authentication mode to mixed mode.

SQL Server Stored Procedure Debugging

In order to debug SQL stored procedures, the service account must have
administrative permissions on your local machine. If you varied from the
installation procedure previously described, and assigned the LocalSystem
account to the SQL Server services, SQL Server debugging will fail.

Figure 1.7 Creating the Debugger Users account.

16 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 16

Figure 1.8 Granting EXEC permissions to Debugger Users.

The ADO.NET chapter will include instructions for debugging SQL stored
procedures from within Visual Studio .NET, but it’s a good idea to test the SQL
Server debugger before installing Visual Studio .NET. This can be done by
using the SQL Query Analyzer, and opening a stored procedure in debug
mode. Figure 1.9 displays the SQL Query Analyzer in debug mode.

Figure 1.9 Verify SQL Server debugging capabilities.

Introducing ASP.NET 17

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 17

Figure 1.10 Component Update screen.

Installing Visual Studio .NET
To install Visual Studio .NET, you must be logged on with an account that has
administrative permissions. The first thing that needs to be performed is a
component update. This will check your system and install any necessary
updates prior to installing Visual Studio .NET. See Figure 1.10.

The component update will give you the option of assigning a name and
password for automatic logon and continue during the setup. The setup takes a
while, and this option will keep you from waiting for each reboot.

Step 2 of the setup is the actual installation of Visual Studio .NET. The main
screen for the Visual Studio .NET setup is shown in Figure 1.11. You can select
which items you want to install, and which items should be run from the
installation media. There is about 1 GB of documentation. If you lack space on
your drive, you may want to change the documentation setting from Local
Source to From Source. The From Source option requires you to make the instal-
lation media available when you need access to the documentation.

When the installation is complete, a summary page will be displayed. Be
careful, because if there is an installation error, this screen will display a mes-
sage stating that errors were reported. You can view the setup log from this
screen.

The last item in the Visual Studio .NET installation is to check for updates.
You can check the Internet for updates, or install the update from disk. You can
also check for updates later.

18 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 18

Figure 1.11 Selecting the Visual Studio .NET setup options.

Installing Visual SourceSafe Server
Visual SourceSafe is included with the Developer and Architect Editions of
Visual Studio .NET, but it doesn’t install by default. Insert the CD that has the
VSS folder, navigate to that folder, and run the setup.exe program. You will
have the option to install a stand-alone version of SourceSafe or a shared data-
base version (Figure 1.12). You will install the shared database version. Look-
ing back at the Development Environment diagram at the beginning of the
chapter, you can see that this installation should be on a separate machine. If
you don’t have access to a separate server, it’s okay to install Visual SourceSafe
on your machine. Just remember that your disaster recovery plan for this
machine is more important than ever.

The installation will search your drives, looking for an existing installation
of Visual SourceSafe. If it finds an existing installation, you will be prompted
to select this folder or select a different folder.

If you perform this installation on your computer, skip over the Visual
SourceSafe Client installation, to the Windows Administration section.

Installing Visual SourceSafe Client
If you installed Visual SourceSafe on a separate machine, you now need to
install the Visual SourceSafe client on your machine. First, share the folder on
the server that Visual SourceSafe was installed into. Next, from your machine,
navigate to the SourceSafe share, and run the NetSetup.exe program.

Introducing ASP.NET 19

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 19

Figure 1.12 Selecting the Shared Database version in the Visual SourceSafe setup.

Next, Visual SourceSafe will search your drives for an existing installation.
If Visual SourceSafe finds an existing installation, you will be prompted to
select that folder or create a new folder. You will be able to select the desired
folder and continue with the installation.

The Visual SourceSafe Client will need to be installed on each workstation
that requires access to the Visual SourceSafe database.

Windows 2000 Administration
Your development should be done using the least possible permissions. This
keeps any would-be hackers from doing damage to your machine while using
your security context. This also helps to ensure that your code will operate
with a standard user account when your application moves to a production
environment. Depending on how you set up your computer, this account cre-
ation process will vary. If you are not in a domain environment, you will add
a local user account using Local Users and Computers. This tool is accessible
by right-clicking My Computer, and clicking Manage.

If you are in a domain environment, use Active Directory Users and Com-
puters, which is available by clicking Start, Programs, Administrative Tools.

The new account needs to be added to the Debugger Users group and the
VS Developers group. The Debugger Users group allows you to debug your
applications. The VS Developers group gives you permissions to create
ASP.NET Web projects.

20 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 20

You will need to make sure that this account has the right to log on locally to
your development machine. If your policy setting includes the Users group,
then you’re all set. If you are on a domain controller, the Users group won’t
be in the list, so simply add your account to this list. Also, you should verify
that your new account has the right to shutdown the system as well (see
Figure 1.13).

Visual SourceSafe Administration
Before starting your first project, you will need to do a bit of administration to
Visual SourceSafe. Assign a password to the default admin account and add
accounts for each person who will be checking files in and out of Visual
SourceSafe.

Visual SourceSafe has an option to perform an automatic login with the
user’s Windows account (see Figure 1.14). This is a good setting to keep
selected, but you will need to make sure that each person who is doing devel-
opment work has a unique name on the network, as opposed to everyone
using the administrator account.

Figure 1.13 Adding rights to the user account.

Introducing ASP.NET 21

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 21

Figure 1.14 Setting the Visual SourceSafe automatic login option.

When adding users, notice that the password is optional. If the password is
left blank, the user will not be prompted for a password. Add an account for
each user who will be accessing Visual SourceSafe. Be sure that the user
account matches the Windows Logon account. If you are careful to add a
unique account for each user who will be checking files into and out of Visual
SourceSafe, you will be able to see who made the changes to file, and who has
files checked out.

Lab 1.1: ASP.NET Development
Environment Setup

In this lab, you will set up your development environment. This lab starts
with the installation of the operating system, and includes the installation
of the products (except Mobile Information Server, which we will install
when we get to that chapter) that are necessary in order complete all of
the labs in this book.

You may want to read this lab in its entirety, and then go back and per-
form the exercises that are required for your system. This is the longest
lab in the book, but careful environment planning and configuration will
make your development experience more enjoyable.

Install the Windows Operating System

1. Perform a default installation of the operating system, except format
the drives using NTFS.

2. Install the latest Windows service pack.

22 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 22

Install Internet Information Server
If you have chosen to install Windows (2000 or XP) Professional, Internet
Information Services is not installed by default. If you installed Windows
Server, you will verify that Internet Information Server has been
installed.

1. Click Start, Settings, Control Panel, Add/Remove Programs,
Add/Remove Windows Components, Internet Information Ser-
vices, Details.

2. Select the following six components:

■■ Common Files

■■ Documentation

■■ Front Page Server Extensions

■■ IIS Snap-In

■■ SMTP Service (email)

■■ World Wide Web Service

3. Click OK, Next to complete the installation.

Install Other Software

1. Add any drivers that your system requires.

2. Install Visual Studio 6, if required, and apply the latest Visual Studio 6
service pack.

3. Install Microsoft Office, if required, and apply the latest Office ser-
vice pack.

Install SQL Server 2000 Developer Edition
In this section, you will create a service account, perform the SQL Server
installation, add a SQL login for yourself, and verify that the SQL Debug-
ger is operational.

Create the Service Account
You will create an account for the SQL services. The creation of this
account will be done differently, depending on whether you are in a
domain environment or not.

NONDOMAIN ENVIRONMENT

1. Right-click My Computer, and click Manage.

2. Expand Computer Management, System Tools, Local Users and
Computers.

Introducing ASP.NET 23

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 23

3. Right-click Users, and select New User.

4. Type in ServiceAccount for the name, assign a password, and enter
any additional information. Uncheck the User must change pass-
word at next logon box, then click the Create button.

5. Place ServiceAccount into the local Administrators group.

DOMAIN ENVIRONMENT

1. Click Start, Programs, Administrative Tools, Active Directory Users
and Computers.

2. Expand Active Directory Users and Computers, domain name, Users.
Right-click Users, then click New, User.

3. Type in ServiceAccount for the name, assign a password, and enter
any additional information. Be sure to clear the User must change
password at next login check box.

4. Place ServiceAccount into the local Administrators group.

Install SQL Server

1. Start the SQL Server setup. Select SQL Server 2000 Components
from the first setup screen, and then select Install Database Server.
The next screen simply informs you that you are going to be
installing an instance of SQL Server. Click Next.

2. On the Computer Name screen, verify that Local Computer is
selected, and click Next.

3. On the Installation Selection screen, verify that Create a new instance
of SQL Server is selected. Click Next.

4. The next screen is the License Agreement screen. If you agree with
the licensing, click the Yes to continue.

5. On the next screen, verify that Server and Client Tools is selected and
click Next.

6. The next screen prompts you for an instance name. Verify that the
Default check box is selected, and click Next.

7. On the Setup Type screen, verify that Typical is selected. Before click-
ing Next, note that this is where you have the option to put the pro-
gram and/or data in a different location. Click Next.

8. On the Services Accounts screen, verify that Use the same account for
each service option is selected. Also, select Use a Domain User
Account, type ServiceAccount as the name, type in the password for

24 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 24

the account, and type in the Domain Name. If you are not in a
domain, use your machine name as the domain name.

9. On the Authentication Mode screen, enable Mixed Mode. Type in a
password for the sa account, and click Next.

10. Finally, click the Next button again to install SQL Server.

11. Once the setup has been completed, apply the latest service packs
for SQL Server.

Create the SQL Server Login
You will add an account to SQL Server called Debugger Users, and assign
the appropriate permissions. This is the SQL account that you will use for
development. Later, you will create a standard Windows account for
development use and add that account to the Debugger Users group.

1. Open the SQL Enterprise Manager by clicking Start, Programs,
Microsoft SQL Server, Enterprise Manager.

2. Expand Microsoft SQL Server, (local), Security. Right-click Logins,
then click New Login.

3. In the Name field, type Debugger Users. Click the drop-down box for
the domain, and select your computer. Be sure that the Grant Access
option is selected.

4. Click the Database Access tab, and click the northwind, pubs,
master, and any other database that you may need to edit. Note
that master database must be selected in order to debug stored
procedures.

5. Click OK to create the account.

6. Expand the master database, click Extended Stored Procedures, and
then double-click the sp_sdidebug procedure.

7. In the Extended Stored Procedure dialog box, click Permissions.
Grant the Debugger Users user account EXEC permissions.

8. Close SQL Enterprise Manager.

Verifying SQL Server Stored Procedure Debugger Operation
To debug SQL stored procedures, the service account must have admin-
istrative permissions on your local machine. If you varied from the instal-
lation procedure previously described, and assigned the LocalSystem
account to the SQL Server services, SQL Server debugging will fail.

This section of the lab simply verifies that you are able to debug SQL
Server stored procedures, prior to installing Visual Studio .NET.

Introducing ASP.NET 25

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 25

1. Open the SQL Query Analyzer by clicking Start, Programs,
Microsoft SQL Server, Query Analyzer.

2. When prompted for a logon, be sure to select Windows Authentica-
tion, and for the SQL Server machine, leave the period (for local
machine).

3. Expand Northwind, Stored Procedures.

4. Right-click the dbo.Ten Most Expensive Products stored procedure,
and click Debug.

The stored procedure will open in the T-SQL Debugger, and you
should see a yellow arrow to the left of SET ROWCOUNT 10. Also, if you
press the F11 function key, the program pointer will move to the next line,
and so on.

If this didn’t work, you may want to retrace the steps that are listed in
this book. Also, you may want to search msdn.microsoft.com for articles
on SQL Stored Procedure Debugging.

Install Visual Studio .NET
The installation of Visual Studio .NET will be done by performing a com-
ponent update, then installing Visual Studio .NET, and finally installing
updates. Make sure that you are logged in with an account that has
administrator permissions.

Component Update

1. Start the Visual Studio .NET setup, and click Component Update.

2. The next screen is the Licensing screen. Click I Accept, and click
Continue.

3. Next is the Component Update screen. Click Continue.

4. Type your name and password for Automatic Logon and Continue
during the setup. Click Install Now.

5. When the component update is complete, you will see the status of
the update. Be careful to read this screen. If there were any installa-
tion errors, they will be displayed here. Click Done.

Visual Studio .NET

1. Select Visual Studio .NET to continue.

2. The first screen will be the License Agreement screen for Visual Stu-
dio .NET. Click I Agree, type in the product key, and click Continue.

3. You are now on the main screen for the Visual Studio .NET setup.
On this screen, click Install Now.

26 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 26

4. When the installation is complete, a summary page will be dis-
played. Be careful here, because if there is an installation error, this
screen will display a message stating that errors were reported.
Notice that you can view the setup log from this screen. Click Done.

Service Releases
The last item in the Visual Studio .NET installation is to check for
updates. Check the Internet for updates, or install the updates from disk.

Install Visual SourceSafe Server

1. Insert the CD that has the VSS folder, navigate to that folder, and
run the setup.exe program. Click Shared Database Server.

2. Enter the key code, and click OK.

3. Select the desired installation folder and continue.

4. If you installed VSS on your machine, skip over this section, and go
to the Windows Administration section.

Install Visual SourceSafe Client
If you installed VSS on a separate machine, you now need to install the
VSS client on your machine.

1. Share the folder on the server that Visual SourceSafe was installed
on.

2. From your machine, navigate to the SourceSafe share, and run the
NetSetup.exe program. NetSetup.exe will start the installation of the
Visual SourceSafe client software.

3. Type your name and your company’s name, and then the CD key.

4. Select the desired installation folder, and click the computer icon to
continue with the installation.

5. Repeat the client installation for each workstation that requires
access to the Visual SourceSafe database.

Windows 2000 Administration
In this section, you will create a standard Windows account with the min-
imum required permissions. This account will be placed into the Debug-
ger Users and the VS Developers groups. The account will then be
granted the right to log on locally and shut down the system. Follow the
appropriate instructions, based on whether you are in a domain environ-
ment or not.

Introducing ASP.NET 27

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 27

Nondomain Environment

1. Right-click My Computer, and click Manage.

2. Expand Computer Management, System Tools, Local Users and
Computers.

3. Right-click Users, and select New User.

4. Type in the desired name and other information, uncheck the User
must change password at next logon box, and then click the Create
button.

5. Double-click the Debugger Users group. Click the Members tab.
Add your new account to the group. The Debugger Users group
allows you to debug your applications (remember that you added
this group as a SQL Server account when you installed SQL Server).

6. Double-click the VS Developers group. Click the Members tab and
add your account to the group. The VS Developers group gives you
permissions to create ASP.NET Web projects.

7. Close Computer Management.

8. Click Start, Programs, Administrative Tools, Local Security Settings.

9. Expand Local Policy, User Rights Assignment.

10. Double-click Log on Locally. A window will be displayed, showing
the users and groups who have permissions to log on locally to this
machine. Make sure that your account belongs to one of the listed
groups, or add or account to the list. In the diagram, my account has
Log on locally permissions because the account is a member of the
group called Users. If your policy setting includes the Users group,
then you’re done.

11. Double-click Shut Down the System. Verify that your account is in
the list, or that a group that you are a member of is in the list
(Users).

Domain Environment

1. Click Start, Programs, Administrative Tools, Active Directory Users
and Computers.

2. Expand Active Directory Users and Computers, domain name, Users.
Right-click Users, then click New, User.

3. Fill in the name and password information. Be sure to clear the User
must change password at next login check box.

28 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 28

4. Double-click the Debugger Users group. Click the Members tab.
Add your new account to the group. The Debugger Users group
allows you to debug your applications (remember that you added
this group as a SQL Server account when you installed SQL Server).

5. Double-click the VS Developers group. Click the Members tab, and
add your account to the group. The VS Developers group gives you
permissions to create ASP.NET Web projects.

6. Close Active Directory Users and Computers.

7. Click Start, Programs, Administrative Tools, Local Security Settings.

8. Expand Local Policy, User Rights Assignment.

9. Double-click Log on Locally. A window will be displayed, showing
the users and groups who have permissions to log on locally to this
machine. Make sure that your account belongs to one of the listed
groups, or add the account to the list. In the diagram, my account
has Log on locally permissions because the account is a member of
the group called Users. If your policy setting includes the Users
group, then you’re all set.

10. Double-click Shut Down the System. Verify that your account is in
the list, or that a group that you are a member of is in the list
(Users).

Visual SourceSafe Administration
Before starting your first project, you need to do a little bit of administra-
tion to Visual SourceSafe. You will assign a password to the default
admin account and add accounts for each person who will check files
into and out of VSS.

1. Launch the Visual SourceSafe Administration tool by clicking Start,
Programs, Microsoft Visual SourceSafe, Visual SourceSafe 6.0
Admin.

2. You will be immediately taken into the Administration tool, because
there is no password assigned to the Admin account. Highlight the
admin account, click Users, then click Change Password. Assign a
password.

3. Before adding users, take a look at the options. Click Tools, Options.
Notice that you have the ability to use the network name for auto-
matic user login. This is a good setting to keep selected; make sure
that each person that is doing development work has a unique name
on the network, as opposed to everyone using the administrator
account.

Introducing ASP.NET 29

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 29

4. From the Users menu, add a new user. Notice that the password is
optional. If the password is left blank, the user will not be prompted
for a password. Add an account for each user who will be accessing
Visual SourceSafe. Make sure that the user account matches the
Windows Logon account.

Summary

From this point onward, you should be logged on with your personal account.
When additional permissions are required, they will be added.

30 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 30

Review Questions

1. Name some benefits of using ASP.NET over ASP.

2. What are some of the .NET languages that are available?

3. You are planning on installing Visual Studio .NET, but you also need a Visual Source-
Safe and SQL Server 2000. What edition(s) should you consider purchasing?

4. Name some benefits to using a standard user account for development instead of
using an account that has administrative permissions.

5. Name some benefits of using Visual SourceSafe, even in a single-developer
environment.

6. What Windows group allows you to debug programs?

7. What Windows group allows you to create Web projects?

Introducing ASP.NET 31

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 31

Answers to Review Questions

1. Some benefits of ASP.NET are:

a. The ASP.NET code behind page brings structure into Web development.

b. ASP.NET uses compiled code, thereby delivering better performance.

2. Some .NET languages:

a. Visual Basic .NET

b. C# (C Sharp)

c. J# (J Sharp)

d. Managed C++

e. COBOL (third party)

f. Perl (third party)

g. Eiffel (third party)

h. Many more . . .

3. You should consider the purchase of either:

a. Visual Studio .NET Enterprise Developer Edition

b. Visual Studio .NET Enterprise Architect Edition

4. By using a standard user account:

a. You will be able to identify potential security problems much earlier in the
development process.

b. Your exposure to would be hackers who may run code under your security
context is minimized.

5. Visual SourceSafe allows you to:

a. Track changes to your source documents.

b. See who is currently working on documents.

6. Debugger Users.

7. VS Developers.

32 Chapter 1

c 430234 Ch01.qxd 7/1/03 8:59 AM Page 32

33

It is easy to launch Visual Studio .NET, create a project, and start coding. How-
ever a little planning should be considered to be sure you have the desired
folder structure for the projects that will be created. This chapter starts by cov-
ering the creation of a folder structure, creation of projects within the folder
structure, and storing these projects in Visual SourceSafe. The last part of this
chapter covers the Visual Studio integrated development environment (IDE),
its customization, and methods of getting Visual Studio .NET Help.

Planning and Creating the Visual Studio .NET
Solution Structure

When working on many projects, these projects may be created as part of
building a large system. Here are a few definitions that you need to under-
stand for this chapter:

System. A collection of one or more projects and applications to create a
fully functional operating piece of production software. For example, an
accounting system comprises many projects.

Solutions, Projects, and the
Visual Studio .NET IDE

C H A P T E R

2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 33

Project (or application). The source of the executable assembly that
you will build using Visual Studio .NET. A project is also known as
an application.

Solution. A group or projects that are loaded into Visual Studio at the
same time for the purpose of development, debugging, and building.

Classroom Q & A
Q: Is it possible to include the same project in many solutions?
A: Yes. For example, you have an order entry solution, and a sales

solution. In both of these solutions it may be desirable to include
a customer project.

Q: I understand that Visual SourceSafe provides a locking mechanism
for files when working in a multideveloper environment, but is
there any benefit to using Visual SourceSafe when I am the only
developer at my company?

A: Absolutely. The primary purpose of Visual SourceSafe is to track
version history. Also, Visual SourceSafe isn’t just for code; you can
also place design documents and drawings under version control.

Q: One of the problems that I have with Visual Studio is that it always
wants to create Web projects in the c:\inetpub\wwwroot\ folder. I
like to keep all of my projects in a folder on my D: drive. Is there a
way around this problem?

A: There is, and that’s one of the topics of this chapter. If you create
your folder structure and then create Web shares (also known as
virtual directories), the logical location of the projects will still be
in the c:\inetpub\wwwroot\ folder, but the physical locations will
be on your D: drive.

Folder Structure
The examples in this chapter are built around an order entry system. This sys-
tem comprises several projects. Before creating the first project, the folder
structure needs to be created on the hard drive and in Visual SourceSafe. It is
beneficial to have both folder structures match.

Carefully consider the naming of files and folders for your system. If you
need to rename a file or folder, it’s doable, but very much discouraged. Visual
SourceSafe (VSS) provides a facility for renaming files without losing your
document history, but keep in mind that renaming files outside your version

34 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 34

control system will cause a break in the document’s history in VSS. Also, the
name of your Web project will be the name of the virtual directory that your
users will navigate to. The name of non-Web projects, such as .exe projects,
will become the name of the .exe file.

When a Web project is created in Visual Studio, the project files will be
located under c:\inetpub\wwwroot\projectname. This location may be suit-
able for quick tests, but it’s more beneficial to create a folder structure that is
more solution-centric. A typical solution folder structure for an order entry
system that can be built upon is shown in Figure 2.1.

Virtual Directory Creation
After the folder structure is created, a virtual directory needs to be created in
IIS for the customer, order, and inventory projects. The creation of the virtual
directory accomplishes two tasks. First, the virtual directory will map to the
physical directories that have been created. Second, the creation of a virtual
directory creates an IIS Web application. The files that are in this folder and its
subfolders are considered part of a Web application. This means that if a global
variable (also known as an application variable) is created on one Web page in
the Customer folder, the variable will be available on any other page that is in
the Customer folder, or a subfolder of Customer.

Virtual Directory via Web Sharing

The easiest method of creating a Virtual Directory is via the Web Sharing tab in
Windows Explorer. Right-click the folder and click Properties, Web Sharing, as
shown in Figure 2.2.

Figure 2.1 Folder structures for your hard drive and version control should match.

C:\Development

Local File Structure

OrderEntrySystem

OrderEntryWebSolution Solution

Projects

Customer

Order

Inventory

$/Development

VSS File Structure

OrderEntrySystem

OrderEntryWebSolution

Customer

Order

Inventory

Solutions, Projects, and the Visual Studio .NET IDE 35

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 35

Figure 2.2 Adding a virtual directory via Windows Explorer.

The settings are as follows:

General Settings

Directory. Location of the folder that is being shared.

Alias. Name of the virtual directory to be created. Visual Studio .NET
expects the Alias to be the same as the folder name.

If you cannot see the Web Sharing tab, you don’t have the proper
permissions. Your account must be added to the VS Developers group.

Access Permissions

Read. Allows users to read the files that are in this folder.

Write. Allows users to make changes to the files that are in this folder.

Script Source Access. If the Read option is selected, then selecting this
option allows users to read the source code for the Web pages in the
folder. If the Write option is selected, this allows users to write changes
to the source code contained in this folder.

Directory Browsing. Allows the user to see a listing of the files in this
folder.

36 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 36

Selecting the Write option can reveal sensitive information to users, such
as names and passwords that may be embedded in your code.

Application Permissions

None. Does not allow running any script or executable code.

Scripts Allow. Allows script code, such as VBScript on an ASP page,
to run.

Execute (Includes Scripts). Allows script and executable code, such as
.exe files, to run.

Selecting the Execute and Write options could be disastrous. This would
allow someone to save executable code to the server and then run the
code.

For most Web development, the default settings are appropriate when cre-
ating a virtual directory.

Virtual Directory via Internet Information Services (IIS)

Another method of creating a virtual directory is via the Internet Information
Services snap-in. This may be available via Internet Service Manager from the
Start menu (under Administrative Tools). Internet Information Services is also
available by right-clicking My Computer, selecting Manage, and then selecting
Services and Applications.

Under Internet Information Server, a virtual directory can be created by right-
clicking the Default Web Site, selecting New, and then selecting Virtual Directory.
This will launch the Virtual Directory Creation Wizard, as shown in Figure 2.3.

Visual Studio requires matching folder and alias names, so be sure to
share the Customer folder with the alias name Customer.

If you couldn’t open the computer icon to expose the default Web site,
you may not have adequate permissions. You need to place yourself into
the VS Developers group on your machine.

Solutions, Projects, and the Visual Studio .NET IDE 37

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 37

Figure 2.3 Virtual directory creation via Internet Information Services.

Visual Studio .NET Project Creation
Once the desired folder structure is created on your drive, the projects can be
created. This can be done by starting Visual Studio .NET and creating a blank
solution, as shown in Figure 2.4.

When the blank solution is created, a file with an .sln extension and a file
with an .sou extension are created in the solution folder.

The .sln file contains:

■■ A list of the projects that are in this solution

■■ A list of project dependencies

■■ Visual SourceSafe information

■■ A list of Add-ins that will be available

The .sou file is user specific and contains settings such as:

■■ The task list

■■ Debugger breakpoints and watch window settings

■■ Visual Studio .NET window locations

38 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 38

Figure 2.4 Create a blank solution, paying close attention to where the solution will be
created.

After the solution is created, new projects can be added. The new project can
be added by right-clicking the solution. When the Add New Project dialog box
is displayed (see Figure 2.5), type in the location as http://localhost/Customer,
since a virtual directory called Customer has already been created.

Visual Studio .NET will create the Customer project files in the folder that
has been created and shared.

If you get an error stating that the Web access failed (see Figure 2.6), you
may not have the proper permissions to create this Web project. You need
to make sure that you are a member of the VS Developers group on your
local machine.

The same steps can be repeated to create the order project and the inventory
project in the solution folder.

Figure 2.5 Adding a new project to the current solution.

Note
location

Solutions, Projects, and the Visual Studio .NET IDE 39

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 39

Figure 2.6 Error when trying to open a new project.

Adding the Solution to Visual SourceSafe

After the solution and its projects are created, they can be placed under source
control using Visual SourceSafe (VSS). This can be done in Visual Studio .NET
by clicking File, Source Control, Add Solution to Source Control.

A Source Control dialog box will be displayed, stating that if you add a file
share Web access project to source control, you will no longer be able to access
the project using Front Page Web access. Simply click Continue on this screen,
because, by default, Front Page Server Extensions are not being used.

When using Front Page Server Extensions, Visual SourceSafe is required to
be located on the Web server. Although you may have created the Web project
as http://localhost/Customer, Visual Studio .NET resolved this to an UNC
path. You are currently accessing your projects via a file share called www-
root$ that is located on your machine. Visual Studio will use a combination of
direct file access and HTTP access to get to the files.

The next screen prompts for the location of the solution. However, the folder
structure has not been created in VSS yet, so you will be looking at nothing more
than a root folder. To create the folder structure, type the name of the root devel-
opment folder (C:\Development), and click the Create button. Type OrderEn-
trySystem, highlight the Development folder, and click the Create button. This is
a good time to build the complete folder structure, as shown in Figure 2.7.

Be sure to select the desired parent folder prior to clicking Create. If you
make a mistake, such as adding the Inventory project to the Customer
project, you can correct the mistake after you’re done by running the
Visual SourceSafe program from the Start menu.

Now that you have the folder structure, remember that it’s the solution that
you wanted to store. Highlight the OrderEntrySolution, and click the OK but-
ton. There will be a prompt for each project location. Select the appropriate
location, and click OK.

40 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 40

Figure 2.7 Creating the Visual SourceSafe folder structure.

You should not see a dialog box that asks you if you want to create a new
project folder. If you do, look closely at the path that Visual SourceSafe
wants to use. Make sure that the path matches one of the folder paths
that you have already created.

When you finish selecting the locations of the solution and the projects, VSS
will begin adding all of the files to source control. After the copying has com-
pleted, Visual Studio .NET will have locks beside the solution, each project,
and each file. The lock is an indicator that the file is in Visual SourceSafe, and
the file is in Visual SourceSafe’s safe. When a file is locked into the safe, the
local copy of the file’s read-only attribute is set to true.

Visual Studio has an automatic checkout feature that prompts you to check
out a file if you start to edit it. If a file is opened by double-clicking it, the file
will open in read-only mode. If you make an attempt to modify the file, Visual
Studio .NET will display a Check Out for Edit dialog box. You can enter a com-
ment and click the Check Out button to continue rather seamlessly. Notice that
the Web form is now checked out. Figure 2.8 shows that styles.css is checked
out, and the icon in the Solution Explorer has changed from a lock to a check-
mark with an exclamation point, indicating that you have the file checked out
of Visual SourceSafe.

An attempt to check out a file that is already checked out will cause a mes-
sage to be displayed stating that the file is already checked out by another user.
Figure 2.8 shows how the icon for the Web.config file has changed to indicate
that the file is not available.

Solutions, Projects, and the Visual Studio .NET IDE 41

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 41

Figure 2.8 Icons showing a checked-out and unavailable status.

To see who has files checked out, launch Visual SourceSafe either from the
Start menu or from the Visual Studio by clicking File, Source Control. Figure
2.9 shows the files that are checked out. You can also see the identity of the user
who checked out the file. Right-clicking the file will display a menu with
options to undo a checkout, view the document history, and compare versions
to see the differences.

Figure 2.9 Display of checked out files and the options.

Checked in

Checked
out by

this user

Checked
out by

other user

42 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 42

Lab 2.1: Creating the OrderEntrySystem
Solution

In this lab, you will create a Visual Studio .NET solution for an order entry sys-
tem that has file and folder structures on your hard drive that match the file
and folder structures that you will create in Visual SourceSafe (VSS).

Create the Folder Structure and Virtual Directories
Open Windows Explorer and create the following folder structure:

C:\Development
\OrderEntrySystem

\OrderEntrySystemSolution
\Customer
\Order
\Inventory

Right-click the folder, click Properties, click the Web Sharing tab, and
then click Share This Folder. A dialog box will be displayed, prompting
for the folder settings. Click OK to create the virtual directory. Repeat this
step for the Customer, Order, and Inventory folders.

Create the Visual Studio Solution and Projects
Instead of creating a Web development project, create a Blank Solution
called OrderEntryWebSolution located at C:\Development\OrderEn-
trySystem, as shown in Figure 2.4. After the solution is created, the new
projects can be added to the solution.

1. Click File, New, Blank Solution.

2. Change the name to OrderEntrySystemSolution, change the location
to C:\Development\ OrderEntrySystem, and click OK.

3. Click File, AddProject, New Project.

4. In the Add New Project dialog box, click Visual Basic Projects, and
then click ASP.NET Web Application. In the Location box, type
http://localhost/Customer, and click OK. Repeat this step for the
Order and Inventory projects.

5. Save the solution.

Add the Solution to Visual SourceSafe
The solution has been created in Visual Studio .NET, but not in Visual
SourceSafe. Create the folder structure in Visual SourceSafe, and then
add the solution and projects.

Solutions, Projects, and the Visual Studio .NET IDE 43

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 43

1. In Visual Studio .NET, click File, Source Control, Add Solution To
Source Control.

2. When prompted for a VSS location, create the following folder
structure:

$\Development
\OrderEntrySystem

\OrderEntrySystemSolution
\Customer
\Order
\Inventory

3. Click the OrderEntrySystemSolution folder for the solution location.
When prompted for each project location, you can select the appro-
priate project folder.

Creating the folder structure in Visual SourceSafe before clicking the
OK button will keep you from making mistakes when setting up
your new project. After the folder structure has been created, you
should not see a dialog box stating that the folder you are selecting
does not exist. If you do, look carefully at the path that Visual
SourceSafe wants to create and find the mistake. You may need to
clear the Project text box to keep Visual SourceSafe from creating
two folders with the same name.

Figure 2.10 The automatic Visual SourceSafe file checkout window is displayed to allow
the checking out of the file when an attempt is made to edit a file that is currently locked.

44 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 44

Test Your Work
Open the WebForm1.aspx page that is located in the Customer project.
Notice that the Web page still has a lock icon and that the title bar shows
that the page is opened in read-only mode. Hover your mouse over the
Toolbox; the Toolbox will slide out and expose all of the controls that can
be added to the form. Double-click the button control. This would nor-
mally place a button on the Web Form, but the Web Form must be
checked out first. Notice that the Check Out For Edit dialog box is dis-
played, as shown in Figure 2.10. You can enter any comment and then
click the Check Out button. The Web Form will be checked out and the
button will be placed on the Web Form.

Close WebForm1.aspx. Check the page back into VSS by right-clicking
the page and clicking Check In. Alternately, you can right-click the proj-
ect or the solution to check in all files within that item.

The default location of the Tooblox window is on the left side of the
screen. If the Toolbox has been closed, you click View, Toolbox to
open it.

The Visual Studio .NET Integrated
Development Environment (IDE)

This section will look at the Visual Studio .NET Integrated Development Envi-
ronment in detail by first presenting the windows in the IDE and then explor-
ing the possible customization options.

Classroom Q & A
Q: With Visual Studio 6, each language had its own set of keystrokes

for performing tasks. This was rather cumbersome when working
with Visual InterDev and Visual Basic 6. Do I need to learn a new
set of keystrokes for each of these new languages?

A: This is one area where Visual Studio .NET really shines. Out of the
box, every language uses the same keystrokes for each task. In
addition, you have the option of remapping the keys yourself.
When you start Visual Studio .NET, the Start page has an option
called My Profile, which allows you to set up the keyboard, win-
dows, and Help filters with a couple of mouse clicks.

Solutions, Projects, and the Visual Studio .NET IDE 45

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 45

Q: There is a line and column indicator at the bottom of the screen,
but is there a way to see line numbers beside each line of code?

A: Absolutely. Click Tools, Options, Text Editor, and you will see a list
of the languages. You have the ability to control line numbering for
each language individually. There is also an option called All Lan-
guages that allows you to globally control the line numbering for
all languages.

Q: Is there a way to use the debugger to step through a solution that
may have projects that are written in different languages?

A: Yes. The Visual Studio .NET debugger is robust. Not only can you
step between applications that are written in different languages,
but you can also step into SQL Server stored procedures. As a side
note, the Visual Studio .NET debugger gives you even more func-
tionality when debugging script files (.vbs and .js files).

The Visual Studio .NET Windows
Visual Studio .NET provides a large amount of information and components
via numerous windows. Some of the windows covered in this section will not
be visible by default. If the window that you are looking for is not visible,
access it by clicking the related View menu option.

Each window can be configured by right-clicking its title bar. The following
selections are available:

Dockable. Causes the window to stick to the edge of the IDE.

Hide. Hides the window.

Floating. Allows positioning the window anywhere on the screen. This
option can be useful on systems with multiple monitors.

Auto Hide. Automatically displays the window when the mouse cursor
moves on top of the window title, and hides the window when the
mouse cursor is moved off the window.

A window can be moved by placing the mouse cursor on the title bar of the
window, holding down the mouse button, and then dragging the window.
When multiple windows are docked on top of each other, they will be dis-
played with tabs. To move only one of the tabbed windows, place the mouse
cursor on the tab of the window, hold the mouse button down, and then drag.
The positioning of the window is based on the location of the mouse cursor.

46 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 46

Figure 2.11 Docked (pinned) and auto hide (unpinned) window examples are illustrated.
Notice that the auto hide window includes an icon to the left of the window over which the
mouse can be hovered to show the window.

A window can be freely moved around the screen without becoming
docked by holding down the Ctrl button while dragging the window.

Each window has a pushpin on the title bar. If the pointy part of the pin is
pointing downward, then the window is docked. If it’s pointing to the left, the
window is set to auto hide. (See Figure 2.11.)

The IDE remembers the docked and undocked settings of your windows. If
you accidentally undock a window, simply double-click the title bar to pop
the window back into its docked state, and vice versa. A quick way of
resetting all windows to their original state, is to click Tools, Environment,
General, Reset Window Layout.

Start Window

The Start window is the first window that is displayed when you start Visual
Studio .NET. This window is an HTML page that is displayed using the Visual
Studio .NET built-in browser.

The first time Visual Studio .NET is started, the My Profile tab is selected.
The My Profile tab contains options for changing the IDE behavior to match
your preferences. For example, the keyboard behavior can be changed to
match the existing Visual Basic 6 keyboard behavior. It is also possible to map
any key to an action by clicking Tools, Options, Environment, Keyboard.

Docked window Auto Hide window

Solutions, Projects, and the Visual Studio .NET IDE 47

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 47

After the first time Visual Studio .NET is started, the Get Started tab will be
selected. The Get Started tab displays a list of recent projects and allows new
and existing projects to be opened. The quantity of recent projects that are dis-
played can be changed by clicking Tools, Options, Environment, General and
changing the View <n> Items in Most Recently Used Lists option.

The Start window can be displayed by clicking Help, Show Start Page.

Solution Explorer

The Solution Explorer is a view of the current solution, which can contain
many project, folders, and files. Only one solution can be opened at a time, and
each solution may have many projects. The same project may be included in
many solutions. The Solution Explorer supports file dragging and dropping
from project to project, as well as from Windows Explorer to a project. A
context-sensitive menu is displayed by right-clicking any item in the Solution
Explorer. The upper part of the Solution Explorer (Figure 2.12) contains a
button bar menu with the following items:

View Code. Opens the currently selected file in code-editing mode. For a
Web page, this allows you to modify the code that is associated with the
Web page.

View Designer. Opens the currently selected file in the graphical
designer. For a Web page, this allows Web controls to be dragged and
dropped onto the Web page.

Figure 2.12 The Solution Explorer contains a single solution that can contain multiple
projects. The Solution Explorer also contains command buttons, as shown.

View Code

View Designer

Refresh

Copy Project

Show All Files

Properties

48 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 48

Refresh. Rereads the solution file and folder structure from the file sys-
tem. The Refresh option may be needed when files are added to the
folder structure via a program other than Visual Studio .NET.

Copy Project. Makes a copy of the current project in a new location. The
Copy Project dialog box has options to select the destination, which can
be a new folder on the local machine or a remote machine. Front Page or
file share may be selected as the method of copying the files. Front Page
requires Front Page Server Extensions on the destination server. The
Copy Project dialog box also has an option for selecting that files will be
copied. The choices are:

■■ Only files needed to run the application

■■ All project files

■■ All files in the source project location

Show All Files. Displays all files that are located in the physical folder
structure. This is handy way of viewing the files that are produced by
the compiler.

Properties. Displays the properties of the currently selected item. This
option can be useful when looking for the full path to a file, project, or
solution.

If Visual SourceSafe is being used, the icons to the left of each item will dis-
play the Visual SourceSafe status, as shown in Figure 2.10.

Class View

The Class View displays an object-oriented view of your solution, projects, and
classes. This window is updated dynamically as you edit your code. Right-
clicking an item in the Class View window displays a context-sensitive menu.
This menu allows you to jump to the code definition of the currently select
item. When using Visual Basic .NET, this window is primarily a read-only
view; however other languages such as C# and Managed C++ offer the ability
to add classes, methods, properties, and more from this window.

Toolbox

The Toolbox is a context sensitive window that offers a list of components that
are available to be placed on the current form. The Toolbox offers the ability to
add and delete items by right-clicking the Toolbox and selecting the Customize
Toolbox option. COM and .NET components can be added using this option.

One appealing feature of the Toolbox is the ability to add code snippets by
simply selecting a section of code, and dragging and dropping it onto the Tool-
box. The code snippet can be renamed by right-clicking it and clicking
Rename. The Toolbox also allows new tabs to be added. Adding new tabs will

Solutions, Projects, and the Visual Studio .NET IDE 49

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 49

add user-defined areas to the Toolbox. Code and other menu items can be
dragged and dropped into the user-defined areas to provide categorized tabs
to help manage code and components libraries.

The Server Explorer

The Server Explorer provides an extensible mechanism for discovering and
utilizing server data (see Figure 2.13). By default, the Server Explorer has the
following nodes:

■■ Crystal Decisions

■■ Event Logs

■■ Message Queues

■■ Performance Counters

■■ Services

■■ SQL Servers

One of the primary uses of the Server Explorer is to access SQL Server. Many
SQL Server development functions can be performed without leaving Visual
Studio .NET. The Server Explorer can also be used to start and stop services,
view event logs, manage message queues, and monitor performance.

The Server Explorer supports drag-and-drop functionality. Some of the
things that you can drag are:

■■ Drag an event log and drop it onto a form. This creates an event log
object that can be used to access the log.

■■ Drag a service and drop it onto a form. This creates a service controller
object that can be used to monitor and control the service.

Figure 2.13 The Server Explorer window contains nodes that allow server management
and the ability to drag and drop from node to code.

50 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 50

■■ Drag a performance monitor counter and drop it onto a form. This cre-
ates a PerformanceCounter object that can be used to monitor an exist-
ing counter.

■■ Drag a SQL Server table or view and drop it onto a form. This creates a
connection and data adapter object that can be used to access the table.

■■ Drag a SQL Server stored procedure and drop it onto a form. This cre-
ates a connection and command object, and all of the parameters that
are required to execute the command.

Shortly after the release of Visual Studio .NET, Microsoft released a new com-
ponent for Windows Management Instrumentation (WMI). The installation of
this component adds two new nodes, Management Data and Management
Events. This component supports drag-and-drop functionality as well as data
exploration and method invoking. This component is available for download-
ing from Microsoft’s MSDN Web site at www.microsoft.com/downloads/
release.asp?ReleaseID=31155.

Task List

The task list contains a list of tasks that may be categorized as comments,
errors, reminders, and shortcuts to code. Some of the items that are displayed
in the Task List appear dynamically, while other items are manually placed
into the Task List.

The Task List stores its contents in the .sou file. The .sou file is a user-based
file, which means that each user will have an individual Task List. Figure 2.14
has a list of the icons and associated descriptions for each task.

One method of adding items to the Task List is by using comment tokens in
your code. Comment tokens are words that can be placed in a comment to tell
the Task List to create a task that has a shortcut back to the token. Visual Stu-
dio .NET has built-in comment tokens, such as TODO, UNDONE, and HACK,
but custom comment tokens can also be added. Click Tools, Options, Environ-
ment, Task List to access the Task List options.

Output Window

The Output window displays messages from many of the IDE functions. Some
of the messages include compiler errors as well as diagnostic information that
may be sent to this window from your program.

Solutions, Projects, and the Visual Studio .NET IDE 51

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 51

Figure 2.14 Task List items include these icons.

Command Window

The Comment window has two modes, Command and Immediate. Command
mode allows the execution of any Visual Studio .NET command, bypassing
the menu system. An example follows:

File.SaveAll

This will save all files. Many commands can be accessed simply by typing
the first character; the IntelliSense menu will then be displayed. You are in
Command mode when you see the greater than sign (>) prompt.

The autocompletion setting can be changed by clicking Tools, Options,
Environment, General.

You can switch to Command mode by typing:

>cmd

Temporarily switch to Immediate mode to evaluate a single expression by
typing:

?myVariable

Immediate mode allows evaluation of expressions, prints the values of vari-
ables and executes statements while in debugging mode. An example follows:

?EmpName

52 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 52

You are in Immediate mode when you don’t have a > prompt.
Switch to Immediate mode by typing:

immed

Temporarily switch to Command mode to execute a single command by typ-
ing > followed by the command:

>shell notepad.exe

Object Browser

The Object Browser is a powerful tool that displays all of the data types that
are available to your application. This tool can be used to view and discover
the data types in any assembly. By default the Object Browser only displays
the data types that are available to your application, but this can be changed
via the Customize menu option. An example of the Object Browser displaying
some data types is shown in Figure 2.15.

Figure 2.15 This Object Browser window displays a list of most data types that are
available within Visual Basic .NET. Notice the different icons for each data type as well as the
visibility modifier (public, private, and so on). Chapter 4 covers visibility modifiers in detail.

Solutions, Projects, and the Visual Studio .NET IDE 53

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 53

Macro Explorer

Visual Studio .NET provides the ability to create macros, which can be run in
the development environment. This allows complete automation of the Visual
Studio .NET development environment. Macro projects can be created, saved,
and loaded while in the Macro Explorer.

Macros can be saved as either binary (default) or text. Macros have a
.VSmacros extension and are stored in the Visual Studio project location that is
specified under Tools, Options, Environment, Projects, Solutions.

Code or Text Editor

The Code Editor (also known as the Text Editor) window is accessible by click-
ing a file and then clicking the View Code button in the Server Explorer. The
Code Editor is language aware, delivering language-specific IntelliSense state-
ment and word completion.

The Code Editor window contains a gray bar down the left side of the win-
dow, called the Margin Indicator Bar (Figure 2.16). This is where breakpoints,
bookmarks, and shortcuts are displayed. Breakpoints can be set in a program
by clicking the Margin Indicator Bar. A red dot appears in the Margin Indica-
tor Bar to indicate that the breakpoint has been set.

There is a column of white space between the Margin Indicator Bar and the
code. This white space is called the Selection Margin. You can select a complete
line of code by clicking in the Selection Margin.

Another Code Editor feature is the ability to create collapsible regions in your
code. Use the #Region and #End Region tags to create the collapsible region.

The fonts and colors of the Code Editor window can be changed by clicking
Tools, Environment, Fonts and Colors.

Figure 2.16 The Code Editor window shows the location of the Margin Indicator Bar and
the Selection Margin. Also notice that the contents of a collapsed region can be displayed
by hovering the mouse over the collapsed region.

Margin Indicator Bar

Bookmark

Task List shortcut

Collapsed region

Breakpoint

Selection Margin

Contents of
collapsed region

54 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 54

A section of the settings is devoted entirely to the Code Editor and can be
accessed by clicking Tools, Options, Text Editor. This section contains individ-
ual settings for each language. Options such as line numbering and statement
completion can be turned on here.

Global language setting changes can be accessed by clicking Tools,
Options, Text Editor, All Languages. This allows you to make changes
quickly, such as turning on line numbering, in all languages.

Getting Help
Visual Studio .NET provides tight Help integration within the development
environment. This section covers the Help that is contained in Visual Studio
.NET as well as several ways to get help on the Web.

Visual Studio .NET Help

Help can be obtained in Visual Studio .NET by simply pressing the F1 key. The
F1 key is context sensitive, so if your cursor is placed within the word Print,
pressing the F1 key will display Help for the print command.

Visual Studio .NET supports Dynamic Help, which is available by clicking
Help, Dynamic Help. The Dynamic Help window displays a context-sensitive
list of links to topics that are related to the cursor location as well as links to
sample code and related training topics. The topics that are displayed in the
Dynamic Help window can be configured by clicking Tools, Options, Envi-
ronment, Dynamic Help.

It is possible to add topics to Dynamic Help. This feature can be used by
vendors to add Help on their product and by information technology (IT)
managers to display standard company coding practices. For more informa-
tion, search the Help for “Creating Basic XML Help Files” (use the quotation
marks in the search).

Visual Studio .NET also contains a Full-Text Search feature, which allows
you to enter a keyword or phrase to search for Help on. The Full-Text Search
contains built-in filters, which help reduce the scope of your search. The Help
filter list can be edited by clicking Help, Edit Filters, as shown in Figure 2.17.
Previous versions of Visual Studio only allowed the creation of filters by sets
of Help documentation, while Visual Studio .NET allows creation of help on a
topic-by-topic basis. Searching topic by topic across sets of Help documenta-
tion is possible. Every topic contains a set of attributes relating to program-
ming language, locale, status, target operating system, technology covered,
information type, and document set. An example of a Help filter for use when
developing software for WML-based cell phones is

(“Technology”=”kbWML”) OR (“DevLang”=”WML”)

Solutions, Projects, and the Visual Studio .NET IDE 55

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 55

Figure 2.17 When creating a Help filter, the filter definition (top) can be edited directly in
its window or indirectly by selecting attributes and values from the lower window section.

Help on the Web

The following is a small list of the many Web sites that may help you find addi-
tional information about Visual Studio .NET:

■■ http://msdn.microsoft.com

■■ http://msdn.microsoft.com/vstudio

■■ www.GotDotNet.com

■■ www.asp.net

■■ www.ibuyspy.com

■■ www.ibuyspyportal.com

■■ www.aspalliance.com

■■ www.dotnetjunkies.com

■■ www.c-sharpcorner.com

■■ www.4guysfromrolla.com

■■ www.123aspx.com

■■ www.aspfree.com

56 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 56

■■ www.dotnet247.com

■■ www.411asp.net

■■ www.angrycoder.com

Lab 2.2: Customizing Windows and
Help Filters

In this lab, you will start by customizing several windows to discover
some of the options that are available in Visual Studio .NET. In the second
part of the lab, you will create a custom Help filter.

Window Customization
In this section, you will turn on line numbering, set the quantity
of recent projects to display to 10, configure a comment token called
CleanupRequired, and explore the Show All Files button behavior.

To start this lab, open the OrderEntrySolution from Lab 2.1.

Turn on Line Numbers
You will turn on line numbering for all languages.

1. Click Tools, Options, Text Editor, All Languages, General.

2. Click the Line Numbers check box until there is a checkmark with a
white background, then click OK.

3. Open the one of the Web pages in code view mode.

Notice that line numbers are now displayed. This will help you locate
an error when the error and its line number are displayed.

Setting the Quantity of Recent Projects
You will set up the quantity of recent project that are displayed on the
Start page.

1. Click Tools, Options, Environment, General.

2. Locate the Display <n> Items in the Most Recently Used List option.

3. Change <n> to 10, and then click OK.

4. Refresh the Start page by clicking Help, Show Start Page.

You should see the last 10 projects that you have worked with. If you
haven’t worked with 10 projects, you will only see the projects that you
have worked with.

Configure a CleanupRequired Comment Token
You will create a comment token and test it.

Solutions, Projects, and the Visual Studio .NET IDE 57

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 57

1. Click Tools, Options, Environment, Task List.

2. In the Name text box, type CleanupRequired.

3. Set the priority to High.

4. Click Add, and then click OK.

5. Test your comment token by opening one of your Web pages in
Code View mode and typing a comment like the following:

‘CleanupRequired – Need to replace magic numbers with constants.

6. Open the Task List by clicking View, Show Tasks, All.

You should see your new task in the Task List.

Exploring the Show All Files Button
You will use the Show All Files button to see the files that are normally
hidden.

1. If the Solution Explorer is not visible, open it by clicking View,
Solution Explorer.

2. Try to locate the bin folder. Notice that it is not visible.

3. Click the Show All Files button in the Solution Explorer. If you don’t
know which button this is, move the mouse over each button to see
its ToolTip.

4. Locate the bin folder. It is visible.

5. If there are no files in the bin folder, click Build, Build Solution.

You should see the DLL that is created for your project and its .pdb
(debugger) file.

Creating an ASP.NET with Visual Basic .NET Help Filter
In this section, you will try searching with no Help filter. You will then
create an ASP.NET with Visual Basic Help filter that you can use. Finally,
you will try the original search using your new Help filter.

1. Search for Cache topics. Click Help, Search.

2. Type Caching in the Look For text box.

3. Verify that the filter is set to (no filter), and click OK. Notice that
more than 500 topics are returned, relating to many different sub-
jects that have the Caching keyword. If you look at the first 10 top-
ics, they relate to SQL Server, Proxy Server, and ASP.NET.

4. Click Help, Edit Filters to create a new filter.

5. Click New to create a new Help filter. Notice that the filter definition
is empty.

58 Chapter 2

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 58

6. Update the topics that are available by clicking Calculate.

7. Locate and click the option called List of Available Attributes and
their Values, to view the list.

8. Click Language, Visual Basic (VB).

9. Click Product, Visual Studio (VS).

10. Click Technology, ASP.NET. Your filter definition should look like this:

(“Technology”=”ASPNET”) OR (“Product”=”VS”) OR (“DevLang”=”VB”)

11. Click Save, and label the filter ASP.NET Using VB.

12. Search for Caching again, but set the Help filter to your new Help fil-
ter. Notice that less than 200 topics are displayed. Notice that the
first 10 (and more) topics are all related to ASP.NET.

You can increase your productivity by creating many Help filters in
Visual Studio .NET.

Summary

■■ The creation of solutions and projects using the default settings will
place Web projects in the c:\inetpub\wwwroot folder, which does not
lend itself to creating a directory structure that can be built upon.

■■ A custom directory structure can be created manually, and the project
directories can be Web shared through Windows Explorer or Internet
Information Services. After the Web shares are created, you can use
Visual Studio .NET to create your projects.

■■ After the solution and projects are created in Visual Studio .NET, they can
be added to Visual SourceSafe. It is best to create the Visual SourceSafe
folder structure before adding the projects to ensure their proper creation.

■■ Visual Studio .NET provides a large amount of information and compo-
nents via numerous windows.

■■ Many of the windows are customizable, and support drag-and-drop
functionality.

■■ Visual Studio .NET provides a great amount of Help, which can become
intimidating. With custom Help filters, you can narrow the scope of your
searches to topic-by-topic responses. Searching topic by topic across sets
of Help documentation is possible because every topic contains a set of
attributes relating to programming language, locale, status, target operat-
ing system, technology covered, information type, and document set.

Solutions, Projects, and the Visual Studio .NET IDE 59

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 59

60 Chapter 2

Review Questions

1. What is a Visual Studio .NET project?

2. What is the benefit of creating your own folder structure instead of letting Visual
Studio .NET create the folder structure for you?

3. How do you get Visual Studio .NET to see a folder that you have created that is not in
the C:\inetpub\wwwroot folder?

4. You are trying to create a Web share for a folder in Windows Explorer, but the Web
Share tab is not available. What is the most probable cause and solution?

5. What is an easy way to get access to the event log objects?

6. Which window can be used to discover the data types that are defined within an
assembly?

7. What is a method of narrowing the scope of your searches to get more accurate
results?

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 60

Answers to Review Questions

1. A project is the source of the executable assembly that you will build using Visual
Studio .NET. It is also known as an application.

2. If you create your own folder structure, it can be created in more organized format for
the system that you are building.

3. After you create your folder, you must create a Web share for the folder, which creates
a virtual directory in Internet Information Services.

4. You are not a member of the VS Developers group. You must be placed into this group
to be able to create Web shares.

5. Drag-and-drop the event log from the Server Explorer to your form. This will create an
EventLog component that you can use in your code.

6. The Object Browser window.

7. Create and use a Help filter.

Solutions, Projects, and the Visual Studio .NET IDE 61

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 61

d 430234 Ch02.qxd 7/1/03 8:59 AM Page 62

63

The last chapter covered the setup and configuration of the development envi-
ronment. The development environment is an important necessity and will
make the rest of your development more enjoyable.

This chapter explores Web Forms. Web Forms bring the structure and fun
back to Web development. This chapter starts by looking at the two program-
ming models for ASP.NET. It then looks at how ASP.NET uses server controls
and at the HTML (HyperText Markup Language) and Web server controls. It
finishes by looking at view state and post back.

Web Forms

Web Forms are an exciting part of the ASP.NET platform. Web Forms give the
developer the ability to drag and drop ASP.NET server controls onto the form
and easily program the events that are raised by the control. Web Forms have
the following benefits:

Rendering. Web Forms are automatically rendered in any browser. In
addition, Web Forms can be tweaked to work on a specific browser to
take advantage of its features.

Exploring ASP.NET
and Web Forms

C H A P T E R

3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 63

Programming. Web Forms can be programmed using any .NET lan-
guage, and Win32 API calls can be made directly from ASP.NET code.

.NET Framework. Web Forms are part of the .NET Framework, therefore
Web Forms provide the benefits of the .NET Framework, such as perfor-
mance, inheritance, type safety, structured error handling, automatic
garbage collection, and xcopy deployment.

Extensibility. User controls, mobile controls, and other third-party con-
trols can be added to extend Web Forms.

WYSIWYG. Visual Studio .NET provides the WYSIWYG (what you see
is what you get) editor for creating Web Forms by dragging and drop-
ping controls onto the Web Form.

Code Separation. Web Forms provide a code-behind page to allow the
separation of HTML content from program code.

State Management. Provides the ability to maintain the view state of
controls across Web calls.

Classroom Q & A
Q: I am currently developing my entire Web page by typing the HTML

and client-side script into an ASCII editor. Are standard HTML tags
with client-side script still available? Also, can I still use JavaScript
for client-side code?

A: Yes. ASP.NET is focused around the added functionality of server
controls, but you can still use standard HTML tags with client-side
script as you have done in the past. As you become more familiar
with the Visual Studio .NET environment, you may choose to
change some of your controls to server controls to take advantage
of the benefits that server controls provide.

Q: Can I use ASP and ASP.NET pages on the same Web site? Can I use
Session and Application variables to share data between the ASP
and ASP.NET pages?

A: Yes and no. You can run ASP and ASP.NET Web pages on the same
Web site; in order words, the pages can coexist. You cannot share
application and session data between the ASP and ASP.NET pages,
because the ASP and ASP.NET run under separate contexts. What
you will find is that you will have one set of Session and Applica-
tion variables for the ASP pages and a different set of Session and
Application variables for the ASP.NET pages.

64 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 64

Q: It’s my understanding that there are two types of server controls.
Can both types of server controls be used on the same Web page?

A: Yes. Visual Studio .NET provides HTML and Web server controls.
You can provide a mixture of these controls on the same page.
These controls will be covered in this chapter.

Q: I currently use VBScript and JavaScript to write my server-side
code. Basically, if I am writing the ASP page and a function is eas-
ier to accomplish in JavaScript, I write it in JavaScript. For all other
programming, on the page, I use VBScript. Can I continue to mix
Visual Basic .NET and JavaScript on the same page?

A: No. ASP.NET requires server-side script to be written in the same
language on a page-by-page basis. In addition, Visual Studio .NET
requires a project to be written in a single server-side language.

Two ASP.NET Programming Models

People who are familiar with traditional ASP are accustomed to creating a single
file for each Web page. ASP.NET supports the single-file programming model.
Using the single-page programming model, the server code and the client-side
tags and code are placed in the same file with an .aspx file extension. This
doesn’t do anything to help clean up spaghetti code, but the single-file model
can be especially useful to ease the pain of migrating ASP code to ASP.NET.

The two-page model provides a separation of the server-side code and
client-side HTML and code. The model offers the ability to use an .aspx page
for the client-side presentation logic and a Visual Basic code-behind file with a
.vb file extension for the server-side code.

This chapter starts by using the single-page model due to its simplicity.
After most of the basic concepts are covered, the chapter switches to the two-
page model. The two-page, or code-behind, model is used exclusively
throughout the balance of the book due to the benefits it provides.

Simple ASP.NET Page

Using the single-page programming model, a simple Hello World page using
ASP.NET can be written and saved to a file called vb.aspx containing the
following:

<%@ Page Language=”vb” %>

<HTML>

<HEAD><title>Hello World Web Page</title></HEAD>

Exploring ASP.NET and Web Forms 65

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 65

<body>

<form id=”Form1” method=”post” runat=”server”>

<asp:TextBox id=”Hi” runat=”server”>

Hello World

</asp:TextBox>

<asp:Button id=”Button1” runat=”server” Text=”Say Hi”>

</asp:Button>

</form>

</body>

</HTML>

The first line of code contains the page directive, which contains the com-
piler language attribute. The compiler language attribute can only be used
once on a page. If additional language attributes are on the page, they are
ignored. Some language identifiers are shown in Table 3.1. If no language
identifier is specified, the default is vb. The page directive has many other
attributes, which will be covered throughout this book.

The language identifiers that are configured on your machine may be
found by looking in the machine.config file, which is located in the
%systemroot%\\Microsoft.NET\Framework\version\CONFIG folder. The
machine.config file is an xml configuration file, which contains settings
that are global to your machine. A search for compilers will expose all of
the language identifiers that are configured on your computer. Always
back up the machine.config file before making changes, as this file affects
all .NET applications on the machine.

The rest of the page looks like standard HTML, except that this page con-
tains three server controls: the form, the asp:TextBox, and the asp:Button.
Server controls have the run=”server” attribute. Server controls automatically
maintain client-entered values across round trips to the server. ASP.NET auto-
matically takes care of the code that is necessary to maintain state by placing
the client-entered value in an attribute. In some cases, no acceptable attribute
is available to hold the client-entered values. In those situations, the client-
entered values are placed into a <input type=”hidden”> tag.

Table 3.1 ASP.NET Language Identifiers

LANGUAGE ACCEPTABLE IDENTIFIERS

Visual Basic .NET vb; vbs; visualbasic; vbscript

Visual C# c#; cs; csharp

Visual J# VJ#; VJS; VJSharp

Visual JavaScript js; jscript; javascript

66 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 66

When the page is displayed in the browser, the text box displays the initial
Hello World message. A look at the client-side source reveals the following:

<HTML>

<HEAD><title>Hello World Web Page</title></HEAD>

<body>

<form name=”Form1” method=”post” action=”vb.aspx” id=”Form1”>

<input type=”hidden”

name=”__VIEWSTATE”

value=”dDwtMTc2MjYxNDA2NTs7Pp6EUc0BOodWTOrpqefKJJjg3yEt”/>

<input type=”text”

name=”Hi”

value=”Hello World” id=”Hi” />

<input type=”submit”

name=”Button1”

value=”Say Hi” id=”Button1” />

</form>

</body>

</HTML>

The form server control was rendered as a standard HTML form tag with
the action (the location that the data is posted to) set to the current page. A new
control has been added automatically, called the __VIEWSTATE control. (More
on the __VIEWSTATE control is provided in this chapter.) The asp:TextBox
Web server control was rendered as an HTML text box and has its value set to
“Hello World.” The asp:button Web server control was rendered as an HTML
Submit button.

If Hi Universe is typed into the text box and the button is clicked, the button
will submit the form data to the server and return a response. The response
simply redisplays the page, but Hi Universe is still in the text box, thereby
maintaining the state of the text box automatically.

A glimpse at the client-side source reveals the following:

<HTML>

<HEAD><title>Hello World Web Page</title></HEAD>

<body>

<form name=”Form1” method=”post” action=”vb.aspx” id=”Form1”>

<input type=”hidden”

name=”__VIEWSTATE”

value=”dDwtMTc2MjYxNDA2NTs7Pp6EUc0BOodWTOrpqefKJJjg3yEt”/>

<input type=”text”

name=”Hi”

value=”Hi Universe” id=”Hi” />

<input type=”submit”

name=”Button1”

value=”Say Hi” id=”Button1” />

</form>

</body>

</HTML>

Exploring ASP.NET and Web Forms 67

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 67

Table 3.2 ASP.NET Server Tags

SERVER TAG MEANING

<%@ Directive %> Directives no longer need to be the first line in the
code, and many new directives may be used in a
single ASP.NET file.

<tag runat=”server” > Tags that have the runat=”server” attribute are server
controls.

<script runat=”server” > ASP.NET subs and functions must be placed inside
the server-side script tag and cannot be placed
inside the <% %> tags.

<%# DataBinding %> This is a new tag in ASP.NET. It is used to connect, or
bind, to data. This will be covered in more detail in
Chapter 8, “Data Access with ADO.NET.”

<%-- Server Comment --%> Allows a server-side comment to be created.

<!-- #include --> Allow a server-side file to be included in a
document.

<%= Render code %> Used as in-line code sections, primarily for rendering
and <% %> a snippet of code at the proper location in the

document. Note that no functions are permitted
inside <% %> tags.

The only change is that the text box now has a value of Hi Universe. With tra-
ditional ASP, additional code was required to get this functionality that is built
into ASP.NET server controls.

Many changes have been made in the transition from ASP to ASP.NET. Table
3.2 shows server tags that are either new or have a different meaning in
ASP.NET. Understanding these changes will make an ASP to ASP.NET migra-
tion more palatable.

Server Controls

A server control is a control that is programmable by writing server-side
code. Server controls automatically maintain their state between calls to the
server. Server controls can be easily identified by their runat=”server” attribute.
A server control must have an ID attribute to be referenced in code. ASP.NET
provides two types of server controls; HTML and Web. This section looks at
these controls.

68 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 68

HTML Server Controls
HTML server controls resemble the traditional HTML controls, except they
have a runat=”server” attribute. There is typically a one-to-one mapping of an
HTML server control and the HTML tag that it renders. HTML server controls
are primarily used when migrating older ASP pages to ASP.NET. For example,
the following ASP page needs to be converted to ASP.NET:

<HTML>

<HEAD><title>Employee Page</title></HEAD>

<body>

<form name=”Form1” method=”post” action=”vb.asp” id=”Form1”>

<input type=”text”

name=”EmployeeName”

id=” EmployeeName “ >

<input type=”submit”

name=”SubmitButton”

value=”Submit” id=” SubmitButton” >

</form>

</body>

</HTML>

This sample page can be converted by adding the runat=”server” attribute to
the form and input tags, and removing the action=”vb.asp” attribute on the
form. The filename needs an .aspx extension. The modified Web page looks
like this:

<HTML>

<HEAD><title>Employee Page</title></HEAD>

<body>

<form name=”Form1” method=”post” id=”Form1” runat=”server”>

<input type=”text”

name=”EmployeeName”

id=”EmployeeName” runat=”server” >

<input type=”submit”

name=”SubmitButton”

value=”Submit” id=”SubmitButton” runat=”server”>

</form>

</body>

</HTML>

This example shows how the use of HTML controls can ease a conversion
process. If the existing tags had JavaScript events attached, those client-side
events would continue to operate.

This ease of migration benefit can also be a drawback. Being HTML-centric,
the object model for these controls is not consistent with other .NET controls.
This is where Web server controls provide value.

Exploring ASP.NET and Web Forms 69

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 69

Web Server Controls
Web server controls offer more functionality than HTML controls, their object
model is more consistent, and more elaborate controls are available. Web
server controls are designed to provide an object model that is heavily focused
on the purpose of the object rather that the HTML that is generated. In fact, the
Web server control’s source code will typically be substantially different from
the HTML it generates. Some Web server controls, such as the Calendar and
DataGrid, produce complex tables with JavaScript client-side code.

Web server controls have the ability to detect the browser capabilities and
generate HTML that uses the browser to its fullest potential.

During design, a typical Web server control’s source code will look like the
following:

<asp:button attributes runat=”server”/>

The attributes of the Web server control are properties of that control, and
may or may not be attributes in the generated HTML.

Server Control Recommendations
Consider using HTML server controls when:

■■ Migrating existing ASP pages to ASP.NET.

■■ The control needs to have custom client-side script attached to the
control’s events.

■■ The Web page requires a great amount of client-side code, where
client-side events need to be programmed extensively.

In all other situations, it’s preferable to use Web server controls.

Server Control Event Programming
An important feature of server controls is the ability to write code that exe-
cutes at the server in response to an event from the control.

ViewState

When a Web Form is rendered to the browser, a hidden HTML input tag is
dynamically created, called __VIEWSTATE (ViewState). This input contains
base64-encoded data that can be used by any object that inherits from
System.Web.UI.Control, which represents all of the Web controls and the

70 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 70

Web Page object itself. ViewState is a property tag that is optimized to hold
primitive type, strings, HashTables, and ArrayLists, but can also hold any
object that is serializable or data types that provide a custom TypeConverter.

An object may use ViewState to persist information across calls to the server
when that information cannot easily be persisted via traditional HTML attrib-
utes. In some instances, ViewState is not necessary, because the content of a
control may automatically be persisted across calls to the server. For example,
a TextBox automatically sends its contents back to the server via its value prop-
erty, and the server can repopulate the value property when rendering it back
to the browser. If, however, additional information is needed that cannot eas-
ily be represented with traditional HTML attributes, ViewState comes to the
rescue.

One example of using ViewState would be a scenario where a ListBox is
populated by querying a database. It may not be desirable to requery the data-
base everytime the page is posted to the server. The ListBox uses ViewState to
hold the complete list of items that are placed in the ListBox. ViewState stores
the list of items that were programmatically placed into the ListBox. By plac-
ing the list of items in ViewState, the ListBox will be repopulated automati-
cally. The server will not need to requery the database to repopulate the
ListBox, because the ListBox is maintaining its own state. In the following code
sample, an asp:ListBox server control has been added, as has been a subrou-
tine to simulate loading the ListBox programmatically from a database.

<HTML>

<script runat=”server”>

sub Form_Load(sender as object, e as System.EventArgs) _

handles MyBase.Load

‘simulate loading the ListBox from a database

ListBox1.Items.Add(New ListItem(“apple”))

ListBox1.Items.Add(New ListItem(“orange”))

end sub

</script>

<HEAD><title>Hello World Web Page</title></HEAD>

<body>

<form id=”Form1” method=”post” runat=”server”>

<asp:TextBox id=”Hi” runat=”server”>

Hello World

</asp:TextBox>

<asp:Button id=”Button1” runat=”server” Text=”Nothing”>

</asp:Button>

<asp:ListBox id=”ListBox1” runat=”server”>

</asp:ListBox>

</form>

</body>

</HTML>

Exploring ASP.NET and Web Forms 71

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 71

After the ListBox and code have been added, browsing to this sample page
will show the ListBox, which will contain the Apple and Orange items that
were added by the form load procedure. Viewing the source reveals a much
larger ViewState as shown next.

<input type=”hidden” name=”__VIEWSTATE”

value=”dDwtMzE3ODYxNTUzO3Q8O2w8aTwyPjs+O2w8dDw7bDxpPDU+Oz47bDx

0PHQ8O3A8bDxpPDA+O2k8MT47PjtsPHA8YXBwbGU7YXBwbGU+O3A8b3JhbmdlO2

9yYW5nZT47Pj47Pjs7Pjs+Pjs+Pjs+Gyn1i+uQFP6LoUl4/8djhigkR4Q=” />

Correcting Multiple Entries
This page contains a button, which has not been programmed to do anything,
but will cause all of the form data to be posted back to the server. If the button
is clicked, the ListBox will contain Apple, Orange, Apple, and Orange. What
happened?

ASP.NET will automatically rebuild the ListBox using the items that are in
ViewState. Also, the form load subroutine contains code that simulates load-
ing the ListBox from a query to a database. The result is that we end up with
repeated entries in the ListBox. One of the following solutions can be applied.

Use the IsPostBack Property

ASP.NET provides the IsPostBack property of the Page object to see if the page
is being requested for the first time. The first time that a page is requested, its
IsPostBack property will be false. When data is being sent back to the server,
the IsPostBack property will be true (see Figure 3.1).

Figure 3.1 The first time that a page is requested, the IsPostBack property of the page is
equal to false. When the page data is submitted back to the server, the IsPostBack property
will be true.

First
Request for

myPage

User fills in
form and
submits

data

Browser

IsPostBack = false
Http "Get" myPage.aspx (no data)

Response = myPage.aspx

Http "Post" myPage.aspx (data)

Response = myPage.aspx
IsPostBack = true

Web Server

72 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 72

Change the form load subroutine by adding a condition that checks to see if
the page is being loaded for the first time, and if so, load the TextBox from the
database. If not, use the ViewState to populate the ListBox. Here is a sample:

sub Form_Load(sender as object, e as System.EventArgs) _

handles MyBase.Load

‘simulate loading the ListBox from a database

If not IsPostBack then

ListBox1.Items.Add(New ListItem(“apple”))

ListBox1.Items.Add(New ListItem(“orange”))

End if

end sub

This routine uses the IsPostBack method to see if the page is being posted
back. If true, then there is no need to load the information from the database.

Turn off ViewState

It may more desirable to requery the database, especially if the data changes
regularly. In this example, instead of turning off the query to the database, the
ViewState can be turned off. Here is a sample:

<asp:ListBox id=”ListBox1” EnableViewState=”False”>

</asp:ListBox>

Turning off ViewState for this control reduces the size of the data that View-
State passes to and from the server.

Post Back

In the previous examples, all ASP.NET server controls were encapsulated in a
form that has the runat=”server” attribute. This is a requirement. Also notice
that the original form tag in the source code is:

<form id=”Form1” method=”post” runat=”server”>

A view of the client source reveals that the form tag was transformed to:

<form name=”Form1” method=”post” action=”vb.aspx” id=”Form1”>

Notice that the action attribute is not valid in the original source, but
ASP.NET adds the action=”vb.aspx” attribute, where vb.aspx is the name of the
current page. In essence, the page will always post back to itself.

Exploring ASP.NET and Web Forms 73

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 73

Each server control has the ability to be configured to submit, or post, the
form data back to the server. For the TextBox, AutoPostBack is set to false by
default, which means that the text is not sent back to the server until a differ-
ent control posts the data back to the server. If AutoPostBack is set to true and
the text is changed, then the text box will automatically post the form data
back to the server when the text box loses focus. The following line shows how
to turn on the AutoPostBack feature for the text box.

<asp:TextBox id=”Hi” runat=”server” AutoPostBack=”True”>

In many cases, the default behavior for the TextBox is appropriate. The List-
Box and DropDownList also have their AutoPostBack set to false. But it may
be desirable to change AutoPostBack to true. When set to true, the ListBox and
DropDownList will post back to the server when a selection is made.

Responding to Events

AutoPostBack is great, but usually something needs to be accomplished with
the data that is posted back to the server. This is where events come in. Using
the single-page model, event-handling code can be added into the .aspx page
to respond to an event such as the click of a button or the changing of a selec-
tion in a ListBox. The following syntax is used:

<control id=”myctl” runat=”server” event=”ProcName”>

The event=”ProcName” attribute defines the name of a procedure that will be
executed with the event is raised. The attribute creates a link, or Event Han-
dler, to connect the control to the procedure that will be executed.

In the following example, the lblDateTime label control is populated with
the current date and time when btnSelect is clicked.

<HTML>

<HEAD>

<title>Hello World Web Page</title>

<script runat=”server”>

sub ShowDateTime(sender as object, e as System.EventArgs)

lblDateTime.Text = DateTime.Now

end sub

</script>

</HEAD>

<body>

<form id=”Form1” method=”post” runat=”server”>

<asp:label id=”lblDateTime”

runat=”server”>

</asp:label>

74 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 74

<asp:button id=”btnSelect” Text=”Select”

Runat=”server”

OnClick=”ShowDateTime”>

</asp:button>

</form>

</body>

</HTML>

The previous example works exactly as expected, because AutoPostBack
defaults to true for buttons. Controls that do not have their AutoPostBack
attribute set to true will not execute their event handler code until a control
posts back to the server. In the following example, lstFruit has been pro-
grammed to populate txtSelectedFruit when SelectedIndexChanged has
occurred.

<HTML>

<HEAD>

<title>Hello World Web Page</title>

<script runat=”server”>

sub ShowDateTime(sender as object, e as System.EventArgs)

lblDateTime.Text = DateTime.Now

end sub

sub FruitSelected(sender as object,

e as System.EventArgs)

txtSelectedFruit.Text = lstFruit.SelectedItem.Value

end sub

sub Form_Load(sender as object, e as System.EventArgs) _

handles MyBase.Load

if not IsPostBack then

‘simulate loading the ListBox from a database

lstFruit.Items.Add(New ListItem(“apple”))

lstFruit.Items.Add(New ListItem(“orange”))

end if

end sub

</script>

</HEAD>

<body>

<form id=”Form1” method=”post” runat=”server”>

<asp:label id=”lblDateTime”

runat=”server”>

</asp:label>

<asp:textbox id=”txtSelectedFruit”

runat=”server”>Hello World

</asp:textbox>

<asp:listbox id=”lstFruit” Runat=”server”

OnSelectedIndexChanged=”FruitSelected”>

</asp:listbox>

<asp:button id=”btnSelect” Text=”Select”

Runat=”server”

Exploring ASP.NET and Web Forms 75

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 75

OnClick=”ShowDateTime”>

</asp:button>

</form>

</body>

</HTML>

In the previous example, selecting a fruit did not update the txtSelectedFruit
TextBox. If the button is clicked, the txtSelectedFruit TextBox will be updated,
because the button will post all of the Web Form’s data back to the server, and
the server will detect that the selected index has changed on the lstFruit ListBox.

Although this behavior may be okay in some solutions, in other solutions it
may be more desirable to update the txtSelectedFruit TextBox immediately
upon change of the lstFruit selection. This can be done by adding AutoPost-
Back=”true” to the lstFruit control.

Event Handler Procedure Arguments

All events in the Web Forms environment have been standardized to have two
arguments. The first argument, sender as object, represents the object that trig-
gered, or raised, the event. The second argument, e as EventArgs, represents an
EventArgs object or an object that derives from EventArgs. By itself, the Event-
Args object is used when there are no additional arguments to be passed to the
event handler. In essence, if EventArgs is used as the second argument, then
there is no additional data being sent to the event handler. If custom argu-
ments need to be passed to the event handler, a new class is created that inher-
its the EventArgs class and adds the appropriate data.

Examples of some of the custom argument classes that already exist are
ImageClickEventArgs, which contains the x and y coordinates of a click on an
ImageButton control, and DataGridItemEventArgs, which contains all of the
information related to the row of data in a DataGrid control. Events will be
looked at more closely in Chapter 4, “The .NET Framework and Visual Basic
.NET Object Programming.”

Code-Behind Page

The two page model for designing Web Forms uses a Web Forms page (with an
.aspx extension) for visual elements that will be displayed at the browser, and
a code-behind page (with the .vb extension for Visual Basic .NET) for the code
that will execute at the server. When a new WebForm is added to an ASP.NET
project using Visual Studio .NET, it will always be the two-page model type.

76 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 76

With the two-page model, all of the code-behind pages must be compiled
into a single .dll file for the project. Each code-behind page contains a class that
derives from System.Web.UI.Page. The System.Web.UI.Page class contains the
functionality to provide context and rendering of the page.

The Web Form page is not compiled until a user requests the page from a
browser (see Figure 3.2).

The Web Form page is then converted to a class that inherits from the code-
behind class. Then, the class is compiled, stored to disk, and executed. Once the
Web Form page has been compiled, additional requests for the same Web Form
page will execute the page’s .dll code without requiring another compile. If the
.aspx file has been changed, the .aspx file will be reparsed and recompiled.

The connection of the Web Form page and the code-behind page is accom-
plished by adding additional attributes to the Web Form page’s Page directive,
as in the following:

<%@ Page Language=”vb” Codebehind=”myPage.aspx.vb”

Inherits=”ch3.myPage”%>

The Codebehind attribute identities the filename of the code-behind page.
The Inherits attribute identifies the class that the Web Form page will inherit
from, which is in the code-behind page.

Figure 3.2 A Web page is dynamically compiled, as shown in this diagram, when a user
navigates to the page for the first time.

optional
code-behind

Base.vb

optional
compiled

code-behind
pages

myProject.dll

generate
.vb class file *

myPage.aspx

execute
.dll *

* Files created within the following folder structure:
%SystemRoot%\Microsoft.NET\Framework\version\Temporary ASP.NET Files\

compiled?

Aspx Engine

parse
myPage.aspx

Request
from

Browser

Response
to

Browser

No

No

Yes

Yes

.aspx file
changed?

Language Compiler

create
.dll file *

Exploring ASP.NET and Web Forms 77

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 77

In Visual Studio .NET, when a Web Form is created, Visual Studio .NET
automatically creates the Web Form page, which has the .aspx extension, and
the code-behind page, which has the aspx.vb extension. The code-behind page
will not be visible until the Show All Files button is clicked in the Solution
Explorer.

Accessing Controls and Events on the Code-Behind Page
In Visual Studio .NET, when a control is dragged and dropped onto the Web
Form page, a matching control variable is defined inside the code-behind
class. This control contains all of the properties, methods, and events that
belong to the control that is rendered on to the Web Form page (see Figure 3.3).

The following code is created in the Web Form page when a new page is cre-
ated in Visual Studio .NET called myPage. A TextBox and Button are added,
and code is added that displays the current date and time in the TextBox when
the button is clicked.

<%@ Page Language=”vb” AutoEventWireup=”false”

Codebehind=”myPage.aspx.vb”

Inherits=”ch3.myPage”%>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML>

<HEAD>

<title>myPage</title>

<meta name=”GENERATOR”

content=”Microsoft Visual Studio .NET 7.0”>

<meta name=”CODE_LANGUAGE” content=”Visual Basic 7.0”>

<meta name=”vs_defaultClientScript” content=”JavaScript”>

<meta name=”vs_targetSchema”

content=”http://schemas.microsoft.com/intellisense/ie5”>

</HEAD>

<body MS_POSITIONING=”GridLayout”>

<form id=”Form1” method=”post” runat=”server”>

‘positioning style elements removed for clarity

<asp:TextBox id=”TextBox1”

runat=”server”>

</asp:TextBox>

<asp:Button id=”Button1”

runat=”server” Text=”Button”>

</asp:Button>

</form>

</body>

</HTML>

78 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 78

Notice that there is no server-side code in this page. All server-side code is
packed into the code-behind page. The following is a code listing of the code-
behind class.

Public Class myPage

Inherits System.Web.UI.Page

Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox

Protected WithEvents Button1 As System.Web.UI.WebControls.Button

#Region “ Web Form Designer Generated Code “

‘This call is required by the Web Form Designer.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

End Sub

Private Sub Page_Init(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Init

‘CODEGEN: This method call is required by the

‘Web Form Designer

‘Do not modify it using the Code Editor.

InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here.

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button1.Click

TextBox1.Text = DateTime.Now

End Sub

End Class

Figure 3.3 The code-behind page contains matching objects, which gives the code the
ability to access the control from within the code-behind page.

Web Form Page: myPage.aspx
<% Page language="vb" Codebehind="myPage.aspx.vb" Inherits="ch3.myPage"
%>
. . .

<asp:Button id="txtName" Text="MyName" />
<asp:Button id="btnSelect" Text="Select" />

. . .

Code-Behind Page: myPage.aspx.vb
. . .
Public Class myPage

. . .
Protected WithEvents btnSelect As System.Web.UI.WebControls.Button
Protected WithEvents txtName as System.Web.UI.WebControls.TextBox
. . .

Exploring ASP.NET and Web Forms 79

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 79

Button1’s event handler code is connected to Button1’s click event by the
Handles Button1.Click tag at the end of the Button1_Click subprocedure. The
Button1_Click subprocedure can be renamed without losing the connection
between the Web Form page and the code-behind page. For example, if two
buttons are programmed to execute the subprocedure, it may be more benefi-
cial to rename the subprocedure to something that is more generic. Additional
events can be added to the Handles keyword, separated by commas. The fol-
lowing code snippet shows how Button2’s click event can execute the same
procedure.

Private Sub Clicked(ByVal sender As System.Object,

ByVal e As System.EventArgs) _

Handles Button1.Click, Button2.Click

Visual Studio .NET also exposes all events that are available for a given con-
trol. Figure 3.4 shows the code window, which has a class selection drop-down
list and an event method drop-down list. Selecting an event will generate tem-
plate code inside the code-behind page for the event.

Web Form Designer Generated Code
The code-behind page contains a region called Web Form Designer Generated
Code. This region is controlled by the Web Form Designer, which can be
opened to reveal the code that the Web Form Designer generates. Exploring
and understanding this region can be beneficial. If changes to the code that is
in the region are required, it is best to make the changes through the Web Form
Designer.

Figure 3.4 The class and event method selection lists are shown. First select an item from
the class list and then select an event method. This will add template code for the method,
if it doesn’t exist.

80 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 80

Life Cycle of a Web Form and Its Controls

It’s important to understand the life cycle of a Web Form and its controls.
Every time a browser hits a Web site, the browser is requesting a page. The
Web server constructs the page, sends the page to the browser, and destroys
the page. Pages are destroyed to free up resources. This allows the Web server
to scale nicely, but poses problems with maintaining state between calls to the
server. The use of ViewState allows the state to be sent to the browser. Posting
the entire Web Form’s data, including ViewState, back to the server allows the
previous state to be reconstructed to recognize data that has changed between
calls to the server.

All server controls have a series of methods and events that execute as the
page is being created and destroyed. The Web page derives from the Control
class as well, so the page also executes the same methods and events as it is
being created and destroyed. Table 3.3 contains a description of the events that
take place when a page is requested, paying particular attention to ViewState
and its availability.

Table 3.3 Page/Control Life Cycle Method and Events

PAGE/CONTROL
METHOD AND (EVENT) DESCRIPTION

OnInit (Init) Each control is initialized.

LoadViewState Loads the ViewState of the control.

LoadPostData Retrieves the incoming form data and updates the
control’s properties accordingly.

Load (OnLoad) Actions that are common to every request can be
place here.

RaisePostDataChangedEvent Raises change events in response to the postback
data changing between the current postback and
the previous postback. For example, if a TextBox
has a TextChanged event and AutoPostBack is
turned off, clicking a Button causes the
TextChanged event to execute in this stage before
handling the click event of the button (next stage).

RaisePostBackEvent Handles the client-side event that caused the
postback to occur.

PreRender (OnPreRender) Allows last minute changes to the control. This
event takes place after all regular postback events
have taken place. Since this event takes place
before saving ViewState, any changes made here
will be saved.

(continued)

Exploring ASP.NET and Web Forms 81

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 81

Table 3.3 (continued)

PAGE/CONTROL
METHOD AND (EVENT) DESCRIPTION

SaveViewState Saves the current state of the control to ViewState.
After this stage, any changes to the control will be
lost.

Render Generates the client-side HTML, DHTML, and script
that are necessary to properly display this control
at the browser. In this stage, any changes to the
control are not persisted into ViewState.

Dispose Cleanup code goes here. Releases any unmanaged
resources in this stage. Unmanaged resources are
resources that are not handled by the .NET
common language runtime, such as file handles
and database connections.

UnLoad Cleanup code goes here. Releases any managed
resources in this stage. Managed resources are
resources that are handled by the runtime, such as
instances of classes created by the .NET common
language runtime.

Page Layout

Each Web Form has a pageLayout property, which can be set to GridLayout or
FlowLayout. These layouts have different control positioning behaviors. This
setting can be set at the project level, which will affect new pages that are
added. The setting can also be set on each Web Form.

FlowLayout
FlowLayout behavior is similar to traditional ASP/HTML behavior. The con-
trols on the page do not have dynamic positioning. When a control is added to
a Web Form, it is placed in the upper-left corner. Pressing the Spacebar or Enter
can push the control to the right, or downward, but this model usually uses
tables to control the positioning of controls on the page.

GridLayout
GridLayout behavior uses dynamic positioning to set the location of a control
on the page. A control can be placed anywhere on the page. This mode also

82 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 82

allows controls to be snapped to a grid. Behind the scenes, GridLayout is
accomplished by adding the attribute ms_positioning=”GridLayout” to the body
tag of a Web Form.

Selecting the Proper Layout
GridLayout can save lots of development time, since positioning of controls
does not require an underlying table structure. GridLayout is usually a good
choice for a fixed-size form.

Since FlowLayout does not use absolute positioning, it can be an effective
choice when working with pages that are resizable. In many cases, it is desir-
able to hide a control and let the controls that follow shift to move into the hole
that was created.

The benefits of both layout types can be implemented on the same page by
using panel controls. The panel control acts as a container for other controls.
Setting the visibility of the panel to false turns off all rendered output of the
panel and its contained controls. If the panel is on a page where FlowLayout is
selected, any controls that follow the panel are shifted to fill in the hole that
was created by the absence of the panel.

Figure 3.5 shows an example of a FlowLayout page that has two HTML Grid
Layout Panels that are configured to run as HTML server controls. Web server
controls were added for the Button, Labels, and TextBoxes. The Page_Load
method is programmed to display the top Grid Layout Panel if this is the first
request for the page. If data is being posted to this page, the lower Grid Layout
Panel is displayed. The .aspx page contains the following HTML code:

Figure 3.5 This Web page is configured for FlowLayout and contains two HTML Grid
Layout Panels.

Exploring ASP.NET and Web Forms 83

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 83

<%@ Page

Language=”vb”

AutoEventWireup=”false”

Codebehind=”WebForm1.aspx.vb”

Inherits=”chapter3.WebForm1”%>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<html>

<head>

<title>WebForm1</title>

<meta name=”GENERATOR”

content=”Microsoft Visual Studio .NET 7.0”>

<meta name=”CODE_LANGUAGE”

content=”Visual Basic 7.0”>

<meta name=vs_defaultClientScript

content=”JavaScript”>

<meta name=vs_targetSchema

content=”http://schemas.microsoft.com/intellisense/ie5”>

</head>

<body>

<form id=”Form1” method=”post” runat=”server”>

<div style=”WIDTH: 450px;

POSITION: relative;

HEIGHT: 100px”

ms_positioning=”GridLayout”

id=TopPanel

runat=”server”>

<asp:TextBox

id=txtName

style=”Z-INDEX: 101;

LEFT: 98px;

POSITION: absolute;

TOP: 13px”

runat=”server”

Width=”228”

height=”24”>

</asp:TextBox>

<asp:TextBox

id=txtEmail

style=”Z-INDEX: 102;

LEFT: 98px;

POSITION: absolute;

TOP: 57px”

runat=”server”

Width=”228”

height=”24”>

</asp:TextBox>

<asp:Label

id=Label1

style=”Z-INDEX: 103;

LEFT: 25px;

84 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 84

POSITION: absolute;

TOP: 21px”

runat=”server”>

Name:

</asp:Label>

<asp:Label

id=Label2

style=”Z-INDEX: 104;

LEFT: 26px;

POSITION: absolute;

TOP: 59px”

runat=”server”>

Email:

</asp:Label>

<asp:Button

id=btnSubmit

style=”Z-INDEX: 105;

LEFT: 367px;

POSITION: absolute;

TOP: 63px”

runat=”server”

Text=”Submit”>

</asp:Button>

</div>

<div

style=”WIDTH: 450px;

POSITION: relative;

HEIGHT: 100px”

ms_positioning=”GridLayout”

id=BottomPanel

runat=”server”>

<asp:Label

id=lblConfirmation

style=”Z-INDEX: 101;

LEFT: 105px;

POSITION: absolute;

TOP: 10px”

runat=”server”

Width=”249px”

Height=”66px”>

Confimarion goes here...

</asp:Label>

<asp:Label

id=Label3

style=”Z-INDEX: 102;

LEFT: 12px;

POSITION: absolute;

TOP: 10px”

runat=”server”

Width=”76px”>

Exploring ASP.NET and Web Forms 85

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 85

Confirmation

</asp:Label>

</div>

</form>

</body>

</html>

Notice that the HTML Grid Layout Panels are nothing more that DIV tags
with the ms_positioning=”GridLayout” attribute. The other controls are con-
tained in the DIV tags.

The code-behind page contains the following code:

Public Class WebForm1

Inherits System.Web.UI.Page

Protected WithEvents Label1 As _

System.Web.UI.WebControls.Label

Protected WithEvents Label2 As _

System.Web.UI.WebControls.Label

Protected WithEvents lblConfirmation As _

System.Web.UI.WebControls.Label

Protected WithEvents txtName As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtEmail As _

System.Web.UI.WebControls.TextBox

Protected WithEvents Label3 As _

System.Web.UI.WebControls.Label

Protected WithEvents TopPanel As _

System.Web.UI.HtmlControls.HtmlGenericControl

Protected WithEvents BottomPanel As _

System.Web.UI.HtmlControls.HtmlGenericControl

Protected WithEvents btnSubmit As _

System.Web.UI.WebControls.Button

#Region “ Web Form Designer Generated Code “

‘This call is required by the Web Form Designer.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

End Sub

Private Sub Page_Init(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Init

‘CODEGEN: This method call is required by the Web Form Designer

‘Do not modify it using the code editor.

InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

86 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 86

If Page.IsPostBack Then

TopPanel.Visible = False

BottomPanel.Visible = True

Else

TopPanel.Visible = True

BottomPanel.Visible = False

End If

End Sub

Private Sub btnSubmit_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnSubmit.Click

lblConfirmation.Text = “Hello “ & txtName.Text & “
”

lblConfirmation.Text &= “Your email address is “ & txtEmail.Text

End Sub

End Class

When the page is viewed for the first time (see Figure 3.6), only the top panel
is displayed. When data is entered and submitted, the top panel is hidden and
the bottom panel is displayed. Since the page layout is set to FlowLayout, the
bottom panel will shift to the top of the page to fill in the hole that was created
by setting the top panel’s visible property to false.

Figure 3.6 Only one panel is displayed at a time. When the first panel is hidden, the
second panel moves into the space that was originally occupied by the first panel.

Exploring ASP.NET and Web Forms 87

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 87

Lab 3.1: Web Forms

In this lab, you will create a Web Form using Visual Studio .NET and then
explore the life cycle of the Web Form and its controls.

Create the Web Form
In this section, you will create a Web Form called NewCustomer.aspx,
which allows you to collect customer information. Later, you will store
this information in a database.

1. To start this lab, open the OrderEntrySolution from Lab 2.1 or Lab 2.2.

2. Right-click the Customer project, click Add, Add Web Form, and
type NewCustomer.aspx for the name of the new Web Form. When
prompted to check out the project, click the Check Out button.

3. Add the Web server controls in Table 3.4 to the Web Form. Figure 3.7
shows the completed page. Save your work.

Table 3.4 NewCustomer.aspx Web Server Controls

ID TYPE PROPERTIES

lblCustomer asp:Label Text=Customer Name

txtCustomerName asp:TextBox Text=

lblAddress asp:Label Text=Address

txtAddress1 asp:TextBox Text=

txtAddress2 asp:TextBox Text=

lblCity asp:Label Text=City

txtCity asp:TextBox Text=

lblState asp:Label Text=State

drpState asp:DropDownList Items = Enter the states below
plus an empty entry as the default.
Text= Value=
Text=FL Value=FL
Text=MA Value=MA
Text=OH Value=OH
Text=TX Value=TX

lblZipCode asp:Label Text=Zip

txtZipCode asp:TextBox Text=

btnAddCustomer asp:Button Text=Add Customer

lblConfirmation asp:Label Text=

88 Chapter 3

e 430234 Ch03.qxd 7/1/03 8:59 AM Page 88

Figure 3.7 The completed Web page after entering the Web server controls in Table 3.4.

Test Your Work
Test your work by performing the following steps:

1. Compile your project. Click Build, Build Solution. You should see an
indication in the output window that all three projects compiled
successfully.

2. Select a startup page for the Visual Studio .NET Debugger. Locate
the NewCustomer.aspx page in the Solution Explorer. Right-click
NewCustomer.aspx, and then click Set As Start Page.

3. Press F5 to launch the Visual Studio .NET debugger, which will dis-
play your page in your browser.

4. Test ASP.NET’s ability to maintain state. Type some text into each
TextBox, select a state from the DropDownList, and click the Add
Customer button.

What happened? When the button was clicked, the data was posted
back to the server. If your page functioned properly, the server received
the data that was entered into the Web Form. No code has been assigned
to the Add Customer button’s click event, so the server simply returns
the page to the browser.

What is most interesting is that the data is still on the form; the
TextBoxes still have the data that you typed in, and the DropDownList
still has the selected state. This demonstrates ASP.NET’s ability to main-
tain state.

Exploring ASP.NET and Web Forms 89

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 89

Adding Code to Process the Data
In this section, you will add some code to the Add Customer’s click
event. The code simply displays a summary message on the current page.
This data will be put into a database in a later lab.

Double-click the Add Customer button. This opens the code-behind
page and adds template code for the button’s click event. Add code to the
button’s click event procedure so that it looks like this:

Private Sub btnAddCustomer_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnAddCustomer.Click

Dim s As String

s = “Confirmation Info:” & “
”

s += txtCustomerName.Text & “
”

s += txtAddress1.Text & “
”

If txtAddress2.Text.Length > 0 Then

s += txtAddress2.Text & “
”

End If

s += txtCity.Text & “, “

s += drpState.SelectedItem.Text & “ “

s += txtZipCode.Text & “
”

lblConfirmation.Text = s

End Sub

Test Your Work

1. Save your work.

2. Press F5 to launch the Visual Studio .NET debugger, which will dis-
play your page in your browser.

3. Test ASP.NET’s ability to process the data on the Web Form by
entering data and then clicking the Add Customer button.

4. When the Add Customer button is clicked, the confirmation label
will be populated with data from the Web Form.

Exploring ViewState
In this section, you will explore the ViewState to appreciate the need for
this hidden object.

1. Add a Web server control button to the NewCustomer.aspx page.
Change its ID to “btnViewState” and its Text to “ViewState Test.”
Don’t add any code to this button’s click event.

2. Press F5 to view the page.

3. View the size of the ViewState hidden object. When the page is dis-
played, click View, Source. Note the size of the ViewState, which
should be approximately 50 characters.

90 Chapter 3

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 90

4. Enter data into the Web Form, and click the Add Customer button.
Note the change in the ViewState, which should be significantly
larger, depending on the amount of data that was entered on the
Web Form.

5. Click the ViewState Test button. Notice that the data is posted back
to the server, and the information that is in the Confirmation label
has not been not lost.

6. View the size of the ViewState hidden object. When the page is dis-
played, click View, Source. Note the size of the ViewState, which is
much larger that before. ASP.NET stores the value of the Confirma-
tion label in ViewState.

Identifying ViewState Contributors
As ViewState grows, you will need to identify the controls that are plac-
ing data into ViewState. This section will use the ASP.NET trace function
to identify the objects that are using ViewState.

1. Open the Web.Config file. This is an XML file that contains settings
for the Web site.

2. Locate the following trace element:
<trace

enabled=”false”

requestLimit=”10”

pageOutput=”false”

traceMode=”SortByTime”

localOnly=”true”

/>

3. Make the following changes:
<trace

enabled=”true”

requestLimit=”100”

pageOutput=”false”

traceMode=”SortByTime”

localOnly=”true”

/>

4. Save the Web.Config file.

5. Press F5 to view the page.

6. Enter data into the Web Form, and click the Add Customer button.
Note the change in the ViewState, which should be significantly
larger, depending on the amount of data that was entered on the
Web Form.

Exploring ASP.NET and Web Forms 91

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 91

7. Click the ViewState Test button. Notice that the data is posted back
to the server, and the information that is in the Confirmation label
has not been not lost.

8. Change the URL from http://localhost/Customer/NewCustomer
.aspx to http://localhost/Customer/trace.axd and press Enter. The
trace page is displayed. The trace page has an entry for each time
you requested the NewCustomer.aspx page. Notice that the first
time the page was requested, a GET was performed. Each additional
page request resulted in a POST of data back to the page.

9. Click the View Details link of the first page request. This page con-
tains lots of information. Locate the Control Tree section, which
shows all of the controls that are on the page and the quantity of
bytes that each control has placed into ViewState. On the first
request for the page, only the page itself has contributed to View-
State (typically 20 bytes). The page automatically stores globaliza-
tion information in ViewState.

10. Click the Back button in the browser, and then click the View Details
link of the second request. Locate the Control Tree section. Notice
that the page still contributes the same quantity of bytes to View-
State, and the lblConfirmation (Confirmation Label) contributes
many bytes of data to ViewState, depending on the size of the data
that needed to be remembered (see Figure 3.8).

Figure 3.8 Use Trace to identify ViewState contributors. Notice that the page always
contributes approximately 20 bytes, and that the confirmation label contributes many bytes
to ViewState, depending on the amount of data that is in the label.

92 Chapter 3

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 92

Understanding the Page Life Cycle (Optional)
This section will help you understand the page’s life cycle by adding
code to some of the page’s significant events.

1. Close all open files.

2. Open the WebForm1.aspx file that is located in the Customer project.

3. Add a TextBox and a Button to the page from the Web Forms tab of
the ToolBox. When prompted to check out files from Visual Source-
Safe, click the Check Out button.

4. Double-click the button to go to the code-behind page.

5. Add the following code to the Button1_Click event method.

Response.Write(“Button Clicked
”)

6. The upper part of the code window contains two drop-down boxes.
The first drop-down box is used to select a class, and the second
drop-down box is used is to select an event method. Select TextBox1
from the class drop-down list, and select TextChanged from the
event method drop-down list.

7. Add the following code to the TextBox1_TextChanged event
method.

Response.Write(“Text Changed
”)

8. In the Page_Load subroutine, add the following code:

Response.Write(“Page_Load”)

9. With WebForm1 selected from the class drop-down list, select the
Page_Init event method. Add a Response.Write method as you did
in the previous steps.

10. Select Base Class Events from the class drop-down list and select the
PreRender event method. Add Response.Write code as you did in
the previous steps.

11. In the Solution Explorer, right-click WebForm1.aspx and click Set as
Start Page. Press F5 to see the page. The page will display a message
indicating that the Page Init, Page Load, and PreRender events took
place.

12. Enter some information into the TextBox, and click the Button. The
page will display a message indicating that the Page Init, Page Load,
Text Changed, Button Clicked, and PreRender events took place.
Although AutoPostBack is set to false on the TextBox, the
TextChanged still executes, but not until a posting control, such as
the Button, caused the data to be posted back to the server.

Exploring ASP.NET and Web Forms 93

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 93

Summary

■■ ASP.NET supports the traditional single-page programming model. It
also provides the two-page coding model, which utilizes the code-
behind page for the separation of client-side and server-side code.

■■ ASP.NET provides two types of server controls: HTML server controls
and Web server controls.

■■ HTML server controls are used when migrating existing ASP pages to
ASP.NET because a runat=”server” attribute can be easily added to an
HTML tag to convert it to an HTML server control.

■■ Web server controls are the preferred controls for new projects because
of their consistent programming model and their ability to provide
browser-specific code. ASP.Net provides Web server controls that can
produce many lines of complex HTML output to accomplish a task
rather that the one-to-one mapping that exists when using Web server
controls.

■■ Use the Page.IsPostBack property to see if this is the first time that the
page has been requested.

■■ Controls such as the DropDownList and the ListBox have their Auto-
PostBack property set to false. This setting can be changed to true to
post back to the server each time a new item is selected.

■■ Events in ASP.NET pass two arguments: the sender and the EventArgs.
The sender is the object that raised the event and the EventArgs may
contain extra data, such as the x and y coordinates of the mouse.

94 Chapter 3

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 94

Review Questions

1. What are the two types of controls that ASP.NET provides?

2. What would be the best controls to use when migrating an existing ASP page to
ASP.NET?

3. What is the best control to use when client-side JavaScript code will be executing from
a control’s events?

4. Name some benefits to using Web server controls.

5. A user complains that each time a button is pressed on the Web page, another copy of
the data in a ListBox is being added to the ListBox. What is the problem? How can it be
corrected?

6. You added a DropDownList to a Web page. You programmed the DropDownList to do
a database lookup as soon as a new item is selected from the list. Although you wrote
the code to do the lookup, selecting a new item from the list doesn’t appear to work.
After investigating further, you find that the lookup works, but not until a button on
the form is clicked. What is the most likely problem?

7. What is the key benefit to using code-behind pages?

Exploring ASP.NET and Web Forms 95

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 95

Answers to Review Questions

1. HTML server controls and Web server controls.

2. HTML server controls, because existing HTML tags can be converted to HTML server
controls by adding the runat=”server” attribute.

3. HTML server contols, because it is simple to attach client-side code to these controls
using traditional HTML and DHTML methods.

4. Web server controls have the following benefits:

a. A more consistent programming model.

b. A single control can create complex HTML output.

c. They produce browser-specific HTML code, taking advantage of the browser’s
capabilities.

5. The data is being programmatically added to the ListBox, using code that is in the
Page_Load event method. Since the ListBox remembers its data (via ViewState)
between calls to the server, each time the page is requested, another copy of the data
is added to existing data. To solve the problem, check to see if the page is being posted
back to the server using the Page.IsPostBack property. If so, there is no need to repop-
ulate the ListBox.

6. The default setting of AutoPostBack is set to false on the DropDownList control.

7. Code-behind pages provide the ability to separate client-side and server-side code.

96 Chapter 3

e 430234 Ch03.qxd 7/1/03 9:00 AM Page 96

97

The last chapter introduced code-behind pages. The aspx page inherited from
the code-behind page, which inherited from System.Web.UI.Page. This is one
of many examples of the power of inheritance in the .NET Framework.

After looking at a couple of definitions, this chapter covers the .NET Frame-
work as well as many aspects of object programming, such as inheritance with
Visual Basic .NET. This chapter can be especially useful for traditional Visual
Basic programmers, who may be accustomed to using objects, but may not
have experience creating objects.

Definitions

Before getting too deeply into this chapter, there are a couple of words that
need to be defined in order to establish a baseline for this chapter. These
words, and others, will be further defined as the chapter progresses.

Class. A class is a blueprint for the construction of objects. Just as an
architect creates a blueprint, which contains the instructions for building
a house, a developer creates a class, which contains the instructions for
building an object.

The .NET Framework
and Visual Basic .NET
Object Programming

C H A P T E R

4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 97

Object. An object is an instance of a constructed class. The New keyword
instantiates (construct an instance of) a class.

Field. A field is a variable that has been defined at the class level. This
variable is typically used to describe the class. A house class might have
a color field, which refers to the color of the house.

Method. A method is a procedure (either sub or function) that has been
created within a class. The method typically performs an action that
relates to the class. A car class might have a StartEngine method.

Event. An event is something that takes place within the class at a point
in time. When an event is raised (takes place), the event executes code
that was created to handle the event. If events and methods are looked
at from a messaging perspective, methods handle inbound messages to a
class, while events generate outbound messages from the class that can
be handled by other classes.

Property. A property looks and feels like a field. The problem with a field
is that there is no easy way to keep someone from placing invalid data
into it. A property provides a mechanism for encapsulating the field so
any data changes must go through a routine to enforce data integrity.

Member. Member is a generic term that refers to a field, property,
method, or event of a class. If members of a car class are public, then the
fields, properties, methods, and events of the car class are public.

Inheritance. Inheritance is the ability to define a class that is based on
another class. Classical inheritance involves an “is-a” relationship
between entities. For example, a car is a vehicle.

Classroom Q & A
Q: I read that System.Object is the root object for all .NET data type.

Does that mean that all data types expose the methods and prop-
erties of System.Object?

A: They sure do. For example, System.Object has a ToString()
method. Any new class that you create automatically has a
ToString() method.

Q: It’s nice to be able to receive all of the base class members, but is
it possible to change the behavior of these methods in a derived
class?

A: Absolutely. You have the ability to override a method that is in the
base class. In addition, you can still make a call to the base class’s
method by using the MyBase keyword.

98 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 98

Q: Does Visual Basic .NET support overloading?
A: Yes and no. Visual Basic .NET supports method overloading, but

not operator overloading. This means that you can create several
versions of a method, each having a different method signature
(different argument count and argument data types). Visual Basic
.NET does not allow operators to be overloaded. This means that
operators such as the plus and minus sign cannot be overloaded.
This is usually not a problem, since operator overloading is more
of an aesthetic language feature.

Q: Is it possible to retrieve an enumeration’s text labels as well as its
values from a Visual Studio .NET project?

A: Yes. This is a nice feature. It may be desirable to populate a ListBox
with the text labels of an enumeration. This was extremely difficult
in Visual Basic 6, but it’s easy in Visual Basic .NET. Enumerations
will be covered later in this chapter.

The .NET Framework

The .NET Framework is a computing platform that offers a simplified, consis-
tent development and runtime environment. The .NET Framework provides a
consistent programming model across all .NET languages. This makes the
challenge of learning new development languages much easier. For example,
since the Base Class Libraries are the same for all languages, learning a new
language can be as easy as learning the new syntax.

There are two key components to the .NET Framework; the common lan-
guage runtime and the Base Class Libraries. The common language runtime is
the .NET Framework’s execution engine and provides an environment that
guarantees safe execution of code. Items that are part of the common language
runtime include (see Figure 4.1):

Thread support. Provides a framework for enabling multithreaded
programming.

COM Marshaler. Provides the ability to marshal data to and from COM
components.

Debug Engine. Is used to debug and trace a program’s execution.

Security Engine. Provides evidence-based code, based on the user
identity and the location of the code.

Exception Manager. Provides Structured Exception Handling (SEH),
which is a major improvement to error (On Error) handling using
Visual Basic 6.

The .NET Framework and Visual Basic .NET Object Programming 99

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 99

Garbage Collector. Provides object cleanup support that can be used on
multiprocessor machines.

Class Manager. Manages all code execution and controls the JIT compiler
and the Class Loader.

Type Checker. Does not allow unsafe casts; ensures that all objects are
initialized.

Class Loader. Loads classes by reading the metadata in the assembly.

JIT Compiler. Compiles MSIL code to native machine code.

Applications that are hosted by the .NET Framework do not require entries
into the registry. This means that deployment of most .NET applications can be
done by simply copying the executable files to the new location.

Application code that targets the common language runtime is called man-
aged code. Figure 4.2 shows how the common language runtime is used to host
managed applications and managed Web applications.

Assemblies
An assembly is produced when a Visual Studio .NET project is compiled.
Although the assembly is conceptually similar to the .exe or .dll of the past, it
is important to know that it is possible to create multimodule (multifile)
assemblies.

Figure 4.1 The .NET Framework consists of two primary items; the Base Class Library and
the common language runtime.

Common Language Runtime

Base Class Libraries

COM Marshaler

Security Engine

Class Manager

Class Loader

JIT Compiler (Jitter)

Thread Support

Debug Engine

Exception Manager

Type Checker

Garbage Collector

100 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 100

Figure 4.2 The common language runtime runs managed code. It provides a consistent
layer above the operating system and ASP.NET.

Multimodule assemblies may be desirable when you want to combine mod-
ules that were written in different languages or when it is necessary to opti-
mize an application download by placing seldom-used types into modules
that can be downloaded on demand. This book is primarily focused on single-
module assemblies.

There is no option to create a multimodule assembly from within Visual Stu-
dio .NET. The Visual Basic .NET command-line compiler can be used to com-
pile code into modules and then create an assembly with the modules. Use the
following commands:

vbc /target:module SeldomUsedCode.vb

vbc MainCode.vb /addmodule:SeldomUsedCode.netmodule

The first command creates a module called SeldomUsedCode.netmodule,
while the second command creates an executable called MainCode.exe. Both
output files are collectively called an assembly. Use vbc /? to see a list of com-
piler switches.

An assembly is a version boundary. Regardless of the quantity of data types
that are defined within an assembly, all of them are versioned within the
assembly as a unit. When a project is compiled, all dependent assemblies and
their versions are recoded in the compiled assembly’s manifest.

The assembly forms a security boundary. Permissions may be requested and
granted at the assembly level.

The assembly contains the Microsoft Intermediate Language and metadata.
The following sections describe these items in detail.

Traditional
Unmanaged
Applications

Common
Language
Runtime

Common
Language
Runtime

Managed
Applications

Internet Information Services

Hardware

Operating System

Managed
Web Applications

ASP.NET

Traditional
Unmanaged

Web Applications

ASP

The .NET Framework and Visual Basic .NET Object Programming 101

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 101

102 Chapter 4

♦ Intermediate Language Disassembler

The IL Disassember (ILDasm.exe) is included in the .NET Framework SDK, which is part of
the default installation of Visual Studio .NET. ILDasm can be used to look at the contents of
an assembly. ILDasm will be used throughout this book to understand what’s inside an
assembly. Figure 4.3 shows ILDasm and the legend describing its symbols.

Figure 4.3 IL Disassembler (ILDasm.exe) with symbol legend.

The IL code can be viewed by double-clicking any method. The manifest can be viewed
by double-clicking it. To see the type metadata, press Ctrl+M. To dump the complete con-
tents of the assembly to disk, click File, Dump, OK, and then select a location for the files
that will be stored.

A companion tool is called ILAsm.exe, which can be used to assemble an IL source file
into an assembly. ILAsm is part of the .NET Framework.

Microsoft Intermediate Language

An assembly does not contain executable machine code. Instead, it contains
Microsoft Intermediate Language (MSIL or IL) code. MSIL (pronounced like
the word missile) code may be thought of as being platform-independent

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 102

assembly language. All .NET language compilers produce MSIL code, which
means that there is not a significant difference in performance between .NET
languages. The following Hello program is an example of IL code:

Module Hello

Sub Main()

Dim s As String

Console.Write(“Enter Your Name: “)

s = Console.ReadLine()

Console.WriteLine(“Hello “ & s)

End Sub

End Module

This little console application simply prompts for a user’s name, then dis-
plays Hello plus the name on the screen. Figure 4.4 shows the hello.exe appli-
cation loaded into ILDasm.

The IL code is displayed by double-clicking Main. The IL code functions as
follows:

IL_0000: No Operation.

IL_0001: Load a pointer to “Enter Your Name” on to the stack.

IL_0006: Call the Console.Write method, passing a string pointer.

IL_000b: No Operation.

IL_000c: Make call to Console.ReadLine, placing a return

string pointer on to the stack.

IL_0011: Store the string point from the stack to location 0

(variable s).

IL_0012: Load a pointer to “Hello” on to the stack.

IL_0017: Load the pointer from location 0 (variable s) onto the stack.

IL_0018: Call the String.Concat method to concatenate the

contents of the string pointers that have

been pushed on to the stack. Place a string

pointer to the result onto the stack.

IL_001d: Call the Console.WriteLine method, passing a string pointer.

IL_0022: No Operation.

IL_0023: No Operation.

IL_0024: Return to the caller, which ends this application.

This code is quite readable. But in many cases, viewing the IL code can
reveal many facts about a component’s behavior that would have been much
harder to see by simple testing.

Some people are shocked to see how easy it is to read the IL code that is
inside an assembly. Although there is no way to encrypt the IL code, the
code can be made more difficult to read by using a tool called an
obfuscator. Obfuscators have been used in the Java market for some time.
Several vendors offer an obfuscator for .NET assemblies. Visual Studio
2003 also contains an obfuscator that can be used to make the IL code
less readable.

The .NET Framework and Visual Basic .NET Object Programming 103

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 103

Figure 4.4 IL code in the Hello application as viewed in ILDasm.

Metadata

Assemblies are completely self-describing, which means that is possible to
query an assembly for all its information, or metadata. Two types of metadata
are provided within an assembly: the manifest and the type metadata.

Manifest

The manifest contains metadata that is global to the assembly (see Figure 4.5).
Assembly information includes the following:

External references. List of assemblies (dependencies) that this assembly
needs to operate.

General assembly information. Contains information such as Assembly
Title, Assembly Description, and Assembly Copyright Information. This
information is located in the AssemblyInfo.vb file in a Visual Studio
.NET project.

Assembly version. Contains the version number for the complete assem-
bly. The assembly version information is located in the AssemblyInfo.vb
file in a Visual Studio .NET project. New Visual Studio .NET projects
have a version number of 1.0.*, and Visual Studio .NET automatically
generates the last two digits of the version. The third digit is equal to the
number of days since January 1, 2000, and the fourth digit is the number
of seconds since midnight (or 1:00 A.M., depending on daylight savings
time setting) divided by 2, resulting in a number between 0 and 43199.

Module definitions. Contains a list of the modules (files) and settings
that compose the assembly.

104 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 104

Figure 4.5 Viewing a manifest using ILDasm. The information in the center has been
extracted to reveal the data at each end of the lines.

Type Metadata

The type metadata contains information to fully describe all data types in the
assembly. This metadata is used by Visual Studio .NET to display the list of
available members in IntelliSense.

Type metadata is viewable in the IL Disassembler (ILDasm.exe) by
pressing Ctrl+M.

Common Language Runtime
The common language runtime manages thread execution, memory, code
safety, compilation, code access security, and many other services. This section
covers some of the key components that the common language runtime uses
when executing code.

Core Execution Engine

The Core Execution Engine comprises the Class Manager, the Class Loader,
and the just-in-time (JIT or Jitter) compiler. An executable file contains MSIL
code. When an application runs, the MSIL code must be compiled to native
machine code. Some of the code in an application may not be called; so rather

The .NET Framework and Visual Basic .NET Object Programming 105

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 105

than compile the complete application, the MSIL is compiled as needed and
stored in random access memory (RAM) for subsequent use. The Class Loader
loads each data type as needed and attaches stub code to each of the type’s
methods. On the first call to the method, the stub code passes control to the JIT
compiler, which compiles the method tree in RAM and modifies the stub code
to point to the compiled code. Subsequent calls to the method result in direct
execution of the compiled native code. (See Figure 4.6.)

When an application has ended, the application’s memory is returned to the
operating system. This means that all of the compiled native code is destroyed.
If the application is restarted, the JIT compiler process starts from the begin-
ning. For most small to medium-sized applications, this may not be a problem.
For large applications, users may report that the application runs slowly when
it starts, but get faster after it has been running for a while.

The .NET Framework includes a utility called the Native Image Generator
(ngen.exe), which can be used to compile an .exe or .dll file into a native
image file. When you are compiling with the ngen utility, note that the
original .exe or .dll file remains unchanged. The compiled image is stored
in the Native Image Cache, which is located in the %SystemRoot%\
Assembly\NativeImages1_version folder. It’s not easy to see this folder
via Windows Explorer or MyComputer, because a COM component called
shfusion.dll intercepts the call, but this folder can be viewed via the
command prompt. Note that the ngen utility must be run on the machine
that will be running the compiled image.

Namespaces

How many readme.txt files are on a typical computer? How can many files
with the same name reside on a disk drive? That’s simple: The files are in dif-
ferent folders. Providing different folders prevents filename collisions on the
hard drive.

The .NET Framework provides a method to prevent data type name clashes,
called namespaces. It’s relatively easy to imagine many vendors creating a
Customer or Employee class in the code that they provide. To avoid name
clashes between vendors, each vendor might create a namespace, using their
company name as their root namespace. This concept is similar to using fold-
ers on your hard drive.

When creating a Visual Basic .NET application, a default namespace is cre-
ated that matches the name of the project. To change the default namespace for
a project, close all open files within the project, click the project, then click Proj-
ect, Properties, Common Properties, General. This window displays the name-
space option.

106 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 106

Figure 4.6 The just-in-time compiler compiles methods as they are called.

Namespaces are hierarchical, with each level being separated by a period.
The recommend namespace should start with the company name, then the
technology name, and then the data type, as in the following example:

CompanyName.TechnologyName.DataType

The root namespace for most .NET data types is called System. Be careful
when using namespaces that are not under the system namespace, because
these namespaces will not be platform independent. An example of a non-
System namespace is the Microsoft.Win32 namespace, which contains the
registry classes.

Common Type System

The common language runtime also contains the common type system (CTS),
which defines how types are declared, used, and managed in the runtime. The
common type system also defines syntactical constructs, such as operators and
overloads.

The common type system plays an important role in ensuring cross-language
integration. The common type system defines rules that all .NET languages
must follow.

Visual Basic .NET
Source Code

Compile
Application

Start
Application

.NET Execution
Engine (mscoree.dll)

Visual Basic .NET
Compiler

DLL or EXE
Assembly

(MSIL & Metadata)

Class Loader

Class Manager

Jitter

Execute
Platform
Specific

Instructions

DLL or EXE
Assembly

(MSIL & Metadata)

Base Class
Libraries

(mscorlib.dll and others)

The .NET Framework and Visual Basic .NET Object Programming 107

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 107

Classifications of Data Types

The common type system defines to general categories of data types: value
types and reference types. (See Figure 4.7.) The next section looks at both of
these categories in detail.

Value Types

Value types are structures. Variables that are value types hold their own copy
of data. This means that operations on one variable will not affect other vari-
ables. Value types are either created on the stack or allocated inline as a struc-
ture. The following code demonstrates value types:

Dim x as integer

Dim y as integer

x = 100

y=x

y=200

Console.WriteLine(“x = “ + x.ToString())

Console.WriteLine(“y = “ + y.ToString())

‘Result: x=100, y=200

Notice that changing the value of y has no impact on the value of x, because
the assignment y=x, placed a copy of the data from x into y.

Figure 4.7 Value types are classes, while reference types are structures and inherit from
System.ValueType.

Object
Boolean

Byte
Ulnt16

Ulnt32

Ulnt64

Void

DateTime

Guid

TimeSpan

Single

Char

Decimal

Double

Int16

Int32

Int64

SByte

Type ValueType
Types that
derive from
ValueType

are
structures.

Reference Types
Classes

Value Types
Structures

String

Array

Exception

Boxed Value Types

Delegate

MultiCastDelegate

Enum

108 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 108

Reference Types

Reference types are classes. Variables that are reference types that reference an
address to an object in memory. Multiple variables can reference the same
memory address, so changes to one variable can affect other variables. Refer-
ence types are created on the garbage collected heap. Reference types are not
destroyed immediately; they are destroyed when garbage collection takes
place. The following code demonstrates reference types:

Class reftest

Public test As Integer

End Class

Dim x As New reftest()

Dim y As New reftest()

x.test = 100

y = x

y.test = 200

Console.WriteLine(“x = “ + x.test.ToString())

Console.WriteLine(“y = “ + y.test.ToString())

‘Result: x.test=200, y.test=200

Notice that changing the value of y also changes x. This is because x and y
are reference types. With reference types, the assignment y=x causes y to refer-
ence the same memory location that x references.

Everything Is an Object

System.Object is the root type for all types in the .NET Framework. This means
that all of the members of System.Object are available on any data type that is
created. System.Object contains the following methods:

Equals. Compares two object variables. This method is also called when
the equal sign is used to compare objects.

Finalize. Performs cleanup operations before an object is automatically
reclaimed.

GetHashCode. Generates a number corresponding to the value of the
object to support the use of a hash table.

ToString. Creates a string that represents the fully qualified name of the
data type.

Common Language Specification

Although the common type system defines the rules for data types and syn-
tactical constructs, it may not be desirable for a language developer to imple-
ment every feature of the common type system. The Common Language
Specification (CLS) is a subset of the common type system, which defines a set
of rules that every .NET language must adhere to.

The .NET Framework and Visual Basic .NET Object Programming 109

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 109

When writing reusable components, it is important to make sure that the
components can be used by all .NET languages. This is done by writing Com-
mon Language Specification Compliant (CLSCompliant) code.

The first rule of writing CLSCompliant code is that CLSCompliant rules
only apply to the parts of a type that are exposed outside its assembly. A lan-
guage like C# can use unsigned integers in a code component, but the code
should not expose unsigned integers, since unsigned integers are not
CLSCompliant.

Base Class Library
In addition to the common language runtime, the .NET Framework contains a
large Base Class Library (BCL). The Base Class Library provides many data
types within many namespaces. Figure 4.8 shows some of the key namespaces
in the Base Class Library.

For many people, the hardest part of learning the .NET Framework is learn-
ing the data types in the Base Class Library. After the Base Class Library is
mastered, moving to a different .NET language is not all that difficult.

This book covers many of the key namespaces in the Base Class Library, but
it’s important to continue exploring these namespaces and data types.

System Data Types

The System namespace is the root namespace for the .NET Framework. The
System namespace contains many of the fundamental classes and structures
that correspond to primitive data types for most .NET languages. Table 4.1
lists some of the common data types in the System namespace and the Visual
Basic .NET data type that the type maps to. Notice that Visual Basic .NET does
not have a primitive data type to match all of the .NET data types.

Figure 4.8 Key namespaces in the Base Class Library.

System System.IO

The Base Class Library

System.Threading

System.Net System.Globalization System.Reflection

System.Text System.Security System.Configuration

System.Diagnostics System.Collections System.Data

System.Xml System.Web

System.Runtime.Remoting System.Runtime.InteropServices

System.Windows

110 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 110

Table 4.1 System Namespace Data Types, with Visual Basic .NET Mapping

.NET VISUAL BASIC .NET
TYPE DESCRIPTION TYPE

Byte 8-bit unsigned integer Byte

Sbyte 8-bit signed integer—not CLSCompliant

Int16 16-bit signed integer Short

Int32 32-bit signed integer Integer

Int64 64-bit signed integer Long

UInt16 16-bit unsigned integer–not CLSCompliant

UInt32 32-bit unsigned integer–not CLSCompliant

UInt64 64-bit unsigned integer–not CLSCompliant

Single 32-bit, single-precision floating point number Single

Double 64-bit, double-precision floating point number Double

Decimal 96-bit decimal number Decimal

IntPtr Signed integer pointer whose size depends on
the underlying platform

UIntPtr Unsigned integer pointer whose size depends
on the underlying platform—not CLSCompliant

Object The root of the .NET type hierarchy Object

String Immutable fixed length string of Unicode String
characters

System Data Type or Visual Basic .NET Data Type?

One question that commonly arises is whether to use the .NET data type or the
Visual Basic .NET data type. For example, which of the following lines of code
is correct?

Dim x as Long ‘ Use the Visual Basic .NET data type.

Dim x as System.Int64 ‘ Use the .NET data type.

Either of these lines could be used, since a Long is an Int64. When the code
is compiled to an assembly, a quick look at the IL reveals that the Visual Basic
.NET compiler converted the Long to a System.Int64 anyway. Since both of
these lines become System.In64 types in IL code, there is no difference in run-
time performance.

The .NET Framework and Visual Basic .NET Object Programming 111

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 111

It may be best to look at history to decide which data type to use. Visual
Basic 6 had a data type called Long, which was a 32-bit signed integer. When a
project was upgraded from Visual Basic 6 to Visual Basic .NET, the Long data
type was mapped to the Int64. This automatically gave old code the ability to
take advantage of the larger data type. By using Long, the Visual Basic .NET
compiler can map to the largest signed integer that is available, which is an
Int64 today, but may be an Int128 tomorrow.

This behavior may, or may not, be desirable. If it is, use the Long Visual
Basic .NET data type. If a 64-bit signed integer is mandatory, use the Int64
.NET data type. As a general rule though, it’s probably best to use the specific
language’s data type. This allows the compiler to make mapping changes in
the future.

Visual Basic .NET Object-Oriented Programming

The .NET Framework consists of many classes, but there is always a need to
develop classes that are specific to the solution that is being created. This sec-
tion takes a look at object-oriented programming using Visual Basic .NET.

Classes
A class represents a grouping of behaviors and attributes that make up an
entity. Classifying items is something that human beings do all the time. This
involves looking at common attributes and behaviors. For instance, a car is an
item that has four wheels, an engine, and an enclosure (body), and that trans-
ports people on a road. When creating a classification, or a class, you must
think about the attributes and behaviors that are important to the solution that
is being created. This is done through the concept of abstraction.

Abstraction

The concept of abstraction involves making the decision on what attributes
and behaviors are important. This is done through the process of selective cog-
nizance—or selective ignorance. What is important to the solution that is being
created?

If the solution that is being created is a race car game, a car class may con-
tain current speed and Revolutions per Minute (RPM) attributes. If, however,
the solution that is being provided is a maintenance tracking program for cars,
current speed and RPM are not required, but last oil change date and odome-
ter readings are required.

When creating new classes, decide what attributes and behaviors are impor-
tant, and add them to them class. There is no need to have an attribute if the
solution never uses it.

112 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 112

Class Creation

In its simplest form, a class can be created in Visual Basic .NET by using the
following syntax:

Class Car

End Class

This class has no apparent behavior or attributes, but it is a class. Some lan-
guages, including older versions of Visual Basic, required each class to be in its
own file. This is not the case with Visual Basic .NET. Many classes can be cre-
ated in the same file. From a maintenance perspective, it’s usually good to
place each major class and its helper classes in the same file.

Class Visibility Modifiers

When a class is created, it is usually desirable to place a constraint on the visi-
bility of the class. Table 4.2 contains a list of the visibility modifiers, or access
modifiers, that can be placed on a class.

Classes that are created with no visibility modifier default to Friend.

Table 4.2 Entity Visibility Modifiers

VISIBILITY MODIFIER DESCRIPTION

Public The entity is globally available. There are no
restrictions on the use of public entities.

Private A private entity is only accessible from within the
block of code in which it was declared, including
nested entities. Private can only be used as a class
visibility modifier when working with nested
classes.

Protected A protected entity is accessible only from within its
own class or from a derived class. Protected access
can be specified only on members of classes. It is
not a superset of Friend access. Protected can only
be used as a class visibility modifier when working
with nested classes.

Friend An entity that is accessible only within the program
that contains the entity declaration.

Protected Friend An entity that has the union of Protected and
Friend accessibility. Protected Friend can only be
used as a class visibility modifier when working
with nested classes.

The .NET Framework and Visual Basic .NET Object Programming 113

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 113

Notice that there are only two visibility modifier selections for classes that
are not nested: Public and Friend. An example of a class that uses a visibility
modifier follows:

Public Class Car

End Class

Working with Class Members

When creating classes, class members such as events, methods, fields, and
properties need to be defined for a class to be a meaningful entity.

Fields

A field is a memory variable that is defined at the class level. The field can be
created with the same visibility modifiers as the class, as shown in Table 4.2.

Fields that are created with no visibility modifier default to Private.

If a visibility modifier is used, the word Dim is optional. An example of
fields that are created inside a class is as follows:

Public Class Car

Public CarMake as string

Public CarModel as string

End Class

It is also possible to declare many fields of the same type in one command.
The following code shows an example:

Public Class Car

Public CarMake, CarModel as string

End Class

It is also possible to initialize the fields, but this requires the fields to be on
their own line, as shown:

Public Class Car

Public CarMake as string = “Volkswagen”

Public CarModel as string = “Beetle”

End Class

Methods

A method is a sub or function that is defined at the class level. Methods may
be assigned a visibility modifier, as shown in Table 4.2.

Methods that are created with no visibility modifier default to Public.

114 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 114

An example of a public method that returns a value follows:

Public Class Car

Public CarMake As String = “Volkswagen”

Public CarModel As String = “Beetle”

Public Function StartEngine(ByVal CarKey As Integer) As Boolean

If CarKey = 5 Then ‘correct key

Return True

Else

Return False

End If

End Function

End Class

Arguments are passed ByVal by default. Previous versions of Visual Basic
passed arguments ByRef by default. Also, notice that the return statement is
used to return a value from a function.

Overloaded Methods

In Visual Basic .NET, a method can be overloaded. An overloaded method is a
method that has the same name as an existing method, but the arguments are
different. An example of an overloaded StartEngine method follows:

Public Class Car

Dim CarMake As String = “Volkswagen”

Public CarModel As String = “Beetle”

Public Overloads Function StartEngine(ByVal CarKey As Integer) _

As Boolean

If CarKey = 5 Then ‘correct key

Return True

Else

Return False

End If

End Function

Public Overloads Function StartEngine(ByVal SecretWord As String) _

As Boolean

If SecretWord = “Please” Then ‘correct key

Return True

Else

Return False

End If

End Function

End Class

In this example, StartEngine accepts either an integer or a string. The proper
method will execute, based on the data type that is passed to the method. Fig-
ure 4.9 shows how IntelliSense handles the overloaded method. The up and
down arrows can be used to scroll through the overloads.

The .NET Framework and Visual Basic .NET Object Programming 115

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 115

Figure 4.9 Using IntelliSense to view the method overloads. Code is being added to
execute the StartEngine method. When the opening parenthesis is typed, IntelliSense
displays a list of the available overloads for the StartEngine method.

Encapsulation

The problem with using public fields is that changes can be made to the data,
and there is no easy way to protect the data’s integrity. Encapsulation is the
solution to this problem. Encapsulation can be accomplished via public acces-
sor/mutator methods or by using properties.

Accessor/Mutator Methods

To encapsulate a field via accessor/mutator methods, the visibility modifier
must be changed to private. A method is provided to retrieve the value of the
private field, called the accessor method. This method is sometimes called a
getter. Another method is provided to assign a value to the private field, called
the mutator method. This method is sometimes called a setter. An example of
an accessor/mutator is as follows:

Public Class Car

Private CarMake As String = “Volkswagen”

Public Function GetMake() As String

‘Make any change to CarMake before

‘returning it.

Return CarMake

End Function

Public Sub SetMake(ByVal Make As String)

‘Test Make for proper data

‘then assign to CarMake.

CarMake = Make

End Sub

End Class

116 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 116

Properties

Although accessor/mutator methods provide encapsulation, IntelliSense
makes no differentiation between these methods and regular methods. Also,
since two methods are required for each field, the quantity of methods grows
substantially.

The use of properties is another method of accomplishing encapsulation. A
property can be as follows.

Public Class Car

Private _CarMake As String = “Volkswagen”

Public Property CarMake() As String

Get

Return _CarMake

End Get

Set(ByVal Value As String)

_CarMake = Value

End Set

End Property

End Class

Figure 4.10 shows an example of how IntelliSense differentiates properties
from methods. Also notice that when an assembly that has a property is
viewed with ILDasm, the property can be seen, but in addition to the property
there are two additional methods: a get_method and a set_method.

Figure 4.10 The CarMake property has a property icon. The property is also shown in
ILDasm. Notice that two hidden methods were created to support the property.

The .NET Framework and Visual Basic .NET Object Programming 117

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 117

Events

When a class is created, it’s not always known exactly how the class will be
used in the solution. For example, the Car class may have Started, Stalled, and
SpeedChanged events. The writer of the class does not know how these events
will be used, but the writer knows that there is a requirement for solution code
to execute when any of these events takes place. An example of a class with the
Started, Stalled, and SpeedChanged events is as follows:

Public Class Car

Public Event Started()

Public Event Stalled()

Public Event SpeedChanged(NewSpeed as integer)

Private _CurrentSpeed As Integer = 0

Public Overloads Function StartEngine(ByVal CarKey _

As Integer) As Boolean

If CarKey = 5 Then ‘correct key

RaiseEvent Started()

Return True

Else

Return False

End If

End Function

Public Sub SpeedUp(ByVal Amount As Integer)

_CurrentSpeed += Amount

If _CurrentSpeed > 65 Then

_CurrentSpeed = 0

RaiseEvent Stalled()

End If

RaiseEvent SpeedChanged(_CurrentSpeed)

End Sub

End Class

In the previous code sample, the Started, Stalled, and SpeedChanged events
were created at the top of the class. The writer of the class knows that some
code should execute when these events take place, but since the code will vary
depending on the user of this class, creating events allows the user to hook into
this code.

In the next code snippet, a small console application is using the Car class to
demonstrate the events:

Module Module1

Dim WithEvents c As New Car()

Sub Main()

Dim x As Integer

For x = 1 To 10

c.SpeedUp(15)

Next

End Sub

Public Sub ItStalled() Handles c.Stalled

118 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 118

Console.WriteLine(“Car Stalled”)

End Sub

Public Sub DifferentSpeed(ByVal NewSpeed As Integer) _

Handles c.SpeedChanged

Console.WriteLine(“Speed is now: “ & NewSpeed.ToString())

End Sub

End Module

To use events, the WithEvents keyword is required in the variable declara-
tion. This is effectively telling Visual Basic .NET to listen for events that may be
raised from this instance of a Car.

To hook into an event, a method is created for the events that need addi-
tional code. In the previous example, Started is not used. The method signa-
ture must match the method signature that is required by the event. Each event
must be a sub (a function is not allowed), the name can be any name you
choose, and the arguments must match the arguments defined in the event
definition. The Started and Stalled events have no arguments, but the Speed-
Changed has an integer argument containing the new speed. Finally, the event
methods need to be connected to one or more events via the Handles statement.
Notice that the ItStalled method Handles c.Stalled, and the DifferentSpeed
method handles c.SpeedChanged.

Sometimes is it desirable to use the same method to handle events from
many objects. This can also be done by adding additional events after the Han-
dles statement, separated by commas.

What Is a Constructor?

When a new instance of a class is being created, a special method is executed,
called the constructor. If a class has been created with no constructors, the
Visual Basic .NET compiler will create a default constructor, which will allow
the object to be created.

In many cases, variables are required to be initialized when the instance of
the class is created. This can be done by creating a custom constructor for the
class. A custom constructor is created by creating a method called New. For
example, using the Car class, the requirement might be to construct a new
instance of a Car, passing the VIN (vehicle identification number) to the con-
structor. After the instance of the Car has been constructed, the VIN may be
readable, but not writeable. The following listing shows such an example:

Public Class Car

Public ReadOnly VIN As String

Public Sub New(ByVal VIN As String)

Me.VIN = VIN

End Sub

End Class

‘Create a new Car instance

Dim c as new Car(“123-ABC-456”)

The .NET Framework and Visual Basic .NET Object Programming 119

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 119

The constructor is always a sub and has the name New. In this example,
the only way to create an instance of the Car class is to pass a VIN into the
constructor.

This example fulfills the requirements of encapsulation (protecting data
integrity) without using a property. If a variable is created as ReadOnly, the
variable can only be changed on the same line as the variable declaration or in
the constructor. After the constructor executes, the variable becomes ReadOnly.

Overloaded Constructors

Just as methods may be overloaded, constructors may be overloaded. Over-
loading constructors does not require the use of the overloads keyword. For
example, in addition to the custom constructor shown in the previous exam-
ple, there could also be a requirement for a custom constructor that allows the
VIN and Model to be assigned when Car is being instantiated.

Public Class Car

Public ReadOnly VIN As String

Public ReadOnly Model As String

Public Sub New(ByVal VIN As String)

Me.VIN = VIN

End Sub

Public Sub New(ByVal VIN As String, ByVal Model As String)

Me.VIN = VIN

Me.Model = Model

End Sub

End Class

‘Create a new Car instance

Dim c As New Car(“123-ABC-335”, “Corvette”)

Me Keyword

The last two code examples used the keyword Me. Me refers to the current
instance of the class whose code is currently running. In the previous exam-
ples, Me is required because the variables called VIN and Model are defined in
two locations: at the class level and at the constructor argument level. When
VIN is referred to inside the constructor, the closest VIN variable (constructor
argument) is used. To access the VIN that is defined at the class level, Me.VIN
is used.

Shared Methods and Variables

When working with classes, it’s common to create a variable and assign a new
instance of a class to the variable as follows:

Dim x as new Car()

120 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 120

As each instance of a Car class is created, there is an isolated copy of instance
data, such as VIN, Make, Model, Year, and Mileage.

There are some situations in which common data is required, such as a data
element that represents the count of Car instances. The count is related to the
Car class, so placing a variable inside that Car class makes sense.

Common data may be represented in the Car class by creating a shared vari-
able. The follow code is an example of a private shared variable called _count,
a public shared property called Count, and a public shared method called
IncrementCount.

Public Class Car

Private Shared _count As Integer

Public Shared Property Count() As Integer

Get

Return _count

End Get

Set(ByVal Value As Integer)

_count = Value

End Set

End Property

Public Shared Sub IncrementCount()

_count += 1 ‘add 1 to the count

End Sub

End Class

The public shared members are accessible by using the class name, for
example Car.Count and Car.IncrementCount(), since shared members do not
belong to a Car instance.

Inheritance

A class that inherits from another class receives the members of the base class.
Figure 4.11 shows an example of inheritance using Unified Modeling Lan-
guage (UML) with a Vehicle class that inherits from the Object class, and a
Motorcycle class that inherits from the Vehicle class. After creating a Motorcy-
cle instance called m, the variable m has all of the derived members. Microsoft
IntelliSense is smart enough to display all available members.

This type of inheritance is sometime referred to as is-a inheritance. In this
example, a Vehicle is-a Object, and a Motorcycle is-a Vehicle. The Vehicle class
contains all of the members that are common to a vehicle. When Motorcycle is
derived from the Vehicle class, the only extra members that are needed are the
members that are unique to the Motorcycle class.

The .NET Framework and Visual Basic .NET Object Programming 121

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 121

Figure 4.11 Vehicle inherits from Object, Motorcycle inherits from Vehicle. All public
members of each class are available as shown when using Visual Basic .NET. The left side is
a UML representation of the inheritance. VIN and Model are underlined to denote they are
read-only fields.

The .NET Framework only supports single inheritance. Some languages,
such as unmanaged C++, support multiple inheritance, but managing
multiple inheritance can become a quandary, especially when multiple
base classes have members with the same names. Single inheritance
was a design decision across all .NET languages, and there are methods
of accomplishing the intent of multiple inheritance, such as the
implementation of interfaces (discussed in the Interfaces section
later in this chapter).

Overriding Methods

In many situations, it may be desirable to override one or more methods in a
base class. A common example is the System.Object.ToString method. The
default behavior of the ToString method is that it returns the fully qualified
name of the current object (Me). In the case of the Motorcycle from Figure 4.11,
m.ToString() will return ConsoleApplication1.Motorcycle.

+GetHashCode() : Integer
+Equals() : Boolean
+ToString() : String
+ReferenceEquals() : Boolean

Object

+VIN : String
+Model : String
+WheelQuantity : Integer
+EngineSize : Integer

+New(in VIN : String)
+New(in VIN : String, in Model : String)
+StartEngine() : Boolean
+StopEngine() : Boolean

ConsoleApplication1::Vehicle

+New(in VIN : String)
+TightenSpokes() : Boolean

ConsoleApplication1::Motorcycle

122 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 122

The Vehicle class can override the ToString method to display the VIN and
the Model instead with the following code:

Public Class Vehicle

Inherits Object

Public ReadOnly VIN As String

Public ReadOnly Model As String

Public WheelQuantity As Integer

Public EngineSize As Integer

Public Sub New(ByVal VIN As String)

Me.VIN = VIN

End Sub

Public Sub New(ByVal VIN As String, ByVal Model As String)

Me.VIN = VIN

Me.Model = Model

End Sub

Public Function StartEngine() As Boolean

End Function

Public Function StopEngine() As Boolean

End Function

Public Overrides Function ToString() As String

Return “VIN: “ & VIN & “ - Model: “ & Model

End Function

End Class

The ToString method in the Vehicle returns a string with the VIN and the
Model. Now that the ToString method is overridden in the Vehicle class, the
Vehicle class and any class that derives from Vehicle automatically inherits this
new behavior. Using the Motorcycle in Figure 4.11, executing m.ToString()
returns “VIN: 123 – Model: “. There is no Model because Motorcycle was
allowed to be created without a Model.

To override a method, the base class method must use the overridable
keyword.

MyBase Keyword

In the previous example, it may have been desirable to return the VIN and
Model as well as the fully qualified name of the class. Calls can be made to the
original ToString method by using the MyBase keyword as follows:

Public Overrides Function ToString() As String

Dim s as string

s = “VIN: “ & VIN & “ - Model: “ & Model

s = s & “ – “ & MyBase.ToString()

Return s

End Function

The .NET Framework and Visual Basic .NET Object Programming 123

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 123

Abstract Methods and Classes

Quite often, a class writer must provide program specification where imple-
mentation may vary depending on the class that derives from the class.
Abstract methods and classes allow for the separation of the specification from
implementation.

Abstract methods may be created in Visual Basic .NET by using the
MustOverride keyword, as follows:

‘part of a class called DrawingShape

Public MustOverride Sub Print()

In this example, a method signature is provided, but there is no implemen-
tation code and no End Sub. The idea is that the writer of this class knows that
a Print method needs to be called by the application, but does not know the
printing requirements for each class. Any class that derives from this class
must provide implementation code for this method, even if a simple, empty
code block is provided, such as the following:

Public class Circle

Inherits DrawingShape

Public Overrides Sub Print()

‘provide implementation code

‘here, but just having this code

‘block is good enough.

End Sub

End class

The only way that implementation code can be provided for the Print
method is to derive a new class from the DrawingShape class. This means that
it is no longer possible to create an instance of the DrawingShape. To ensure
this functionality, Visual Basic .NET requires the class to be labeled as MustIn-
herit as soon as a single method is labeled as MustOverride. The Drawing-
Shape class must be written as follows:

Public MustInherit Class DrawingShape

Public x As Integer = 0

Public y As Integer = 0

Public MustOverride Sub Print()

Public Overrides Function ToString() As String

Dim s As String

s = String.Format(“{0} x={1} y={1}”, MyBase.ToString(), x, y)

Return s

End Function

End Class

124 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 124

Notice that the DrawingShape class contains concrete and abstract code. A
class does not need to be completely abstract when it is labeled as MustInherit.

Polymorphism

From Greek roots, polymorphism means many forms or many faces. Polymor-
phism is often required when a general routine, such as a Print method, needs
to be executed across many objects, but each object implements its print
method differently.

Polymorphism can be accomplished via the following methods:

1. Overriding methods that are labeled as overridable.

2. Overriding methods that are labeled as abstract.

3. Implementing interfaces (discussed in the Interfaces section later in this
chapter).

Modules
A module is a class that only contains shared members. Members do not need
the shared keyword, as they are implicitly shared. Public module members are
essentially global members. Modules are not inheritable, and instances of
modules cannot be created. Interfaces, which are covered later in this chapter,
cannot be implemented on modules. The following is an example of a module:

Public Module Utilities

Public Sub CopyFile(ByVal Src As String, ByVal Dest As String)

‘copy code

End Sub

Public Function ReadKeys() As String

‘Read keystrokes from keyboard

End Function

End Module

Notice that the Shared keyword is not used, although both methods are
implicitly shared. These methods can be executed from another part of the
application by simply using the method name. The following code will work:

CopyFile(“C:\Test.txt”, “D:\abc.txt”)

The .NET Framework and Visual Basic .NET Object Programming 125

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 125

Structures

Structures are light classes. All structures are derived from System.ValueType.
When an instance of a structure is created, memory is allocated onto the stack.
When making an assignment, a deep copy is done, which means that all data is
copied; not just the reference.

Structures support properties, fields, methods, and interfaces. Structures
cannot be inherited and cannot have events. The no parameter constructor for a
structure is automatically created by the Visual Basic .NET compiler and can-
not be overridden, which allows the following syntax:

Dim z as myStructure ‘automatically creates instance

Structures can have parameterized constructors, as shown in the following
code:

Public Structure myStructure

Public x As Integer

Public y As Integer

Public Sub New(ByVal x As Integer, ByVal y As Integer)

Me.x = x

Me.y = y

End Sub

End Structure

This example shows a structure called myStructure and its parameterized
constructor. An instance of this structure may be created by issuing any of the
following commands:

Dim z as myStructure ‘use the default constructor

Dim z as new myStructure ‘also uses the default constructor

Dim z as new myStructure(5,9) ‘use parameterized constructor

Since structure assignment is done by performing a deep copy, keep a struc-
ture limited in size. Depending on how the structure is used, there could be a
performance gain to converting structures over 50 bytes in size to classes.

126 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 126

Interfaces

Interfaces can be created and used when it is necessary to separate specifica-
tion from implementation, which is the basis for polymorphism. In many
respects, an interface is similar to an abstract class (a class labeled as MustIn-
herit) that has no concrete members (all methods are labeled as MustOver-
ride). The differences between interfaces and abstract classes are shown in
Table 4.3.

The last item in Table 4.3 is probably the most compelling reason to use an
interface. Consider the scenario in which an application is being written to
maintain a list of cars, and two vendors have written car classes for this appli-
cation. VendorA supplied a class called GeneralCar and VendorB supplied a
class called SportsCar. At some point, a complete list of cars must be printed,
based on properties that are unique in each of the car classes. Assumptions are
that the source code is unavailable for GeneralCar and SportsCar, and these
classes don’t derive from a common class that has its source code available.

In this scenario, a new class is created for each of the car classes, called Print-
ableGeneralCar, which derives from GeneralCar, and PrintableSportsCar,
which derives from SportsCar. In addition, an interface has been created called
Ireport. (See Figure 4.12).

Table 4.3 Differences between Interfaces and Abstract Classes

INTERFACE ABSTRACT CLASS

Cannot contain data Can contain data members, such as variables.

Supports multiple inheritance Only supports single inheritance.

Cannot provide concrete methods Can provide concrete methods along with
abstract methods.

Does not require a common base Requires a common base class to separate
class to separate specification specification from implementation.
from implementation

The .NET Framework and Visual Basic .NET Object Programming 127

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 127

+V
IN

 :
St

rin
g

+M
ak

e
: S

tr
in

g
+S

ea
tin

gC
ap

ac
ity

 :
In

te
ge

r

+N
ew

(in
 V

IN
 :

St
rin

g,
 in

 M
ak

e
: S

tr
in

g,
 in

 S
ea

tin
gC

ap
ac

ity
 :

In
te

ge
r)

Ve
nd

or
A

::G
en

er
al

C
ar

+V
IN

 :
St

rin
g

+M
ak

e
: S

tr
in

g
+T

op
Sp

ee
d

: I
nt

eg
er

+N
ew

(in
 V

IN
 :

St
rin

g,
 in

 M
ak

e
: S

tr
in

g,
 in

 T
op

Sp
ee

d
: I

nt
eg

er
)

Ve
nd

or
B:

:S
p

o
rt

sC
ar

V
en

d
o

rA
V

en
d

o
rB

Ve
nd

or
 S

up
p

lie
d

C
od

e

Pr
in

t
th

e
lis

t
D

im
 P

ri
n

tI
te

m
 A

s
IR

ep
o

rt
Fo

r
Ea

ch
 P

ri
n

tI
te

m
 In

 C
ar

s
Pr

in
tI

te
m

.P
ri

n
t(

)
N

ex
t

+P
rin

t(
)

+N
ew

(in
 V

IN
 :

St
rin

g,
 in

 M
ak

e
: S

tr
in

g,
 in

 S
ea

tin
gC

ap
ac

ity
 :

In
te

ge
r)

IR
ep

or
t

Re
p

or
tin

gA
p

p
lic

at
io

n:
:P

ri
n

ta
b

le
G

en
er

al
C

ar

+P
rin

t(
)

+N
ew

(in
 V

IN
 :

St
rin

g,
 in

 M
ak

e
: S

tr
in

g,
 in

 T
op

Sp
ee

d
: I

nt
eg

er
)

Re
p

or
tin

gA
p

p
lic

at
io

n:
:P

ri
n

ta
b

le
Sp

o
rt

sC
ar

IR
ep

or
t

128 Chapter 4

Fi
gu

re
 4

.1
2

B
ot

h
Ve

nd
or

A
an

d
Ve

nd
or

B
 p

ro
vi

de
 c

od
e.

 A
 m

et
ho

d
is

 n
ee

de
d

to
 p

rin
t e

ac
h

ite
m

, s
o

an
 in

te
r f

ac
e

is
 c

re
at

ed
ca

lle
d

IR
ep

or
t.

N
ot

ic
e

th
at

 IR
ep

or
t i

s
th

e
da

ta
 ty

pe
 th

at
 is

 u
se

d
by

 P
rin

tIt
em

 w
he

n
m

ov
in

g
th

ro
ug

h
th

e
lo

op
. T

hi
s

al
lo

w
s

th
e

Pr
in

t m
et

ho
d

to
 b

e
ex

ec
ut

ed
, w

hi
ch

 w
ill

 h
av

e
a

di
ffe

re
nt

 o
ut

pu
t b

as
ed

 o
n

th
e

ob
je

ct
 th

at
 e

xe
cu

te
s

th
e

Pr
in

t m
et

ho
d.

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 128

The code listing is as follows:

‘VendorA

Public Class GeneralCar

Public VIN, Make As String

Public SeatingCapacity As Integer

Public Sub New(ByVal VIN As String, ByVal Make As String, _

ByVal SeatingCapacity As Integer)

Me.VIN = VIN : Me.Make = Make

Me.SeatingCapacity = SeatingCapacity

End Sub

End Class

‘VendorB

Public Class SportsCar

Public VIN, Make As String

Public TopSpeed As Integer

Public Sub New(ByVal VIN As String, ByVal Make As String, _

ByVal TopSpeed As Integer)

Me.VIN = VIN : Me.Make = Make

Me.TopSpeed = TopSpeed

End Sub

End Class

‘The assumption is that we did not have the above

‘code. If we did, we could simply add a Print method

‘to the classes.

‘

‘Here is our code.

Interface IReport

Sub Print()

End Interface

Public Class PrintableGenerlCar

Inherits GeneralCar

Implements IReport

Public Sub New(ByVal VIN As String, ByVal Make As String, _

ByVal SeatingCapacity As Integer)

MyBase.New(VIN, Make, SeatingCapacity)

End Sub

Public Sub Print() Implements IReport.Print

Console.WriteLine(“VIN: {0} Make:{1} Seating Capacity: {2}”, _

VIN, Make, SeatingCapacity)

End Sub

End Class

Public Class PrintableSportsCar

Inherits SportsCar

Implements IReport

Public Sub New(ByVal VIN As String, ByVal Make As String, _

ByVal TopSpeed As Integer)

MyBase.New(VIN, Make, TopSpeed)

End Sub

The .NET Framework and Visual Basic .NET Object Programming 129

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 129

Public Sub Print() Implements IReport.Print

Console.WriteLine(“VIN: {0} Make: {1} Top Speed: {2}”, _

VIN, Make, TopSpeed)

End Sub

End Class

The following code is an example of using these new classes and the inter-
face. An array of cars is created manually. Next, a loop moves through each
item in the loop.

Sub Main()

‘Create a list and fill it manually.

Dim Cars(3) As Object

Cars(0) = New PrintableGenerlCar(“A01”, “VW”, 4)

Cars(1) = New PrintableSportsCar(“B02”, “BMW”, 130)

Cars(2) = New PrintableSportsCar(“C03”, “Corvette”, 135)

Cars(3) = New PrintableGenerlCar(“D04”, “Ford”, 6)

‘Print the list

Dim PrintItem As IReport

For Each PrintItem In Cars

PrintItem.Print()

Next

End Sub

Since each object in the array has implemented the IReport interface, the
code works properly. If an object were placed into the Cars array that did not
implement the IReport interface, an exception would be thrown. The better
way to write the print loop might be as follows:

‘Print the list

Dim o As Object

Dim PrintItem As IReport

For Each o In Cars

If TypeOf (o) Is IReport Then

PrintItem = CType(o, IReport)

PrintItem.Print()

‘quicker method...

‘CType(o, IReport).Print()

End If

Next

The typeof-is statement tests an object to see if it is, derived from, or imple-
ments a particular data type. This example contains a check to see if the vari-
able called o implements the IReport interface.

The CType statement converts object o to an IReport data type. This can
only happen if the original object that was created with the New statement

130 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 130

supported the IReport interface. In this scenario, both the PrintableGenericCar
and the PrintableSportsCar implement the IReport interface.

Enumerations

An enumeration is a name and value collection. Enumerations can be used to
eliminate magic numbers from your code. The term magic numbers refers to the
use of numbers as attributes. For example, rather than assigning the word
Manager to an employee’s position, the number 5 might indicate that the
employee is a manager. This saves space in memory and in the database. It also
makes comparisons much easier. If a word such as Manager were used, look-
ing for a manager (lower case m) would require conversions before the com-
parison could take place. The problem with the usage of numbers in code is
that the code becomes much less readable. In the following code, the meaning
of the number 2 is not very apparent.

Dim c as New SportsCar()

c.DriverType=2 ‘magic number!

If an enumeration were created called DriverTypeEnum, the code could be
rewritten with an enumeration name instead of a value as follows:

Public Enum DriverTypeEnum

HighRisk=0

MediumRisk=1

LowRisk=2

NoRisk=9

End Enum

Dim c as New SportsCar()

c.DriverType=DriverTypeEnum.LowRisk ‘no magic number!

Notice that the enumeration values do not need to be consecutive numbers.
In fact, the numbers do not need to be in any order. If the numbers are omitted,
the names will be sequentially numbered, starting from zero.

Working with Collections

The .NET Framework provides several collection types and the ability to create
custom collection. Table 4.4 lists some of the common collection types that are
available. The .NET collections are located in the System.Collections namespace.

The .NET Framework and Visual Basic .NET Object Programming 131

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 131

Table 4.4 Common Collection in the .NET Framework

COLLECTION DESCRIPTION

ArrayList General purpose, dynamically sized collection.

HashTable A collection of associated keys and values that are
organized based on the hash code of the key.
Types stored in HashTable should always override
System.Object.GetHashCode().

SortedList Like a dictionary, but the elements can also be
accessed by ordinal position (index).

Queue Represents a standard first-in-first-out (FIFO)
queue.

Stack A last-in-first-out (LIFO) queue that provides push,
pop, and peek functionality.

BitArray Provides a collection of bit values, where true
indicates that the bit is on (1) and false indicates
the bit is off (0).

Most collections in .NET are nontyped, which means that they are a collec-
tion of System.Object instances. The following code creates a new ArrayList
and places a couple of SportsCar objects into it.

Dim a As New ArrayList()

Dim bmw As New SportsCar(“A01”, “BMW”, 130)

Dim porsche As New SportsCar(“B02”, “Porsche”, 140)

Dim myCar As SportsCar

a.Add(bmw)

a.Add(porsche)

mycar=a(1) ‘ get the second one

When retrieving an item from a collection, the item will be retrieved as an
object. If the project’s Option Strict setting is set to off, the preceding code will
function, because Visual Basic .NET automatically converts the object back to
a SportsCar. If the Option Strict setting is set to on, the code must be as follows.

mycar= CType(a(1), SportsCar) ‘ get the second one

Referencing External Code Libraries

When writing an application, many times it will be necessary to tell Visual
Studio .NET that the application is going to be using code that is in an external
.dll file. This code won’t be available until a reference is set to the appropriate

132 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 132

.dll file. To set a reference to an external .dll file, click Project, Add Reference.
A window will appear with tabs as follows:

.NET. Contains a list of .NET .dll files, where the list is generated by look-
ing into the registry for a folder list and then retrieving a list of files in
each folder. Additional folder keys can be placed in the registry at the
following location (see Figure 4.13).
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\AssemblyFolders\

There are existing keys in that location, plus new keys can be added. The
new key name doesn’t matter; just make sure that the default value of
the key points to the folder that will contain .dll files. After adding a reg-
istry key, Visual Studio .NET must be restarted for the change to be seen.
This tab also provides a browse button that can be used to browse for a
.NET .dll file.

COM. Contains a list of COM components that are available. Visual Stu-
dio .NET automatically creates proxy class wrappers for each COM com-
ponent to give .NET code the ability to talk to COM components.

Project. Contains a list of open projects. This option can be used to tell
Visual Studio .NET that the current .NET project should be dependent on
the project that is selected form this list. When projects are referenced,
Visual Studio .NET automatically compiles the projects in the proper order.

After a reference has been set, IntelliSense will be available for all data types,
and the .dll will be accessible from the Object Browser.

Figure 4.13 To add files to the .NET list, a registry entry called MyDlls was added to point
to c:\vb\MyDlls. Visual Studio .NET was restarted and the files are available.

The .NET Framework and Visual Basic .NET Object Programming 133

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 133

Lab 4.1: Working with Classes

In this lab, you will create a class hierarchy for product of different types.
These classes will explore inheritance, encapsulation, and polymorphism.

First, you will create a product class hierarchy in an Inventory project.
You will start by creating a base product class and then add two derived
product types.

1. Open the OrderEntrySolution from Lab 3.1.

2. Right-click the OrderEntrySolution in the Solution Explorer, and
click Check Out. This checks out the complete solution.

3. Add a class file. Right-click the Inventory project in the Solution
Explorer, click Add, Add New Item, Class. Type ProductClasses.vb,
and click Open.

4. Delete the contents of the new class file.

5. You will create a base class called BaseProduct. This class will con-
tain the following data members:

a. _ProductID, Integer, Public ReadOnly

b. _ProductName, String, Protected

c. _UnitPrice, Decimal, Private

d. _UnitsInStock, Integer, Private

6. Add public properties for each of the protected and private data
members.

7. Create a parameterized constructor with arguments called Produc-
tID and ProductName. These arguments initialize the correspond-
ing member variables.

8. Add a public method that overrides the ToString method. The new
ToString method will return the product ID and the product name.
Your code should look like the following:
Public MustInherit Class BaseProduct

Public ReadOnly ProductID As Integer

Protected _ProductName As String

Private _UnitPrice As Decimal

Private _UnitsInStock As Integer

Public Property ProductName() As String

Get

Return _ProductName

End Get

134 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 134

Set(ByVal Value As String)

_ProductName = Value

End Set

End Property

Public Property UnitPrice() As String

Get

Return _UnitPrice

End Get

Set(ByVal Value As String)

_UnitPrice = Value

End Set

End Property

Public Property UnitsInStock() As String

Get

Return _UnitsInStock

End Get

Set(ByVal Value As String)

_UnitsInStock = Value

End Set

End Property

Public Sub New(ByVal ProductID As Integer, _

ByVal ProductName As String)

Me.ProductID = ProductID

_ProductName = ProductName

End Sub

Public Overrides Function ToString() As String

Dim s As String

s = String.Format(“Product ID: {0} Name: {1}”, _

ProductID, _ProductName)

Return s

End Function

End Class

9. Add another class called Beverage to this file. This class inherits
from the BaseProduct class.

10. Add a parameterized constructor to the Beverage class. The parame-
terized constructor contains the ProductID and ProductName argu-
ments, and calls the BaseProduct’s constructor with these
arguments.

11. Add code to override the ToString method of the BaseProduct class.
This adds the word Beverage before the output of the BaseProduct’s
ToString method. Your code should look like the following:
Public Class Beverage

Inherits BaseProduct

Public Sub New(ByVal ProductID As Integer, _

ByVal ProductName As String)

MyBase.New(ProductID, ProductName)

End Sub

The .NET Framework and Visual Basic .NET Object Programming 135

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 135

Public Overrides Function ToString() As String

Return “Beverage “ & MyBase.ToString()

End Function

End Class

12. Create a copy of the Beverage class. Rename the class to Confection
and change the ToString method to return the word Confection and
the output of the BaseProduct ToString method. Your code should
look like the following:
Public Class Confection

Inherits BaseProduct

Public Sub New(ByVal ProductID As Integer, _

ByVal ProductName As String)

MyBase.New(ProductID, ProductName)

End Sub

Public Overrides Function ToString() As String

Return “Confection “ & MyBase.ToString()

End Function

End Class

13. Save your work.

Next, to test the classes that you just created, you will add a Web page
to the Inventory project. On the new page, you will hard-code the cre-
ation of several instances of the Beverage and Confection classes, and
place the instances into a collection. Finally, you will test the ToString
method by displaying the contents of the collection on the page using a
label control.

1. Add a Web Form. Right-click the Inventory project in the Solution
Explorer and click Add, Add Web Form. Type ProductList.aspx, and
click Open.

2. Right-click the Form and click View Code.

3. In the Page_Load event method, add code to create a new ArrayList.

4. Add code to create three Beverage instances and three Confection
instances and add them to the ArrayList.

5. Add code to loop through the ArrayList, executing the ToString
method of System.Object to retrieve the product information. Use
the Response.Write to send the output to the browser and be sure to

136 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 136

concatenate an HTML linefeed to each line. Your code should look
like the following:
Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here.

Dim Products As New ArrayList()

Products.Add(New Beverage(1, “Milk”))

Products.Add(New Beverage(2, “Juice”))

Products.Add(New Beverage(3, “Cola”))

Products.Add(New Confection(4, “Ice Cream”))

Products.Add(New Confection(5, “Cake”))

Products.Add(New Confection(6, “Candy”))

Dim o As Object

For Each o In Products

Response.Write(o.ToString() & “
”)

Next

End Sub

6. Right-click the Inventory project in the Solution Explorer. Click Set
As Startup Project. Right-click the ProductList.aspx page. Click Set
As Start Page.

7. Save your work.

Run the application by pressing F5. Figure 4.14 displays the browser
output.

Figure 4.14 Browser output showing the Products collection.

The .NET Framework and Visual Basic .NET Object Programming 137

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 137

Summary

■■ The .NET Framework contains the common language runtime and the
Base Class Libraries (BCL).

■■ An assembly is created by compiling a Visual Studio .NET project, and is
conceptually similar to the .dll and .exe files of the past, except that it is
possible to create a multimodule (file) assembly by using the command-
line compiler.

■■ The assembly contains MSIL code and metadata. The assembly is com-
pletely self-describing via the manifest, which is global metadata. In
addition to the manifest metadata, the assembly contains type meta-
data, which describes every data type that has been defined in the
assembly.

■■ MSIL code is compiled to machine code as needed by the JIT compiler.

■■ Namespaces are used to prevent data type naming collisions.

■■ The Common Language Specification is a subset of the common type
system. All .NET languages must be Common Language Specification-
compliant.

■■ System.Object is the root class for all .NET classes.

■■ The .NET data types are either reference or value types. Reference types
are allocated on the garbage collected heap and assignments create a
shallow (reference) copy. Value types are allocated on the stack and
assignments create a deep (full bitwise) copy.

■■ Classes are reference types. Structures are value types.

■■ To access the current instance of an object, use the keyword Me.

■■ To access the parent, or base class of the current class, use the keyword
MyBase.

■■ Interfaces, overridden methods, and abstract methods may be used to
achieve polymorphism.

■■ Enumerations should be used in an application instead of hard-coded
numbers.

■■ The .NET Framework provided several types of collection, which are
located in the System.Collections namespace.

■■ To access code in an external .dll file, a reference must be assigned to
the file.

138 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 138

The .NET Framework and Visual Basic .NET Object Programming 139

Review Questions

1. What class is the root to all .NET classes?

2. What is the benefit of using enumerations in your code?

3. Where are value types created?

4. Where are reference types created?

5. How can you get access to the current instance of the class that code is running?

6. How can you get access to the current class’s parent class?

7. Name three ways of achieving polymorphic behavior.

8. What keyword is used to create a variable that belongs to a class instead of an
instance of the class?

9. What is the subname of a class’ constructor?

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 139

Answers to Review Questions

1. System.Object.

2. They eliminate magic numbers in code.

3. On the stack.

4. On the garbage collected heap.

5. Use the keyword Me.

6. Use the keyword MyBase.

7. Interfaces, overridden methods, and abstract (using MustOverride) methods.

8. Shared.

9. New.

140 Chapter 4

f 430234 Ch04.qxd 7/1/03 9:00 AM Page 140

141

The previous chapters focused heavily on creating a foundation for ASP.NET
development. It’s now time to use that knowledge to look at Web Server con-
trols. Web Server Controls are widgets that may be added to an ASP.NET Web
page to give the user the ability to interact with the Web application. Previous
versions of ASP contained controls that could be dropped onto a Web page,
but these controls didn’t offer much functionality. The new ASP.NET Web con-
trols offer lots of functionality. Some of the new ASP.NET Web Server Controls
include the calendar, ad rotators, validators, data grids, and data list controls.

All of the Web server controls are derived, or inherited from, the System
.Web.UI.WebControls.WebControl class. This class is derived from the System
.Web.UI.Control class. Each of these classes has a number of properties. This
chapter starts by identifying many of the common properties that are available
through inheritance. After that, it looks in detail at many of the server controls
that are available in Visual Studio .NET.

Working with Web
Server Controls

C H A P T E R

5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 141

Classroom Q & A
Q: Our company standard requires the use of an external Cascading

Style Sheet to set the appearance of our Web pages. Are Cascad-
ing Style Sheets still usable in ASP.NET?

A: Yes. Cascading Style Sheets are still useable in ASP.NET. The Web
server controls even expose a CssClass property, which allows you
to easily assign a named style to the control.

Q: I tried setting the tab order of my Web server controls, and although
the controls seemed to be in order, I couldn’t find a way of setting
the control that will initially have focus when the page is displayed.
Is there a way to accomplish this?

A: Yes there is, although it’s not as straightforward as simply setting
the tab order. See the TabIndex information in this chapter for a
small JavaScript snippet that will set the initial focus to a control of
your choice.

Q: It’s my understanding that ASP.NET provides validator controls. I
can use them for most pages, but I have one control that needs
special validation. Is there a way to link this special validation rou-
tine into the ASP.NET validation?

A: Yes. The CustomValidator control provides a link between the
ASP.NET validation and your special routine. There are several
code samples in this chapter.

The Web Server Control Hierarchy

All of the Web server controls that are covered in this chapter inherit from
System.Web.UI.WebControls.WebControl, which inherits from System.Web
.UI.Control. Figure 5.1 shows the Web server control hierarchy. This chapter
views the members of Control and WebControl first. After these members are
covered, this chapter will look at the individual controls.

System.Web.UI.Control
This System.Web.UI.Control class provides the base functionality for all of the
HTML server controls, Web server controls, and the Web page itself. This sec-
tion looks at each of the members of this class.

142 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 142

Figure 5.1 The Web server control hierarchy.

ClientID

A client identifier is automatically generated by ASP.NET for every server con-
trol. This identifier can be used for client-side scripting operations. If a name is
assigned to the ID property, the ID property will override the value of this
property. The following code will display a list of the controls with their corre-
sponding ClientID property.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Response.Write(“<h3>Control ClientID</h3>”)

‘ Get the list of all controls.

Dim c As Control

For Each c In Me.Controls

Response.Write(“The ClientID is: “ & c.ClientID & “
”)

Next

End Sub

Controls

The Controls property gets the collection of child controls that belong to the
current control. For the Web page, this is a collection of the controls on the
page. This property can be used to add and delete controls, as well as to iterate
through the child control collection. The following code adds a TextBox and a
Button to the page’s form control.

BaseDataList

TextBox

CheckBox

Image

Button

LinkButton

HyperLink

ValidationSummary

AdRotator

Calendar

Panel

BaseDataList

DataListItem

ListControl

Table

TableRow

TableCell

System.Web.UI.WebControls.WebControl

System.Web.UI.Control

System.Object

Working with Web Server Controls 143

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 143

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim c As Control = Me.FindControl(“Form1”)

Dim t As New TextBox()

t.Text = DateTime.Now.ToShortDateString()

Dim b As New Button()

b.Text = “Submit”

c.Controls.Add(t)

c.Controls.Add(b)

End Sub

EnableViewState

The EnableViewState property must be enabled to maintain its state across
HTTP requests. If it is not necessary to save state, set this property to false. The
following is an example of a TextBox that loads data from a database every
time the page is loaded, so ViewState is not required. The example also has an
example of a TextBox that only loads data from a database on the first time that
the page is requested, so ViewState is required.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘TextBox1 is loaded from the database

‘on every page load, so there is no need for ViewState.

TextBox1.Text = LoadTextBox1FromDB()

TextBox1.EnableViewState = False

‘TextBox2 is only loaded from the database

‘on the first time to the page,

‘so ViewState is required.

TextBox2.EnableViewState = True

If Not IsPostBack Then

TextBox2.Text = LoadTextBox2FromDB()

End If

End Sub

ID

The ID is a changeable property that is used as the programmatic identifier
that the Web developer assigns to a control. Note that placing spaces in this
property will cause an ASP.NET parser error. If a control does not have an ID,
it is still available in code from its parent controls collection or the FindControl
method of the parent. The following code recursively writes the ID of all con-
trols to the page.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

144 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 144

RecurseControls(Me, “”)

End Sub

Public Sub RecurseControls(ByVal c As Control, ByVal f As String)

Dim ch As Control

Dim i As String

i = IIf(c.ID = “”, “-undefined”, c.ID)

Response.Write(f & i & “
”)

For Each ch In c.Controls

‘recurse, and add 3 spaces for

‘formatted output

RecurseControls(ch, f & “ ”)

Next

End Sub

NamingContainer

The NamingContainer property for a control contains a reference to the parent
control above it in the control hierarchy that created a unique namespace. The
unique namespace ensures unique ID values, especially with list controls, such
as the DataGrid. A control can create a unique namespace by implementing
the INamingContainer interface.

The following code recursively writes the NamingContainer control’s ID for
all controls on the page. The page contains a DataGrid called DataGrid1,
which is the NamingContainer for all of the controls that it creates when pop-
ulating the grid.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim evlog As New Diagnostics.EventLog(“Application”)

DataGrid1.DataSource = evlog.Entries

DataGrid1.DataBind()

RecurseControls(Me, “”)

End Sub

Public Sub RecurseControls(ByVal c As Control, ByVal f As String)

Dim ch As Control

Dim i As String

If c.NamingContainer Is Nothing Then

i = “-undefined container”

Else

If c.NamingContainer.ID = “” Then

i = “-undefined ID”

Else

i = c.NamingContainer.ID

End If

End If

Response.Write(f & i & “
”)

For Each ch In c.Controls

‘recurse, and add 3 spaces for

Working with Web Server Controls 145

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 145

‘formatted output

RecurseControls(ch, f & “ ”)

Next

End Sub

Page

The Page property contains a reference to the .aspx page that hosts the control.
This property can be used by a control developer to get access to current page
properties. Although this is a changeable property, it’s better to change the
Page property indirectly by adding the control to the Page’s form controls
collection. The following code displays the Page name of a TextBox called
TextBox1.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘This code is on a page called WebForm1.aspx.vb.

‘The output is WebForm1_aspx.

Response.Write(TextBox1.Page.ToString())

End Sub

Parent

The Parent property returns a read-only reference to the parent of the current
control. Every control has a controls collection, which allows controls to be
added to and removed from it. Since all ASP.NET controls must be located in a
form, the form will be the parent to any control that is dropped onto a page.
The following code displays the parent ID of a TextBox called TextBox1 that
has been placed on a page.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim c As Control = FindControl(“TextBox1”)

Dim p As Control = c.Parent

Response.Write(“Parent: “ & p.ID)

End Sub

Site

The Site property contains a reference to the ISite information, which provides
a communication mechanism between components and their container. This
also provides a way for a container to manage its controls.

146 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 146

TemplateSourceDirectory

The Template Source Directory property returns the name of the virtual direc-
tory that the page or control is in. This can be converted to the actual path by
using the MapPathSecure function. The following code displays the full path
to the virtual directory that the current page is in.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Response.Write(“The full path of the virtual directory is “ & _

MapPathSecure(Me.TemplateSourceDirectory) & “
”)

End Sub

UniqueID

This property returns the fully qualified name of the control. The difference
between this property and the ID property is that the UniqueID property is
generated automatically and contains the NamingContainer information.

The following code recursively writes the control’s UniqueID and ID for all
controls on the page. The page contains a DataGrid called DataGrid1, which is
the NamingContainer for all of the controls that it creates when populating the
grid.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim evlog As New Diagnostics.EventLog(“Application”)

DataGrid1.DataSource = evlog.Entries

DataGrid1.DataBind()

RecurseControls(Me, “”)

End Sub

Public Sub RecurseControls(ByVal c As Control, ByVal f As String)

Dim ch As Control

Response.Write(f & c.UniqueID & “ - “ & c.ID & “
”)

For Each ch In c.Controls

‘recurse, and add 3 spaces for

‘formatted output

RecurseControls(ch, f & “ ”)

Next

End Sub

Visible

The Visible property is a changeable property that indicates whether a control
should be rendered on the page. If this property is set to false, the control will

Working with Web Server Controls 147

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 147

not generate any client-side code. If the Layout property of a page is config-
ured for FlowLayout, the missing control may cause any following controls to
shift upward on the page.

The following code sets the visible property of a Panel control called Panel1,
to false when Button1 is clicked. This will hide Panel1 and all of the controls
that it contains.

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Panel1.Visible = False

End Sub

System.Web.UI.WebControls.WebControl
This class inherits from the System.Web.UI.Control class and provides base
functionality all of the controls in the System.Web.UI.WebControls namespace.
Most of the properties that are exposed by this control affect the appearance of
the control. This section will look at the WebControl members.

AccessKey

The AccessKey property sets the hotkey for quick access to the control. For
example, if the letter D is assigned to the AccessKey property of a TextBox,
pressing Alt+D will set the focus to that control. This property may only be set
to a single character or left empty. If an attempt is made to assign multiple
characters to the property, an exception will be thrown. The following code
assigns AccessKey values to Button and TextBox controls.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Button1.AccessKey = “1”

Button2.AccessKey = “2”

TextBox1.AccessKey = “C”

TextBox2.AccessKey = “D”

End Sub

Attributes

The Attributes property is a changeable collection of all of the attributes that
are included in the control’s opening HTML tag. This property can be used to
assign and retrieve the attributes of a control. This can provide another
method of persisting data between calls to the Web server.

148 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 148

In the following code, a TextBox called TextBox1 has been placed in the upper
corner of the page. A Button called Button1 is also on the page. When TextBox1
is clicked, a client-side script will generate a pop-up message. When Button1 is
clicked, the style of TextBox1 is altered, which moves the control down on the
page.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

TextBox1.Attributes(“onclick”) = _

“javascript:alert(‘TextBox1 Clicked’);”

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

TextBox1.Attributes(“style”) = _

“LEFT: 200px; POSITION: absolute; TOP: 300px”

End Sub

BackColor, BorderColor, and ForeColor

The BackColor, BorderColor, and ForeColor properties set the color of the
control by using the Color class, which is located in the System.Drawing

Working with Web Server Controls 149

♦ Cascading Style Sheets

Many of the WebControl properties are styles that are applied directly to the control. Rather
than set the styles of each control separately, it’s usually better to create an external Cas-
cading Style Sheet (CSS) to obtain a consistent look and feel across the Web site.

Styles can be created for each HTML tag. For example, a style can be created for the
<H1> tag to give the header tag a completely new look. For Web server controls that often
generate many HTML tags as they are created, it may be more desirable to create a named
style for each Web server control and nest the tag styles within the name style. This keeps
the style of a table from interfering with the style of a DataGrid, which produces an HTML
table. A named style is called a css class.

When a new ASP.NET project is created in Visual Studio .NET, a file called Styles.css is
added to the project. By default, this is not used, but can be implemented with minimum
effort. Open the Styles.css page, add the desired styles, and then save the file. Open each
.aspx file, and drag and drop the Sytes.css onto the .aspx page.

This will add the following <link> tag into the <head> tag of the .aspx page.

<LINK href=”Styles.css” type=text/css rel=stylesheet>

Close and reopen the .aspx page to see the effect of adding the Styles.css link. The same
external style sheet can be applied to many .aspx pages.

Note that styles that are assigned directly to a Web server control will override any styles
that are in the Styles.css page.

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 149

namespace. The client-side code will contain a style attribute that sets the
background-color as required.

The following code assigns a BackColor to TextBox1 and TextBox2, and then
clears the BackColor of TextBox1.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Set color to Red using well-known color

TextBox1.BackColor = Color.Red

‘Set color to Green using R,G,B settings

TextBox2.BackColor = Color.FromArgb(0, 255, 0)

‘Clear the color setting.

TextBox1.BackColor = Color.Empty

End Sub

BorderStyle

The BorderStyle property is used to view and change the style of the border to
a setting from the BorderStyle enumeration. Table 5.1 contains a list of the Bor-
derStyle enumeration members.

Table 5.1 BorderStyle Enumeration Members

BORDERSTYLE MEMBER DESCRIPTION

NotSet The style is not set. This is the default.

None No border.

Dotted Provide a dotted-line border.

Dashed Provide a dashed-line border.

Solid Provide a solid-line border.

Double Provide a solid double-line border.

Groove Provide a grooved border, which gives a sunken
border appearance.

Ridge Provide a ridged border for a raised border
appearance.

Inset Provide an inset border for a sunken control
appearance.

Outset Provide an outset border for a raised control
appearance.

150 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 150

The following code shows an example of setting TextBox1 to a Dotted Border-
Style and TextBox2 to a Double BorderStyle.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

TextBox1.BorderStyle = BorderStyle.Dotted

TextBox2.BorderStyle = BorderStyle.Double

End Sub

Note that when using Windows XP, the default theme overrides these set-
tings. If the desktop theme is set to Windows Classic, the different border styles
can be seen in the browser.

BorderWidth

The BorderWidth property displays and changes the width of the Web server
control border. This property uses the unit class when making setting changes.
An exception will be thrown if the unit contains a negative number. The
following code sets the BorderWidth of TextBox1 and displays 4 - Pixel in
TextBox1.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

TextBox1.BorderWidth = New Unit(4, UnitType.Pixel)

Dim u As Unit

u = TextBox1.BorderWidth

TextBox1.Text = u.Value.ToString() & “ - “ & u.Type.ToString()

End Sub

ControlStyle and ControlStyleCreated

The ControlStyle property is a read-only property that retrieves the current
style settings of a control. This property returns a Style object. Note that this
property does not take external styles that are applied to a page into account.

The ControlStyleCreated property is a read-only property that returns a
Boolean value that indicates whether a ControlStyle has been created for the
current contol.

The following code displays Green 4 - Pixel in TextBox1 if the ControlStyle
Created is true.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

TextBox1.BackColor = Color.Green

Working with Web Server Controls 151

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 151

TextBox1.BorderWidth = New Unit(4, UnitType.Pixel)

‘Get the style from TextBox1.

Dim s As Style = TextBox1.ControlStyle

If TextBox1.ControlStyleCreated Then

‘Display the BackColor and the Borderwidth info

TextBox1.Text = s.BackColor.Name & “ “ _

& s.BorderWidth.Value.ToString() & “ - “ _

& s.BorderWidth.Type.ToString()

End If

End Sub

CssClass

The CssClass Property is a changeable property that assigns a class name
(a named style) to the current control. Cascading style sheet classes can be
created in an external style sheet file or in the Web page by placing <style> tags
in the <head> of the Web page.

The following code sets the CssClass of TextBox1 to a class called TextBox in
an external style sheet.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

TextBox1.CssClass = “TextBox”

End Sub

Enabled

Enabled is a changeable property that enables or disables a control. Setting this
property to false locks and dims the control. Not all Web server controls sup-
port this property.

Changing this setting will cause the setting to propagate down to the child
controls.

The following code toggles the enabled state of TextBox1.

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

TextBox1.Enabled = Not TextBox1.Enabled

End Sub

Font

The Font property returns a reference to a FontInfo object, which contains the
font attribute for the current control. Table 5.2 contains a list of the FontInfo
members. Note that the overlined member does not work properly on pre-
Internet Explorer 4.0 browsers.

152 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 152

Table 5.2 FontInfo Members That Can be Assigned to a WebControl

FONTINFO MEMBERS DESCRIPTION

Bold Gets or sets the bold setting

Italic Gets or sets the italic setting

Name Gets or sets the primary font name

Names Gets or sets an ordered array of font names

Overline Gets or sets the overlined setting

Size Gets or sets the font size

Strikeout Gets or sets the strikethrough setting

Underline Gets or sets the underlined setting

The following code assigns new font settings to TextBox1 and then displays
the settings in the TextBox.control called Label1.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

With TextBox1.Font

.Bold = True

.Name = “Arial”

.Size = New FontUnit(FontSize.XXSmall)

TextBox1.Text = “Bold: “ & .Bold.ToString() & _

“ - Name: “ & .Name & _

“ - Size: “ & .Size.ToString()

End With

End Sub

Height, Width

The Height and Width properties are changeable settings that set the Height
and Width of a control. These properties are nonstandard HTML properties
and some controls, such as the Label, HyperLink, and LinkButton, will not be
rendered properly with pre-Internet Explorer 4.0 browsers.

The following code assigns a new Height and Width to TextBox1.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

TextBox1.Height = New Unit(40, UnitType.Pixel)

TextBox1.Width = New Unit(50, UnitType.Percentage)

End Sub

Working with Web Server Controls 153

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 153

Style

The Style property returns a reference to a collection of text attributes that will
be rendered as a style attribute on the outermost tag of the WebControl. Note
that style settings that are explicitly placed on the WebControl, such as Back-
Color and BorderColor, will not be included in this collection and will override
the items in this collection.

The following code moves TextBox1 by 10 units when Button1 is clicked and
then displays all of the items in the Style collection in Label1.

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Dim u As New Unit(TextBox1.Style(“LEFT”))

u = New Unit(u.Value + 10, u.Type)

TextBox1.Style(“LEFT”) = u.ToString()

Dim s As String

Label1.Text = “”

For Each s In TextBox1.Style.Keys

Label1.Text &= s & “: “ & TextBox1.Style(s) & “
”

Next

End Sub

TabIndex

The TabIndex property sets and gets the tab order of controls on the page.
When a page is rendered, the address bar will be the fist item to have the focus.
Each time the tab key is pressed, the focus will move from control to control,
starting from the lowest, positive, nonzero number.

It is often desirable to set a control to have the focus when the page is loaded.
The following code sets the tab order and then sets the initial focus to TextBox1
by emitting a small JavaScript routine that will execute at the browser when the
page is first loaded.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Set tab order

TextBox1.TabIndex = 1

TextBox2.TabIndex = 2

Button1.TabIndex = 3

‘This code sets the initial focus to TextBox1.

Dim s As String

s = “<script type=’text/javascript’>”

s += “document.getElementById(‘TextBox1’).focus();”

s += “</script>”

Me.Page.RegisterStartupScript(“FocusController”, s)

End Sub

154 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 154

ToolTip

The ToolTip property creates a ToolTip for the current control. The ToolTip will
be displayed when the mouse cursor hovers over the control.

The following code adds a ToolTip to TextBox1, which will be displayed
when the mouse cursor is hovered over TextBox1.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

TextBox1.ToolTip = “Enter your full name.”

End Sub

Label Control

The Label control is a placeholder for text that will be displayed on the Web
page. The primary property for this control is the Text property. This control
renders text and HTML tags that are placed into the Text property.

TextBox Control

The TextBox control allows data entry and retrieval. Table 5.3 shows a list of
attributes for this control.

Table 5.3 TextBox Control Member Properties

TEXTBOX MEMBER DESCRIPTION

AutoPostBack Changeable value indicating whether an automatic
postback to the server will occur when the user changes
the content of the text box. The default is false.

Columns Changeable value containing the display width of the
text box in characters. The default is 0 (not set).

MaxLength Changeable value containing the maximum number of
characters allowed.

ReadOnly Changeable value indicating whether the Text property
can be changed.

Rows Changeable value containing the display height of a
multiline text box.

(continued)

Working with Web Server Controls 155

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 155

Table 5.3 (continued)

TEXTBOX MEMBER DESCRIPTION

Text Changeable value that displays the text content.

TextMode Changeable value that controls the behavior mode of
the text box. This can be set to SingleLine, MultiLine, or
Password. The default is SingleLine.

Wrap Changeable value that controls the word wrapping in
the text box.

The only event that is exposed by the TextBox is the TextChanged Event.
This event will be raised when the TextBox loses focus if AutoPostBack is set to
true. If AutoPostBack is set to false (default), this event will be raised when a
control causes a postback to the server.

The following code set the TextMode of TextBox1 to TextMode.Password. In
addition, the TextMode of TextBox2 is set to TextMode.MultiLine, and the
Rows are set to display 3 rows.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

TextBox1.TextMode = TextBoxMode.Password

TextBox2.TextMode = TextBoxMode.MultiLine

TextBox2.Rows = 3

End Sub

Button and LinkButton Control

The Button control creates a push button on the page. The LinkButton creates
a button that looks like a hyperlink, but has the same functionality as the But-
ton control. These controls can be used as a submit or command button. Table
5.4 shows the properties of the Button.

Table 5.4 Button and LinkButton Control Properties

CONTROL MEMBERS DESCRIPTION

CausesValidation Changeable value indicating whether validation is
performed when the button is clicked.

CommandArgument Changeable value that defines an optional
parameter passed to the Command event along
with the associated CommandName.

156 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 156

Table 5.4 (continued)

CONTROL MEMBERS DESCRIPTION

CommandName Changeable value that contains the command name
associated with the button that is passed to the
Command event.

Text Changeable value that displays the text on the face
of the button.

As a submit button, the click event submits the page data back to the server.
The Click event method can contain executable code.

It may be desirable to configure a control as a command button when the
page has many buttons being dynamically created on the page. Each com-
mand button can have its own command name and command event argu-
ments. All of the command buttons will have a Command event, which calls
the same event method procedure. Table 5.5 lists the events that are available.

The following code dynamically adds three Button controls into a Label con-
trol and attaches to the ButtonCommand event method. Instead of a for loop,
this may be a loop that iterates a customer table, adding buttons for each cus-
tomer. When any button is pressed, the ButtonCommand executes, which pop-
ulates TextBox1 with the CommandName and CommandArgument.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim x As Integer

For x = 1 To 3

Dim b As New Button()

b.Text = “Add “ & x.ToString()

b.CommandName = “NewOrder”

b.CommandArgument = “CustomerID=” & x.ToString()

AddHandler b.Command, AddressOf ButtonCommand

Label1.Controls.Add(b)

Next

End Sub

Private Sub ButtonCommand(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.CommandEventArgs)

TextBox1.Text = e.CommandName & “ - “ & e.CommandArgument

End Sub

Table 5.5 Button and LinkButton Events

CONTROL EVENTS DESCRIPTION

Click Occurs when the button is clicked.

Command Occurs when the button is clicked.

Working with Web Server Controls 157

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 157

Notice the use of the AddHandler command to attach an event to a method.
This allows the events from many object to be dynamically added to a single
method.

HyperLink Control

The HyperLink control allows page navigation through the HyperLink’s Nav-
igateURL property. The NavigateURL property can be set from the code-behind
page and may contrain a constructed URL. Table 5.6 contains a list of the
HyperLink control properties. The difference between the HyperLink control
and the LinkButton is that when the HyperLink is clicked, the NavigateURL is
immediately executed without posting data back to the server. The HyperLink
control is usually the better solution when the NavigateURL is an off-site URL.

Another interesting feature of the HyperLink control is the Target property.
The use of _blank opens a new browser window. This can allow detail or help
pages to display in a separate window, while keeping the existing page open
in the original browser window.

The following code sample shows how to program the Page_Load method
of the code-behind page. This sample assumes that the Web Form page con-
tains a HyperLink control called HyperLink1.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here

Dim OrderID as Integer

‘Assign OrderID to a value obtained from the database.

HyperLink1.NavigateUrl = _

“OrderDetails.aspx?OrderID=” & OrderID

HyperLink1.Target = “_blank”

End Sub

This code builds and sets the NavigateURL, typically based on database
query results. The Hyperlink also has a Target property, which is the type
HTML target attribute. When set to _blank, a new browser window is opened
to contain the OrderDetails page.

Table 5.6 HyperLink Control Properties

HYPERLINK PROPERTIES DESCRIPTION

ImageURL Changeable value containing the URL to an optional
image to display in lieu of the text.

NavigateURL Changeable value containing the URL to go to when
the link is clicked.

158 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 158

Table 5.6 (continued)

HYPERLINK PROPERTIES DESCRIPTION

Target Changeable value containing the name of the
window or frame to display the NavigateURL in. This
property also supports the following special names.
_blank. Open new browser window.
_parent. Open in parent frame.
_self. Open in same window (default).
_top. Open in browser window with no frames.

Text Changeable value containing the text to display at
the browser.

Image and ImageButton Controls

The Image control is capable of displaying an image on the page. The Image-
Button control inherits from the Image control and adds button click function-
ality to the Image control. Table 5.7 lists the properties of these controls.

Table 5.7 Image and ImageButton Properties

MEMBERS IMAGE IMAGEBUTTON DESCRIPTION

AlternateText X X Displays alternate text
when the image cannot be
displayed. Browsers that
support ToolTips will
display this in the ToolTips.

CausesValidation X Changeable value
indicating whether
validation is performed
when the button is clicked.

CommandArgument X Changeable value that
defines an optional
parameter passed to the
Command event along
with the associated
CommandName.

CommandName X Changeable value that
contains the command
name associated with the
button that is passed to
the Command event.

(continued)

Working with Web Server Controls 159

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 159

Table 5.7 (continued)

MEMBERS IMAGE IMAGEBUTTON DESCRIPTION

ImageAlign X X Changeable value that
contains the alignment of
the Image control in
relation to other elements
on the Web page.

ImageUrl X X Changeable value that
contains the address of the
image to be displayed.

The ImageButton control raises the same events as the Button control, but the
ImageButton control passes the x and y coordinates as part of the System
.Web.UI.ImageClickEventArgs in the Click event.

The following code sets the ImageButton control’s ImageUrl property and
places the x and y coordinates of the mouse click into TextBox1.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

ImageButton1.ImageUrl = “myLogo.gif”

ImageButton1.ImageAlign = ImageAlign.Middle

End Sub

Private Sub ImageButton1_Click(ByVal sender As System.Object, _

ByVal e As System.Web.UI.ImageClickEventArgs) _

Handles ImageButton1.Click

TextBox1.Text = “X: “ & e.X.ToString() & _

“ Y: “ & e.Y.ToString()

End Sub

CheckBox and RadioButton Controls

The CheckBox control displays a check box that returns a true or false value.
The RadioButton inherits from CheckBox and places a radio button on the page.
RadioButtons are intended to be placed into a group where only one RadioBut-
ton is true in the group. Table 5.8 show the properties of these controls.

The only event that is exposed by the CheckBox and RadioButton is the
CheckChanged Event. This event will be raised when the control changes state
if AutoPostBack is set to true. If AutoPostBack is set to false (default), this
event will be raised when a control causes a postback to the server.

The following code tests three RadioButtons to see which one is checked
and places the result into a Label control.

160 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 160

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

If RadioButton1.Checked Then

Label1.Text = “1”

ElseIf RadioButton2.Checked Then

Label1.Text = “2”

ElseIf RadioButton3.Checked Then

Label1.Text = “3”

End If

End Sub

The next code snippet tests three CheckBoxes to see which ones are checked
and places the result into a Label control.

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Label1.Text = “”

If CheckBox1.Checked Then Label1.Text &= “1”

If CheckBox2.Checked Then Label1.Text &= “2”

If CheckBox3.Checked Then Label1.Text &= “3”

End Sub

Table 5.8 CheckBox and RadioButton Properties

CONTROL
MEMBER CHECKBOX RADIOBUTTON DESCRIPTION

AutoPostBack X X Changeable value indicating
whether an automatic
postback to the server will
occur when the user
changes the content of the
text box. The default is false.

Checked X X Changeable value that
indicates if the control is
checked.

GroupName X Changeable value that
contains the name of the
group to which the radio
button belongs.

Text X X Changeable value that
displays the text beside the
control.

TextAlign X X Changeable value that
contains the alignment of
the text label associated
with the control.

Working with Web Server Controls 161

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 161

ListControl Abstract Class

The ListControl is an abstract control class that provides most of the base func-
tionality for ListBox, DropDownList, RadioButtonList, and CheckBoxList. (See
Figure 5.2.) The ListControl contains a property called Items, which is used by
the derived classes. The Items property is a collection of ListItems. The Items
can be manually populated within Visual Studio .NET, or programmatically,
and the list can be data bound (connected to data). Table 5.9 displays a list of
properties that the ListControl provides.

Table 5.9 ListControl Properties

LISTCONTROL
PROPERTY DESCRIPTION

AutoPostBack Changeable value indicating whether an automatic
postback to the server will occur when the user changes
the content of the text box. The default is false.

DataMember Changeable value containing the specific table in the
DataSource to bind (connect) to the control.

DataSource Changeable value containing the data source that
populates the items of the list control.

DataTextField Changeable value containing the field from the data source
that will provide the Text property of the list items.

DataTextFormatString Changeable value containing the formatting string used to
control how data bound to the list control is displayed.

DataValueField Changeable value containing the field of the data source
that will populate the Value property of the list items.

Items Changeable collection of ListItem objects that will be
displayed in the control. See Table 5.10 for ListItem
properties.

SelectedIndex Changeable value containing the lowest ordinal index of
the selected items in the list. If no items are selected, this
property will contain -1. When assigning a value to this
property, all other selections will be cleared. When using
the CheckBoxList, it may be more desirable to change the
Selected state of the ListItem.

SelectedItem Changeable value containing the selected item with
the lowest index in the list control. When using the
CheckBoxList, it may be more desirable to iterate through
the ListItems to get each item’s selected state.

162 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 162

Figure 5.2 The ListControl hierarchy. The items that inherit from ListControl automatically
contain the ListControl’s behavior.

The ListControl provides an event called SelectedIndexChanged. Since
AutoPostBack is set to false by default, this event will not be raised until a dif-
ferent control posts back to the server. If AutoPostBack is enabled, everytime a
new item is selected, this event will post back to the server.

Each of the list controls contains an Items collection, which is a collection of
ListItem objects. Table 5.10 has a list of the properties that are available on the
ListItem class.

The RadioButtonList and CheckBoxList Controls

RadioButtonList and CheckBoxList are derived from ListControl and share
most of its properties. Although RadioButton and CheckBox offer more layout
flexibility than RadioButtonList and CheckBoxList, the list controls defined
here can be much easier to use when many items are being displayed. Figure 5.3
shows several examples of the automatic layout options, such as vertical and
horizontal layout.

Table 5.10 ListItem Properties

LISTITEM PROPERTY DESCRIPTION

Attributes Contains a collection of attribute name and value pairs
for the ListItem that are not directly supported by the
class.

Selected Changeable value indicating whether the item is selected.

Text Changeable text displayed in a list control for the item
represented by the ListItem.

Value Changeable value associated with the ListItem.

CheckBoxList DropDownList ListBox RadioButtonList

System.Web.UI.WebControls.WebControl

System.Web.UI.Control

System.Web.UI.WebControls.WebControl.ListControl

System.Object

Working with Web Server Controls 163

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 163

Figure 5.3 The RadioButtonList and CheckBoxList offer various automatic layout options
as shown.

Table 5.11 displays a list of properties that are available with these controls.
Also be sure to see the ListControl base class and ListItem class for additional
properties (Tables 5.9 and 5.10).

Table 5.11 RadioListButton and CheckBoxList Properties (See Preceding Tables for Inherited
Properties)

CONTROL
PROPERTY DESCRIPTION

CellPadding Changeable value containing the pixel distance
between the border and contents of each cell.

CellSpacing Changeable value containing the pixel distance
between each cell.

RepeatColumns Changeable value containing the number of columns
to display in the control. The default is 0. The column
count is equal to the number in this property when the
property is set to any positive integer. When set to 0, an
unlimited amount of columns can be displayed.

RepeatDirection Changeable value that indicates whether the control is
displayed vertically or horizontally.

164 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 164

Table 5.11 (continued)

CONTROL
PROPERTY DESCRIPTION

RepeatLayout Changeable value that indicates whether the layout of
the items will be Flow or Table. When this is set to Flow
layout and RepeatColumns is set to 0, the quantity of
columns changes based on the width of the control,
essentially wrapping to the next line until the complete
list has been displayed.

TextAlign Changeable value indicating the location of the text.
This can be set to Left or Right. The default is Right.

In the following code sample, the WebForm contains Button1, TextBox1, and
RadioButtonList1. When Button1 is clicked, the SelectedItem’s Text and Value
are placed in TextBox1. This code works with all of the classes that inherit from
ListControl. With classes that allow multiple selections, the SelectedItem will
be the lowest numbered item.

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

If RadioButtonList1.SelectedIndex >= 0 Then

TextBox1.Text = RadioButtonList1.SelectedItem.Text _

& “ “ & RadioButtonList1.SelectedItem.Value

Else ‘SelectedIndex = -1 if nothing is selected

TextBox1.Text = “Nothing selected”

End If

End Sub

In the following code sample, the WebForm contains Label1, Button1, and
CheckBoxList1. When Button1 is clicked, Label1 is populated with all of the
selected items. This code works with all of the classes that inherit from List-
Control.

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Label1.Text = “”

Dim i As ListItem

For Each i In CheckBoxList1.Items

If i.Selected Then

Label1.Text &= i.Text & “ - “ & i.Value & “
”

End If

Next

End Sub

Working with Web Server Controls 165

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 165

DropDownList and ListBox Controls

DropDownList and ListBox are similar controls. They inherit from the List-
Control abstract class. The DropDownList only allows a single selection, while
the ListBox control has a SelectionMode property, which allows the ListBox to
be configured as single or multiple selection. The DropDownList doesn’t offer
any additional properties. Table 5.12 contains a list of the additional properties
that are available with the ListBox.

In the following code sample, the WebForm contains Button1, TextBox1, and
DropDownList1. When Button1 is clicked, the SelectedItem’s Text and Value
are placed into TextBox1. This code works with all of the classes that inherit
from ListControl. With classes that allow multiple selections, such as ListBox,
the SelectedItem will be the lowest numbered item.

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

If DropDownList1.SelectedIndex >= 0 Then

TextBox1.Text = DropDownList1.SelectedItem.Text _

& “ “ & DropDownList1.SelectedItem.Value

Else ‘SelectedIndex = -1 if nothing is selected

TextBox1.Text = “Nothing selected”

End If

End Sub

In the following code sample, the WebForm contains Label1, Button1, and
ListBox1. When Button1 is clicked, Label1 is populated with all of the selected
items. This code works with all of the classes that inherit from ListControl.

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Label1.Text = “”

Dim i As ListItem

For Each i In ListBox1.Items

If i.Selected Then

Label1.Text &= i.Text & “ - “ & i.Value & “
”

End If

Next

End Sub

Table 5.12 Properties of the ListBox

PROPERTY DESCRIPTION

Rows Changeable value containing the quantity of rows to be displayed
in the ListBox. If this property is set to 1 and the SelectionMode is
set to Single, this control will look like a DropDownList.

SelectionMode Changeable value indicating the ability to select Single or
Multiple rows.

166 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 166

Validation Controls

One of the problems with writing Web pages is making sure that all data is
valid. Data validation requires checking required fields to verify that they con-
tain values and checking all values to see if they are within a valid range. Also,
all fields must be confined to an acceptable length. There may be business
rules that affect validation as well.

Doing validation at the server allows the ability to write standard Visual
Basic .NET code. But the problem with server-side validation is that the user
gets no error feedback until the data is posted back to the server.

Doing validation at the browser (client) allows the ability to check the data
before it is posted back to the server. The problem with client-side validation is
that someone could spoof the page (create a page that contains the data that
they want to pass to the server), thereby bypassing the validation. Also, client-
side validation requires writing JavaScript code.

The best answer to the problems associated with validation is to provide
validation at both the client and the server.

ASP.NET provides several validation controls. These controls automatically
provide server-side and client-side validation. Figure 5.4 shows the validation
control hierarchy, which shows how all of the validators are derived from the
System.Web.UI.WebControls.WebControl.BaseValidator class. The BaseValidator
is derived from the System.Web.UI.WebControls.WebControl.Label class. This
makes sense because the visual element of a validator is a Label that indicates
a user input error.

Figure 5.4 The validation control hierarchy.

CustomValidator

BaseCompareValidator

RegularExpressionValidator RequiredFieldValidator

System.Web.UI.WebControls.WebControl

System.Web.UI.Control

System.Web.UI.WebControls.WebControl.Label

System.Web.UI.WebControls.WebControl.BaseValidator

System.Object

CustomValidator RangeValidator

Working with Web Server Controls 167

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 167

BaseValidator Class
All of the validation controls inherit from the BaseValidator abstract class. The
BaseValidator contains most of the validation functionality and is derived
from Label and WebControl. Table 5.13 lists the properties that the BaseVal-
idator provides.

Setting the Enabled property to false will completely disable the
control. If a validation control is intended to supply information to
the ValidationSummary control and not display its own information,
set the Display property of the control to None.

RequiredFieldValidator
The RequiredFieldValidator verifies that the user has not skipped over entries.
This control can be used by dragging it onto a form, selecting a control to val-
idate, and assigning an error message.

None of the other controls checks an empty field, so it’s common to use a dif-
ferent validator control with the RequiredFieldValidator on the same control.

Table 5.13 BaseValidator Properties

BASEVALIDATOR
PROPERTY DESCRIPTION

ControlToValidate Changeable value of the control that is to be validated.

Display Changeable value containing the display behavior of
the error message. This property can be set to any of
the following settings:

None. Does not display anything.
Static. Displays the error message.
Dynamic. Displays the error message.

EnableClientSideScript Changeable value that indicates whether client-side
validation will occur.

ErrorMessage Changeable value containing the text that will be
displayed when validation fails. If the Text property is
used, the validation control will display the contents of
the Text property, while the ValidationSummary control
will display the ErrorMessage contents.

IsValid Changeable value containing the valid status of a
control. This property is normally read, but if it is to be
changed in code, the property should be changed after
the page load event.

168 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 168

The RequiredField validator provides an additional property called Initial-
Value, which allows the field to be initialized with this value.

BaseCompareValidator
The BaseCompareValidator inherits from the BaseValidator class and offers
comparable functionality. RangeValidator and CompareValidator inherit from
this control.

The BaseCompareValidator contains a property called Type, which contains
the data type that the text will be converted to before the comparison is made.
The data types that are available are as follows:

Currency. The data is treated as a System.Decimal, but currency symbols
and grouping characters, such as the comma, are still allowed.

Date. Only numeric dates are allowed, and times are not allowed.

Double. The data is treated as a System.Double, which is a double-
precision floating point number.

Integer. The data is treated as a System.Int32.

String. The data is treated as a System.String.

This control also contains some static helper members. There is a public
static method called CanConvert, which can test a value to see if it can be con-
verted to a specified type as listed here. There is also a protected static prop-
erty called CutoffYear, which contains the largest two-digit year that can be
represented in this control. Finally, there is a protected static method called
GetFullYear that returns the four-digit year for any two-digit year.

CompareValidator
CompareValidator inherits from the BaseCompareValidator class. The Compare-
Validator uses comparison operators such as greater than and less than to com-
pare the user’s entry with either a constant or a value in a different control. The
CompareValidator can also be used to verify that the user’s entry is a certain
data type, such as an integer.

Table 5.14 lists the additional properties that are included with the Com-
pareValidator control.

RangeValidator
The RangeValidator control verifies that the user’s entry is within a required
range. The control has MinimumValue and MaximumValue properties. These
properties are used with the Type property to convert the user’s entry to the
proper data type prior to checking the range.

Working with Web Server Controls 169

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 169

Table 5.14 CompareValidator Properties

COMPAREVALIDATOR
PROPERTY DESCRIPTION

ControlToCompare Changeable value containing the control to be used
in the comparison. This property takes precedence if
this property and the ValueToCompare properties
are both set.

Operator Changeable value that can be set to Equal, Not
Equal, GreaterThan, GreaterThanEqual, LessThan,
LessThanEqual, or DataTypeCheck.

ValueToCompare Changeable value containing a constant to be used
in the comparison.

The Type property defaults to string. For other data types, be sure to set
the Type property accordingly. For example, if the Type is still set to string
and numeric range is being checked from 1 to 10, only strings that begin
with the string letter 1 are valid.

RegularExpressionValidator
The RegularExpressionValidator control checks a control based on a regular
expression. Regular expressions offer powerful pattern matching capabilities
that might normally require writing code to accomplish. This control contains
a property called ValidationExpression, which is a changeable value that con-
tains the regular expression to be applied. If the regular expression is matched,
validation succeeds.

When setting the ValidationExpression property in Visual Studio .NET, click
the ellipse button to display the regular expression editor, which contains
many common regular expressions. There are also many Web sites that
offer regular expression libraries, such as www.regxlib.com.

CustomValidator
The CustomValidator control is used when is it necessary to create a custom
validation script for a control. A custom validation script can be written using
client-side or server-side code.

170 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 170

Client-Side Validation Examples

To setup client-side validation, the ClientValidationFunction property must be
assigned to the name of a function that has the following method signature:

function ClientFunctionName(source, arguments)

Function is a JavaScript function, ClientFunctionName is a function name of
your choosing, source is a reference to the CustomValidator that called the
function, and arguments contains two properties, Value, which is the value to
be validated, and IsValid, which is initialized as true, but the custom validation
script should assign a true or false to this argument before exiting.

In the following code example, the Web page contains a TextBox called
TextBox1, with an associated CustomValidator called CheckTime. If the current
hour is greater than 12 (after noon) TextBox1 must contain the phrase Deliver
Tommorrow.

<script language=javascript>

<!--

function CheckTime(object, arguments)

{

arguments.IsValid=true;

var t = new Date();

var h = t.getHours();

//if after noon, TextBox1 must have the correct entry

if(h >= 12)

{

//Check value in TextBox1

if (arguments.Value != “Deliver Tommorrow”)

{

arguments.IsValid=false;

}

}

}

//-->

</script>

In the following code sample, the Web page contains DropDownList1, which
contains three items called Item1-3, with values of Value1-3. DropDownList1
also has an associated CustomValidator, called CustomValidator1, with its
ClientValidationFunction set to a function named ValidateText. The page also
has a TextBox called TextBox1, with an associated RequiredFieldValidator. The
following code will turn off TextBox1’s validators if DropDownList1’s value is
not equal to Value1, otherwise TextBox1’s validators are turned on. In this
function, the IsValid argument always returns true.

Working with Web Server Controls 171

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 171

<script language=javascript>

<!--

function ValidateText(object, arguments)

{

//object is ref to the custom validator

//arguments has a Value and IsValid

//property.

//

//check the value to see if

//it is equal to “Value1”.

if(arguments.Value != “Value1”)

{

alert(“Turning off validation”);

//turn off TextBox1 validators

var e=document.getElementById(“TextBox1”).Validators;

for(var x =0;x < e.length;x++)

{

var el = e[x];

//hide the validator cause it my

//be visible

el.style.visibility=”hidden”;

el.enabled=false;

}

}

else

{

alert(“Turning on validation”);

var e=document.getElementById(“TextBox1”).Validators;

for(var x =0;x < e.length;x++)

{

var el = e[x];

//Make the validator visible

//if the TextBox1 is not valid.

el.style.visibility=el.isvalid?”hidden”:”visible”;

el.enabled=true;

}

}

//always returns true

arguments.IsValid=true;

}

//-->

</script>

Server-Side Validation Examples

The CustomValidator control raises an event called ServerValidate, which can
be assigned to an event method handler. To setup server-side validation, the
ServerValidate event must be assigned to a method that has the following
method signature:

172 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 172

Sub ServerSubName(_

ByVal source As System.Object, _

ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs) _

Handles CustomValidator1.ServerValidate

Function is a JavaScript function, ServerSubName is a function name of your
choice, source is a reference to the CustomValidator that called the method,
and args contains two properties, Value, which is the value to be validated,
and IsValid, which should be assigned to true of false before exiting.

The following code example is the server-side match for the first client-side
example.

Private Sub CustomValidator1_ServerValidate(_

ByVal source As System.Object, _

ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs) _

Handles CustomValidator1.ServerValidate

args.IsValid = True

Dim t As DateTime = DateTime.Now

Dim h As Integer = t.Hour

‘If after noon, TextBox1 must have an entry

If h >= 12 Then

‘Check value in TextBox1

If args.Value <> “Deliver Tommorrow” Then

args.IsValid = False

End If

End If

End Sub

ValidationSummary
Many times a Web page simply doesn’t have the space for validation messages.
This is where the ValidationSummary Control can be useful. The Validation
Summary displays a list of all ValidationErrors in one place, maybe at the top
or bottom of the Web page.

The ValidationSummary control inherits directly from WebControl. Table 5.15
contains a list of properties.

The validation controls have Text and ValidationError properties.
ValidationSummary displays the list of ValidationErrors, while the
individual validation control display the Text property, if it has been
set. A typical scenario would be to place a verbose message in the
ValidationError and very short message or a simple asterisk into the
Text property.

Working with Web Server Controls 173

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 173

Table 5.15 ValidationSummary Properties

PROPERTY DESCRIPTION

DisplayMode Changeable value containing the type of display. The
value must be BulletList, List, or SingleParagraph.

EnableClientSideScript Changeable value that indicates whether client-side
validation will occur.

HeaderText Changeable value containing the text to be displayed
at the top of the summary.

ShowMessageBox Changeable Boolean value to direct the control to
display a message box with the summary report.

ShowSummary Changeable Boolean value to direct the control to
display the summary report on the Web page.

Using Cancel Buttons with Validation
The benefit of client-side validation is that the page is not allowed to be posted
until all client-side validation has successfully occurred. This benefit can also
become a problem when the user wants to press a cancel button, and the page
is not valid. The problem is that the cancel button will try to post a cancel mes-
sage to the server, but the page is not valid, so clicking on the button won’t
post anything back to the server.

This problem can be solved by changing the CausesValidation property of
the cancel button to false. This property typically defaults to true. It may also
be desirable to change this property to false when implementing Help buttons.

Lab 5.1: Validating Web Controls

In this lab, you will add validation to the existing NewCustomer page.
RequiredFieldValidator controls will be added and then a RegularExpres-
sionValidator will be added. Finally, client-side and server-side validation
will be tested.

Add Validation to the NewCustomer Page
In this section, you will add validation controls to the NewCustomer
page.

1. Start this lab by opening the OrderEntrySolution from Lab 4.1.

2. Right-click the OrderEntrySolution in the Solution Explorer and
click Check Out. This will check out the complete solution.

174 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 174

3. Add a RequiredFieldValidator control just to the right of the
txtCustomerName TextBox. Assign the following properties to
the validator control.

PROPERTY VALUE

ID valReqCustomerName

ControlToValidate txtCustomerName

ErrorMessage Customer Name is Required

Text Error

ToolTip Customer Name is Required

4. Add a RequiredFieldValidator control just to the right of the
txtAddress1 TextBox. Assign the following properties to the
validator control.

PROPERTY VALUE

ID valReqAddress1

ControlToValidate txtAddress1

ErrorMessage Address Line 1 is Required

Text Error

ToolTip Address Line 1 is Required

5. As you add each of the next series of validator controls, reposition
existing controls as necessary. Add a RequiredFieldValidator control
just to the right of the txtCity TextBox. Assign the following proper-
ties to the validator control.

PROPERTY VALUE

ID valReqCity

ControlToValidate txtCity

ErrorMessage City Is Required

Text Error

ToolTip City Is Required

6. Add a RequiredFieldValidator control just to the right of the txtState
TextBox. Assign the following properties to the validator control.

PROPERTY VALUE

ID valReqState

ControlToValidate drpState

Working with Web Server Controls 175

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 175

ErrorMessage State Is Required

Text Error

ToolTip State Is Required

7. Add a RequiredFieldValidator control just to the right of the
txtZipCode TextBox. Assign the following properties to the
validator control.

PROPERTY VALUE

ID valReqZipCode

ControlToValidate txtZipCode

ErrorMessage Zip Code Is Required

Text Error

ToolTip Zip Code Is Required

8. Add a RegularExpressionValidator control on top of the valReqZip-
Code validator. You may find that you can’t completely cover the
valReqZipCode control. If that’s the case, cover the control as much
as possible, and then click the HTML tab on the bottom of the designer
window, locate the valReqZipCode validator, and copy the location
information to the location information of the ReqularExpression.
Click the Design tab to go back to the designer window, which should
show the RegularExpressionValidator’s new position. Assign the
following properties to the validator control.

PROPERTY VALUE

ID valExpZipCode

ControlToValidate txtZipCode

ErrorMessage Zip Code Must Be 99999 or 99999-9999

Text Error

ToolTip Zip Code Must Be 99999 or 99999-9999

ValidationExpression \d{5}(-\d{4})?

9. If you still have a ViewState Test button on your page from Lab 3.1,
delete it.

10. Add a new Button control to the page, which allows the user to can-
cel the addition of a new customer. Assign the following properties
to the Button control.

176 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 176

PROPERTY VALUE

ID btnCancel

CausesValidation False

Text Cancel

11. Add a ValidationSummary control to the page. This control will
be used to display a message box containing all validation errors.
This control will not be displayed on the page, so placement is not
important. Assign the following properties to the ValidationSum-
mary control. Figure 5.5 shows the completed page.

PROPERTY VALUE

ID valSummary

ShowMessageBox True

ShowSummary False

12. Double-click the Cancel button to go to the code-behind window.
Add code to the btnCancel_Click method to display a Cancelled
message in the lblConfirmation. Your code should look like the
following:
Private Sub btnCancel_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnCancel.Click

lblConfirmation.Text = “Cancelled”

End Sub

Figure 5.5 Completed NewCustomer.aspx page with validation controls added.

Working with Web Server Controls 177

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 177

13. Add code to the btnAddCustomer_Click method to only display
a confirmation if the page is valid. Your code should look like the
following:
Private Sub btnAddCustomer_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles

btnAddCustomer.Click

If Page.IsValid Then

Dim s As String

s = “Confirmation Info:” & “
”

s += txtCustomerName.Text & “
”

s += txtAddress1.Text & “
”

If txtAddress2.Text.Length > 0 Then

s += txtAddress2.Text & “
”

End If

s += txtCity.Text & “, “

s += drpState.SelectedItem.Text & “ “

s += txtZipCode.Text & “
”

lblConfirmation.Text = s

Else

‘Make sure that confirmation is empty

lblConfirmation.Text = “”

End If

End Sub

14. Locate the Customer project in the Solution Explorer. Right-click the
Customer project, and click Set As Startup Project.

15. Locate the NewCustomer.aspx page in the Solution Explorer. Right-
click the NewCustomer.aspx page, and click Set As Start Page.

16. Save your work.

Test Client Validation
Client-side validation will be tested by trying to post empty fields back to
the server and then trying to post a badly formed Zip Code back to the
server.

1. Press F5 to start the Web application. The NewCustomer.aspx page
appears.

2. Before typing into any field, click Add Customer. A message box
showing all validation errors should be displayed, as shown in
Figure 5.6. Notice that valExpZipCode did not generate an error.
Only the RequiredValidation control can generate an error when
a field is empty.

3. Click OK to dismiss the message box. Move the mouse over the
error messages to reveal the ToolTip of each validation control.

178 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 178

Figure 5.6 When validation fails, a message box containing the validation errors appears.

4. Press the Cancel button. This should post information back to the
server. All error messages are cleared, and the lblConfirmation con-
tains the word Canceled.

5. Fill in all of the fields. In the Zip Code field, enter 000 and click Add
Customer. A message box should appear, showing the Zip Code val-
idation error.

6. Click OK to dismiss the message box. Move the mouse over the
error message to see the ToolTip.

7. Correct the Zip Code and click Add Customer. The contents of
lblConfirmation are updated to show the new customer information.

8. Close the browser window.

Test Server Validation
Server-side validation will be tested by temporarily disabling client-side
validation on the Zip Code field and then trying to post a badly formed
Zip Code back to the server.

1. Select both of the Zip Code validators by using your mouse to select
a rectangular area around the validators. If both validators are
selected, the properties window should not contain a name in the
current object DropDown, and there should not be an ID property in
the property list.

2. Change the EnableClientScript property to false.

3. Press F5 to start the Web application. The NewCustomer.aspx page
appears.

Working with Web Server Controls 179

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 179

4. Enter all information except the Zip Code, and then click Add Cus-
tomer. This will post back to the server, but the server will detect the
missing entry and display an error message. Move the mouse over
the error to reveal the ToolTip.

5. Fill in all of the fields. In the Zip Code field, enter 000, and click Add
Customer. Notice that no message box is displayed, but an error
message is displayed beside the Zip Code field.

6. Move the mouse over the error message to see the regular expression
ToolTip.

7. Correct the Zip Code and click Add Customer. The contents of
lblConfirmation are updated to show the new customer information.
Close the browser window.

8. Change the EnableClientScript of both Zip Code validators back
to true.

9. Save your work.

Summary

■■ System.Web.UI.Control class provides the base functionality for all of
the HTML server controls, Web server controls, and the Web page itself.

■■ If the Visible property of a control is set to false, the control will not
generate any client-side code.

■■ System.Web.UI.WebControls.WebControl provides the base functional-
ity for all of the Web server controls in the System.Web.UI.WebControls
namespace.

■■ A Cascading Style Sheet may be created and linked to all of the pages in
the Web site. A named style, called a CSS class, can be created for each
type control to create a uniform look and feel across the Web site.

■■ If a control is being used as a Cancel or Help button, the CausesValida-
tion property should be set to false.

■■ Controls that inherit from ListControl have a property called Items,
which is a collection of ListItem object. The Items collection can be enu-
merated to identify selected items.

180 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 180

■■ Many validation controls may be assigned to a single control to
perform different types of validation.

■■ The RequiredFieldValidator control must be used to verify that an entry
has been placed into a field. Other controls will not validate an empty
field.

■■ CustomValidator controls may be used to provide customized client-
side and server-side validation.

Working with Web Server Controls 181

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 181

Review Questions

1. How do you create a Web server control for entering a password?

2. How can you retrieve a list of selected items from a MultiSelect ListBox control?

3. What will the SelectedIndex property contain if no item is selected?

4. How can a control be validated to see if it contains a valid data type?

5. How can a Cancel button post back to the server when none of the data on the page
is valid?

6. How can the ValidationSummary be used to create a pop-up message with a list of
all ValidationErrors?

7. A DropDownList control was added to the Web page, which displays a list of customers.
It is intended to get a list of the customer’s orders from the server when a customer
is selected. The code does not appear to have any problems, but it seems as though
the selection of a customer does not post data back to the server. How can this be
corrected?

182 Chapter 5

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 182

Answers to Review Questions

1. Use the TextBox control and set the TextMode property to Password.

2. Use a foreach loop to enumerate the Items collection, checking the Selected property
of each item to see if it is true.

3. -1.

4. Use the CompareValidator, set the Operator property to DataTypeCheck, and assign
the Type property to the data type to check for.

5. Cancel buttons should have the CausesValidation property set to false.

6. Set the ShowMessageBox property to true and optionally set the ShowSummary to
false.

7. Change the AutoPostBack property to true.

Working with Web Server Controls 183

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 183

g 430234 Ch05.qxd 7/1/03 9:00 AM Page 184

185

The previous chapter covered lots of controls and control hierarchies. But one
thing that was not covered was the ability to connect, or bind, to data.

This chapter looks at methods of binding data for the purpose of presenting
the data to the user. Since database access hasn’t been covered yet, the data in
this chapter will primarily come from an ArrayList. It’s important to under-
stand the data-binding basics, which will be somewhat consistent, regardless
of whether the data source is an ArrayList, an XML file, or a database. Com-
pletion of this chapter will allow the data chapters to focus on data access.

Questions Q & A
Q: Is it possible to edit the data that is being displayed in a DataGrid

control?
A: Yes. The DataGrid will be covered in detail in this chapter.

Q: Is there a way to present data, like catalog items, in a left-to-right
format instead of a top-down format?

A: Yes. The DataList is the control for you. The DataList has Repeat-
Layout and RepeatDirection properties that can help you achieve
a left-to-right display of data. This will be covered in this chapter.

Using Data-Bound
Web Controls

C H A P T E R

6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 185

Q: I have a collection of Cars, and I noticed that the DataGrid only dis-
plays the properties, but not the public member variables. Is there
a way to display the public member variables as well?

A: Absolutely. This chapter will cover some of the methods of getting
to this data.

Data-Binding Basics

Data binding refers to connecting to data. Data binding typically defines a
method of connecting presentation controls to a data object without having to
write code that moves data back and forth to and from the data object to the
presentation control and vice versa.

When the term data binding is used with ASP.NET, it typically refers to con-
necting a server control to a data object. Binding is still done between the
server control and the data, but the server control will be responsible for mov-
ing data between the presentation element, which may be a browser or other
Web device, and the server.

Two types of binding will be covered in this chapter, single value binding
and repeated value binding. Single value binding refers to connecting a single
data element, such as a variable, to a property of a control, such as the Text
property. Repeated value binding refers to connecting a data source that has
more than one value, such as a collection, to a list control such as a DataGrid.

Single Value Data Binding

Single value data binding in ASP.Net can be done in an ASP.NET page using
the following statement:

<%# DataSourceExpression %>

This statement may look much like a server-side code block, but no code can
be placed in the data binding block. An example of this is a page that contains a
TextBox, Label, and Button. The Label may be bound to the TextBox as follows:

<asp:Label id=Label1 runat=”server”

Text=”<%# TextBox1.Text %>” />

186 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 186

To activate the binding, a line of code needs to be added to the Page_Load
method as follows:

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Activate the binding

DataBind()

End Sub

In addition to binding to a property of another control, binding can be done
to a method or expression as follows:

<asp:Label id=Label1 runat=”server”

Text=”<%# DateTime.Now.AddDays(1) %>” />

<asp:Label id=Label1 runat=”server”

Text=”<%# "Date/Time: " & DateTime.Now.ToString() %>” />

The first example adds a day to the current date and returns the result,
which is bound to the Label control. The second example evaluates the expres-
sion and places the result into the Label control. The use of " allows quo-
tation marks to be embedded into the HTML tag.

Many data binding statements may be placed on a Web page, but the data-
binding statements will not operate until the binding is activated. This is done
by issuing a call to the Page.DataBind() or simply DataBind() method. The
Page.DataBind method will call the DataBind method of all controls that are
on the page. The DataBind method is implemented on System.Web.UI.Con-
trol, from which all Web controls are derived.

It is sometimes desirable to only activate the binding on selective controls.
This can be done by simply making a call to the DataBind method of these con-
trols instead of calling the Page.DataBind method.

In many respects, single value data binding simply reflects a different way
of placing a piece of data into a server control. It is just as easy to place the fol-
lowing code into the page’s load method.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Label1.Text = TextBox1.Text

Label2.Text = DateTime.Now.AddDays(1)

Label3.Text = “Date/Time: “ & DateTime.Now.ToString()

End Sub

So where is the value? The real value of data binding can be realized when
performing repeated value binding.

Using Data-Bound Web Controls 187

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 187

Repeated Value Data Binding

Repeated value data binding is where ASP.NET data binding shines. This is
where repeating values from a database table, an XML file, an array or collec-
tion, or other data source can be displayed with a few lines of code. For an
ASP.NET server control to bind to repeated data, the data source must provide
an implementation of the IEnumerable, ICollection, or IListSource interface.

ASP.NET contains the following controls that have been designed specifi-
cally to bind to repeated value data:

■■ HTMLSelect

■■ ListBox

■■ DropDownList

■■ CheckBoxList

■■ RadioButtonList

■■ Repeater

■■ DataList

■■ DataGrid

Before covering any of these controls in detail, the next sections will cover
the properties, methods, and events that are common to all of these controls.

Repeated Binding Control Properties
This section covers the properties that are common to all of the repeated bind-
ing controls.

DataSource

The DataSource is a changeable value that will accept any data type that
implements the IEnumerable, Icollection, or IListSource interface. Some of the
data types that meet this requirement are listed below.

Array. This includes user-defined arrays and data types that are derived
from Array.

Collection. This includes most of the collection data types in the Sys-
tem.Collections namespace, which include ArrayList, HashTable, BitAr-
ray, Queue, SortedList, Stack, and many of the collection data types in
the System.Collections.Specialized namespace.

188 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 188

ADO.NET DataTable. This is an in-memory data table containing Data-
Columns, DataRows, and Constraints. The DataTable can be created
dynamically in memory and assigned to a DataSource.

ADO.NET DataView. This is a window into the DataTable. The
DataView can be set up to provide a sorted and filtered data. The
DataView can also be set up to view only added, deleted, changed, or
unchanged rows.

ADO.NET DataSet. This is an in-memory relational database. The
DataSet contains DataTables, DataViews, and DataRelations.

ADO.NET DataReader. This is an object that returns a forward-only,
read-only stream of data from a database. This object has limited func-
tionality, but has the best performance when retrieving data.

DataMember

The DataMember is a changeable value containing the specific rowset in the
DataSource to bind to the control. If a DataSource only contains a single
rowset, the DataMember is not required. For objects like the DataSet, which
contain multiple rowsets (DataTables), the DataMember is required to select
the appropriate DataTable.

DataTextField

The DataTextField is a changeable value containing the field or column from
the data source that will provide the Text property of list items, such as the
DropDownList control. This property is not necessary when the repeating data
contains a single column. When the data contains multiple columns, this prop-
erty must be set to the name of the desired column.

DataTextFormatString

The DataTextFormatString is a changeable value containing the formatting
string used to control how data bound to the list control is displayed. Table 6.1
contains a list of available formatting characters. A format string must be pro-
vided that contains placeholder zero only. A format string can contain literals
and can contain placeholder zero multiple times. Placeholder zero must be in
the format {0:Cn}, where C is a valid format character and n is an integer rep-
resenting the quantity of digits. The following format string is valid:

“Order Number: {0:D6} Original Order Number: {0}”

Using Data-Bound Web Controls 189

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 189

For order number 123, this format string will display the following:

Order Number: 000123 Original Order Number: 123

Table 6.1 Formatting Characters for Numeric Values

FORMAT CHARACTER DESCRIPTION

C or c Used to format currency. By default, the flag will
prefix a dollar sign ($) to the value, but this can be
changed using the NumberFormatInfo object.
“{0:C}”,99989.987 = $99,989.99
“Total: {0:C}”,9989.987 = Total: $9,989.99

D or d Formats decimal numbers. Also specifies the
minimum number of digits to pad the value.
“{0:D9}”,99999 = 000099999

E or e Exponential notation.
“{0:E}”,99999.76543 = 9.999977E+004

F or f Fixed point formatting.
“{0:F3}”,99999.9999 = 100000.000

G or g General. Used to format a number to fixed or
exponential format.
“{0:G}”,999.99999 = 999.99999
“{0:G4}”,999.99999 = 1E+03

N or n Basic numerical formatting with commas (two
decimal places by default).
“{0:N}”,99999 = 99,999.00 “{0:N1}”,
99999 = 99,999.0

X or x Hex formatting. Uppercase X displays uppercase
letters. “{0:X}”,99999 = 1869F “{0:x}”,99999 = 1869f

There is also a set of formatting characters for date and time values. Table 6.2
lists these formatting characters. Some of these characters are the same as the
numeric characters, but the runtime will check the data type of the object that
is being displayed, and if it is a date or time, the format character in this table
will be used.

190 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 190

Table 6.2 Date and Time Formatting Characters

FORMAT CHARACTER DESCRIPTION

D Short date.
“{0:d}”, #1/2/03 4:56:07# =1/2/2003

D Long date.
“{0:D}”, #1/2/03 4:56:07# =Thursday, January 02, 2003

F Full, long date and short time.
“{0:f}”, #1/2/03 4:56:07# =Thursday, January 02, 2003
4:56 AM

F Full, long date and long time.
“{0:F}”, #1/2/03 4:56:07# =Thursday, January 02, 2003
4:56:07 AM

G General, short date and short time.
“{0:g}”, #1/2/03 4:56:07# =1/2/2003 4:56 AM

G General, short date and long time.
“{0:G}”, #1/2/03 4:56:07# =1/2/2003 4:56:07 AM

M or m Month and day.
“{0:M}”, #1/2/03 4:56:07# =January 02

R or r RFC1123 format.
“{0:R}”, #1/2/03 4:56:07# =Thu, 02 Jan 2003 04:56:07
GMT

S ISO 8601 sortable using universal time.
“{0:s}”, #1/2/03 4:56:07# =2003-01-02T04:56:07

T Short time.
“{0:t}”, #1/2/03 4:56:07# =4:56 AM

T Long time.
“{0:T}”, #1/2/03 4:56:07# =4:56:07 AM

U ISO 8601 sortable using universal time.
“{0:u}”, #1/2/03 4:56:07# =2003-01-02 04:56:07Z

U Universal sortable date/time.
“{0:U}”, #1/2/03 4:56:07# =Thursday, January 02, 2003
9:56:07 AM

Y or y Year and month.
“{0:Y}”, #1/2/03 4:56:07# =January, 2003

Using Data-Bound Web Controls 191

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 191

There is also a set of formatting characters for use when creating the tradi-
tional picture clause for numeric value. The picture clause can contain a format
for positive;negative;zero formats, each having a semicolon separator. Table
6.3 contains a list of these characters.

Table 6.3 Formatting Characters When Creating a Traditional Picture Clause

FORMAT CHARACTER DESCRIPTION

0 Displays a zero if no other number is being placed
at this location. This is usually used when leading or
trailing zeros are required.
“{0:000.00}”,12345.678=12345.68
“{0:000000.0000}”,12345.678=012345.6780

This is a placeholder for a digit; but if no number is
being placed at this location, the formatting
character is ignored.
“{0:###.##}”,12345.678=12345.68
“{0:######.####}”,12345.678=12345.678

. Display the decimal point of the current culture.

, Display the repeating number separator that is used
in the current culture.
“{0:#,####.00}”,12345678.5678=12,345,678.57

% Displays the percent symbol of the current culture.
“{0:#.00%}”,1.456=145.60%

E+0,E-0,e+0 or e-0 Displays the output as exponential notation.
“{0:#.00E+0}”,123456.789=1.23E+5

\ Displays the character that follows as a literal.
“{0:\’#,####.00\’}”,123456.789=’123,456.79’

“ or ‘ A character that is enclosed in single or double
quotes is treated as a literal.

{ and } Double curly braces, {{, are used to display a curly
brace {.

; Separates the sections of the format string. The
sections are composed of positive;negative;zero
formats.
For the format string.
“{0:#,####.00;(#,###.00);empty}”
12345.6789=12,345.68
-12345.6789=(12,345.68)
0=empty

192 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 192

DataValueField

The DataValueField is a changeable value containing the column or field name
of the data source that will populate the Value property of the list items. If the
repeating data contains a single column, both the Text and the Value will con-
tain the same value, and setting this property is not necessary. When the data
contains multiple columns, this property must be set to the name of the
desired column.

Repeated Binding Control Methods
This section covers the methods that are common to all of the repeated bind-
ing controls. These methods are defined in System.Web.UI.Control and may
be overridden by the data bound controls.

DataBind. The DataBind method binds the data source to the current
server control and its child controls. When DataBind is called at the page
level, all controls on the page are bound.

FindControl. The FindControl method is a utility method that can locate
a child control when a control, such as a table cell, contains child con-
trols such as TextBox and Button controls.

Repeated Binding Control Events
This section covers the events that are common to all of the repeated binding
controls. These events are provided by various base class controls.

DataBinding. The DataBinding event is provided by the
System.Web.UI.Control and is raised by a control when data is bound to
it. The event will be raised by the control for each row that is being cre-
ated in the control.

SelectedIndexChanged. The SelectedIndexChanged event is provided by
the System.Web.UI.WebControls.ListControl and is raised by the control
when the current selection changes. This event may not operate as
expected until the AutoPostBack property is set to true.

Mapping Fields to the Control
When a data source contains multiple fields, it is necessary to tell the control
what fields the control should bind to. There are two methods of mapping
fields to a control: The mappings can be done dynamically by setting the prop-
erties at runtime, or if the control supports templates, a template can be declar-
atively created, which defines the contents of each item of each row.

Using Data-Bound Web Controls 193

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 193

Dynamic Field Mapping

Dynamic binding involves setting the DataSource, DataMember, Data-
TextField, DataTextFormat, and DataValueField through code, which means
that the values are resolved at run time. The following is a sample of binding a
ListBox to a HashTable.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim h As New Hashtable()

h.Add(“Glenn”, 45)

h.Add(“Joe”, 20)

h.Add(“Mary”, 32)

h.Add(“Frank”, 46)

h.Add(“Anne”, 25)

ListBox1.DataSource = h

ListBox1.DataTextField = “key”

ListBox1.DataValueField = “value”

DataBind()

End Sub

In this example, the sorted list object has two fields, key and value. The
DataTextField and DataValueField are bound to the key and value fields.
Although key and value are hard-coded in the example, they could have been
variables and the binding would be evaluated at run time.

Templated Field Mapping

Templated binding is used on controls that support templates. A template con-
trol is a control that has no user interface. The control simply provides the
mechanism for binding to data. The user interface is supplied by the developer
in the form of inline templates. The template can contain presentation code
such as HTML and DHTML. The template can also contain ASP.NET data
binding syntax to insert data from the data source. Controls that support tem-
plates include the DataList, Repeater, and DataGrid. A control may allow the
following templates to be programmed:

HeaderTemplate. This is an optional header, which will be rendered at
the top of the control.

FooterTemplate. This is an optional footer, which will be rendered at the
bottom of the control.

ItemTemplate. The item template is rendered for each row in the data
source.

AlternatingItemTemplate. (Optional) If the alternating item template is
implemented, every other row will be rendered using this template.

194 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 194

SelectedItemTemplate. (Optional) The selected item template will be
used to render a row that has been selected.

SeparatorTemplate. (Optional) The separator template will define the
separation of each item and alternate item.

EditItemTemplate. (Optional) The edit item template will be used to ren-
der a row that is in edit mode. This usually involves displaying the data
in a TextBox instead of a Label control.

A simple Repeater control example follows:

<asp:repeater id=Repeater1 runat=”server”>

<itemtemplate>

Hello <%# Container.DataItem.Key %>

You are <%# Container.DataItem.Value %> years old

</itemtemplate>

</asp:repeater>

The code-behind page for this example might look like the following:

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim h as new HashTable()

h.Add(“Glenn”, 45)

h.Add(“Joe”, 20)

h.Add(“Mary”, 32)

h.Add(“Frank”, 46)

h.Add(“Anne”, 25)

Repeater1.DataSource = h

DataBind()

End Sub

A templated control exposes itself as a Container object, which is available
from within the template when using the data binding syntax. The DataItem
represents a row of data to be processed. The HashTable’s row is exposed as an
instance of a DictionaryEntry, which contains a Key and Value property for
each row. These fields are available within the template by using the following
format:

<%# Container.DataItem.Key %> and <%# Container.DataItem.Value %>

In some cases, the DataItem may be a collection that requires the column
name to be included in parentheses. A DataTable is one such example. Each
row of the DataTable is exposed as a DataRowView, which allows access to the
columns by an index number or column name. To retrieve the value of the
price column, the following data binding code is used.

<%# Container.DataItem(“price”) %> or <%# Container.DataItem(4) %>

Using Data-Bound Web Controls 195

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 195

Using the Eval Method

The DataBinder class offers a static method called Eval, which can simplify
access to data. The Eval method uses reflection to perform a lookup of the
DataItem’s underlying type by looking at the type metadata that is stored in
the underlying type’s assembly. Once the metadata is retrieved, the Eval
method determines how to connect to the given field.

The end result is that Eval provides a consistent method of binding to the
data. The following code shows the binding to the Key property of the
HashTable and the binding of the price column to the DataTable.

<%# DataBinder.Eval(Container.DataItem, “Key”) %>

<%# DataBinder.Eval(Container.DataItem, “price” %>

The consistent behavior that DataBinder.Eval provides comes at a high
performance cost.

The Eval method provides an overloaded method that allows a format
string to be assigned. Tables 6.1, 6.2, and 6.3 contain lists of formatting charac-
ters that can be used in a format string. The price can be modified to provide
currency formatting as shown in the following code.

<%# DataBinder.Eval(Container.DataItem, “price”, “{0:C}” %>

Data Bound Controls
This section covers several of the data bound controls in more detail. Some of
these controls, such as the ListBox and DropDownList control, were covered in
the previous chapter. This chapter covers these controls and other controls
with a strong focus on data binding.

ListBox and DropDownList Control

The ListBox and DropDownList controls are similar. Both provide the follow-
ing properties that can be set in the Visual Studio .NET designer or in code:

■■ DataSource

■■ DataMember

■■ DataTextField

196 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 196

■■ DataTextFormat

■■ DataValueField

The following code can be used to bind a HashTable to the ListBox:

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim h As New Hashtable()

h.Add(“Glenn”, 0)

h.Add(“Joe”, 2)

h.Add(“Mary”, 3)

h.Add(“Frank”, 1)

h.Add(“Anne”, 2)

ListBox1.DataSource = h

ListBox1.DataTextField = “Key”

ListBox1.DataValueField = “Value”

DataBind()

End Sub

When the ListBox is rendered to the browser, the browser source looks like
the following code:

<select name=”ListBox1” id=”ListBox1” size=”5”

<option value=”0”>Glenn</option>

<option value=”2”>Anne</option>

<option value=”2”>Joe</option>

<option value=”3”>Mary</option>

<option value=”1”>Frank</option>

</select>

The ListBox rendered as an HTML ListBox, which is a simple select tag with
option tags containing the value attribute and the inner HTML of the option
containing the text to be displayed.

Repeater Control

The Repeater control is probably the simplest of the template controls. It’s sim-
ple because the Repeater control does not provide any styles or layout options.
Presentation is purely the developer’s job. The Repeater control simply pro-
vides the calls to the appropriate templates. The Repeater provides the follow-
ing properties, which can be set in the Visual Studio .NET designer or in code:

■■ DataSource

■■ DataMember

Using Data-Bound Web Controls 197

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 197

In addition, the Repeater allows assignment of the following template types:

■■ HeaderTemplate

■■ FooterTemplate

■■ ItemTemplate

■■ AlternatingItemTemplate

■■ Separator Template

The Repeater control is the only template control that allows HTML tags to
span across templates. This means that a <table> tag can be placed into the
header template, each table row <tr> tag with its table data <td> tags and end
tags can be placed into the item template and alternating item template. The
end of the table tag may be placed into the footer template.

In the next series of Repeater examples the follow code will be assigned to
the Page_Load method. Entries are placed into a HashTable and the HashTable
has been assigned to Repeater1’s DataSource.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim h As New Hashtable()

h.Add(“Glenn”, 46)

h.Add(“Joe”, 42)

h.Add(“Mary”, 31)

h.Add(“Frank”, 36)

h.Add(“Anne”, 24)

Repeater1.DataSource = h

DataBind()

End Sub

At a minimum, the item template must be supplied. The item template is
assigned in the HTML. The following example implements the item template:

<asp:Repeater id=Repeater1 runat=”server”>

<itemtemplate>

User Name: <%# DataBinder.Eval(container.dataitem,”Key”) %>

has <%# DataBinder.Eval(container.dataitem,”Value”,”{0:C}”) %><hr>

</itemtemplate>

</asp:Repeater>

Figure 6.1 shows the browser output. The username is the Key property of
the HashTable, while the amount is the Value property of the HashTable. An
HTML horizontal rule tag has been added to place each user on a different line.
The Value has been formatted as currency with the “{0:C}” format string.

198 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 198

Figure 6.1 Browser output without header and footer, then with the header and footer.

In the next example, a header and footer are added to Repeater1 as follows.
Figure 6.1 shows the browser output.

<asp:Repeater id=Repeater1 runat=”server”>

<headertemplate>

<div style=”color: white; background-color: black”>

People who owe money

</div>

</headertemplate>

<itemtemplate>

User Name: <%# DataBinder.Eval(container.dataitem,”Key”) %>

has <%# DataBinder.Eval(container.dataitem,”Value”,”{0:C}”) %><hr>

</itemtemplate>

<footertemplate>

<div style=”color: white; background-color: black”>

As of date.

</div>

</footertemplate>

</asp:Repeater>

Using Data-Bound Web Controls 199

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 199

Notice that the output has the header and footer, but the footer looks espe-
cially ugly with that extra horizontal rule tag. This is where the separator tem-
plate comes in. The separator template can be used place a separator only
between items, and will not place a separator between the last item and the
footer. In the next example, the horizontal rule has been moved from the item
template to the separator template.

<asp:Repeater id=Repeater1 runat=”server”>

<headertemplate>

<div style=”color: white; background-color: black”>

People who owe money

</div>

</headertemplate>

<itemtemplate>

User Name: <%# DataBinder.Eval(container.dataitem,”Key”) %>

has <%# DataBinder.Eval(container.dataitem,”Value”,”{0:C}”) %>

</itemtemplate>

<separatortemplate>

<hr>

</separatortemplate>

<footertemplate>

<div style=”color: white; background-color: black”>

As of date.

</div>

</footertemplate>

</asp:Repeater>

The output of this example is shown in Figure 6.2. Notice that the horizon-
tal rule tag is omitted between the last item and the footer.

As the number of users grows, it may be more desirable to shade every other
line to make it easier to read the report. The alternating item template can be
used to accomplish this. The alternating item template can contain different
styles and different text. The following example implements the alternating
item template, which shades the alternating items and has different text (a plus
sign at the start of the line). The results are shown in Figure 6.2.

<asp:Repeater id=Repeater1 runat=”server”>

<headertemplate>

<div style=”color: white; background-color: black”>

People who owe money

</div>

</headertemplate>

200 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 200

<itemtemplate>

-User Name: <%# DataBinder.Eval(container.dataitem,”Key”) %>

has <%# DataBinder.Eval(container.dataitem,”Value”,”{0:C}”) %>

</itemtemplate>

<alternatingitemtemplate>

<div style=”background-color: silver”>

+User Name: <%# DataBinder.Eval(container.dataitem,”Key”) %>

has <%# DataBinder.Eval(container.dataitem,”Value”,”{0:C}”) %>

</div>

</alternatingitemtemplate>

<separatortemplate>

<hr>

</separatortemplate>

<footertemplate>

<div style=”color: white; background-color: black”>

As of date.

</div>

</footertemplate>

</asp:Repeater>

Figure 6.2 The browser output, which displays the implemented separator template and
the alternating item template.

Using Data-Bound Web Controls 201

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 201

Figure 6.3 The cleaned-up repeater with the separator template removed.

Now that the alternate items are shaded, there is no need for the separator.
Figure 6.3 shows the cleaned-up repeater with the separator template
removed.

In the previous examples, a simple HashTable was used to display name
and value pairs as a series of rows with two columns. There are many cases
where more than two columns are required. If a class is created that contains
properties for each column, an array or ArrayList can be used to hold multiple
instances of the class.

Here is the code for a class called Employee, which contains several proper-
ties. The Employee class will be used throughout this chapter.

Public Class Employee

Public ReadOnly EID As Integer

Private _LastName As String

Private _FirstName As String

Private _Salary As Decimal

Public Sub New(ByVal EID As Integer, _

ByVal LastName As String, _

ByVal FirstName As String, _

ByVal Salary As Decimal)

Me.EID = EID

Me._LastName = LastName

Me._FirstName = FirstName

Me._Salary = Salary

End Sub

Public Property LastName() As String

Get

202 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 202

Return _LastName

End Get

Set(ByVal Value As String)

_LastName = Value

End Set

End Property

Public Property FirstName() As String

Get

Return _FirstName

End Get

Set(ByVal Value As String)

_FirstName = Value

End Set

End Property

Public Property Salary() As Decimal

Get

Return _Salary

End Get

Set(ByVal Value As Decimal)

Salary = Value

End Set

End Property

End Class

The Page_Load code has been changed to use the Employee class. This
example uses an ArrayList to hold the employees as shown in the following
code:

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim a As New ArrayList()

a.Add(New Employee(1, “GlennLast”, “Glenn”, 50000))

a.Add(New Employee(2, “JoeLast”, “Joe”, 42000))

a.Add(New Employee(3, “MaryLast”, “Mary”, 31000))

a.Add(New Employee(4, “FrankLast”, “Frank”, 36000))

a.Add(New Employee(5, “AnneLast”, “Anne”, 24000))

Repeater1.DataSource = a

DataBind()

End Sub

With four values displayed, it may be more desirable to create an HTML
table to display this information. This requires a header template for the initial
table tag, a footer template for the table ending tag, and an item template for
the table rows. Optionally, an alternating item template may be included. The
following code shows the Repeater with its templates:

<asp:Repeater id=Repeater1 runat=”server”>

<headertemplate>

<table width=”100%” border=”1px” cellpadding=”3px” >

Using Data-Bound Web Controls 203

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 203

<tr style=”color: white; background-color: black”>

<th>ID</th>

<th>Last</th>

<th>First</th>

<th>Salary</th>

</tr>

</headertemplate>

<itemtemplate>

<tr>

<td align=”right”>

<%# string.Format(“{0:D4}”,Container.DataItem.EID) %>

</td>

<td align=”left”>

<%# DataBinder.Eval(Container.DataItem,”LastName”) %>

</td>

<td align=”left”>

<%# DataBinder.Eval(Container.DataItem,”FirstName”) %>

</td>

<td align=”right”>

<%# DataBinder.Eval(Container.DataItem,”Salary”, “{0:C}”) %>

</td>

</tr>

</itemtemplate>

<alternatingitemtemplate>

<tr style=”background-color: silver”>

<td align=”right”>

<%# string.Format(“{0:D4}”,Container.DataItem.EID) %>

</td>

<td align=”left”>

<%# DataBinder.Eval(Container.DataItem,”LastName”) %>

</td>

<td align=”left”>

<%# DataBinder.Eval(Container.DataItem,”FirstName”) %>

</td>

<td align=”right”>

<%# DataBinder.Eval(Container.DataItem,”Salary”, “{0:C}”) %>

</td>

</tr>

</alternatingitemtemplate>

<footertemplate>

</table>

</footertemplate>

</asp:Repeater>

Notice that the data binding for the EID is different from the others. This is
because the EID was not created as a property. In the class, the EID was created
as a public, read-only variable. If an attempt were made to use the same syn-
tax as the LastName, FirstName, and Salary properties, an error would be gen-
erated, stating that the Employee class does not have an EID property. The
output is shown in Figure 6.4.

204 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 204

Figure 6.4 Creating a table with the Repeater control.

The previous Repeater examples have shown how the use of templates can
give the Repeater control lots of flexibility. The biggest problem is that the pro-
grammer is doing most of the work.

DataList Control

The DataList control offers more functionality than the Repeater control. The
DataControl has a property called RepeatLayout that can be set to Flow or
Table. When this property is set to Table (the default), the DataList displays
items from a data source by automatically creating a table with a cell for each
item. The item refers to a repeating row in the data source. The cells can be con-
figured to display horizontally or vertically, with a configurable quantity of
column cells per row. The developer’s job is to provide the presentation of the
cell, which will hold one of the repeating items from the data source. The
DataList control provides the calls to the appropriate templates.

If the RepeatLayout property is set to Flow, the DataList displays items from
the data source by creating a span element to hold each item. The items can
still be configured to be displayed horizontally or vertically with a config-
urable quantity of columns per row.

The DataList provides the following properties that have already been
defined in this chapter and can be set in the Visual Studio .NET designer or in
code:

■■ DataSource

■■ DataMember

Using Data-Bound Web Controls 205

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 205

In addition, the DataList contains several properties that have not yet been
defined. Table 6.4 contains a list of each of the properties along with their
description.

Table 6.4 Additional DataList Properties

PROPERTY DESCIPTION

DataKeyField Changeable value that contains the name of the field
that will contain the unique identifier of the row. In
database terminology, this would be the primary key.

CellPadding Changeable value that contains the amount of space
between the content of the table cell and the border
of the cell.

CellSpacing Changeable value that contains the space between
cells.

EditItemIndex Changeable value that contains the index number of
the current item that is being edited. This property
will contain -1 if no item is being edited.

ExtractTemplateRows Changeable value used to determine if the asp:tables
should be merged into the table that is created by the
DataList. This only works with asp:tables. When this
setting is true, every template that is implemented
must contain a well formed asp:table. All of the
asp:tables will be merged together. Any other content
will be disposed. When true, The RepeatColumns,
RepeatDirection, and RepeatDirection properties are
disabled.

GridLines Changeable value containing the grid settings for the
table. Possible values are none, Horizontal, Vertical, or
both.

RepeatColumns Changeable value containing the quantity of columns
to be displayed. The default is zero, which means that
repeating columns is turned off.

RepeatDirection Changeable value that indicates whether the
repeating items in the data source displays
horizontally or vertically.

RepeatLayout Changeable value indicating whether the output of
each item should treated as a table or flow. When set
to table, the DataList automatically builds a table for
displaying its output. When set to flow, the DataList
builds its output without a table.

206 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 206

Table 6.4 (continued)

PROPERTY DESCIPTION

SelectedIndex Changeable value containing the index number of the
currently selected item in the DataList. This property
contains -1 if no item is currently selected.

ShowHeader Changeable Boolean value indicating whether the
header should be displayed.

ShowFooter Changeable Boolean value indicating whether the
footer should be displayed.

The DataList allows assignment of the following template types:

■■ AlternatingItemTemplate

■■ EditItemTemplate

■■ FooterTemplate

■■ HeaderTemplate

■■ ItemTemplate

■■ SelectedItemTemplate

■■ Separator Template

The DataList also supports style elements, which allows the style to change
without repeating the same code. For example, the Repeater control examples
that were previously covered had the same code for the ItemTemplate and the
AlternatingItemTemplate. The only thing that was different was the style. The
DataList solves the problem with these special style elements. The following is
a list of style elements that are supported by the DataList. Figure 6.5 shows the
style hierarchy.

■■ AlternatingItemStyle

■■ EditItemStyle

■■ FooterStyle

■■ HeaderStyle

■■ ItemStyle

■■ SelectedItemStyle

■■ SeparatorStyle

Using Data-Bound Web Controls 207

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 207

Figure 6.5 The style hierarchy for the DataList and the DataGrid controls. Styles are
applied from the top to the bottom.

In the next series of DataList examples, the following code will be assigned
to the Page_Load method:

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim a As New ArrayList()

a.Add(New Employee(1, “GlennLast”, “Glenn”, 50000))

a.Add(New Employee(2, “JoeLast”, “Joe”, 42000))

a.Add(New Employee(3, “MaryLast”, “Mary”, 31000))

a.Add(New Employee(4, “FrankLast”, “Frank”, 36000))

a.Add(New Employee(5, “AnneLast”, “Anne”, 24000))

DataList1.DataSource = a

DataBind()

End Sub

Control Style
backcolor=style; font=arial

backcolor=silver; font=arial

Effective StyleStyle Hierarchy

backcolor=silver; font=arial;
font-bold=true

backcolor=silver; font=arial;
font-italic=true

backcolor=red; font=arial

backcolor=red; font=arial;
font-bold=true

Item: backcolor=yellow;
font=arial; font-bold=false

Alternate: backcolor=yellow;
font=arial; font-bold=true

Item: backcolor=yellow;
font=system; font-bold=false
Alternate: backcolor=yellow;
font=system; font-bold=true

Header Style
font-bold=true

Footer Style
font-italic=true

Item Style
backcolor=red

Alternating Item Style
font-bold-true

Selected Item Style
backcolor=yellow

Edit Item Style
font=system

208 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 208

This code uses the Employee class that was used in the previous Repeater
examples, and five Employee instances are being added to an ArrayList. In
this example, the DataList is placed on to the Web page and the fields are
placed into the item template as follows.

<asp:DataList id=DataList1 runat=”server”>

<itemtemplate>

<%# string.Format(“{0:D4}”,Container.DataItem.EID) %>

<%# DataBinder.Eval(Container.DataItem, “LastName”)%>

<%# DataBinder.Eval(Container.DataItem, “FirstName”)%>

<%# DataBinder.Eval(Container.DataItem, “Salary”,”{0:C}”)%>

</ItemTemplate>

</asp:DataList>

The browser output (see the left window in Figure 6.6) shows a line for each
employee. Taking a peek at the browser’s source code reveals that the DataList
generated a table with one cell for each of the employees.

Figure 6.6 Shows a line (left) for each employee and then (right) shows a cleaner version,
with a table embedded into the item template.

Using Data-Bound Web Controls 209

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 209

In the next example, some formatting is added by placing a table inside the
item template, as shown in the following code:

<asp:DataList id=DataList1 runat=”server”>

<itemtemplate>

<table>

<tr><td>Employee ID:</td>

<td><%# string.Format(“{0:D4}”,Container.DataItem.EID) %>

</td></tr>

<tr><td>Employee Name: </td>

<td><%# DataBinder.Eval(Container.DataItem, “LastName”)%>,

<%# DataBinder.Eval(Container.DataItem, “FirstName”)%>

</td></tr>

<tr><td>Salary: </td>

<td>

<%# DataBinder.Eval(Container.DataItem, “Salary”,”{0:C}”)%>

</td></tr>

</table>

</ItemTemplate>

</asp:DataList>

This code will nest a table inside each of the cells that the DataList originally
produced. The browser output (see the right window in Figure 6.6) shows a
much cleaner appearance.

Although the last example was cleaner looking, it lacks a header, and it can
be difficult to see where one employee ends and another employee starts. In
the following example, an alternate item style is created. This is better than the
Repeater, because the layout from the item template does not need to be
copied. A header and footer are supplied here as well.

<asp:DataList id=DataList1 runat=”server”>

<headerstyle backcolor=”black”

forecolor=”white”

font-bold=”True”

horizontalalign=”Center”>

</headerstyle>

<alternatingitemstyle backcolor=”silver”>

</alternatingitemstyle>

<footerstyle backcolor=”black”

forecolor=”white”

font-bold=”True”

horizontalalign=”Center”>

</footerstyle>

<headertemplate>

Employee List

</headertemplate>

<itemtemplate>

<table>

210 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 210

<tr><td>Employee ID:</td>

<td>

<%# string.Format(“{0:D4}”,Container.DataItem.EID) %>

</td></tr>

<tr><td>Employee Name: </td>

<td>

<%# DataBinder.Eval(Container.DataItem, “LastName”)%>,

<%# DataBinder.Eval(Container.DataItem, “FirstName”)%>

</td></tr>

<tr><td>Salary: </td>

<td>

<%# DataBinder.Eval(Container.DataItem, “Salary”,”{0:C}”)%>

</td></tr>

</table>

</ItemTemplate>

<footertemplate>

End of List

</footertemplate>

</asp:DataList>

The browser output (see Figure 6.7) shows a very readable list of employees.
The data is in the item template, and the formatting is in the style elements.

Figure 6.7 A much cleaner list of employees, with a header, a footer, and an alternating
style.

Using Data-Bound Web Controls 211

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 211

Figure 6.8 The effect of setting the RepeatColumns to 3, the RepeatDirection to Horizontal,
the GridLines to Both, and the BorderColor to Black.

As the list of employees gets longer, it will be necessary to come up with a
way to fill the screen with employees instead of having a narrow column of
employees. That is where the RepeatColumns and RepeatDirection come into
play.

Figure 6.8 shows an example of setting the RepeatColumns to three and the
RepeatDirection to Horizontal. In this example, the GridLines property is set
to Both and the BorderColor is set to Black. Notice that the RepeatDirection
can also be set to Vertical, which will cause the employee list to be rendered
downward in vertical columns.

Selecting an Item

The DataList can allow a user to select an item. This is usually desirable when
only a small amount of data is being displayed and more details are desired.

Making a selection involves setting the SelectedIndex to a number other
than minus one (-1), which is the default. This can be done by creating an Item-
Command method, which will change the selection number.

There is one small problem, which is that the SelectedIndex must be set
before the data is bound to the DataList. Currently, our data is being bound in
the Page_Load method. This is only acceptable when the data is not being
posted to the server (the first time to the page). The code to create the employ-
ees will be placed into a procedure called BindEmployees as follows:

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Not IsPostBack() Then

BindEmployees()

End If

End Sub

212 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 212

Public Sub BindEmployees()

Dim a As New ArrayList()

a.Add(New Employee(1, “GlennLast”, “Glenn”, 50000))

a.Add(New Employee(2, “JoeLast”, “Joe”, 42000))

a.Add(New Employee(3, “MaryLast”, “Mary”, 31000))

a.Add(New Employee(4, “FrankLast”, “Frank”, 36000))

a.Add(New Employee(5, “AnneLast”, “Anne”, 24000))

DataList1.DataSource = a

DataList1.DataBind()

End Sub

An event method must be created in the code-behind page to set the Selected-
Index of the DataList when a button is clicked. Do this by clicking the Class
Name drop-down list and clicking DataList1. In the Method drop-down list,
click ItemCommand, which inserts code for this event. In this method, add
code to set the SelectedIndex and call the BindEmployees method as follows:

Private Sub DataList1_ItemCommand(ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _

Handles DataList1.ItemCommand

DataList1.SelectedIndex = e.Item.ItemIndex

BindEmployees()

End Sub

Another event method must be added in the code-behind page to clear the
SelectedIndex when no details are desired. Do this by clicking the Class Name
drop-down list and then clicking DataList1. In the Method drop-down list,
click CancelCommand, which inserts code for the event. In this method, add
code to set the SelectedIndex to minus one (-1) and call the BindEmployees
method as follows:

Private Sub DataList1_CancelCommand(ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _

Handles DataList1.CancelCommand

DataList1.SelectedIndex = -1

BindEmployees()

End Sub

Finally, the item template is modified to display a Display Details button
and the employee’s full name. The selected item template contains all the
details plus a Hide Details button. The following code contains the completed
DataList1 control:

<asp:datalist id=DataList1 runat=”server”

GridLines=”Both”

bordercolor=”black” >

<headertemplate>

Employee List

</HeaderTemplate>

Using Data-Bound Web Controls 213

430234 Ch06.qxd 7/8/03 1:49 PM Page 213

<alternatingitemstyle backcolor=”Silver”>

</AlternatingItemStyle>

<selecteditemstyle backcolor=”yellow”>

</selecteditemstyle>

<footertemplate>

End of List

</FooterTemplate>

<selecteditemtemplate>

<table>

<tr><td colspan=”2”>

<asp:linkbutton id=”Linkbutton2” runat=”server”

text=”Hide Details” commandname=”cancel” />

</td></tr>

<tr><td>Employee ID:</td>

<td>

<%# string.Format(“{0:D4}”,Container.DataItem.EID) %>

</td></tr>

<tr><td>Employee Name: </td>

<td>

<%# DataBinder.Eval(Container.DataItem, “LastName”)%>,

<%# DataBinder.Eval(Container.DataItem, “FirstName”)%>

</td></tr>

<tr><td>Salary: </td>

<td>

<%# DataBinder.Eval(Container.DataItem, “Salary”,”{0:C}”)%>

</td></tr>

</table>

</selecteditemtemplate>

<itemtemplate>

<table>

<tr><td colspan=”2”>

<asp:linkbutton id=”LinkButton1” runat=”server”

text=”Show Details” commandname=”select” />

</td></tr>

<tr><td>Employee Name: </td>

<td>

<%# DataBinder.Eval(Container.DataItem, “LastName”)%>,

<%# DataBinder.Eval(Container.DataItem, “FirstName”)%>

</td></tr>

</table>

</ItemTemplate>

<footerstyle font-bold=”True” horizontalalign=”Center”

forecolor=”White” backcolor=”Black”>

</FooterStyle>

<headerstyle font-bold=”True” horizontalalign=”Center”

forecolor=”White” backcolor=”Black”>

</HeaderStyle>

</asp:datalist>

214 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 214

Figure 6.9 Employee list with no employee details selected (left) and with employee
0003 selected (right).

The browser output (see Figure 6.9) shows the items without and with an
employee selected. If the Show Details is clicked on a different employee, that
employee’s details are exposed.

Editing an Item

The DataList can allow a user to edit an item. Editing an item involves setting
the EditItemIndex to a number other than minus one (-1), which is the default.
This can be done by creating an EditCommand method, which will change the
edit item number.

There is one small problem: Our data in the ArrayList is not persisted, so the
ArrayList is being recreated every time that data is posted back to the server.
The BindEmployee method has been changed to store the ArrayList in a Ses-
sion variable. Session variables are available throughout the browser session
and will be covered in more detail in Chapter 12, “ASP.NET Applications.”
The following is the revised BindEmployees method:

Public Sub BindEmployees()

‘create employee list if it

‘does not exist

If Session(“Employees”) Is Nothing Then

Dim a As New ArrayList()

a.Add(New Employee(1, “GlennLast”, “Glenn”, 50000))

a.Add(New Employee(2, “JoeLast”, “Joe”, 42000))

a.Add(New Employee(3, “MaryLast”, “Mary”, 31000))

a.Add(New Employee(4, “FrankLast”, “Frank”, 36000))

a.Add(New Employee(5, “AnneLast”, “Anne”, 24000))

Using Data-Bound Web Controls 215

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 215

Session(“Employees”) = a

End If

DataList1.DataSource = Session(“Employees”)

DataList1.DataBind()

End Sub

An event method must be created in the code-behind page to set the Edit-
ItemIndex of the DataList when a button is clicked. Do this by clicking the Class
Name drop-down list and then clicking DataList1. In the Method drop-down
list, click EditCommand, which inserts code for this event. In this method, add
code to set the EditItemIndex, and call the BindEmployees method as follows:

Private Sub DataList1_EditCommand(ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _

Handles DataList1.EditCommand

DataList1.EditItemIndex = e.Item.ItemIndex

BindEmployees()

End Sub

The CancelCommand must be modified to set the EditItemIndex to minus
one (-1) if editing is cancelled:

Private Sub DataList1_CancelCommand(ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _

Handles DataList1.CancelCommand

If DataList1.EditItemIndex = -1 Then

DataList1.SelectedIndex = -1

Else

DataList1.EditItemIndex = -1

End If

BindEmployees()

End Sub

The selected item template has been changed to have an Edit button beside
the Hide Details button. Also, an edit item template needs to be added to the
DataList. The following is the revised selected item template and the new edit
item template:

<selecteditemtemplate>

<table>

<tr>

<td>

<asp:linkbutton id=”itemCancel” runat=”server”

text=”Hide Details” commandname=”cancel” />

</td>

<td>

<asp:linkbutton id=”itemEdit” runat=”server”

text=”Edit” commandname=”edit” />

</td>

</tr>

216 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 216

<tr><td>Employee ID:</td>

<td>

<%# string.Format(“{0:D4}”,Container.DataItem.EID) %>

</td></tr>

<tr><td>Employee Name: </td>

<td>

<%# DataBinder.Eval(Container.DataItem, “LastName”)%>,

<%# DataBinder.Eval(Container.DataItem, “FirstName”)%>

</td></tr>

<tr><td>Salary: </td>

<td>

<%# DataBinder.Eval(Container.DataItem, “Salary”,”{0:C}”)%>

</td></tr>

</table>

</SelectedItemTemplate>

<edititemtemplate>

<table>

<tr>

<td>

<asp:linkbutton id=”editCancel” runat=”server”

text=”Cancel” commandname=”cancel” />

</td>

<td>

<asp:linkbutton id=”editUpdate” runat=”server”

text=”Update” commandname=”update” />

</td>

</tr>

<tr><td>Employee ID:</td>

<td>

<asp:label id=”empID” runat=”server”

Text=’<%# string.Format(“{0:D4}”,Container.DataItem.EID) %>’ />

</td></tr>

<tr><td>Last: </td>

<td>

<asp:textbox id=”empLast” runat=”server”

Text=’<%# DataBinder.Eval(Container.DataItem, “LastName”)%>’ />

</td></tr>

<tr><td>First: </td>

<td>

<asp:textbox id=”empFirst” runat=”server”

Text=’<%# DataBinder.Eval(Container.DataItem, “FirstName”)%>’ />

</td></tr>

<tr><td>Salary: </td>

<td>

<asp:textbox id=”salary” runat=”server”

Text=’<%# DataBinder.Eval(Container.DataItem, “Salary”)%>’ />

</td></tr>

</table>

</edititemtemplate>

Using Data-Bound Web Controls 217

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 217

Figure 6.10 The DataList with an employee selected (left) and with the employee in edit
mode (right).

The browser output is shown in Figure 6.10. Notice that the edit item tem-
plate contains TextBoxes for the editable fields. The employee ID field is a
read-only field, so it is displayed in a Label control.

The last thing to do is to update the data. The update will be very different,
based on the data source. To do any update, the data must be retrieved from
the edit template. This can be done with the FindControl method. The follow-
ing code demonstrates the extraction of data from the edit template and the
updating of the employee data.

Private Sub DataList1_UpdateCommand(ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _

Handles DataList1.UpdateCommand

Dim empID As Label = e.Item.FindControl(“empID”)

Dim empLast As TextBox = e.Item.FindControl(“empLast”)

Dim empFirst As TextBox = e.Item.FindControl(“empFirst”)

Dim salary As TextBox = e.Item.FindControl(“salary”)

‘This would normally be an

‘update statement to the database

Dim emp As Employee

For Each emp In Session(“Employees”)

If emp.EID = Integer.Parse(empID.Text) Then

emp.LastName = empLast.Text

emp.FirstName = empFirst.Text

emp.Salary = Decimal.Parse(salary.Text)

Exit For

End If

218 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 218

Next

DataList1.EditItemIndex = -1

BindEmployees()

End Sub

The DataList can also be set up by using the GUI menus. These menus are
available by right-clicking the DataList, and then clicking Auto Format,
Property Builder, or Edit Template.

DataGrid Control

The DataGrid control is the most powerful of the data bound controls pro-
vided with ASP.NET. The DataGrid is designed to display the fields of a data
source in an HTML table. Each row in the HTML table represents one of the
repeating items in the data source.

The DataGrid supports item selection, editing, deleting, sorting, and pag-
ing. The DataGrid has many properties, but can be quickly set up to display
data by using its default settings. The DataGrid provides the following prop-
erties that have already been defined in this chapter and can be set in the
Visual Studio .NET designer or in code:

■■ DataSource

■■ DataMember

In addition, the DataGrid contains several properties that have not yet been
defined. Table 6.5 contains the list of new properties.

Table 6.5 Additional DataGrid Properties

PROPERTY DESCRIPTION

AllowCustomPaging Changeable Boolean value indicating whether custom
paging is used. If custom paging is used, the
assumption is that the data source does not contain
all of the data. The data source instead contains only
one page of data.

AllowPaging Changeable Boolean value indicating whether paging
is allowed. Paging allows data to be split into smaller
segments based on the PageSize property.

AllowSorting Changeable Boolean value indicating whether sorting
is enabled. If the value is true, LinkButtons controls
are rendered in the header of each column that has
its SortExpression property set.

(continued)

Using Data-Bound Web Controls 219

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 219

Table 6.5 (continued)

PROPERTY DESCRIPTION

AutoGenerateColumns Changeable Boolean property indicating whether
columns will be automatically generated and
rendered. If true, a column will be created for each
field in the data source. Columns may also be
explicitly added, and they will appear before the
autogenerated columns.

BackImageUrl Changeable value containing the location of the
image that is used as a background for the DataGrid.
The image will tile as necessary to fill the DataGrid.

Columns Changeable value containing a
DataGridColumnCollection. Note that autogenerated
columns will not be added to this collection.

CurrentPageIndex Changeable value containing the page of data that
will display in the DataGrid.

EditItemIndex Changeable value indicating which item in the
DataGrid is being edited. This value is set to -1 when
no item is being edited.

Items Changeable value containing the items from the data
source that are included in the DataGrid.

PageCount Read-only count of the quantity of pages that are
required to display all of the data.

PagerStyle Changeable value indicating the type of paging
controls that will be rendered onto the DataGrid. The
PageStyle mode can be set to Numeric, to display page
number links for each page, or to PrevNext to display
previous and next links to move between pages.

PageSize Changeable value containing the count of rows per
DataGrid page.

SelectedIndex Changeable value indicating the currently selected
item in the DataGrid. This value is set to -1 when no
item is selected.

SelectedItem Read-only value that contains the row that is currently
selected in the DataGrid.

ShowHeader Changeable Boolean value indicating whether the
header should be displayed.

ShowFooter Changeable Boolean value indicating whether the
footer should be displayed.

VirtualItemCount Changeable value containing the virtual quantity of
items for use when using custom paging.

220 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 220

In the next series of DataGrid examples, the following code will be assigned
to the Page_Load method and the BindEmployees method:

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Not IsPostBack() Then

BindEmployees()

End If

End Sub

Public Sub BindEmployees()

‘Create employee list if it

‘does not exist.

If Session(“Employees”) Is Nothing Then

Dim a As New ArrayList()

a.Add(New Employee(1, “GlennLast”, “Glenn”, 50000))

a.Add(New Employee(2, “JoeLast”, “Joe”, 42000))

a.Add(New Employee(3, “MaryLast”, “Mary”, 31000))

a.Add(New Employee(4, “FrankLast”, “Frank”, 36000))

a.Add(New Employee(5, “AnneLast”, “Anne”, 24000))

Session(“Employees”) = a

End If

DataGrid1.DataSource = Session(“Employees”)

DataGrid1.DataBind()

End Sub

The code is using the Employee class that was used in the previous Repeater
and DataList examples, and five Employee instances are added to an
ArrayList. In this example, the DataGrid is placed on to the Web page.

When the page is displayed (see Figure 6.11), the DataGrid created and ren-
dered three columns. Notice that the employee ID (EID) of the employees has
not been rendered, because the DataGrid is not looking for public fields; it’s
only looking for public properties.

Assigning a Style to the DataGrid

The DataGrid supports style elements, which allows the style to change with-
out repeating the same code. For example, the Repeater control examples in this
chapter had the same code for the ItemTemplate and the AlternatingItem-
Template. The only thing that was different was the style.

The DataGrid solves the problem with these special style elements. The fol-
lowing is a list of style elements that are supported by the DataGrid. Figure 6.5
shows the style hierarchy.

■■ AlternatingItemStyle

■■ EditItemStyle

■■ FooterStyle

■■ HeaderStyle

Using Data-Bound Web Controls 221

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 221

■■ ItemStyle

■■ SelectedItemStyle

In addition to these styles, a quick way to assign a style is to right-click the
DataGrid and then click Auto Format. The Auto Format window displays
many options that allow the DataGrid to be quickly formatted. Professional 3
will be used in the following examples, as shown in Figure 6.11.

Adding Columns to the DataGrid

You can add columns to the DataGrid via HTML, code, or the Property
Builder. The following types of columns may be added to the DataGrid:

BoundColumn. A column that can be bound to a field in the data source.

ButtonColumn. A column that contains a command button. This button
can be used with the item on the current row (for example, Add or
Delete).

EditCommandColumn. A column that displays an Edit button until a
row is being edited. When a row is being edited, Cancel and Update but-
tons will be placed in the column on the edited row.

HyperLinkColumn. A column that displays a hyperlink button, which
can be configured to provide a URL and a querystring that contains
information about the current item.

TemplateColumn. A column with the ability to be completely cus-
tomized with templates.

In the previous example, the employee ID column was missing. The follow-
ing code adds the employee ID to the DataGrid.

Private Sub DataGrid1_Init(ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles DataGrid1.Init

Dim col As New BoundColumn()

col.HeaderText = “Employee ID”

DataGrid1.Columns.Add(col)

End Sub

It is important to add the column as early as possible in the DataGrid con-
trol’s life cycle. Adding the column in the Init event method of the DataGrid
means that the column will be available to work with ViewState and be
assigned data.

Although a bound column was used, a DataField could not be provided
because the EID is a public variable instead of a property. Although this col-
umn will be displayed, there will not be any data.

222 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 222

Figure 6.11 DataGrid rendered with default settings (left), and with Professional 3 style
selected (right).

An easy way to populate the data would be to add code to the DataGrid’s
ItemDataBound event method. This method executes every time that a row
needs to be rendered. One problem is that this will execute on the header and
footer rows, so a check needs to be done to verify that there is data available
for a row before attempting to extract the EID. The following code will get the
EID and populate column 0, which is the Employee ID column.

Private Sub DataGrid1_ItemDataBound(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs) _

Handles DataGrid1.ItemDataBound

If TypeOf e.Item.DataItem Is Employee Then

Dim currentEmployee As Employee = _

CType(e.Item.DataItem, Employee)

e.Item.Cells(0).Text = _

string.Format(“{0:D3}”,currentEmployee.EID)

End If

End Sub

Using Data-Bound Web Controls 223

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 223

This is one example method of populating the Employee ID column.
Another method of populating the Employee ID column is to use an object-
oriented approach as described in the sidebar titled Object-Oriented Method to
Display Hidden Data in a DataGrid.

224 Chapter 6

♦ Object-Oriented Method to Display Hidden
Data in a DataGrid

The Employee class was created with the EID, which is a public read-only member variable.
In the DataList and DataGrid examples, the public properties were displayed, while a more
creative method was required to get to the EID. In these examples, the source code for the
Employees class was available, so a simple way to get access to the EID would be to add
another public property to the Employee class.

How is this problem solved if the source code is unavailable? If the Employee class was
provided as a compiled .dll file with no source code, it’s not possible to simply add the
property. Instead, a new class can be created that inherits from the Employee class. The fol-
lowing code is an example of a new class called EmployeeData, which inherits from
Employee. This class has the additional read-only property called EmployeeID. The rest of
the properties are available through inheritance.

Public Class EmployeeData

Inherits Employee

Public Sub New(ByVal EID As Integer, _

ByVal LastName As String, _

ByVal FirstName As String, _

ByVal Salary As Decimal)

MyBase.New(EID, LastName, FirstName, Salary)

End Sub

Public ReadOnly Property EmployeeID() As Integer

Get

Return EID

End Get

End Property

End Class

This class could be used to create an EmployeeData collection instead of the Employee col-
lection. The EmployeeData collection could be assigned to the data source of the DataGrid.

430234 Ch06.qxd 7/8/03 1:49 PM Page 224

With the HTML page, the DataGrid tag can contain a columns collection.
Another method of adding the EID column is by adding a template column tag
in the DataGrid HTML tag. The following code is an example of the added
template column. This code is similar to the DataList template code:

<asp:DataGrid id=”DataGrid1” runat=”server”>

<columns>

<asp:TemplateColumn HeaderText=”Employee ID”>

<itemtemplate>

<%# string.Format(“{0:D4}”,Container.DataItem.EID) %>

</ItemTemplate>

</asp:TemplateColumn>

</Columns>

</asp:DataGrid>

Visual Studio .NET also provides a property builder that can be used to
insert columns via GUI windows. The property builder can be accessed by
right-clicking the DataGrid and then clicking Property Builder. Figure 6.12
shows the Property Builder screen.

Figure 6.12 Most DataGrid properties may be assigned with the DataGrid Property
Builder.

Using Data-Bound Web Controls 225

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 225

Ordering Columns

Although all columns may be displayed, the order of the fields may not be
appropriate. In addition, different header text may be required. In the previous
example, the fields were automatically added, but it’s usually better to manu-
ally create the columns and set their properties. Once again, the columns may
be added manually via code, the HTML window, or the Property Builder. All
of the examples that follow are done in code.

The columns need to be added to the DataGrid’s Init event method. In the
following code example, all four columns are manually added in the appro-
priate order and with the desired header text.

Private Sub DataGrid1_Init(ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles DataGrid1.Init

DataGrid1.AutoGenerateColumns = False

Dim col As New BoundColumn()

col.HeaderText = “Employee
ID”

col.ItemStyle.HorizontalAlign = HorizontalAlign.Right

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(75, UnitType.Pixel)

DataGrid1.Columns.Add(col)

‘Store this info for later use.

DataGrid1.Attributes(“EidCol”) = DataGrid1.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “Last
Name”

col.DataField = “LastName”

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(200, UnitType.Pixel)

DataGrid1.Columns.Add(col)

DataGrid1.Attributes(“LastNameCol”) = _

DataGrid1.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “First
Name”

col.DataField = “FirstName”

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(200, UnitType.Pixel)

DataGrid1.Columns.Add(col)

DataGrid1.Attributes(“FirstNameCol”) = _

DataGrid1.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “Salary”

col.DataField = “Salary”

col.DataFormatString = “{0:C}”

col.ItemStyle.HorizontalAlign = HorizontalAlign.Right

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(150, UnitType.Pixel)

DataGrid1.Columns.Add(col)

DataGrid1.Attributes(“SalaryCol”) = _

DataGrid1.Columns.Count - 1

End Sub

226 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 226

Private Sub DataGrid1_ItemDataBound(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs) _

Handles DataGrid1.ItemDataBound

Dim EidCol As Integer

EidCol = Integer.Parse(DataGrid1.Attributes(“EidCol”))

If TypeOf e.Item.DataItem Is Employee Then

Dim currentEmployee As Employee = _

CType(e.Item.DataItem, Employee)

e.Item.Cells(EidCol).Text = _

String.Format(“{0:D3}”, currentEmployee.EID)

End If

End Sub

Figure 6.13 shows the browser output. The first statement in this code
turned off the automatic generation of the columns. If this setting were not set
to false, the manual columns and the autogenerated columns would be dis-
played. The statements that follow set up each of the columns in order. Each
column has additional formatting to set the width of the column and the align-
ment of the text. The last part of the code is the ItemDataBound event method.
This only contains code to assign the employee ID, because the other columns
were easily bound by their field name in the InitDataBind method.

Another interesting item is the persistence of the column numbers. After the
column was added, the column number is persisted to an attribute in the Data-
Grid. This means that a peek at the browser source will reveal these attributes
on DataGrid1’s table. This attributes can be retrieved when binding, selecting,
editing, and updating the data. The benefit of this approach is realized when
more columns are added. There is no need to update the column numbers
throughout the code.

Figure 6.13 The browser output showing the DataGrid with its columns defined in the
code-behind page.

Using Data-Bound Web Controls 227

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 227

Selecting an Item

The DataGrid can allow a user to select an item. This is usually desirable when
only a small amount of data is being displayed and more details are desired. A
common requirement is to cause a child DataGrid to refresh and display infor-
mation about the item that was selected in the parent DataGrid. For example,
selecting a customer may cause that customer’s orders to be displayed in a
child DataGrid.

Making a selection involves setting the SelectedIndex to a number other
than minus one (-1), which is the default. This can be done by creating an Item-
Command method, which will change the selection number. The SelectedIn-
dex must be set before the data is bound to the DataList. After the SelectedIndex
is set, a call will be made to bind the data.

The following code shows the addition of a column to the top of the Data-
Grid1 Init method and the added ItemCommand event method:

Private Sub DataGrid1_Init(ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles DataGrid1.Init

DataGrid1.AutoGenerateColumns = False

Dim colSelect As New ButtonColumn()

colSelect.ButtonType = ButtonColumnType.PushButton

colSelect.Text = “Select”

colSelect.CommandName = DataGrid.SelectCommandName

DataGrid1.Columns.Add(colSelect)

‘additional columns here as shown in

‘the previous example

End Sub

Private Sub DataGrid1_ItemCommand(ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles DataGrid1.ItemCommand

DataGrid1.SelectedIndex = e.Item.ItemIndex

‘Get EID and simply display it.

Dim EidCol As Integer

EidCol = Integer.Parse(DataGrid1.Attributes(“EidCol”))

Dim EID As Integer

EID = Integer.Parse(e.Item.Cells(EidCol).Text)

Label1.Text = “Employee ID Selected: “ & EID.ToString()

BindEmployees()

End Sub

This code displays the EID of the selected employee in a Label control that
is placed on the page as shown in Figure 6.14.

228 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 228

Figure 6.14 The ItemCommand event has been used to retrieve the current employee ID
and display it in a Label control.

Editing an Item

The DataGrid can allow a user to edit an item. Editing an item involves setting
the EditItemIndex to a number other than minus one (-1), which is the default.
This is done by clicking the Class Name drop-down list and then clicking
DataGrid1. In the Method drop-down list, click EditCommand, which inserts
code for this event. In this method, add code to set the EditItemIndex and call
the BindEmployees method as follows:

Private Sub DataGrid1_EditCommand(ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles DataGrid1.EditCommand

DataGrid1.EditItemIndex = e.Item.ItemIndex

BindEmployees()

End Sub

The CancelCommand must be modified to set the EditItemIndex to minus
one (-1) if editing is cancelled.

Private Sub DataGrid1_CancelCommand(ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles DataGrid1.CancelCommand

DataGrid1.EditItemIndex = -1

BindEmployees()

End Sub

Using Data-Bound Web Controls 229

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 229

The following code shows the addition of the Edit button column to the
DataGrid1 Init method. The Edit button turns into an Update and Cancel but-
ton pair when the Edit button is clicked. Figure 6.15 shows the new Edit col-
umn and the browser in edit mode.

Dim colEdit As New EditCommandColumn()

colEdit.ButtonType = ButtonColumnType.PushButton

colEdit.EditText = “Edit”

colEdit.CancelText = “Cancel”

colEdit.UpdateText = “Update”

colEdit.ItemStyle.Width = New Unit(200, UnitType.Pixel)

DataGrid1.Columns.Add(colEdit)

The Edit and Cancel code has been added. The last item to be added to the
program is the Update method. This is done by clicking the Class Name drop-
down list and then clicking DataGrid1. In the Method drop-down list, click
UpdateCommand, which inserts code for this event. The following code
updates the ArrayList that is stored in Session(“Employees”).

Private Sub DataGrid1_UpdateCommand(ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles DataGrid1.UpdateCommand

Dim LastName As TextBox

Dim FirstName As TextBox

Dim Salary As TextBox

LastName = CType(e.Item.Cells(DataGrid1.Attributes(_

“LastNameCol”)).Controls(0), TextBox)

FirstName = CType(e.Item.Cells(DataGrid1.Attributes(_

“FirstNameCol”)).Controls(0), TextBox)

Salary = CType(e.Item.Cells(DataGrid1.Attributes(_

“SalaryCol”)).Controls(0), TextBox)

‘Get the row index from the DataGrid.

Dim di As Integer = e.Item.DataSetIndex

‘Get the Data from the DataGrid.

Session(“Employees”)(di).LastName = LastName.Text

Session(“Employees”)(di).FirstName = FirstName.Text

Session(“Employees”)(di).Salary = Salary.Text

‘Get EID and display it

Dim EidCol As Integer

EidCol = Integer.Parse(DataGrid1.Attributes(“EidCol”))

Dim EID As Integer

EID = Integer.Parse(e.Item.Cells(EidCol).Text)

Label1.Text = “Employee ID Updated: “ & EID.ToString()

DataGrid1.EditItemIndex = -1

BindEmployees()

End Sub

230 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 230

Figure 6.15 The new edit column (left) and the browser in edit mode (right).

In this code, references are first obtained to each of the TextBoxes that were
displayed. The attributes that were saved when the columns were added can
be used to select the appropriate cell. Retrieving Controls(0) gets the first con-
trol in the call, but it must be cast to a TextBox data type by using the CType
function. This allows access to the Text property.

Another interested property of the Item is the DataSetIndex, which contains
the row number of the data source. This can easily be used to assign the mod-
ified values to Session(“Employees”). The Item also contains an ItemIndex
property, which contains the index number of the current item in the Data-
Grid. This may not be equal to the DataSetRow, especially when paging is
used in the DataGrid.

The last piece of the update code retrieves the EID and places its value in
Label1. In these examples, the EID is considered read-only, so no attempt is
made to edit or update this field.

Using Data-Bound Web Controls 231

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 231

Lab 6.1: Data Bound Web Controls

In this lab, you will work with the DataRepeater, DataList, and DataGrid
to display a collection of categories from the category classes that were
created in Lab 4.1.

Displaying the Categories in a Repeater
In this section, you will add a Repeater to the ProductList page.

1. Start this lab by opening the OrderEntrySolution from Lab 5.1.

2. Right-click the OrderEntrySolution in the Solution Explorer, and
then click Check Out. This will check out the complete solution.

3. Right-click the Inventory project, and then click Set as Startup
Project.

4. Right-click the ProductList.aspx page, and then click Set As Start
Page.

5. Open the ProductList.aspx page. Add a Repeater control to the
page. Rename the repeater to ProductGrid.

6. Click the HTML tab and add a header template to the ProductGrid
that displays Product List with a silver background. The font should
be in a large size and centered.

7. Add an item template to the ProductGrid to display the product
name, price, and quantity on hand. These items should be listed on
a separate line. Be sure to use the DataBinder.Eval method to dis-
play the price as a formatted currency value.

8. Add a separator template. In the separator template, add a horizon-
tal line.

9. Add a footer template that displays End of List with a silver back-
ground. The font should be xx-small size and centered. Your HTML
for the ProductsGrid should look like the following:
<asp:repeater id=ProductGrid runat=”server”>

<headertemplate >

<div style=”font-size: large;

background-color: silver; text-align: center”>

Product List

232 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 232

</div>

</headertemplate>

<itemtemplate>

Product Name: <%# Container.DataItem.ProductName %>

Price: <%# DataBinder.Eval(

container.dataitem,”UnitPrice”,”{0:C}”) %>

Quantity in Stock <%# Container.DataItem.UnitsInStock %>

</itemtemplate>

<separatortemplate>

<hr>

</separatortemplate>

<footertemplate>

<div style=”font-size: xx-small;

background-color: silver; text-align: center”>

End of List

</div>

</footertemplate>

</asp:Repeater>

10. Right-click the page, and click View Code. Locate the Page_Load
method. This method contains a loop that is currently used to dis-
play the categories. Remove the loop.

11. At the bottom of the Page_Load method, add code to assign 100 to
the price and a random value between 1 and 10 to the UnitsInStock
of all items in the Products ArrayList. Next, assign the Products
ArrayList to the ProductGrid and bind the data. The code should
look like the following:
Dim b As BaseProduct

For Each b In Products

b.UnitPrice = 100

b.UnitsInStock = Rnd() * 10

Next

ProductGrid.DataSource = Products

DataBind()

12. Save your work.

The repeater can be tested by viewing the page. Press F5 to start the
Web application. The ProductList.aspx page is displayed. Figure 6.16
shows an example of the completed page.

Using Data-Bound Web Controls 233

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 233

Figure 6.16 The completed Repeater control.

Displaying Data in the DataGrid
In this section, the Repeater control will be removed and a DataGrid will
be placed on the page. The Page_Load method contains code to populate
an ArrayList every time the page is loaded. In this example, the ArrayList
will only be populated at the beginning of the session, and the ArrayList
will be saved to a session variable. This approach can be used to test the
ability to edit with the DataGrid control.

1. Remove the Repeater control from the Web page.

2. Add a DataGrid control to the page, and rename the DataGrid to
ProductGrid.

3. Right-click the page, and click View Code. Locate the Page_Load
method. Cut all of the code from the Page_Load method and paste it
into a new method called BindProducts.

234 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 234

4. In the Page_Load method, add code to call the BindProducts
method if the data is not being posted back to the server.

5. In the BindProducts method, change the code to use a session vari-
able called Session(“Products”). This variable will be populated if it
is currently empty. Your code should look like the following:
Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

If Not IsPostBack Then

BindProducts()

End If

End Sub

Public Sub BindProducts()

If Session(“Products”) Is Nothing Then

Dim Products As New ArrayList()

Products.Add(New Beverage(1, “Milk”))

Products.Add(New Beverage(2, “Juice”))

Products.Add(New Beverage(3, “Cola”))

Products.Add(New Confection(4, “Ice Cream”))

Products.Add(New Confection(5, “Cake”))

Products.Add(New Confection(6, “Candy”))

Dim b As BaseProduct

For Each b In Products

b.UnitPrice = 100

b.UnitsInStock = Rnd() * 10

Next

Session(“Products”) = Products

End If

ProductGrid.DataSource = Session(“Products”)

DataBind()

End Sub

6. Save your work.

The DataGrid can be tested by viewing the page. Press F5 to start the
Web application. The ProductList.aspx page displays. Figure 6.17 shows
an example of the completed page.

Using Data-Bound Web Controls 235

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 235

Figure 6.17 The basic DataGrid (upper left) and the enhanced DataGrid (lower right).

Enhancing the DataGrid Output
In this section, you will assign a style format to the DataGrid. You will
also add the columns manually, setting their properties as you go.

1. Right-click the ProductGrid, and click Auto Format, Colorful 2, OK.

2. Go to the code-behind page and add code to create each column of
the DataGrid. This code will be added into the DataGrid Init event
method. The columns will be created using the properties shown in
Table 6.6.

Table 6.6 New Column Properties

COLUMN PROPERTY VALUE

ProductName HeaderText Product
Name

ProductName HeaderStyle.HorizontalAlign HorizontalAlign.Center

ProductName ItemStyle.HorizontalAlign HorizontalAlign.Left

ProductName DataField ProductName

UnitsInStock HeaderText Units In
Stock

UnitsInStock HeaderStyle.HorizontalAlign HorizontalAlign.Center

236 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 236

Table 6.6 (continued)

COLUMN PROPERTY VALUE

UnitsInStock ItemStyle.HorizontalAlign HorizontalAlign.Right

UnitsInStock DataField UnitsInStock

UnitPrice HeaderText Unit
Price

UnitPrice HeaderStyle.HorizontalAlign HorizontalAlign.Center

UnitPrice ItemStyle.HorizontalAlign HorizontalAlign.Right

UnitPrice DataField UnitPrice

UnitPrice DataFormatString {0:C}

3. Be sure to add code to store the field number in an attribute. This
will help you retrieve the column later.

4. Add code to turn off the automatic generation of the fields. Your fin-
ished code should look like the following:
Private Sub ProductGrid_Init(ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles ProductGrid.Init

ProductGrid.AutoGenerateColumns = False

Dim col As New BoundColumn()

col.HeaderText = “Product
Name”

col.HeaderStyle.HorizontalAlign =

HorizontalAlign.Center

col.ItemStyle.HorizontalAlign = HorizontalAlign.Left

col.DataField = “ProductName”

ProductGrid.Columns.Add(col)

‘Store this info for later use.

ProductGrid.Attributes(“ProductNameCol”) = _

ProductGrid.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “Units In
Stock”

col.HeaderStyle.HorizontalAlign =

HorizontalAlign.Center

col.ItemStyle.HorizontalAlign = HorizontalAlign.Right

col.DataField = “UnitsInStock”

ProductGrid.Columns.Add(col)

‘Store this info for later use

ProductGrid.Attributes(“UnitsInStockCol”) = _

ProductGrid.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “Unit
Price”

col.HeaderStyle.HorizontalAlign =

HorizontalAlign.Center

col.ItemStyle.HorizontalAlign = HorizontalAlign.Right

col.DataField = “UnitPrice”

col.DataFormatString = “{0:C}”

Using Data-Bound Web Controls 237

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 237

ProductGrid.Columns.Add(col)

‘Store this info for later use.

ProductGrid.Attributes(“UnitPriceCol”) = _

ProductGrid.Columns.Count - 1

End Sub

5. Save your work.

The DataGrid can be tested by viewing the page. Press F5 to start the
Web application. The ProductList.aspx page should be displayed. Figure
6.17 shows an example of the completed page.

Summary

■■ This chapter covered many of the basics of displaying data on a Web
page. More DataGrid features will be presented throughout the book.

■■ The DataSource property can be set to an Array, Collection, ADO.NET
DataTable, ADO.NET DataView, ADO.NET DataSet, or ADO.NET
DataReader.

■■ The DataMember property only needs to be assigned when the Data-
Source contains multiple rowsets.

■■ DataBind will connect to control to the DataSource.

■■ There are many formatting characters that you can use to modify the
look of a numeric field.

■■ A template control has no user interface. The control simply provides
the mechanism for binding to data. The user interface is supplied by the
developer in the form of inline templates.

■■ The Eval method uses reflection to perform a lookup of the DataItem’s
underlying type by looking at the type metadata that is stored in the
underlying type’s assembly. Once the metadata is retrieved, the Eval
method determines how to connect to the given field.

■■ Assigning an index number to the EditItemIndex causes the DataGrid
row to switch to edit mode. Assigning minus one (-1) to the Edit-
ItemIndex cancels the Edit mode.

■■ Columns may be added to a DataGrid by using the <columns> tag in
the HTML of the .aspx page. Columns may also be added to a DataGrid
by placing code into the code-behind page in the Init event method of
the DataGrid.

■■ Repeater controls are very flexible, but they require the developer to
write most of the code to implement any desired functionality.

238 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 238

Using Data Bound Web Controls 239

Review Questions

1. What is a key benefit of using the DataList control over using the Repeater control?

2. What are some of the items that can be bound to a DataGrid?

3. If an Edit column is added to a DataGrid, how are TextBoxes automatically placed in
DataGrid to allow editing?

4. You added code to create the columns that you want to see in the DataGrid. When you
display the DataGrid, you see the columns you added, plus you see a copy of all
columns as well. How can this be corrected?

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 239

Answers to Review Questions

1. The DataList has a separate style element, which allows the developer to assign a dif-
ferent style to the alternating items without requiring the code to be repeated.

2. An Array, an ArrayList, a HashTable, a SortedList, a DataTable, and a DataView.

3. The EditItemIndex must be assigned to the index number of the column to be edited.

4. Set the DataGrid’s AutoGenerateColumns property to false.

240 Chapter 6

h 430234 Ch06.qxd 7/1/03 9:01 AM Page 240

241

The previous chapters covered many controls in great detail. Many of the
properties were covered, including data access properties. Although there are
many controls, there are many occasions when it may be desirable to create a
new control with different functionality, new functionality, or the combined
functionality of several controls.

This chapter starts by covering user controls. After that, the chapter looks at
creating custom Web controls from scratch and finishes by exploring the abil-
ity to inherit from existing Web server controls.

Classroom Q & A
Q: I want to be able to combine several TextBoxes and Labels on to a

single control that can be simply dragged on to my Web page
without writing much code. Can this be done?

A: Sure. If you want a quick way to combine multiple controls, then
user controls may be the answer for you.

Building User Controls and
Custom Web Controls

C H A P T E R

7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 241

Q: Every time I drag a DataGrid onto a Web page, I need to make
many settings to set up this control. Is there a way to change the
default properties of a control so I can simply drag it out and the
settings will be applied automatically?

A: Yes. One option is to create a new DataGrid control that inherits
from the existing DataGrid. You can simply place all of the default
settings into the constructor of the new DataGrid.

User Controls

Many times pages contain similar controls. For example, when prompting a
user for a billing address and a shipping address, the controls to retrieve the
name, address, city, state, and zip code are duplicated. This is where user con-
trols can be very handy. A user control containing the name, address, city,
state, and zip code can be created and dropped onto a Web page where
needed.

It’s also common to have the same header, footer, and menu on every page.
This is another place where user controls could be implemented. Although
ASP.NET still supports the #INCLUDE directive, a user control offers many
more benefits, such as the ability to include code and server controls.

User controls are built using similar procedures to those that are required to
build a standard Web page. Web pages can even be converted to user controls
with little effort.

Creating a User Control
User controls have a standard naming convention, which uses an .ascx exten-
sion to ensure that the control is not executed in a stand-alone fashion. A user
control can be created in Visual Studio .NET by clicking Project, Add New Web
User Control. On the surface, it appears that a new Web page was added,
except that the default layout is set to FlowLayout. A quick glance at the
HTML reveals a Control directive instead of a Page directive as shown:

<%@ Control Language=”vb”

AutoEventWireup=”false”

Codebehind=”MyControl.ascx.vb”

Inherits=”Ch07Web.MyControl”

TargetSchema=”http://schemas.microsoft.com/intellisense/ie5” %>

All text and controls that are added to this page will be rendered on the page
that the control is added to. For example, if a Label called lblName and a

242 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 242

TextBox called txtName are placed on the user control, the user control could
be added to any Web page where required.

Adding a User Control to a Page
The user control can be added to a Web page by simply dragging it from the
Solution Explorer and dropping it on a Web page. When the user control is
added to the page, a look at the HTML reveals the following additions to the
page:

<%@ Page Language=”vb” AutoEventWireup=”false”

Codebehind=”WebForm1.aspx.vb” Inherits=”Ch07Web.WebForm1”%>

<%@ Register TagPrefix=”uc1” TagName=”MyControl” Src=”MyControl.ascx” %>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<html>

<head>

<title>WebForm1</title>

<meta name=”GENERATOR” content=”Microsoft Visual Studio.NET 7.0”>

<meta name=”CODE_LANGUAGE” content=”Visual Basic 7.0”>

<meta name=vs_defaultClientScript content=”JavaScript”>

<meta name=vs_targetSchema

content=”http://schemas.microsoft.com/intellisense/ie5”>

</head>

<body MS_POSITIONING=”GridLayout”>

<form id=”Form1” method=”post” runat=”server”>

<uc1:MyControl id=”MyControl1” runat=”server”></uc1:MyControl>

</form>

</body>

</html>

Notice the @Register directive at the top of the page. This is a requirement to
place the controls on the page. The TagPrefix attribute is a namespace identi-
fier for the control. The default TagPrefix is uc1 (as in User Control One), and
is changeable. The TagName attribute is the name of the control to use. The Src
attribute is the location of the user control.

The instance of MyControl is in the form tag. Notice that the ID is automat-
ically created as MyControl1, the next instance will be called MyControl2, and
so on.

Accessing Data from the User Control
If this user control is placed on a Web page, the TextBox and Label will be vis-
ible, but how can the name be retrieved? In the code-behind page, the TextBox
and Label controls are declared as protected members, which mean that they
are only available to classes that inherit from the control. Although the controls

Building User Controls and Custom Web Controls 243

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 243

could be changed to public, the better approach would be to expose only the
properties that are required, such as the Text property of the txtName TextBox.

The user control is a class, and can contain properties and methods. A prop-
erty can be added to the user control called UserName, which exposes the Text
property of the txtName TextBox as follows:

Public Property UserName() As String

Get

Return txtName.Text

End Get

Set(ByVal Value As String)

txtName.Text = Value

End Set

End Property

After the user control, a button, and a label are added to the Web page, code
can be added to the code-behind page of the Web page to retrieve the User-
Name as follows:

Public Class WebForm1

Inherits System.Web.UI.Page

Protected WithEvents Label1 As System.Web.UI.WebControls.Label

Protected WithEvents Button1 As System.Web.UI.WebControls.Button

Protected WithEvents MyControl1 As MyControl

‘Web form designer generated code is hidden.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put theuser code to initialize the page here.

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Label1.Text = MyControl1.UserName

End Sub

End Class

When dragging and dropping user controls onto a Web page, Visual Studio
.NET does not automatically create the code-behind object variable. In the
previous example, the following line was manually typed into the code:

Protected WithEvents MyControl1 As MyControl.

Positioning User Controls
When a user control is dropped onto a Web page, it is always positioned at the
top-left corner of the page. Positioning the user control on a Web page that
uses FlowLayout requires using a table and placing the user control into the
desired cell of the table.

244 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 244

Figure 7.1 The Web page with user controls placed inside panel controls (left) and the
rendered page (right).

When using GridLayout, the user control can be positioned by placing a
panel control at the desired position on the Web page and adding the user con-
trol into the panel.

For example, Figure 7.1 shows a Web page with two user controls and a but-
ton. The user controls were placed by adding panel controls to the page and
then adding the user controls into the panel controls.

User Control Events
User controls can have their own events, and cause a post back of the Web
page’s form data. It’s interesting to note that user controls do not contain a
form server control, since there can only be one form server control on a Web
page. User controls are aware of the life cycle of the page and the user control
has many of the same events that the page has, such as the Init and Load
events.

A user control can also handle its own events. In the following example, a
button called bthHi and Label called lblHi are added to the user control. When
the button is clicked, the user control handles the button click event to popu-
late lblHi with a hello message.

Building User Controls and Custom Web Controls 245

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 245

Figure 7.2 The user control encapsulated other controls as well as code (left). The
rendered output is displayed using a page with two user controls (right).

Public MustInherit Class MyControl

Inherits System.Web.UI.UserControl

Protected WithEvents lblName As System.Web.UI.WebControls.Label

Protected WithEvents lblHi As System.Web.UI.WebControls.Label

Protected WithEvents btnHi As System.Web.UI.WebControls.Button

Protected WithEvents txtName As System.Web.UI.WebControls.TextBox

‘Web form designer code

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put the user code to initialize the page here.

End Sub

Public Property UserName() As String

Get

Return txtName.Text

End Get

Set(ByVal Value As String)

txtName.Text = Value

End Set

End Property

Private Sub btnHi_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnHi.Click

lblHi.Text = “Hello “ & txtName.Text

End Sub

End Class

246 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 246

It’s interesting to note that the code for btnHi has been encapsulated into the
user control. Figure 7.2 shows the user control and the rendered output. This
can help to simplify the page.

Dynamically Loading Controls
Like other server controls, user control can be loaded dynamically. Loading
controls dynamically can be useful in situations where a variable quantity of
user controls may be displayed on the page.

In the following example, the Web page loads two instances of MyControl
on to the page. The UserName of the first instance will be initialized.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Locate the form control on the page.

Dim f As Control = Page.FindControl(“Form1”)

‘Populate the form.

Dim c1 As MyControl = CType(LoadControl(“MyControl.ascx”), _

MyControl)

c1.UserName = “Glenn”

f.Controls.Add(c1)

Dim c2 As MyControl = CType(LoadControl(“MyControl.ascx”), _

MyControl)

f.Controls.Add(c2)

End Sub

The LoadControl method loads the control into memory, but this method
returns a System.Web.UI.WebControl. To see the properties of MyControl, the
returned WebControl object must be cast as a MyControl object. This is done
using the CType function. The user control contains server controls, so it must
be loaded in the controls collection of the form as shown.

User controls only need to be loaded into the controls collection of the form
if they are taking part in view state or they contain server controls. If a user
control contains simple HTML, it may be added to the controls collection of
the page.

The following code dynamically loads a user control called Header.ascx into
the page’s controls collection. The header control only contains the Web site
name with large, centered font. Since this header will be placed at the top of
the page, it is important to add the Header control after the body tag has been
rendered, but before the form has been rendered, as follows:

Dim f As Control = Page.FindControl(“Form1”)

Dim h As Header = _

CType(LoadControl(“Header.ascx”), Header)

Controls.AddAt(Controls.IndexOf(f), h)

Building User Controls and Custom Web Controls 247

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 247

The header is loaded into variable h. After that, the control is added using
the AddAt method, which takes a location as the first parameter. The header is
loaded into the controls collection at the form’s current location. In effect, this
pushes the form and everything after the form down in the list of controls. The
net effect is that the header is inserted in the Web page after the body tag and
before the form tag.

Raising Events to the Page
There may be times when a control is required to be placed on the user control,
but it’s not known how the control will be implemented when the developer is
creating the user control. This problem can be solved by raising the event to
the Web page.

For example, there may be a button on a user control that sends a message
to the user. The type of message and the content of the message are not known
to the developer when the user control is created, so the click event of the but-
ton is programmed to raise an event to the page. The following code shows a
user control with a button called btnMessage that raises an event called
SendMessage. The SendMessage event also passes the name that was typed
into the TextBox.

Public MustInherit Class MyControl

Inherits System.Web.UI.UserControl

Protected WithEvents lblName As System.Web.UI.WebControls.Label

Protected WithEvents btnMessage As System.Web.UI.WebControls.Button

Protected WithEvents txtName As System.Web.UI.WebControls.TextBox

Public Event SendMessage(ByVal UserName As String)

‘Web form designer code

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put the user code to initialize the page here.

End Sub

Public Property UserName() As String

Get

Return txtName.Text

End Get

Set(ByVal Value As String)

txtName.Text = Value

End Set

End Property

Private Sub btnMessage_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnMessage.Click

RaiseEvent SendMessage(txtName.Text)

End Sub

End Class

248 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 248

Figure 7.3 The user control with the Send Message button (left). The rendered output
displays a different message for each of the dynamically created controls (right).

The event must always be declared as public at the top of the user control
class. The btnMessage’s click event method has been programmed to raise the
event, passing the contents of txtName.Text.

The Web page contains a Label control. The user controls are being dynam-
ically created and the AddHandler command attaches the SendMessage event
to the appropriate method. The following code snippet shows how this can be
done.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Locate the form control on the page.

Dim f As Control = Page.FindControl(“Form1”)

‘Populate the form.

Dim c1 As MyControl = _

CType(LoadControl(“MyControl.ascx”), MyControl)

c1.UserName = “Glenn”

f.Controls.Add(c1)

AddHandler c1.SendMessage, AddressOf SayHi

Dim c2 As MyControl = _

CType(LoadControl(“MyControl.ascx”), MyControl)

f.Controls.Add(c2)

AddHandler c2.SendMessage, AddressOf SayBye

End Sub

Building User Controls and Custom Web Controls 249

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 249

Public Sub SayHi(ByVal msg As String)

Label1.Text &= “Hi “ & msg & “
”

End Sub

Public Sub SayBye(ByVal msg As String)

Label1.Text &= “Bye “ & msg & “
”

End Sub

When the first control is added, the SendMessage event is handled by the
SayHi method. The second control’s SendMessage event is handled by the
SayBye method. Figure 7.3 shows the output.

Web Server Controls

Building a Web server control that can be reused on many projects can save
many hours. Writing Web server controls may take more time than creating
user controls due to their lower-level nature. Writing a Web server control
involves writing code to send HTML to the browser. One major benefit of writ-
ing Web server controls is that the control will render in the Visual Studio .NET
Designer, where the user control is not rendered until it is viewed in the
browser. This section starts by creating a simple control and then adds more
functionality.

Creating and Compiling a Control Library
Creating custom server controls that can be reused in many projects involves
creating a separate project for the server controls. This can be done by creating
a new project in Visual Studio .NET. The project type should be a Visual Basic
Web Control Library, as shown in Figure 7.4. This project compiles to a .dll file,
which needs to reside in the same folder as the Web application. Simply copy-
ing the .dll file suffices. If Visual Studio .NET is used to add the control to the
Toolbox, a reference is automatically created to the .dll file and Visual Studio
.NET automatically copies the file to the bin directory of the Web project.

Before the compiled control can be used on a Web page, a reference to the
control must be defined at the top of the Web page. This can be done as
follows:

<%@ Register TagPrefix=”cc” Namespace=”myControl”

Assembly=”HelloWorld” %>

The TagPrefix will be used at the beginning of the tag, followed by the name
of the control, as follows:

<cc:MyCustomControl id=”MyCustomControl1” runat=”server”/>

250 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 250

Figure 7.4 Creating a new custom Web controls library project.

Creating a Simple Control
Custom Web server controls can be created by creating a new class that inher-
its from the System.Web.UI.Control class and overrides the Render method.
The Render method is passed an instance of the System.Web.UI.HTML-
TextWriter class, which has a Write method that can be used to send HTML to
the browser to render your control. The following code shows an example of a
Hello World control.

‘This is the Web page.

Public Class CustomWebControlApp

Inherits System.Web.UI.Page

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim f As Control

f = Page.FindControl(“Form1”)

Dim m As New MyWebControl()

f.Controls.Add(m)

End Sub

End Class

‘Here is the Custom Web control.

Public Class MyWebControl

Inherits System.Web.UI.Control

Protected Overrides Sub Render(_

ByVal w As System.Web.UI.HtmlTextWriter)

w.Write(“Hello World”)

End Sub

End Class

Building User Controls and Custom Web Controls 251

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 251

The first class in this code is the Web page, which creates an instance of the
control called MyWebControl and places it into the form control. This is the
same code that would be used to dynamically create any Web server control
and place it on the page.

The second class is the custom Web control called MyWebControl. Notice
that this control inherits from System.Web.UI.Control and provides an over-
ride for the Render method. This simply displays Hello World on the browser
screen.

Instead of having your control inherit from System.Web.UI.Control, it may
be more desirable to have it inherit from System.Web.UI.WebControls
.WebControl, because this base control offers much more built-in
functionality, such as the ability to drop a control anywhere on a page in
GridLayout mode. We will look at this in more detail later in this chapter.

The HTMLTextWriter
The HTMLTextWriter is a class that provides that ability to send a sequence
of bytes, called the output stream, to the browser. Understanding the HTML-
TextWriter is an important key to creating Web server controls, since this is the
class that is used to send data to the browser. This section looks at many of the
methods that are available with this class.

Write

The Write method sends an object to the output stream. This method has 17
overloads, which provide lots of flexibility with regard to how the Write
method is called. The overloads may be viewed using the Object Browser
(Ctrl+Alt+J). The following code demonstrates examples of using this method.

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

Dim name As String = “Glenn”

Dim msg As String = “World”

writer.Write(“Hello World!”)

writer.Write(“Hello {0}, Welcome to the {1}, Bye {0}”, name, msg)

End Sub

When viewing the browser source code, the output of the preceding code is
as follows:

Hello World! Hello Glenn, Welcome to the World, Bye Glenn

252 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 252

WriteLine and WriteLineNoTabs

The WriteLine method is similar to the Write method in that both of them send
an object to the output stream. The difference is that this method adds a new
line to the output, which helps to format the source of the HTML, not the ren-
dered output. This means that viewing the source will reveal new lines, but
this method does not generate HTML break or paragraph tags. The method
has 18 overloads, which provide many options. The following code demon-
strates examples of this method.

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

Dim name As String = “Glenn”

Dim msg As String = “World”

writer.WriteLine(“Hello World!”)

writer.WriteLine(“Hello {0}, Welcome to the {1}, Bye {0}”, _

name, msg)

writer.WriteLine(“Testing 1,2,3”)

End Sub

When viewing the browser source code, the output of the preceding code is
as follows:

Hello World!

Hello Glenn, Welcome to the World, Bye Glenn

Testing 1,2,3

This is the source of the browser output. Notice that there are no HTML
break tags, so this text is rendered on the browser as one long line.

The WriteLine method and the WriteLineNoTabs are the same, except that
the WriteLine method includes tabs to neatly format the HTML output. Use
WriteLineNoTabs to suppress writing tabs to the output stream.

WriteBeginTag and WriteAttribute

The WriteBeginTag method writes the beginning HTML tag, omitting the tag’s
right character (>). Attributes can be added using the WriteAttribute method
before the final tag right character is written. The following example uses the
WriteBeginTag, followed by the WriteAttribute.

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

Dim name As String = “Glenn”

Dim msg As String = “World”

writer.WriteBeginTag(“font”)

writer.WriteAttribute(“size”, “6”)

writer.WriteAttribute(“color”, “red”)

Building User Controls and Custom Web Controls 253

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 253

writer.Write(HtmlTextWriter.TagRightChar)

writer.WriteLine(“Hello {0}, Welcome to the {1}, Bye {0}”, _

name, msg)

writer.WriteLine(“Testing 1,2,3”)

writer.WriteEndTag(“font”)

End Sub

When viewing the browser source code, the output of the preceding code is
as follows. Notice that the TagRightChar needed to be written to close the
font’s tag.

Hello Glenn, Welcome to the World, Bye Glenn

Testing 1,2,3

WriteFullBeginTag

The WriteFullBeginTag writes a begin tag to the output stream when the tag
has no attributes. The following code uses the WriteFullBeginTag to display
text in italics by executing the WriteBeginFullTag.method with an “i”.

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

Dim name As String = “Glenn”

Dim msg As String = “World”

writer.WriteFullBeginTag(“i”)

writer.WriteLine(“Hello {0}, Welcome to the {1}, Bye {0}”, _

name, msg)

writer.WriteLine(“Testing 1,2,3”)

writer.WriteEndTag(“i”)

End Sub

When viewing the browser source code, the output of the above code is as
follows:

<i>Hello Glenn, Welcome to the World, Bye Glenn

Testing 1,2,3

</i>

WriteStyleAttribute

The WriteStyleAttribute sends style attributes to the output stream. The writ-
ing of the style attribute must still be done, but this method can make it easier
to output the name and value pairs that are associated with each style. The fol-
low code shows an example of using the WriteStyleAttribute.

254 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 254

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

Dim name As String = “Glenn”

Dim msg As String = “World”

writer.WriteBeginTag(“p”)

writer.Write(HtmlTextWriter.SpaceChar)

writer.Write(“style”)

writer.Write(HtmlTextWriter.EqualsDoubleQuoteString)

writer.WriteStyleAttribute(“font-size”, “14pt”)

writer.WriteStyleAttribute(“color”, “blue”)

writer.Write(HtmlTextWriter.DoubleQuoteChar)

writer.WriteLine(HtmlTextWriter.TagRightChar)

writer.WriteLine(“Hello {0}, Welcome to the {1}, Bye {0}”, _

name, msg)

writer.WriteLine(“Testing 1,2,3”)

writer.WriteEndTag(“p”)

End Sub

Notice the use of HtmlTextWriter’s static fields to retrieve some of the spe-
cial characters. When viewing the browser source code, the output of the
above code is as follows:

<p style=”font-size:14pt;color:blue;”>

Hello Glenn, Welcome to the World, Bye Glenn

Testing 1,2,3

</p>

RenderBeginTag and RenderEndTag

The RenderBeginTag writes an opening HTML tag to the output stream, while
the RenderEndTag writes the ending HTML tag. The following code writes a
simple italic tag and text.

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

Dim name As String = “Glenn”

Dim msg As String = “World”

writer.RenderBeginTag(“i”)

writer.WriteLine(“Hello {0}, Welcome to the {1}, Bye {0}”,

name, msg)

writer.WriteLine(“Testing 1,2,3”)

writer.RenderEndTag()

End Sub

When viewing the browser source code, the output of the preceding code is
as follows:

Building User Controls and Custom Web Controls 255

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 255

<i>Hello Glenn, Welcome to the World, Bye Glenn

Testing 1,2,3

</i>

AddAttribute and AddStyleAttribute

The AddAttribute and AddStyleAttribute methods create an HTML attribute
with its value and add it to the output stream. This method is primarily used
with the RenderBeginTag method, as shown:

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

Dim name As String = “Glenn”

Dim msg As String = “World”

writer.AddAttribute(HtmlTextWriterAttribute.Id, “MyPara”)

writer.AddStyleAttribute(HtmlTextWriterStyle.Color, “blue”)

writer.AddStyleAttribute(HtmlTextWriterStyle.FontSize, “14pt”)

writer.RenderBeginTag(“p”)

writer.WriteLine(“Hi”)

writer.WriteLine(“Hello {0}, Welcome to the {1}, Bye {0}”,

name, msg)

writer.WriteLine(“Testing 1,2,3”)

writer.RenderEndTag()

End Sub

Notice that the AddAttribute and AddStyleAttribute methods are executed
prior to executing the BeginRenderTag. When viewing the browser source
code, the output of the preceding code is as follows:

<p id=”MyPara” style=”color:blue;font-size:14pt;”>Hi

Hello Glenn, Welcome to the World, Bye Glenn

Testing 1,2,3

</p>

Adding Properties to the Server Control
Properties can be added to the Web server control in the same manner as prop-
erties are added to any class. Using properties enforces encapsulation of data
in the control. If the property is being set to an invalid value, an ArgumentEx-
ception can be thrown. The following is an example of a property called User-
Name, which has a maximum limit of 20 characters.

Public Class MyWebControl

Inherits System.Web.UI.Control

Dim _UserName As String = “”

256 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 256

Const MaxUserLength As Integer = 20

Public Property UserName() As String

Get

Return _UserName

End Get

Set(ByVal Value As String)

If Value.Length > MaxUserLength Then

Throw New ArgumentException(_

“UserName length cannot be greater than “ _

& MaxUserLength)

Else

_UserName = Value

End If

End Set

End Property

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

writer.RenderBeginTag(“i”)

writer.WriteLine(“Hello {0}, Bye {0}”, _UserName)

writer.RenderEndTag()

End Sub

End Class

Figure 7.5 shows the output when an attempt is made to place a large
amount of text into the UserName. Properties should always be implemented
to enforce data integrity and maintain encapsulation.

Figure 7.5 An exception is thrown when an attempt is made to place a large amount of
text into the UserName property.

Building User Controls and Custom Web Controls 257

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 257

Working with ViewState Data
Although the previous code example demonstrates the creation of a property,
the variable called _UserName is not persisted. In many cases, it’s important
to persist this data over calls to the server. To persist the UserName, place the
data into ViewState instead of placing the data in a local variable. The follow-
ing code snippet shows the property implemented using ViewState to hold the
data between server calls.

Public Class MyWebControl

Inherits System.Web.UI.Control

Const MaxUserLength As Integer = 20

Public Property UserName() As String

Get

If ViewState(“UserName”) Is Nothing Then

Return String.Empty

Else

Return ViewState(“UserName”).ToString()

End If

End Get

Set(ByVal Value As String)

If Value.Length > MaxUserLength Then

Throw New ArgumentException(_

“UserName length cannot be greater than “ _

& MaxUserLength)

Else

ViewState(“UserName”) = Value

End If

End Set

End Property

End Class

When adding controls dynamically, be sure to add the control to the
form’s control collection before assigning any property values to it. A
dynamically added control does not participate in the page’s ViewState
until the control is added, so any property changes that are made prior to
placing the control into the form’s control collection will be lost.

Adding Methods to the Server Control
Methods can be added to the Web server control using the same techniques as
adding a method to any other class. The following example contains a method
that changes the case of the _UserName based on the case of the first character.

258 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 258

Public Sub ChangeCase()

If _UserName.Length > 0 Then

If _UserName.Substring(0, 1).ToUpper() = _

_UserName.Substring(0, 1) Then

‘make lowercase

_UserName = _UserName.ToLower()

Else

_UserName = _UserName.ToUpper()

End If

End If

End Sub

Since this method is public, it can be executed from the Web page with the
following code in the Web page.

Public Class CustomWebControl

Inherits System.Web.UI.Page

Protected WithEvents Button1 As System.Web.UI.WebControls.Button

Dim m As New MyWebControl()

‘designer generated code here...

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put the user code to initialize the page here.

Dim f As Control

f = Page.FindControl(“Form1”)

f.Controls.Add(m)

If Not IsPostBack Then

m.UserName = “Glenn”

End If

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

m.ChangeCase()

End Sub

End Class

Notice that the control is added to the form’s control collection before the
UserName is initialized. Also, the UserName is only initialized on the first
request for the page. On subsequent calls to the page, the current value of
UserName is extracted from ViewState.

Adding Child Controls to the Server Control
Many times it is desirable to create a control that contains other controls. The
DataGrid, Calendar, and ListBox are examples of existing controls that contain
many other controls. When working with the ListBox control, the items that
are inside the ListBox are instances of the ListItem class. They are added to the
ListBox either by HTML or code, as follows:

Building User Controls and Custom Web Controls 259

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 259

<!--Adding ListItems via HTML →
<asp:ListBox runat=”server”>

<asp:ListItem Text=”Item 1” />

<asp:ListItem Text=”Item 2” />

<asp:ListItem Text=”Item 3” />

</asp:ListBox>

‘Adding the ListItems via code

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim f As Control = FindControl(“Form1”)

Dim lst As New ListBox()

f.Controls.Add(lst)

lst.Items.Add(New ListItem(“Item 1”))

lst.Items.Add(New ListItem(“Item 2”))

lst.Items.Add(New ListItem(“Item 3”))

End Sub

Creating a control that can have child controls involves creating a second
control to hold each item. In the following example, a second control called
HiItem is created. The UserName has been removed from the original control
and is placed inside the HiItem control.

Public Class MyWebControl

Inherits System.Web.UI.Control

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

writer.RenderBeginTag(“b”)

Dim c As Control

For Each c In Me.Controls

writer.WriteLine(“{0}
”, c)

Next

writer.RenderEndTag()

End Sub

End Class

Public Class HiItem

Inherits System.Web.UI.Control

Const MaxUserLength As Integer = 20

Public Property UserName() As String

Get

If ViewState(“UserName”) Is Nothing Then

Return String.Empty

Else

Return ViewState(“UserName”).ToString()

End If

End Get

Set(ByVal Value As String)

If Value.Length > MaxUserLength Then

Throw New ArgumentException(_

“UserName length cannot be greater than “ _

& MaxUserLength)

Else

260 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 260

ViewState(“UserName”) = Value

End If

End Set

End Property

End Class

The Render method loops through all of the child controls and writes them
to the output stream. This writes the fully qualified type name to the output
stream. What should the browser see if the following HTML is added to the
page to create four HiItems?

<cc:MyWebControl runat=”server” id=MyWebControl1 >

<cc:hiitem id=”Hiitem1” runat=”server” username=”Glenn” />

<cc:hiitem id=”Hiitem2” runat=”server” username=”Sue” />

<cc:hiitem id=”Hiitem3” runat=”server” username=”Gary” />

<cc:hiitem id=”Hiitem4” runat=”server” username=”Randy” />

</cc:MyWebControl>

One would assume that four lines would be output, showing the fully quali-
fied type for each of the HiItems controls. The output is shown in Figure 7.6.
Further investigation shows that MyWebControl1 is storing the white space
between each of its child controls as LiteralControls (Figure 7.6). If all of the
HiItems were placed on the same line with MyWebControl’s start and end tags,
only the HiItem controls would be in the MyWebControl’s control collection.

Figure 7.6 The rendered output of MyWebControl1 (left). A breakpoint was placed in the
render method; when the break point was reached, the debugger watch window revealed
nonviewable characters in the LiteralControls (right).

Building User Controls and Custom Web Controls 261

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 261

This could be a serious problem, because it is usually preferable to render
only the HiItems and not any text or white space that a user types between the
begin and end tags of the control.

This problem can be solved by adding a filter to ensure that only HiItems are
rendered. The following code shows how this can be accomplished.

Public Class MyWebControl

Inherits System.Web.UI.Control

Private _Items As New ArrayList()

Public Sub AddHiItem(ByVal obj As HiItem)

_Items.Add(obj)

Controls.Add(obj)

End Sub

Public Sub RemoveHiItem(ByVal obj As HiItem)

_Items.Remove(obj)

Controls.Remove(obj)

End Sub

Protected Overrides Sub AddParsedSubObject(ByVal obj As Object)

If TypeOf (obj) Is HiItem Then

_Items.Add(obj)

End If

Controls.Add(Ctype(obj,Control))

End Sub

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

writer.RenderBeginTag(“b”)

Dim c As HiItem

For Each c In Me._Items

writer.WriteLine(“Hi {0}
”, c.UserName)

Next

writer.RenderEndTag()

End Sub

End Class

In the previous code snippet, the AddParsedSubObject method is imple-
mented, which is executed each time that a new control is added to the control
collection via HTML. This allows a filter to be created, which looks for HiItems
and stores them in the _Items collection.

The Render method has been modified to enumerate the controls collection,
looking for only HiItem objects, and to write a Hi message for each UserName.
The browser output (Figure 7.7) shows the Hi message for each user.

The _Items collection is private, but it may be preferable to allow items to be
dynamically added via code. This is done by exposing an AddHiItem and
RemoveHiItem method, which only accept an instance of a HiItem as an argu-
ment, and immediately add the HiItem to both the _Items collection and the
controls collection. Remember that the HiItem must be a member of the con-
trols collection in order to participate in ViewState.

262 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 262

Figure 7.7 The HTML page contents (top) with each item. The browser output for is shown
for the users who were added as HiItems in MyWebControl1 (bottom).

Adding the Custom Control Builder
In the previous example, each one of the HiItem controls was added using the
TagPrefix and the runat=”server” attribute. A custom control builder can be
created to minimize the typing that is required for each of the HiItem controls
that is added. The following HTML represents the minimum typing that is
desired.

<form id=Form1 method=post runat=”server”>

<cc:mywebcontrol id=MyWebControl1 runat=”server”>

<HiItem username=”Glenn” />

<HiItem username=”Sue” />

<HiItem username=”Gary” />

<HiItem username=”Randy” />

</cc:mywebcontrol>

</form>

The control builder is responsible for adding nested controls to the parent’s
control collection. Every control is associated with a default control builder,
but a new control builder can be implemented to help locate the proper data
type of a control based on its HTML tag. The following code shows the imple-
mentation of a custom control builder for the MyWebControl class.

Public Class MyWebControlBuilder

Inherits ControlBuilder

Public Overrides Function GetChildControlType(_

ByVal TagName As String, _

Building User Controls and Custom Web Controls 263

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 263

ByVal Attributes As IDictionary) As Type

If String.Compare(TagName, “hiitem”, True) = 0 Then

Return GetType(HiItem)

End If

Return Nothing

End Function

End Class

<ControlBuilderAttribute(GetType(MyWebControlBuilder))> _

Public Class MyWebControl

Inherits System.Web.UI.Control

‘cool code here from previous examples....

End Class

The custom control builder class is called MyWebControlBuilder and inher-
its from ControlBuilder. This class has a single function called GetChildCon-
trolType, which returns a Type object when the TagName is HiItem (with case
insensitive compare, which means that this method can be called with hiitem
or HIITEM as the first parameter, and the HiItem type will be returned). The
control builder is attached to MyWebControl class by using an attribute. The
end result is that the HTML code is much cleaner.

Raising Events
Often, a custom control contains items, such as buttons, but the exact imple-
mentation of the functionality of the button is not known at design time. Using
events allows the control developer to provide a way to hook into the control,
thereby giving the control much more power than a control that has been pro-
grammed for a single use.

Raising events in the control is as easy as declaring a public event and then
raising the event from a code block. The following code adds a SaidHi event to
the MyWebControl class.

<ControlBuilderAttribute(GetType(MyWebControlBuilder))> _

Public Class MyWebControl

Inherits System.Web.UI.Control

Public Event SaidHi(ByVal UserName As String)

Private _Items As New ArrayList()

Public Sub AddHiItem(ByVal obj As HiItem)

_Items.Add(obj)

Controls.Add(obj)

End Sub

Public Sub RemoveHiItem(ByVal obj As HiItem)

_Items.Remove(obj)

Controls.Remove(obj)

End Sub

264 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 264

Protected Overrides Sub AddParsedSubObject(ByVal obj As Object)

If TypeOf (obj) Is HiItem Then

_Items.Add(obj)

End If

Controls.Add(CType(obj, Control))

End Sub

Protected Overrides Sub Render(_

ByVal writer As System.Web.UI.HtmlTextWriter)

writer.RenderBeginTag(“b”)

Dim c As HiItem

For Each c In Me._Items

writer.WriteLine(“Hi {0}
”, c.UserName)

RaiseEvent SaidHi(CType(c, HiItem).UserName)

Next

writer.RenderEndTag()

End Sub

End Class

When using the control, the code-behind page must have MyWebControl
defined using the WithEvents keyword, or the AddHandler command can be
used to dynamically connect events to event handler methods. The first exam-
ple will use the WithEvents keyword, as follows:

Public Class CustomWebControl

Inherits System.Web.UI.Page

Protected WithEvents ListBox1 As System.Web.UI.WebControls.ListBox

Protected WithEvents MyWebControl1 As Ch07Web.MyWebControl

‘Web Form Designer Generated Code

Private Sub MyWebControl1_SaidHi(ByVal UserName As String) _

Handles MyWebControl1.SaidHi

Response.Write(“* “ & UserName & “ Rendered *
”)

End Sub

End Class

The WithEvents keyword is used when declaring the control. The SaidHi
event is connected to the MyWebControl1_SaidHi method by using Handles
MyWebControl1.SaidHi at the end of the method definition. This code outputs
each name to the browser, using the response.write method as the SaidHi
event is raised (Figure 7.8).

The second example allows the use of the AddHandler command to dynam-
ically attach to a method. This method is useful when controls are created
dynamically and their events must be dynamically attached.

Building User Controls and Custom Web Controls 265

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 265

Figure 7.8 Browser output using the response.write method as the SaidHi event is raised.

Private Sub MyWebControl1_SaidHi(ByVal UserName As String) _

Handles MyWebControl1.SaidHi

Response.Write(“* “ & UserName & “ Rendered *
”)

End Sub

Private Sub CustomWebControl_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim m As MyWebControl

Dim h As HiItem

Dim f As Control = FindControl(“Form1”)

Dim x As Integer

m = New MyWebControl()

AddHandler m.SaidHi, AddressOf MyWebControl1_SaidHi

f.Controls.Add(m)

For x = 1 To 5

h = New HiItem()

m.AddHiItem(h)

If Not IsPostBack Then

h.UserName = “User #” & x.ToString()

End If

Next

End Sub

In this example, an instance of MyWebControl was dynamically created
when the button was clicked. The SaidHi event was attached to the same
method as in the previous example, using the AddHandler command. Five
HiItem controls were added to the custom control.

Retrieving Postback Data
A custom server control has been created based on the information that has
been covered so far. This custom control inherits from System.Web.UI.Control.

266 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 266

The control is a simple TextBox, except that the font is larger. The code for
LargeText is as follows:

Public Class LargeText

Inherits System.Web.UI.Control

Public Property Text() As String

Get

If ViewState(“Text”) Is Nothing Then

Return String.Empty

Else

Return CType(ViewState(“Text”), String)

End If

End Get

Set(ByVal Value As String)

viewstate(“Text”) = Value

End Set

End Property

Protected Overrides Sub render(ByVal w As HtmlTextWriter)

w.AddAttribute(“Name”, Me.UniqueID)

w.AddStyleAttribute(“font-size”, “18pt”)

w.AddAttribute(“value”, Text)

w.RenderBeginTag(“input”)

w.RenderEndTag()

End Sub

End Class

The problem with this control is that the value in the TextBox is not main-
tained between calls to the server. When the Submit button is clicked, the page
posts back to the server, but the response page will have an empty TextBox.

To make a control to handle postback information, the IPostBackDataHan-
dler interface must be implemented, which contains two methods.

LoadPostData. Allows access to the data that is posted back to the server.
This method passes two arguments and returns a Boolean. The first
argument is the post data key, which is a string value containing the ID
of the current object. The second argument is the post collection, which
contains a name value collection of all of the posted data. The return
value that from this function is a Boolean, which is an indicator of
whether the control has changed. This value will be held until all posted
data has been loaded and then the value will be used to execute the
RaisePostDataChangeEvent methods.

RaisePostDataChangedEvent. Raises the changed event for a control.
This method typically contains a line of code that raises an event to indi-
cate that the control has changed.

This following code implements these methods. The LoadPostData method
gets the posted value and compares it to the value that was in ViewState. If the
values are the same, the function returns false, indicating that there is no

Building User Controls and Custom Web Controls 267

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 267

change to the data. If the values are different, the posted value is assigned to
the ViewState value and the function returns true.

Public Class LargeText

Inherits System.Web.UI.Control

Implements IPostBackDataHandler

Public Event TextChanged(ByVal sender As Object, _

ByVal e As EventArgs)

Public Function LoadPostData(ByVal PostDataKey As String, _

ByVal PostCollection As NameValueCollection) As Boolean _

Implements IPostBackDataHandler.LoadPostData

Dim PostedValue As String

PostedValue = PostCollection(Me.UniqueID)

If PostedValue = Text Then

Return False

End If

Text = PostedValue

Return True

End Function

Public Sub RaisePostDataChangedEvent() _

Implements IPostBackDataHandler.RaisePostDataChangedEvent

OnTextChanged(EventArgs.Empty)

End Sub

Protected Sub OnTextChanged(ByVal e As EventArgs)

RaiseEvent TextChanged(Me, e)

End Sub

Public Property Text() As String

Get

If ViewState(“Text”) Is Nothing Then

Return String.Empty

Else

Return CType(ViewState(“Text”), String)

End If

End Get

Set(ByVal Value As String)

viewstate(“Text”) = Value

End Set

End Property

Protected Overrides Sub render(ByVal w As HtmlTextWriter)

w.AddAttribute(“Name”, Me.UniqueID)

w.AddStyleAttribute(“font-size”, “18pt”)

w.AddAttribute(“value”, Text)

w.RenderBeginTag(“input”)

w.RenderEndTag()

End Sub

End Class

The RaisePostedDataChangedEvent method contains a single call to the
OnTextChangedMethod, which then raises the TextChanged event. This event

268 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 268

is now available for use on the Web page. With the addition of the above code,
the control responds to a postback and maintains state across calls to the
server.

Composite Controls
Creating user controls was easier than creating custom Web controls, since
existing controls were used to create the user control and the examples of cre-
ating custom Web controls have been geared around building a control from
scratch. It is possible to create a custom Web control from existing controls as
well. This is known as a composite control.

An example of a composite control might be a LoginControl that has a User-
Name and Password TextBoxes, along with LiteralControls containing the for-
mating, and a Submit button. The following code is an example of adding
many controls to a custom Web control.

Public Class LoginControl

Inherits Control

Implements INamingContainer

Protected Overrides Sub CreateChildControls()

Dim pnl As New Panel()

Dim txtUserName As New TextBox()

Dim txtPassword As New TextBox()

Dim btnSubmit As New Button()

‘start control buildup

Controls.Add(pnl)

‘add user name row

pnl.Controls.Add(New LiteralControl(“<table><tr><td>”))

pnl.Controls.Add(New LiteralControl(“User Name:”))

pnl.Controls.Add(New LiteralControl(“</td><td>”))

pnl.Controls.Add(txtUserName)

pnl.Controls.Add(New LiteralControl(“</td></tr>”))

‘add password row

pnl.Controls.Add(New LiteralControl(“<tr><td>”))

pnl.Controls.Add(New LiteralControl(“Password:”))

pnl.Controls.Add(New LiteralControl(“</td><td>”))

pnl.Controls.Add(txtPassword)

pnl.Controls.Add(New LiteralControl(“</td></tr>”))

‘add submit button row

pnl.Controls.Add(New LiteralControl(_

“<tr><td colspan=””2”” align=””center”” >”))

pnl.Controls.Add(btnSubmit)

pnl.Controls.Add(New LiteralControl(“</td></tr></table>”))

‘set up control properties

pnl.Style.Add(“background-color”, “silver”)

pnl.Style.Add(“width”, “275px”)

Building User Controls and Custom Web Controls 269

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 269

txtUserName.ID = “UserName”

txtUserName.Style.Add(“width”, “170px”)

txtPassword.ID = “Password”

txtPassword.TextMode = TextBoxMode.Password

txtPassword.Style.Add(“width”, “170px”)

btnSubmit.Text = “Submit”

End Sub

End Class

The previous code creates a control hierarchy by adding a Panel control to
the custom Web control and then adding a series of LiteralControls, TextBoxes,
and Button controls in the Panel (Figure 7.9). Placing the controls inside a
Panel control gives the custom Web control an outer HTML div tag on which
to set styles.

Notice that the custom control implements INamingContainer. The INam-
ingContainer is a marking interface, like an indicator, that signifies the start of
a new namespace for controls. This allows the addition of multiple custom
controls to the Web page even though every control may have a UserName
TextBox.

Figure 7.9 The control in Visual Studio .NET designer (left) and rendered in the browser
(right).

270 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 270

Testing this control reveals that the TextBoxes implement their own View-
State and the Button does post back to the server. The problem is that there
doesn’t seem to be an easy way to get to the Text properties of the TextBoxes,
so an event handler method needs to be added for the Button. To get the data
to and from the TextBoxes, the UserName and Password properties are added
to the control. The code is as follows:

Public Sub New()

Me.EnsureChildControls()

End Sub

Public Property UserName() As String

Get

Dim txt As TextBox

txt = CType(Me.FindControl(“UserName”), TextBox)

Return txt.Text

End Get

Set(ByVal Value As String)

Dim txt As TextBox

txt = CType(Me.FindControl(“UserName”), TextBox)

txt.Text = Value

End Set

End Property

Public Property Password() As String

Get

Dim txt As TextBox

txt = CType(Me.FindControl(“Password”), TextBox)

Return txt.Text

End Get

Set(ByVal Value As String)

Dim txt As TextBox

txt = CType(Me.FindControl(“Password”), TextBox)

txt.Text = Value

End Set

End Property

The constructor is added and includes a call to the EnsureChildControls
method. This method starts by checking the ChildControlsCreated property to
see if the child controls have been created yet. If not, a call is made to the Cre-
ateChildControls method. Next, the appropriate TextBox is searched for and
then the Text value either is returned or assigned.

Although it may seem desirable to place the code for the Submit button
inside the custom server control, in many cases the authentication method will
not be known. A better solution is to raise an event to the page, passing the
name and password as arguments. An event has been added to the class called
Login. A new class called LoginEventArgs is created, which includes the User-
Name and Password. The Login event has two arguments, the current object
(Me) and the LoginEventArgs.

Building User Controls and Custom Web Controls 271

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 271

The Submit button’s click has been attached to the SubmitClicked proce-
dure, which calls the OnLogin method, which raises the event. The finished
code looks like the following:

Public Class LoginEventArgs

Inherits EventArgs

Public UserName, Password As String

End Class

Public Class LoginControl

Inherits Control

Implements INamingContainer

Public Event Login(ByVal sender As Object, _

ByVal e As LoginEventArgs)

Protected Sub OnLogin(ByVal e As LoginEventArgs)

RaiseEvent Login(Me, e)

End Sub

Protected Sub SubmitClicked(ByVal sender As Object, _

ByVal e As EventArgs)

Dim args As New LoginEventArgs()

args.UserName = UserName

args.Password = Password

OnLogin(args)

End Sub

Public Sub New()

Me.EnsureChildControls()

End Sub

Public Property UserName() As String

Get

Dim txt As TextBox

txt = CType(Me.FindControl(“UserName”), TextBox)

Return txt.Text

End Get

Set(ByVal Value As String)

Dim txt As TextBox

txt = CType(Me.FindControl(“UserName”), TextBox)

txt.Text = Value

End Set

End Property

Public Property Password() As String

Get

Dim txt As TextBox

txt = CType(Me.FindControl(“Password”), TextBox)

Return txt.Text

End Get

Set(ByVal Value As String)

Dim txt As TextBox

txt = CType(Me.FindControl(“Password”), TextBox)

txt.Text = Value

272 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 272

End Set

End Property

Protected Overrides Sub CreateChildControls()

Dim pnl As New Panel()

Dim txtUserName As New TextBox()

Dim txtPassword As New TextBox()

Dim btnSubmit As New Button()

‘start control buildup

Controls.Add(pnl)

‘add user name row

pnl.Controls.Add(New LiteralControl(“<table><tr><td>”))

pnl.Controls.Add(New LiteralControl(“User Name:”))

pnl.Controls.Add(New LiteralControl(“</td><td>”))

pnl.Controls.Add(txtUserName)

pnl.Controls.Add(New LiteralControl(“</td></tr>”))

‘add password row

pnl.Controls.Add(New LiteralControl(“<tr><td>”))

pnl.Controls.Add(New LiteralControl(“Password:”))

pnl.Controls.Add(New LiteralControl(“</td><td>”))

pnl.Controls.Add(txtPassword)

pnl.Controls.Add(New LiteralControl(“</td></tr>”))

‘add submit button row

pnl.Controls.Add(New LiteralControl(_

“<tr><td colspan=””2”” align=””center”” >”))

pnl.Controls.Add(btnSubmit)

pnl.Controls.Add(New LiteralControl(“</td></tr></table>”))

‘set up control properties

pnl.Style.Add(“background-color”, “silver”)

pnl.Style.Add(“width”, “275px”)

txtUserName.ID = “UserName”

txtUserName.Style.Add(“width”, “170px”)

txtPassword.ID = “Password”

txtPassword.TextMode = TextBoxMode.Password

txtPassword.Style.Add(“width”, “170px”)

btnSubmit.Text = “Submit”

AddHandler btnSubmit.Click, AddressOf Me.SubmitClicked

End Sub

End Class

Accessing the custom server control is rather easy. In fact, Figure 7.10 shows
that a rendered version of the control is showing now that the constructor has
added the call to EnsureChildControls. The following code shows the code-
behind page programming of the Login event method.

Public Class LoginFormTest

Inherits System.Web.UI.Page

Protected WithEvents LoginControl1 As Ch07Web.LoginControl

‘ Web Form Designer Generated Code

Building User Controls and Custom Web Controls 273

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 273

Private Sub LoginControl1_Login(ByVal sender As Object, _

ByVal e As Ch07Web.LoginEventArgs) Handles LoginControl1.Login

If e.UserName = “Glenn” And e.Password = “1234” Then

Response.Write(“Success”)

Else

Response.Write(“Denied”)

End If

End Sub

End Class

Inheriting from Existing Controls
Rather than reinventing the wheel every time a new custom server control is
required, it is often much preferable to inherit from an existing control. Inher-
iting from an exiting control allows the new control to receive the benefits of
the base control while being able to add new features.

The following code takes the Login control one more step. Instead of inher-
iting from Control, the Login control is now inheriting from WebControl. The
WebControl class is a base class to most of the Web server controls. By using
this class, the new Login control can be dynamically positioned on the screen
and can take advantage of many of the properties that the WebControl
exposes.

Figure 7.10 The rendered control in the Visual Studio .NET designer (left) and the
successful handling of the Login event (right).

274 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 274

Public Class LoginPanel

Inherits WebControl

Implements INamingContainer

Public Event Login(ByVal sender As Object, _

ByVal e As LoginEventArgs)

Protected Sub OnLogin(ByVal e As LoginEventArgs)

RaiseEvent Login(Me, e)

End Sub

Protected Sub SubmitClicked(ByVal sender As Object, _

ByVal e As EventArgs)

Dim args As New LoginEventArgs()

args.UserName = UserName

args.Password = Password

OnLogin(args)

End Sub

Public Sub New()

Me.EnsureChildControls()

End Sub

Public Property UserName() As String

Get

Dim txt As TextBox

txt = CType(Me.FindControl(“UserName”), TextBox)

Return txt.Text

End Get

Set(ByVal Value As String)

Dim txt As TextBox

txt = CType(Me.FindControl(“UserName”), TextBox)

txt.Text = Value

End Set

End Property

Public Property Password() As String

Get

Dim txt As TextBox

txt = CType(Me.FindControl(“Password”), TextBox)

Return txt.Text

End Get

Set(ByVal Value As String)

Dim txt As TextBox

txt = CType(Me.FindControl(“Password”), TextBox)

txt.Text = Value

End Set

End Property

Protected Overrides Sub CreateChildControls()

Dim pnl As WebControl = Me

Dim txtUserName As New TextBox()

Dim txtPassword As New TextBox()

Dim btnSubmit As New Button()

‘start control buildup

‘add username row

Building User Controls and Custom Web Controls 275

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 275

pnl.Controls.Add(New LiteralControl(“<table><tr><td>”))

pnl.Controls.Add(New LiteralControl(“User Name:”))

pnl.Controls.Add(New LiteralControl(“</td><td>”))

pnl.Controls.Add(txtUserName)

pnl.Controls.Add(New LiteralControl(“</td></tr>”))

‘add password row

pnl.Controls.Add(New LiteralControl(“<tr><td>”))

pnl.Controls.Add(New LiteralControl(“Password:”))

pnl.Controls.Add(New LiteralControl(“</td><td>”))

pnl.Controls.Add(txtPassword)

pnl.Controls.Add(New LiteralControl(“</td></tr>”))

‘add submit button row

pnl.Controls.Add(New LiteralControl(_

“<tr><td colspan=””2”” align=””center”” >”))

pnl.Controls.Add(btnSubmit)

pnl.Controls.Add(New LiteralControl(“</td></tr></table>”))

‘set up control properties

txtUserName.ID = “UserName”

txtUserName.Style.Add(“width”, “170px”)

txtPassword.ID = “Password”

txtPassword.TextMode = TextBoxMode.Password

txtPassword.Style.Add(“width”, “170px”)

btnSubmit.Text = “Submit”

AddHandler btnSubmit.Click, AddressOf Me.SubmitClicked

End Sub

End Class

Besides inheriting from WebControl, the CreateChildControls method was
reworked. The variable called pnl now points to Me and is no longer being
added to the controls collection in the Start control buildup section. Also, in the
set up control properties section, no style attributes are assigned to pnl, since
they are settable from the Visual Studio .NET designer (Figure 7.11).

Another example of inheriting from an existing control occurs when it is
preferable to set up a control like the DataGrid with many default setting. The
following code shows an example of a new custom control called Default-
DataGrid, which inherits from DataGrid. It has many default settings in the
constructor.

Public Class DefaultDataGrid

Inherits DataGrid

Public Sub New()

‘general settings

BorderStyle = BorderStyle.Ridge

BorderColor = Color.White

CellSpacing = 1

BorderWidth = New Unit(4, UnitType.Pixel)

BackColor = Color.Black

CellPadding = 3

GridLines = GridLines.None

Width = New Unit(425, UnitType.Pixel)

276 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 276

AllowPaging = True

Height = New Unit(300, UnitType.Pixel)

‘selected items

SelectedItemStyle.BackColor = Color.FromArgb(&H94, &H71, &HDE)

SelectedItemStyle.Font.Bold = True

SelectedItemStyle.ForeColor = Color.White

‘alternating items

AlternatingItemStyle.BackColor = Color.Silver

‘items

ItemStyle.ForeColor = Color.Black

ItemStyle.BackColor = Color.FromArgb(&HE0, &HE0, &HE0)

‘header

HeaderStyle.Font.Bold = True

HeaderStyle.ForeColor = Color.FromArgb(&HE7, &HE7, &HFF)

HeaderStyle.BackColor = Color.FromArgb(&H4A, &H3C, &H8C)

‘footer

FooterStyle.ForeColor = Color.Black

FooterStyle.BackColor = Color.FromArgb(&HC6, &HC3, &HC6)

‘pager

PagerStyle.HorizontalAlign = HorizontalAlign.Right

PagerStyle.ForeColor = Color.Black

PagerStyle.BackColor = Color.FromArgb(&HC6, &HC3, &HC6)

PagerStyle.Mode = PagerMode.NumericPages

End Sub

End Class

The DefaultDataGrid is initialized with the settings in the constructor. Fig-
ure 7.12 shows the DefaultDataGrid when it is placed on the Web page in the
Visual Studio .NET Designer.

Figure 7.11 The Login custom control (left) can be dynamically positioned and has many
more properties (right).

Building User Controls and Custom Web Controls 277

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 277

Figure 7.12 The DefaultDataGrid placed in the Web page.

Lab 7.1: User Control

In this lab, you will create a user control that can be used as a page banner for
your Web pages. After that, you will convert a Web Form to a user control.

Creating a User Control
In this section, you will create a banner user control. This control will con-
tain a Label with your company name. This user control will be dropped
onto every page that requires a banner.

1. Open the OrderEntrySolution from Lab 6.1.

2. Right-click the OrderEntrySolution in the Solution Explorer, and
click Check Out. This will check out the complete solution.

3. Right-click the Inventory project in the Solution Explorer, and click
Set As StartUp Project.

4. Right-click the Inventory project and click Add, Add Web User Con-
trol. Name the control Banner.ascx.

5. Type Welcome to My Home Page directly on the user control. Note
that the layout is set to FlowLayout by default, which allows text to
be typed onto the control.

278 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 278

6. Use your mouse to select all the banner text, and then click Format,
Justify, Center.

7. While the text is still selected, change the font to Arial and the font
size to 6.

8. Close the user control.

9. Save your work.

Test the user control by placing it on a Web page and viewing the page.
In this section of the lab, you will add the user control to the Pro-
ductList.asp page and view the result.

1. Open the ProductList.aspx page from the Inventory project.

2. Right-click the page, click Properties, and change the Page Layout to
FlowLayout.

3. Move the DataGrid a bit with the mouse. When the mouse button is
released, the DataGrid will snap into FlowLayout mode.

4. From the Solution Explorer, drag the Banner.ascx and drop it onto
the ProductList.aspx page. The result should appear as shown in
Figure 7.13.

5. Save your work.

Figure 7.13 The Visual Studio .NET Designer with the banner user control (left) and the
output when rendered in the browser (right).

Building User Controls and Custom Web Controls 279

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 279

Creating a User Control from a Web Form
In this section, you will create a copy of the NewCustomer.aspx page,
and convert the copy to a user control.

1. Right-click the NewCustomer.aspx page in the Customer project
and click Copy.

2. Right-click the customer project and click Paste. This creates a copy
of the NewCustomer.aspx page to a page called Copy Of NewCus-
tomer.aspx.

3. Right-click the copy and click Rename. Rename the page to New-
CustomerControl.ascx. Click Yes to accept the warning message.

4. Double-click the NewCustomerControl.ascx file to open it in the
Visual Studio .NET designer.

5. Click the HTML tab to reveal the HTML of the page. There are sev-
eral changes that need to be done to convert this Web Form into a
user control.

6. Change the first line from a Page directive to a Control directive.
Change the code-behind page to NewCustomerControl.ascx
.vb. Change the inherits class need to Customer.NewCustomer
Control.
<%@ Control Language=”vb” AutoEventWireup=”false”

Codebehind=”NewCustomerControl.ascx.vb”

Inherits=”Customer.NewCustomerControl”%>

7. The user control is not allowed to have a form server control. Delete
all of the HTML from line 2 to the the form server control, including
the form server control.

8. At the bottom of the file, delete the closing form tag and everything
after it. Your code should look like the following (though you may
have different state codes).
<%@ Control Language=”vb” AutoEventWireup=”false”

Codebehind=”NewCustomerControl.ascx.vb”

Inherits=”Customer.NewCustomerControl”%>

<asp:label id=”lblCustomer”

style=”Z-INDEX: 103; LEFT: 50px; POSITION: absolute; TOP: 45px”

runat=”server”>

Customer Name

</asp:label>

<asp:textbox id=”txtCustomerName”

style=”Z-INDEX: 101; LEFT: 170px; POSITION: absolute; TOP: 45px”

runat=”server” Width=”300px”>

</asp:textbox>

<asp:label id=”lblAddress”

style=”Z-INDEX: 104; LEFT: 50px; POSITION: absolute; TOP: 75px”

280 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 280

runat=”server”>

Address

</asp:label>

<asp:textbox id=”txtAddress1”

style=”Z-INDEX: 102; LEFT: 170px; POSITION: absolute; TOP: 75px”

runat=”server” Width=”300px”>

</asp:textbox>

<asp:textbox id=”txtAddress2”

style=”Z-INDEX: 111; LEFT: 170px; POSITION: absolute; TOP: 105px”

runat=”server” Width=”300px”>

</asp:textbox>

<asp:label id=”lblCity”

style=”Z-INDEX: 106; LEFT: 20px; POSITION: absolute; TOP: 135px”

runat=”server”>

City

</asp:label>

<asp:textbox id=”txtCity”

style=”Z-INDEX: 105; LEFT: 55px; POSITION: absolute; TOP: 135px”

runat=”server” Width=”150px”>

</asp:textbox>

<asp:label id=”lblState”

style=”Z-INDEX: 107; LEFT: 266px; POSITION: absolute; TOP: 135px”

runat=”server”>

State

</asp:label>

<asp:dropdownlist id=”drpState”

style=”Z-INDEX: 110; LEFT: 314px; POSITION: absolute; TOP: 135px”

runat=”server” Width=”75px”>

<asp:ListItem></asp:ListItem>

<asp:ListItem Value=”AK”>AK</asp:ListItem>

<asp:ListItem Value=”AL”>AL</asp:ListItem>

<asp:ListItem Value=”AR”>AR</asp:ListItem>

<asp:ListItem Value=”AZ”>AZ</asp:ListItem>

</asp:dropdownlist>

<asp:label id=”lblZipCode”

style=”Z-INDEX: 108; LEFT: 455px; POSITION: absolute; TOP: 136px”

runat=”server”>

Zip

</asp:label>

<asp:textbox id=”txtZipCode”

style=”Z-INDEX: 109; LEFT: 487px; POSITION: absolute; TOP: 134px”

runat=”server” Width=”100px”>

</asp:textbox>

<asp:Button id=”btnAddCustomer”

style=”Z-INDEX: 112; LEFT: 183px; POSITION: absolute; TOP: 177px”

runat=”server” Text=”Add Customer”>

</asp:Button>

<asp:Label id=”lblConfirmation”

style=”Z-INDEX: 113; LEFT: 52px; POSITION: absolute; TOP: 215px”

Building User Controls and Custom Web Controls 281

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 281

runat=”server” Width=”520px” Height=”75px”>

</asp:Label>

<asp:RequiredFieldValidator id=valReqCustomerName

style=”Z-INDEX: 114; LEFT: 480px; POSITION: absolute; TOP: 48px”

runat=”server” ErrorMessage=”Customer Name is Required”

ToolTip=”Customer Name is Required”

controltovalidate=”txtCustomerName”>Error</asp:RequiredFieldValid

ator>

<asp:RequiredFieldValidator id=valReqAddress1

style=”Z-INDEX: 115; LEFT: 483px; POSITION: absolute; TOP: 80px”

runat=”server” ErrorMessage=”Address Line 1 is Required”

ToolTip=”Address Line 1 is Required”

controltovalidate=”txtAddress1”>Error</asp:RequiredFieldValidator

>

<asp:RequiredFieldValidator id=valReqCity

style=”Z-INDEX: 116; LEFT: 213px; POSITION: absolute; TOP: 136px”

runat=”server” ErrorMessage=”City is Required”

ToolTip=”City is Required” controltovalidate=”txtCity”>

Error</asp:RequiredFieldValidator>

<asp:RequiredFieldValidator id=valReqState

style=”Z-INDEX: 117; LEFT: 398px; POSITION: absolute; TOP: 138px”

runat=”server” ErrorMessage=”State is Required”

ToolTip=”State is Required”

controltovalidate=”drpState”>Error</asp:RequiredFieldValidator>

<asp:RequiredFieldValidator id=valReqZipCode

style=”Z-INDEX: 118; LEFT: 597px; POSITION: absolute; TOP: 136px”

runat=”server” ErrorMessage=”Zip Code is Required”

ToolTip=”Zip Code is Required” controltovalidate=”txtZipCode”

enableclientscript=”False”>Error</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator id=valExpZipCode

style=”Z-INDEX: 119; LEFT: 597px; POSITION: absolute; TOP: 136px”

runat=”server” ErrorMessage=”Zip Code Must be 99999 or

99999-9999”

tooltip=”Zip Code Must be 99999 or 99999-9999”

validationexpression=”\d{5}(-\d{4})?”

controltovalidate=”txtZipCode”

enableclientscript=”False”>Error</asp:RegularExpressionValidator>

<asp:Button id=btnCancel

style=”Z-INDEX: 120; LEFT: 345px; POSITION: absolute; TOP: 177px”

runat=”server” Width=”121px” Text=”Cancel”

CausesValidation=”False”></asp:Button>

<asp:ValidationSummary id=valSummary

style=”Z-INDEX: 121; LEFT: 245px; POSITION: absolute; TOP: 307px”

runat=”server” Width=”164px” Height=”21px”

ShowMessageBox=”True”

ShowSummary=”False”></asp:ValidationSummary>

9. Close and save the file.

10. Open the code-behind page by double-clicking the NewCustomer-
Contol.ascx.vb file.

282 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 282

11. Change the name of the class on the first line to NewCustomControl
and change this class to inherit from UserControl, as follows:
Public Class NewCustomerControl

Inherits System.Web.UI.UserControl

12. Close and save the code-behind page.

Test the user control by placing it on a Web page and viewing the page.
Here’s how you can add the user control to a new page called AddCus-
tomer.aspx and view the result:

1. Right-click the Customer project in the Solution Explorer, and click
Set As StartUp Project.

2. Right-click the the Customer project, click Add, New Web Form,
and name the new page AddCustomer.aspx.

3. Add a Label control to the top of the page. Change its Text property
to Enter New Customer Information.

4. Add a Panel control under the Label control. The Panel will hold a
NewCustomerControl. Make the size of the Panel large enough for
the rendered size of the NewCustomerControl.

5. From the Solution Explorer, drag the NewCustomerControl, and drop
it onto the Panel. The result should appear as shown in Figure 7.14.

Figure 7.14 The Visual Studio .NET designer with the Label, Panel, and NewCustomer
Control added.

Building User Controls and Custom Web Controls 283

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 283

6. Right-click the AddCustomer.aspx page in the Solution Explorer,
and click Set as Start Page.

7. Save your work.

8. Start the Web application. Test the NewCustomerControl by creat-
ing errors to verify that the Validator controls are functioning prop-
erly. Figure 7.15 shows the completed page with the validators
functioning properly.

Figure 7.15 The completed AddCustomer.aspx page.

9. Check your work back into Visual SourceSafe.

Summary

■■ This chapter covered many aspects of creating user controls. A user
control is similar to a Web page, where it is container for other controls.
The difference between a user control and a Web page is that the user
control must be placed on a Web page.

■■ User control data can be accessed by creating public properties on the
user control.

284 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 284

■■ A user control can be positioned on a Web page that is configured for
GridLayout by adding a Panel, positioning the Panel, and then adding
the user control into the Panel.

■■ The Page’s LoadControl method may be used to dynamically load a
user control.

■■ Custom Web server controls may be created by having them inherit
from System.Web.UI.Control, which allows you to create a control from
scratch.

■■ Custom Web server controls may be created by combining existing
controls.

■■ Custom Web server controls may be created by having them inherit
from System.Web.UI.WebControls.WebControl, which gives the control
much more built-in functionality. This allows the control to be dynami-
cally positioned on a Web page that is set for GridLayout.

Building User Controls and Custom Web Controls 285

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 285

Review Questions

1. What is the file extension for a user control? Why is this important?

2. What is the command to dynamically load a user control?

3. How can a user control be positioned on a page with FlowLayout?

4. How can a user control be positioned on a page with GridLayout?

286 Chapter 7

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 286

Answers to Review Questions

1. .ascx. ASP.NET does not allow an .ascx file to be retrieved by itself. The .ascx file must
be part of a Web Form.

2. Page.LoadControl.

3. Any of the traditional methods of positioning can be used, such as placing the user
control inside a table cell.

4. The user control can be placed inside a Panel control.

Building User Controls and Custom Web Controls 287

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 287

i 430234 Ch07.qxd 7/1/03 9:01 AM Page 288

289

Previous chapters covered many of the basic elements of Visual Studio .NET,
the .NET Framework, ASP.NET Web Forms, and controls. These chapters were
intended to provide enough of a .NET foundation to get to the core of most
applications: data access.

Data access is an important factor in most ASP.NET applications. The .NET
Framework includes ADO.NET, which provides access to data in many loca-
tions. ADO.NET is not just another version of ADO; it represents a complete
paradigm shift in data retrieval and manipulation.

ADO.NET is a set of classes to work with data. ADO.NET supports unstruc-
tured, structured, hierarchical, and relational data storage, which allows
access to data wherever it is. It has a consistent object model, so learning how
to retrieve and manipulate data in one data source is similar to working with
most other data sources.

Many companies have already embraced XML in some form. Being able to
integrate XML data was a primary design constraint of ADO.NET. Integration
between ADO.NET and XML is done at with many levels, with ADO.NET
being able to use many of the XML classes that are built into the .NET Frame-
work. This allows for seamless use of ADO.NET to read and write XML data.

Data Access with ADO.NET

C H A P T E R

8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 289

This chapter starts by comparing connected and disconnected data, and then
covers the primary ADO.NET objects, looking at many details and examples.
After covering the objects, this chapter covers different methods of performing
data manipulation, sorting, and filtering using the DataGrid control.

Classroom Q & A
Q: Is it possible to load and save data as XML using ADO.NET?
A: Absolutely. ADO.NET represents a major change to ADO; ADO.NET

is much more XML-centric than past versions of ADO.

Q: I heard that ADO.NET is focused on disconnected data. Is there a
way to get connected data?

A: Yes. ADO.NET is indeed focused around disconnected data, but
ADO.NET has limited support for connected data via a read-only,
forward-only result set. This will be covered in more detail in this
chapter.

Q: Can the DataGrid be used to add, delete, and edit the data?
A: Yes. This chapter will take a close look the DataGrid in detail, and

you will see how the DataGrid can give you everything you’re look-
ing for.

Connected versus Disconnected Data

Previous versions of ADO were connection-centric, meaning that most of the
data functionality was exposed via a maintained connection to the database.
ADO supported disconnected recordsets and Remote Data Objects (RDO), but
this certainly was not the focus of ADO.

One problem that is associated with connected data is that any data that is
accessed will potentially create locks on rows in the database. Depending on
the type of lock, user access to a given row may be paused while waiting for a
lock to free up. Row locking at the database can be the cause of many perfor-
mance and scalability problems.

ADO.NET is a disconnected-data-centric. Disconnected data retrieves the
data from the data store and then closes the connection. One advantage of this
model is that the data can be downloaded to the client, the connection can be
closed, and the user can work with the data while offline. Updates can be sent
back to the server when appropriate.

290 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 290

One of the problems with working with disconnected data is that changes
can be made to the data from multiple locations at the same time, and when it
comes time to update the data at the data store, concurrency errors may take
place. ADO.NET provides the ability to deal with concurrency issues in a clean
fashion.

ADO.NET Data Providers

A data provider supplies a bridge from the application to the data source. Think
of the data provider as a set of drivers that are specific to a data store. Different
providers include those discussed in the following subsections.

SQL Data Provider
The SQL Server .NET data provider contains classes that provide functionality
that is similar to the generic OleDb data provider, but these classes are tuned
for SQL Server data access. Although the OleDb data provider can be used to
access SQL Server, the SQL data provider is the recommended data provider
for SQL Server 7.0+ data access. The prefix for SQL provider objects is Sql, so a
connection is a SqlConnection class.

OleDb Data Provider
The OleDb data provider contains classes for general-purpose access to many
data sources, such as SQL Server 6.5 and earlier, Oracle, SyBase, DB2/400, and
Microsoft Access. The prefix for OleDb provider objects is OleDb, so a connec-
tion is an OleDbConnection class.

Odbc Data Provider
The Odbc data provider contains classes for access to SQL Server, Oracle, and
Access. The ODBC provider is available via free download from the Microsoft
Solution Developer Network (MSDN) Web site at http://msdn.microsoft.com/
downloads/sample.asp?url=/msdn-files/027/001/668/msdncompositedoc.xml.

To use ODBC, download and install the ODBC provider, and then add a ref-
erence to the Microsoft.Data.ODBC.dll file. The prefix for ODBC provider
objects is Odbc, so a connection is an OdbcConnection class.

Oracle Data Provider
The Oracle data provider contains classes for access to Oracle 8i+ database
servers. The Oracle provider is available for free download from the

Data Access with ADO.NET 291

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 291

MSDN Web site at http://msdn.microsoft.com/downloads/sample.asp?url=/
MSDN-FILES/ 027/001/940/msdncompositedoc.xml.

To use the Oracle data provider, download and install the provider and add
a reference to the System.Data.OracleClient.dll file. The prefix for Oracle
provider is Oracle, so a conection is an OracleConnection.

ADO.NET Data Namespaces

The .NET Framework is divided into logical namespaces. ADO.NET has its
own logical namespaces and extends some of the existing .NET Framework
namespaces. Table 8.1 lists most of the available ADO.NET namespaces.

When working with these namespaces, a reference must be set to the Sys-
tem.Data.dll file and any data provider .dll files. In addition, using the Imports
statement as follows can save typing.

Imports System.Data

Imports System.Data.SqlClient

Table 8.1 ADO.NET Namespaces

NAMESPACE DESCRIPTION

System.Data Provides the main namespace for ADO.NET, which
contains many of the primary data classes.

System.Data.Common Contains many utility and helper classes that are
primarily used by data provider developers.

System.Data.SqlClient Contains the SQL Server specific classes for the SQL
Server .NET data provider.

System.Data.OleDb Contains the OleDb specific classes for the OleDb
.NET data provider, which provides access to OleDb
specific data sources.

System.Data.SqlTypes Provides SQL Server classes that are native to SQL
Server. Explicitly creating instances of these classes
when accessing SQL results in faster and cleaner
code.

System.Xml Provides standards-based support for accessing and
modifying XML data.

Microsoft.Data.ODBC Provides the classes for ODBC specific data access,
which allows ODBC access to SQL Server, Oracle,
and Access.

System.Data.OracleClient Provides the classes for Oracle specific data access.

292 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 292

Primary Data Objects

Several primary data objects are covered in this section. Some of the primary
objects are provider specific, while others are not provider specific. The
provider-specific data objects, regardless of the provider, provide a core set of
functionality, which will be covered in this section.

Provider-Specific Data Objects
The following data objects are provider specific: the Connection, DataAdapter,
Command, Parameter, CommandBuilder, and the DataReader. This means
that these objects will have a provider prefix. For example, the SQL Server
objects have a SQL prefix, while the OleDb objects have an OleDb prefix.
Provider-specific objects are tweaked for that provider, although the objects
essentially provide the same functionality.

Most of the examples in this section are done with SQL Server using
the SQL Server data provider, but the examples can be converted to a
different provider by simply changing the provider prefix of the data
objects and the connection string.

Connection

The connection is required to access data in a data store. The connection
requires a connection string, which is a list of settings for the connection. Con-
nection strings typically identify the name of the computer that has the data
store, the user name and password to connect to the data store, and the name
of the data store. Additional settings that may be available depending on the
type of data store are connection pooling, integrated security, packed size, and
protocol.

Connection Security

Connecting to a data store usually requires security information of some sort,
depending on the data store that is being accessed. When SQL Server is
installed, it can be set up to use either Windows Authentication or Mixed Mode
security. The default setting on SQL Server 2000+ is Windows Authentication.

With Windows Authentication, the SQL Server verifies that the user is
authenticated based on the user’s Windows login name as well as the Win-
dows groups that the user is a member of. There is no separate login to get into
SQL Server. Windows Authentication is more secure than Mixed Mode. Win-
dow Authentication is also referred to as Trusted Security and Integrated
Security.

Data Access with ADO.NET 293

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 293

Mixed Mode, which is the default for SQL Server 7 and earlier, is available
for situations where SQL Server will be accessed by users who do not have
Windows networking accounts. The users who may not have a Windows net-
working account includes users who are accessing a non-Microsoft network,
such as Novell NetWare. This also includes users who are running SQL Server
in a workgroup environment. In situations like this, SQL Server maintains its
own list of login names and passwords.

In Mixed Mode, SQL Server still allows users to connect using Windows
Authentications. Windows Authentication cannot be turned off manually, but it
will be off in situations where SQL Server is installed on a Windows 98 or Win-
dow ME operating system, which has no support for Windows Authentication.

ConnectionString

Coming up with a ConnectionString can be the hardest task to accomplish
when accessing a data store. The ConnectionString contains the settings for the
connection that will be opened to the data store. Every data store supports dif-
ferent settings but Table 8.2 names the more common settings.

Table 8.2 Typical Connection String Settings

SETTING DESCRIPTION

Provider (OleDb provider only) Contains the name of the provider
that will be used. Think of the provider as the driver for
the data store.

Connection Timeout Number of seconds to wait for a connection to the data
or Connect Timeout store before terminating the attempt for a connection

and throwing an exception.

Initial Catalog The name of the database.

Data Source The name of the computer to be used when accessing
data, or the Microsoft Access database full filename.

User ID The user name for authentication.

Password The password for authentication.

Integrated Security or Indicates that the connection will use Windows
Trusted Connection Authentication instead of Mide Mode security. Possible

values are true, false, and SSPI (SSPI is true).

Persist Security Info When set to false, the password and other security
information will not be returned as part of the connection
if the connection is open or has ever been in an open
state. Default is false.

294 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 294

Although there are many ConnectionString options, a connection may be
created by using just a couple of these settings. ConnectionStrings are created
by concatenating the name and value settings together, separated by a semi-
colon. ConnectionsStrings typically are not case sensitive. Although spaces are
supposed to be ignored, it is usually preferable to eliminate all spaces except
the space that may be included in some setting names, such as User ID and
Workstation ID. Some valid Connection strings follow:

‘Microsoft Access connection

Dim cnstr as string = “Provider=Microsoft.Jet.OLEDB.4.0;”

cnstr &= “Data Source=C:\Samples\northwind.mdb”

This connects to the Microsoft Access database that is located at C:\Samples\
northwind.mdb if security has not been enabled on this database.

‘Microsoft Access connection

Dim cnstr as string = “Provider=Microsoft.Jet.OLEDB.4.0;”

cnstr &= “Data Source=C:\mypath\nowind.mdb;”

cnstr &= “user id=admin;password=hello”

This connects to the Microsoft Access database that is located at c:\mypath\
nowind.mdb with the user name of admin and a password of hello.

‘Excel spreadsheet

Dim cnstr as string = “Provider=Microsoft.Jet.OLEDB.4.0;”

cnstr &= “Data Source=C:\MyExcel.xls;Extended Properties=Excel 8.0;”

cnstr &= “HDR=yes”

This connects to an Excel spreadsheet using OleDb. The HDR=yes indicates
that the first row contains column names of the data.

In addition to the connection settings listed in Table 8.2, the SQL Server
provider offers the additional settings shown in Table 8.3.

As mentioned earlier in this chapter, it is usually preferable to eliminate all
spaces except the space that may be included in some setting names, such as
User ID and Workstation ID. Some valid SQL Connection strings are as follows:

‘Sql Server

Dim cnstr as string = “integrated security=true;database=northwind”

This connects to the default instance of SQL Server on the local computer
using Windows Authentication connecting to the northwind database.

‘Sql Server

Dim cnstr as string = “server=remoteComputer;”

cnstr &= “integrated security=true;database=pubs”

Data Access with ADO.NET 295

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 295

Table 8.3 SQL Server Provider ConnectionString Settings

SQL SERVER SETTING DEFAULT DESCRIPTION

Application Name or App .Net SqlClient The name of the current
Data Provider application. This is primarily used

for logging. If the value is assigned,
SQL Server uses this as the name
of the process when querying SQL
server for active connections
(sp_who2 or “Select * from
master.dbo.sysprocesses”).

Connect Timeout, 15 Number of seconds to wait for a
Connection Timeout connection to the data store before
or Timeout terminating the attempt for a

connection and throwing an
exception.

Connection Lifetime 0 Used to determine whether a
connection should be destroyed.
When a connection is returned
to the pool, its creation time is
compared with the current time
and the connection is destroyed
if that time span (in seconds)
exceeds the value specified by
connection lifetime. This option
can be useful in clustered
configurations to force load
balancing between a running server
and a server just brought online.

Connection Reset true Determines whether the database
connection is reset when being
removed from the pool. Setting
this to false avoids the making of
an additional server round trip
when obtaining a connection, but
the programmer must be aware
that the connection state is not
being reset.

Current Language The SQL Server Language record
name.

296 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 296

Table 8.3 (continued)

SQL SERVER SETTING DEFAULT DESCRIPTION

Data Source, Server, The name or network address
Address, Addr, or of the instance of SQL Server to
Network Address which to connect. This setting may

also contain the instance name
when attempting to connect to a
nondefault instance of SQL Server.
When empty, this will connect to
the default instance of the local
SQL Server. Can also be set to “.”
(period), “(local),” or “localhost” to
select the local machine.

Enlist true When true, the pooler automatically
enlists the connection in the creation
thread’s current transaction context.

Encrypt false Set the communications method
to encrypted.

Initial FileName, The full pathname of the primary file
Extended Properties, of an attachable database. If this
or AttachDBFileName setting is specified, the Database or

Initial Catalog setting must also be
specified.

OLE DB Services Set this to -4 to disable the
automatic pooling of connections.

Initial Catalog or Database The name of the database.

Integrated Security false Whether the connection is a secure
or Trusted_Connection connection.

Max Pool Size 100 The maximum number of
connections allowed in the pool.

Min Pool Size 0 The minimum number of
connections allowed in the pool.

Network Library or Net ‘dbmssocn’ The network library used to
establish a connection to an
instance of SQL Server. The default
value, dbnssocn, specifies TCP/IP.
Other values include dbnmpntw
(Named Pipes), dbmsrpcn
(Multiprotocol), dbmsadsn (Apple
Talk), dbmsgnet (VIA), dbmsipcn
(Shared Memory), and dbmsspxn
(IPX/SPX). The corresponding
network DLL must be installed on
the system to which you connect.

(continued)

Data Access with ADO.NET 297

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 297

Table 8.3 (continued)

SQL SERVER SETTING DEFAULT DESCRIPTION

Packet Size 8192 Size in bytes of the network
packets used to communicate with
an instance of SQL Server.

Persist Security Info false When set to false, security-sensitive
or PersistSecurityInfo information, such as the password,

is not returned as part of the
connection if the connection is
open or has ever been in an open
state. Resetting the connection
string resets all connection string
values, including the password.

Pooling true When true, the SQLConnection
object is drawn from the
appropriate pool, or if necessary
is created and added to the
appropriate pool.

Password or Pwd User’s password.

User ID or Uid The SQL Server Mixed Mode login
account to use.

Workstation ID or Wsid Local The name of the workstation
computer name connecting to SQL Server.

This connects to the default instance of SQL Server on a computer called
remoteComputer using Windows Authentication and connecting to the pubs
database.

‘Sql Server

Dim cnstr as string = “server=remoteComputer;”

cnstr &= “user id=glenn;password=hello;database=pubs”

This connects to the default instance of SQL Server on a computer called
remoteComputer using a SQL Server account called glenn with a password of
hello and connecting to the pubs database.

‘Sql Server

Dim cnstr as string = “server=.;”

Cnstr &= “timeout=30;”

cnstr &= “uid=glenn;pwd=hello;database=pubs”

This connects to the default instance of SQL Server on the local computer
using a SQL Server account called glenn with a password of hello and con-
necting to the pubs database with a connection timeout of 30 seconds.

298 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 298

‘Sql Server

Dim cnstr as string = “server=GJ\PortalSite;”

cnstr &= “integrated security=true;database=portal”

This connects to the PortalSite instance of SQL Server on a computer called
GJ using a SQL Server Windows Authentication and connecting to the portal
database.

Creating, Opening, Closing, and Destroying a Connection

In the previous section, many ConnectionString samples were presented. Now
it’s time to create and open a connection. A connection can be created as
follows:

Dim cnstr as string = “integrated security=true;database=northwind”

Dim cn as new SqlConnection(cnstr)

cn.Open()

‘Do lots of data access here.

cn.Close()

‘can be reopened and closed here

cn.Dispose()

cn=nothing

The first lines of code create a SqlConnection object using the specified
ConnectionString and then open the connection. The ConnectionString could
have been assign by using the ConnectionString property of cn as well.

After the connection has been opened, many commands may be executed
over the connection. When finished, the connection can be closed, disposed,
and assigned to nothing. See the accompanying Close versus Dispose sidebar for
related details.

Exception Handling

When working with connection objects, it is usually advisable to place their
code into an exception handling routine, since breaks in communication can
cause application crashes. The previous code has been modified to reflect
changes to handle any error that may occur, as follows:

Dim cn As New SqlConnection()

Dim cnstr as string = _

“server=asd;integrated security=yes;database=northwind”

Try

cn.ConnectionString = cnstr

cn.Open() ‘Try to connect to nonexistent server.

‘lots of data access stuff here

Catch ex As SqlException

Dim myErrors As SqlErrorCollection = ex.Errors

Dim eItem As SqlError

For Each eItem In myErrors

Data Access with ADO.NET 299

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 299

Response.Write(_

String.Format(“Class: {0}
”, eItem.Class))

Response.Write(_

String.Format(_

“Error #{0}: {1} on line {2}.
”, _

eItem.Number, eItem.Message, eItem.LineNumber))

Response.Write(_

String.Format(“{0} reported Error connecting to {1}
”, _

eItem.Source, eItem.Server))

Response.Write(_

String.Format(“Nothing was written to database.
”))

Next

Catch

‘Throw the previous exception to the caller.

Throw

Finally

cn.Dispose()

cn = Nothing

End Try

This book will not use the try/catch block in each example to keep
focused on the subject at hand. Using a try/catch block is the
recommended method of opening a connection and performing data
access in a production environment.

In the previous code, the cn had to be declared outside the try block because
variables that are declared inside the try block only live within the try block.
Since the Finally block needs to access cn, cn’s declaration was outside of the
try block.

When a SqlException takes place, the exception will be caught. There is only
one .NET exception for any SQL Server exception, but looping through the
Errors collection of the SqlException will reveal more details about the type of
SqlErrors that took place. If the exception was not a SqlException, the Excep-
tion is simply thrown to the caller.

The Finally block of code will execute regardless of whether or not an excep-
tion occurred. This is especially important in situations where the exception is
being thrown to the caller, because the Finally block will even execute in this
case, just prior to throwing the exception to the caller.

Command

The Command object is used to issue a command to the data store. The Com-
mand can be a command to retrieve data or a command to insert, update, or
delete data. To issue a command to a data store, a connection object is required.
The connection may be passed into the Command constructor or may be

300 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 300

attached to the Command’s Connection property after the Command is cre-
ated. The following code examples show how a Command may be created and
initialized.

Dim cnstr as string = _

“server=asd;integrated security=yes;database=northwind”

Dim cn as new SqlConnection()

Dim cmd as new SqlCommand(“Select * from customers”, cn)

This is probably the simplest method of creating a Command object. The first
constructor argument is the SQL command to execute. The second constructor
argument is the connection. The connection must be opened before the com-
mand may be executed.

Data Access with ADO.NET 301

♦ Close versus Dispose

By convention, all .NET Framework classes that access unmanaged resources should imple-
ment the IDisposable interface, which contains the Dispose method. The Dispose method
is responsible for cleaning up unmanaged resourses and can be called to proactively clean
up the unmanaged resources when they are no longer needed.

Objects that implement the IDisposable interface typically program the finalizer
(conceptually similar to a class destructor) to call the Dispose method automatically if the
programmer didn’t. The problem is that the object may be retained in memory for a much
longer time if the developer let the runtime handle the automatic call to Dispose.

If a class has a Dispose method, it should always be called as quickly as possible to free
up unmanaged resources and allow the object to be garbage collected sooner.

So where does the Close method come into play? The Close method exists for two pur-
poses. First, the Close method is a carryover from older technologies that have the notion
of opening something and then closing it. Second, the Close method does not imply that
all unmanged resourses will be freed up. The Close method actually implies that there may
be a chance of the connection being reopened, where the Dispose implies that all unman-
aged resources are freed up and there will not be a reopening of the connection.

Many books suggest that the Close method be executed just before the Dispose
method. This is rather redundant, since the Dispose method calls the Close method before
it finishes cleaning up the rest of the unmanaged resources. The right way to finish using a
connection is as follows:

Dim cnstr as string = “integrated security=true;database=northwind”

Dim cn as new SqlConnection(cnstr)

cn.Open()

‘Do lots of data access here.

cn.Dispose() ‘no longer needed, Dispose will call the Close method

cn=nothing

If a class has a Dispose method, always call the Dispose method and then assign the
variable to nothing to expedite garbage collection.

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 301

Dim cnstr as string = _

“server=asd;integrated security=yes;database=northwind”

Dim cn as new SqlConnection()

Dim cmd As New SqlCommand()

cmd.CommandText = “Select * from customers”

cmd.Connection = cn

This is just another way of creating and initializing the command. It assigns
the appropriate properties after the Command has been created.

Dim cnstr as string = _

“server=asd;integrated security=yes;database=northwind”

Dim cn as new SqlConnection()

Dim cmd As New SqlCommand()

cmd.CommandText = “uspGetCustomers”

cmd.CommandType = CommandType.StoredProcedure

cmd.Connection = cn

This is an example of a Command that executes a stored procedure. Notice
that the CommandText property contains the name of the stored procedure,
while the CommandType indicates that this will be a call to a stored procedure.

Command Parameters

Stored procedures often require values to be passed to them to execute. For
example, a user-defined stored procedure called uspGetCustomer may require a
customer ID to be passed into the store procedure to retrieve a particular cus-
tomer. Parameters can be created by using the Parameters.Add method of the
Command object as follows:

‘Connection

Dim cn As New SqlConnection()

Dim cnstr as string = “integrated security=yes;database=northwind”

cn.ConnectionString = cnstr

‘Command

Dim cmd As New SqlCommand()

cmd.CommandText = “CustOrdersOrders”

cmd.CommandType = CommandType.StoredProcedure

cmd.Connection = cn

‘Parameters

cmd.Parameters.Add(“@CustomerID”, “AROUT”)

This code creates a Connection object and configures the Command object
to execute a stored procedure called CustOrdersOrders, which requires a single
parameter called @CustomerID, which will contain the value AROUT.

The OleDb provider requires the parameters to be defined in the same order
that they are defined in the stored procedure. This means that the names that
are assigned to parameters do not need to match the names that are defined in
the stored procedure.

302 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 302

The SQL Server provider requires parameter names to match the names of
the parameters as defined in SQL Server, but the parameters may be created in
any order.

In either case, the name that is assigned to a parameter object is the name
that can be used to access the parameter in the code. For example, to retrieve
the value that is currently in the SqlParameter called @CustCount, use the fol-
lowing code:

Dim x as integer = cmd.Parameters(“@CustCount”)

ExecuteNonQuery Method

The execution of the Command is done differently depending on the data
being retrieved or modified. The ExecuteNonQuery method is used when a
command is not expected to return any rows, such as an update, insert, or
delete query. This method returns an integer that represents the quantity of
rows that were affected by the operation. The following example executes a
store procedure to archive data and returns the quantity of rows that were
archived. Notice that the delimiter for the DateTime data types is the pound
sign (#).

‘Connection

Dim cn As New SqlConnection()

Dim cnstr as string = “integrated security=yes;database=northwind”

cn.ConnectionString = cnstr

‘Command

Dim cmd As New SqlCommand()

cmd.CommandText = “ArchiveOrders”

cmd.CommandType = CommandType.StoredProcedure

cmd.Connection = cn

‘Parameters

cmd.Parameters.Add(“@ArchiveYear”, #1/1/1997#)

‘Execute

cn.Open()

Dim x As Integer = cmd.ExecuteNonQuery()

‘Do something with x.

‘x contains the quantity of rows that were affected.

‘Cleanup

cn.Dispose()

cn = Nothing

ExecuteScalar Method

Many times a query is executed that is expected to return a single row with a
single column. In these situations, the results can be treated as a single return
value. For example, the following SQL stored procedure returns a single row
with a single column.

Data Access with ADO.NET 303

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 303

CREATE PROCEDURE dbo.OrderCount

(

@CustomerID nvarchar(5)

)

AS

Select count(*) from orders where customerID = @CustomerID

RETURN

Using the ExecuteScalar method, the count can be retrieved into a variable
as follows:

‘Connection

Dim cn As New SqlConnection()

Dim cnstr as string = “integrated security=yes;database=northwind”

cn.ConnectionString = cnstr

‘Command

Dim cmd As New SqlCommand()

cmd.CommandText = “ArchiveOrders”

cmd.CommandType = CommandType.StoredProcedure

cmd.Connection = cn

‘Parameters

cmd.Parameters.Add(“@CustomerID”, “AROUT”)

‘Execute

cn.Open()

Dim x As Integer = cmd.ExecuteScalar()

‘do something with x

‘x contains the count of orders for

‘Cleanup

cn.Dispose()

cn = Nothing

ExecuteReader Method

The ExecuteReader method returns a DataReader instance. The following
code is an example of the ExecuteReader method. See the DataReader section
later in this chapter for more information.

‘Connection

Dim cn As New SqlConnection()

Dim cnstr as string = “integrated security=yes;database=northwind”

cn.ConnectionString = cnstr

‘Command

Dim cmd As New SqlCommand()

cmd.CommandText = “CustOrderHist”

cmd.CommandType = CommandType.StoredProcedure

cmd.Connection = cn

‘Parameters

cmd.Parameters.Add(“@CustomerID”, “AROUT”)

‘Execute

304 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 304

cn.Open()

Dim dr As SqlDataReader = cmd.ExecuteReader()

While (dr.Read())

Response.Write(dr(“ProductName”) & “ - “ _

& dr(“Total”).ToString() & “
”)

End While

‘Cleanup

dr.Close()

cn.Dispose()

cn = Nothing

ExecuteXmlReader Method

The ExecuteXmlReader returns a XmlReader instance. The following code is
an example of the ExecuteXmlReader method. See the XmlReader section in
Chapter 9, “Working with XML Data” for more information.

‘Connection

Dim cn As New SqlConnection()

Dim cnstr as string = “integrated security=yes;database=northwind”

cn.ConnectionString = cnstr

‘Command

Dim cmd As New SqlCommand()

cmd.CommandText = “Select * from customers for xml auto”

cmd.Connection = cn

‘Execute

cn.Open()

Dim dr As XmlReader = cmd.ExecuteXmlReader()

While (dr.Read())

Response.Write(dr(“CustomerID”) & “ - “ _

& dr(“CompanyName”) & “
”)

End While

‘Cleanup

dr.Close()

cn.Dispose()

cn = Nothing

DataReader

The DataReader is used to retrieve connected data from the server. The
DataReader requires a command and connection (see Figure 8.1). The Data-
Reader returns a forward-only, read-only data stream from a data source. This
stream represents the fastest way to retrieve data, but has the least functionality.

The DataReader object cannot be created using the New key word. To create
a DataReader, use the ExecuteReader method of the Command object. The fol-
lowing code is an example of the DataReader.

Data Access with ADO.NET 305

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 305

Figure 8.1 The DataAdapter requires Command and Connection objects. Use the Read
method to retrieve one row at a time.

‘Connection

Dim cn As New SqlConnection()

Dim cnstr as string = “integrated security=yes;database=northwind”

cn.ConnectionString = cnstr

‘Command

Dim cmd As New SqlCommand()

cmd.CommandText = “CustOrderHist”

cmd.CommandType = CommandType.StoredProcedure

cmd.Connection = cn

‘Parameters

cmd.Parameters.Add(“@CustomerID”, “AROUT”)

‘Execute

cn.Open()

Dim dr As SqlDataReader = cmd.ExecuteReader()

While (dr.Read())

Response.Write(dr(“ProductName”) & “ - “ –

& dr(“Total”).ToString() & “
”)

End While

‘Cleanup

dr.Close()

cn.Dispose()

cn = Nothing

In this example, the ExecuteReader method was used to create a DataReader
object. The information is displayed by executing a loop, which executes the
Read method, returning true each time a valid row is read.

Data Store

DataReader

Read()

Display Row()

Command

Connection

Connected Data

.NET
Data Provider

306 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 306

The DataReader can be used for populating read-only controls like List-
Boxes. The following code populates a ListBox with the CompanyName and
the CustomerID.

‘Connection

Dim cn As New SqlConnection()

Dim cnstr as string = “integrated security=yes;database=northwind”

cn.ConnectionString = cnstr

‘Command

Dim cmd As New SqlCommand()

cmd.CommandText = “Select * from customers”

cmd.Connection = cn

‘Execute

cn.Open()

Dim dr As SqlDataReader = cmd.ExecuteReader()

ListBox1.DataSource = dr

ListBox1.DataTextField = “CompanyName”

ListBox1.DataValueField = “CustomerID”

DataBind()

‘Cleanup

dr.Close()

cn.Dispose()

cn = Nothing

Notice that a call is made to the dr.Close method. The DataReader’s Close
method should be called when cleaning up resources.

The DataReader provides the IsClosed and RecordsAffected properties that
are available after the DataReader is closed. The DataReader also contains sev-
eral helper methods that can be used to retrieve typed data without requiring
the use of CType to cast to a particular data type. Table 8.4 lists these methods.

Table 8.4 DataReader’s Typed Methods

GetBoolean GetByte GetBytes

GetChar GetChars GetDataTypeName

GetDateTime GetDecimal GetDouble

GetFieldType GetFloat GetGuid

GetInt16 GetInt32 GetInt64

GetName GetOrdinal GetString

GetValue GetValues IsDBNull

NextResult GetSchemaTable

Data Access with ADO.NET 307

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 307

In addition to these helper methods, each data provider has additional
helper methods to aid in data retrieval. For example, the Sql provider contains
many helper methods that are tuned to work with SQL Server, such as GetSql-
Binary and GetSqlMoney. Use the Object Browser (Ctrl+Alt+J) to view avail-
able methods.

DataAdapter

The DataAdapter is responsible for moving data between the data store and a
DataTable or DataSet. The DataAdapter can have four commands assigned to
it: select, insert, update, and delete. Each command requires a connection, but
can share the same connection object. The select command is required at a min-
imum. The select command may be created explicitly and assigned to the
DataAdapter. Or, the select command may be created implicitly by providing
the command text (see Figure 8.2).

The DataAdapter’s primary method is the fill method. The fill method is
responsible for filling one or more disconnected tables or a DataSet. The
DataAdapter does not require the connection to be opened explicitly before
the fill command is executed. If the connected is closed, the DataAdapter
opens the connection automatically. After the DataAdapter is finished, the
connection will be placed into its original state.

Figure 8.2 The DataAdapter’s role in filling a DataSet.

DataSet

DataTableCollection

DataTable

DataRowCollection

XML Data Store

SelectCommand

DataAdapter

InsertCommand

Connection

Disconnected Data

.NET
Data Provider

UpdateCommand

DeleteCommandDataColumnCollection

ConstraintCollection

DataRelationCollection

308 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 308

Internally, the DataAdapter uses a DataReader to retrieve and update data,
which is completely transparent to the developer. The following code is an
example of using a DataAdapter to fill a DataTable and bind it to a DataGrid.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim da As New SqlDataAdapter(“Select * from customers”, cnstr)

Dim dt As New DataTable(“MyTable”)

‘Execute

da.Fill(dt)

DataGrid1.DataSource = dt

DataBind()

‘Cleanup

dt.Dispose()

da.Dispose()

This code sample represents an attempt to populate the DataGrid by creating
the fewest objects. When the DataAdapter is created, strings are passed into
the constructor to implicitly create Command and Connection objects. The
connection does not need to be explicitly opened because it will be automati-
cally opened and closed as needed. A DataTable was created and filled with
rows from the customers table in SQL Server. The DataTable’s constructor
optionally allows assigning a table name to this memory-based table. Nor-
mally this table name should be assigned the same name as the table in SQL
Server, but notice that this is not a requirement. If a table name is not supplied,
its name will be Table. Notice that the DataAdapter and the DataTable contain
a Dispose method that should always be called as part of the cleanup code.

Using a Single DataAdapter

When filling DataTables, how many DataAdapters are required? Certainly, a
single DataAdapter could be provided, which could be reused to fill each table,
as shown in Figure 8.3. If data in the DataTable will be inserted, updated, or
deleted, consider using a DataAdapter for each DataTable. If the DataTables will
contain read-only data, it may make more sense to use a single DataAdapter and
change the CommandText prior to filling each DataTable.

Using Multiple DataAdapters

In situations where each DataTable will be updated, it usually makes sense to
create a DataAdapter for each DataTable. This allows the select, insert, update,
and delete commands to be assigned to the DataAdapter, and the DataAdapter
will execute the appropriate command as needed when the DataAdaptor’s
Update method is called. Figure 8.4 shows an example of using multiple
DataAdapters. Updating data sources is covered later in this chapter.

Data Access with ADO.NET 309

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 309

Figure 8.3 DataAdapter being reused to fill multiple DataTables.

Non-Provider-Specific Data Classes
The System.Data namespace provides classes that are not specific to any provider.
This means that these classes can be used without having connectivity to a
data provider. This section explores these classes.

Figure 8.4 Multiple DataAdapters to fill multiple DataTables.

DataTable1 DataTable2

Data Store

SelectCommand

DataAdapter

InsertCommand

Connection

UpdateCommand

DeleteCommand

SelectCommand

DataAdapter

InsertCommand

UpdateCommand

DeleteCommand

DataTable1 DataTable2

Data Store

SelectCommand

DataAdapter

'fill DataTable1

Sql="Select * from customers"

Dim da as new SqlDataAdapter(Sql, cn)

Dim dt1 as new DataTable("DataTable1")

da.fill(dt1)

'fill DataTable2

Sql="Select * from orders"

da.SelectCommand.CommandText=Sql

Dim dt2 as new DataTable("DataTable2")

da.fill(dt2)

InsertCommand

Connection

UpdateCommand

DeleteCommand

310 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 310

DataSet

The DataSet is a major component in ADO.NET as an in-memory, relational
database. The DataSet contains a collection of DataTable objects and a collec-
tion of DataRelation objects (see Figure 8.5). Each DataTable can contain
unique and foreign key constraints to enforce data integrity. The DataRelation
can be used to navigate the table hierarchy. This essentially creates a path from
DataTable to DataTable, which can be traversed by code.

The DataSet can read and write XML and XML Schema data. The XML infor-
mation may be transferred across a network via many protocols, including
HTTP. The DataSet also provides methods for copying, merging, and retriev-
ing changes.

The following code shows an example of the creation of a DataSet.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim daCustomers As New SqlDataAdapter(“Select * from customers”, cn)

Dim daOrders As New SqlDataAdapter(“Select * from orders”, cn)

Dim ds As New DataSet(“NW”)

‘Execute

daCustomers.Fill(ds, “Customers”)

daOrders.Fill(ds, “Orders”)

‘Create the relation and constraints.

ds.Relations.Add(“CustomersOrders”, _

ds.Tables(“Customers”).Columns(“CustomerID”), _

ds.Tables(“Orders”).Columns(“CustomerID”), _

True)

DataGrid1.DataSource = ds.Tables(“Customers”)

DataGrid2.DataSource = ds.Tables(“Orders”)

DataBind()

‘Cleanup

ds.Dispose()

daCustomers.Dispose()

daOrders.Dispose()

This code creates a DataAdapter for the Customers table and another
DataAdapter for the Orders table. After the DataTables are filled, a DataRela-
tion is created. The creation of a DataRelation must include the parent and
child columns. Optionally, the DataRelation may create the constraints when
the DataRelation is created. When the constraints are created, an attempt to
add a row into a child table that doesn’t reference a row in the parent table will
throw an exception. For example, if an order is entered into the Orders table
but doesn’t belong to a valid customer (the parent table), an exception will be
thrown. By default, constraints are created, but it is possible to create a
DataRelation without creating the constraints.

Data Access with ADO.NET 311

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 311

Figure 8.5 The DataSet with its DataTableCollection and DataRelationCollection.

When the DataSet is created, an optional DataSet name may be assigned by
passing the name to its constructor. When writing the data as XML, the name,
which is the DataSetName property, is important because the DataSetName
will be the root-level element in the XML document.

When writing XML data, the parent table is written, followed by the child
data. The DataRelation contains a nested property that will cause the child
table data to be nested in each row of parent data. For example, the following
code can be added to nest the Orders in the Customers table:

ds.Relations(“CustomersOrders”).Nested=True

DataTable

The DataTable is an in-memory table with rows, columns, and constraints. The
DataTable is the central object for disconnected data access. The DataTable
contains DataRows, DataColumns, Constraints, and references to ParentRela-
tions and ChildRelations, as shown in Figure 8.6. A DataTable can be implicit
or explicit. Implicit DataTable creation can be done by creating a DataAdapter
and using its fill method to create the DataTable with the appropriate schema,
as shown in the following code sample.

Orders

DataTableCollection

DataSet

DataRelationCollection

Order DetailsCustomers
CustomerID
CompanyName
ContactName
ContactTitle
Address
City
Region
PostalCode

Customers_Orders Orders_Order_Details

Country
Phone
Fax

OrderID
CustomerID
EmployeeID
OrderDate
RequiredDate

OrderID
ProductID
UnitPrice
Quantity
Discount

ShippedDate
ShipVia
Freight
ShipName
ShipAddress
ShipCity
ShipRegion

312 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 312

Figure 8.6 The main DataTable properties.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = “Select * from customers”

Dim daCustomers As New SqlDataAdapter(sql, cn)

Dim dt As New DataTable(“Customers”)

‘Execute

daCustomers.Fill(dt)

‘Create the relation and constraints

DataGrid1.DataSource = dt

DataBind()

‘Cleanup

dt.Dispose()

daCustomers.Dispose()

The DataTable is created and named Customers. Next, the DataTable is
populated with the fill method. This will create the columns as necessary
and populate all of the rows.

Creating DataColumn Objects

Explicit DataTable creation involves manually creating each column and con-
straint, and then populating the rows. This is useful in situations where data is
not from a persistent date store. The following code builds a table, one column
at a time.

DataRowConnection

DataRow

DataColumnConnection

DataColumn

ConstraintConnection

Rows property

DataTable

Columns property

Constraints property

ChildRelations
property

ParentRelations
property

Constraint

Data Access with ADO.NET 313

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 313

Dim dt As New DataTable(“Customers”)

‘Customer ID Column

Dim col As New DataColumn(“CustomerID”)

col.DataType = Type.GetType(“System.String”)

col.MaxLength = 5

col.Unique = true

col.AllowDBNull = false

col.Caption = “Customer ID”

dt.Columns.Add(col)

‘Company Name Column

col = New DataColumn(“CompanyName”)

col.DataType = Type.GetType(“System.String”)

col.MaxLength = 40

col.Unique = false

col.AllowDBNull = false

col.Caption = “Company Name”

dt.Columns.Add(col)

This code creates a DataTable and then adds a column for the CustomerID
and another column for the CompanyName. The DataTable may still be popu-
lated using a DataAdapter or may be populated manually via other code.

The DataColumn can also be a calculated column by assigning an expres-
sion to the column. This can be especially beneficial when data is available but
not in the correct format. An example might be a DataTable that contains a
Quantity and Price column, but a Total column is required. A new column can
be created with an expression of “Quantity * Price.” The following same code
creates a column with concatenation of the CustomerID and the Company-
Name.

‘Both Columns

col = New DataColumn(“Both”)

col.DataType = Type.GetType(“System.String”)

col.MaxLength = 60

col.Unique = False

col.AllowDBNull = True

col.Caption = “Both of them”

col.Expression = “CustomerID + ‘ - ‘ + CompanyName”

dt.Columns.Add(col)

Enumerating the DataTable

It’s often desirable to move through each row and each column of a DataTable.
The following code shows how the rows and columns of a DataTable can be
enumerated.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim cn As New SqlConnection(cnstr)

314 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 314

Dim sql As String = “Select * from customers”

Dim daCustomers As New SqlDataAdapter(sql, cn)

Dim dt As New DataTable(“Customers”)

‘Execute

daCustomers.Fill(dt)

‘Build HTML Table

Response.Write(“<table border=’1’>”)

‘Build the Column Headings

Dim dcol As DataColumn

Response.Write(“<tr>”)

For Each dcol In dt.Columns

Response.Write(“<th>”)

‘This could also be the ColumnName property

‘but the Caption is changeable to a user-

‘friendly appearance.

Response.Write(dcol.Caption.ToString())

Response.Write(“</th>”)

Next

Response.Write(“</tr>”)

‘Build Data Rows.

Dim drow As DataRow

For Each drow In dt.Rows

Response.Write(“<tr>”)

‘Build Data Columns.

Dim ditem As Object

For Each ditem In drow.ItemArray

Response.Write(“<td>”)

Response.Write(ditem.ToString())

Response.Write(“</td>”)

Next

Response.Write(“</tr>”)

Next

Response.Write(“</table>”)

‘Cleanup

dt.Dispose()

daCustomers.Dispose()

cn.Dispose()

This code fills a DataTable, then builds an HTML table by writing the table
tag; then, the column headers are written by retrieving the caption of each
column. Finally, the DataRows are enumerated, and for each column in a
DataRow, the object data in the column is written to the browser.

DataView

A DataView is a window into a DataTable. A DataTable can have many
DataViews assigned to it, which allows the data to be viewed in many differ-
ent ways without requiring the data to be read again from the database.

Data Access with ADO.NET 315

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 315

The following code sample shows the use of the RowFilter to view customers
whose CustomerID begins with the letter A.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = “Select CustomerID, CompanyName from customers”

Dim daCustomers As New SqlDataAdapter(sql, cn)

Dim dt As New DataTable(“Customers”)

‘Execute

daCustomers.Fill(dt)

Dim dv As New DataView()

dv.Table = dt

dv.RowFilter = “CustomerID like ‘A%’”

DataGrid1.DataSource = dv

DataBind()

Notice that the DataView is assigned to a DataTable. The RowFilter repre-
sents a SQL where clause. The DataGrid’s DataSource is assigned directly to the
DataView.

The next code sample shows the use of the Sort property to sort the cus-
tomers on the Region in ascending order, followed by the CompanyName in
descending order.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = “Select CustomerID, CompanyName from customers”

Dim daCustomers As New SqlDataAdapter(sql, cn)

Dim dt As New DataTable(“Customers”)

‘Execute

daCustomers.Fill(dt)

Dim dv As New DataView()

dv.Table = dt

dv.Sort = “Region ASC, CompanyName DESC”

DataGrid1.DataSource = dv

DataBind()

The sort expression is the SQL order by clause. Notice that the sort columns
are comma separated, and ASC or DESC can be supplied to indicate ascending
or descending order, respectively.

The following example shows the use of the RowStateFilter to view rows
that are marked for deletion.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = “Select * from customers”

316 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 316

Dim daCustomers As New SqlDataAdapter(sql, cn)

Dim dt As New DataTable(“Customers”)

‘Execute

daCustomers.Fill(dt)

Dim x As Integer

For x = 5 To 10

dt.Rows(x).Delete()

Next

Dim dv As New DataView()

dv.Table = dt

dv.RowStateFilter = DataViewRowState.Deleted

DataGrid1.DataSource = dv

DataBind()

This code deletes rows 5 through 10 and then creates a DataView with the
RowStateFilter set to see only deleted rows.

The DataView can also combine the Sort, RowFilter, and RowStateFilter
methods as needed. A single table can have many DataView objects assigned
to it.

Enumerating the DataView

Many times it is desirable to walk through the rows and columns of a
DataView. Although the procedure is similar to enumerating a DataTable, the
objects are different. The following code enumerates the rows and columns of
a DataView.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = “Select * from customers”

Dim daCustomers As New SqlDataAdapter(sql, cn)

Dim dt As New DataTable(“Customers”)

‘Execute

daCustomers.Fill(dt)

‘Create DataView

Dim dv As New DataView(dt)

dv.RowFilter = “Region like ‘S%’”

‘Build HTML Table

Response.Write(“<table border=’1’>”)

‘Build the Column Headings.

Dim dcol As DataColumn

Response.Write(“<tr>”)

For Each dcol In dv.Table.Columns

Response.Write(“<th>”)

‘This could also be the ColumnName property

‘but the Caption is changeable to a user-

‘friendly appearance.

Data Access with ADO.NET 317

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 317

Response.Write(dcol.Caption.ToString())

Response.Write(“</th>”)

Next

Response.Write(“</tr>”)

‘Build Data Rows.

Dim drow As DataRowView

For Each drow In dv

Response.Write(“<tr>”)

‘Build Data Columns,

Dim ditem As Object

For Each ditem In drow.Row.ItemArray

Response.Write(“<td>”)

Response.Write(ditem.ToString())

Response.Write(“</td>”)

Next

Response.Write(“</tr>”)

Next

Response.Write(“</table>”)

‘Cleanup

dt.Dispose()

daCustomers.Dispose()

cn.Dispose()

This code fills a DataTable and creates a DataView based on the Region
beginning with the letter S. Next, the code builds an HTML table by writing
the table tag. Then, the column headers are written by retrieving the caption of
each column. When it’s time to enumerate the DataView, each row is returned
as a DataViewRow. The DataRowView contains a Row property, which allows
access to the DataRow that the DataRowView is pointing to. The Row is enu-
merated; and for each column in the DataRow, the object data in the column is
written to the browser.

Modifying Table Data

One of the main features of ADO.NET is its ability to work with disconnected
data. This data is represented as one or more DataTable objects that optionally
may be located inside a DataSet object. The goal is to be able to perform addi-
tions, updates, and deletes on the data, and at some point, send all of the
changes to the data store. This section covers the modification of data in a
DataTable or DataSet, and the next section covers the updating of data at the
data store.

Setting the Primary Key
Before changes can be made to the DataTable, the DataTable’s PrimaryKey
property should be assigned. The PrimaryKey property expects an array of

318 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 318

columns to be assigned, which allows DataTables with composite primary
keys to be used with ADO.NET. The following code is an example of setting
the PrimaryKey property. It creates a new DataColumn array and initializes it
to the Datatable’s CustomerID column. If the PrimaryKey property is not
assigned, an exception will be thrown when updates are attempted.

dt.PrimaryKey = New DataColumn() {dt.Columns(“CustomerID”)}

Adding DataRow Objects
After the DataTable is created and its DataColumn objects have been defined,
the DataTable can be populated with DataRow objects.

To add a DataRow to the DataTable, first create the DataRow. A DataRow
will have different columns, based upon the DataTable that the row will be
placed into, so the proper method of creating a DataRow is to execute the
NewRow method on the DataTable instance. The following is an example of
adding a new DataRow.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = “Select CustomerID, CompanyName from customers”

Dim daCustomers As New SqlDataAdapter(sql, cn)

Dim dt As New DataTable(“Customers”)

‘Execute

daCustomers.Fill(dt)

‘Add New DataRow

Dim dr As DataRow = dt.NewRow()

dr(“CustomerID”) = “AAAAA”

dr(“CompanyName”) = “My Company”

dt.Rows.Add(dr)

‘Create the relation and constraints.

DataGrid1.DataSource = dt

DataBind()

‘Cleanup

dt.Dispose()

daCustomers.Dispose()

This code added a new DataRow to the DataTable. Remember that the SQL
Database does not have the changed row. Sending updates is covered later in
this chapter.

The DataRow goes through a series of states that can be viewed and filtered
at any time, as shown in Table 8.5. The RowState can be viewed at any time to
determine the current state of a DataRow. Figure 8.7 shows how the RowState
changes at different stages of the DataRow’s life.

Data Access with ADO.NET 319

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 319

Figure 8.7 The life cycle of a DataRow and its RowState.

A DataRow can also contain different versions of the data, which can be fil-
tered and viewed using the RowVersion property. This can be handy when it’s
desirable to look at the deleted or changed rows of a DataTable. Table 8.6
shows the list of available RowVersions. This will be covered in more detail in
the following sections of this chapter.

Table 8.5 A DataRow’s RowState

ROWSTATE DESCRIPTION

Detached The DataRow has been created but not attached to a
DataTable.

Added The DataRow has been created and Added to the DataTable.

Unchanged The DataRow has not changed since the AcceptChanges
method has been called. When the AcceptChanges method is
called, the Row immediately changes to this state.

Modified The DataRow has been changed since the last time that the
AcceptChanges method has been called.

Deleted The DataRow has been deleted using the Delete method of
the DataRow.

Dim dr as DataRow = dt.NewRow() RowState = Detached

dt.Rows.Add(dr) RowState = Added

dt.AcceptChanges() RowState = Unchanged

dr("CustomerID")="ABCDE" RowState = Modified

dt.Rows.AcceptChanges() RowState = Unchanged

dr("CustomerID")="VWXYZ" RowState = Modified

dt.RejectChanges (back to "ABCDE") RowState = Unchanged

dr.Delete() RowState = Deleted

dt.RejectChanges RowState = Unchanged

320 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 320

Table 8.6 The DataRow’s RowVersion

ROWVERSION DESCRIPTION

Current The row contains current values.

Default The default row version according to the current
DataRowState.

Original The row contains its original values.

Proposed The row contains a proposed value.

Deleting Rows
DataRows can be deleted by executing the Delete method of the DataRow.
This marks the row as deleted, but the row will still exist in the DataTable.
Later, when changes are sent to the data store, rows that were marked for dele-
tion will be deleted.

The following code deletes a customer whose CustomerID is AAAAB. When
the DataRow is deleted, it will only be viewable using a DataView that has its
RowStateFilter set to Deleted rows.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = “Select CustomerID, CompanyName from customers”

Dim daCustomers As New SqlDataAdapter(sql, cn)

Dim dt As New DataTable(“Customers”)

‘Execute

daCustomers.Fill(dt)

dt.PrimaryKey = New DataColumn() {dt.Columns(0)}

Dim dr As DataRow = dt.Rows.Find(“AAAAB”)

dr.Delete()

DataGrid1.DataSource = dt

Dim dv As New DataView(dt)

dv.RowStateFilter = DataViewRowState.Deleted

DataGrid2.DataSource = dv

DataBind()

‘Cleanup

dt.Dispose()

daCustomers.Dispose()

This code uses the Find method of the Rows collection to locate customer
AAAAB and marks the row for deletion. The DataTable is bound to DataGrid1
and then a view is created with the RowStateFilter set to display only deleted
rows. The DataView is then bound to DataGrid2. Figure 8.8 shows the output.

Data Access with ADO.NET 321

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 321

Figure 8.8 The DataGrid controls, which display the deleted rows (top) and the undeleted
rows (bottom).

Be sure to use the Delete method of the DataRow if changes are going
to be sent back to the data store using the DataAdapter. If the Remove
method of the DataTable.Rows collection is used, the DataRow will be
completely removed from the DataTable, but there will be no deletion
of the row at the data store.

Editing Rows
In its simplest form, a DataRow can be edited by assigning new contents to
DataRow. Using this method, however, triggers validation with each change.
It is better to use the BeginEdit method of the DataRow, which will postpone
validation until the EndEdit method is executed. When you use the BeginEdit
method, the changes may be rolled back by executing the CancelEdit method.
The following code is an example of editing a DataRow.

‘Create objects

Dim cnstr As String = “integrated security=yes;database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = “Select CustomerID, CompanyName from customers”

Dim daCustomers As New SqlDataAdapter(sql, cn)

Dim dt As New DataTable(“Customers”)

‘Execute

daCustomers.Fill(dt)

‘Assign the primary key.

dt.PrimaryKey = New DataColumn() {dt.Columns(“CustomerID”)}

Dim dr As DataRow = dt.Rows.Find(“AAAAB”)

dr.BeginEdit()

dr(“CustomerID”) = “AAAAE”

322 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 322

dr(“CompanyName”) = “A New Company Name”

dr.EndEdit() ‘can call dr.CancelEdit to abort

DataGrid1.DataSource = dt

DataBind()

‘Cleanup

dt.Dispose()

daCustomers.Dispose()

This code uses the Find method to find customer AAAB and then changes
the CustomerID and the CompanyName. Notice that primary key changes are
allowed.

Using the DataGrid to Modify Data

The DataGrid was previously introduced in this book, but it’s now time to put
it to work. The balance of this chapter focuses on using the DataGrid to view
and modify data. To prepare for this, the following code obtains data from the
data store, and the data will be stored in a Session variable. This code also con-
tains the column layouts.

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Not IsPostBack Then

BindTable()

End If

End Sub

Public Sub BindTable()

‘Create objects.

Dim dt As DataTable

If Session(“Employee”) Is Nothing Then

Dim cnstr As String = “integrated security=yes;database=pubs”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = “Select * from employee”

Dim daEmployee As New SqlDataAdapter(sql, cn)

dt = New DataTable(“Employee”)

‘Execute

daEmployee.Fill(dt)

‘Assign the Primary Key

dt.PrimaryKey = New DataColumn() {dt.Columns(“emp_id”)}

‘Store for the Session

Session(“Employee”) = dt

‘Cleanup

daEmployee.Dispose()

Else

dt = CType(Session(“Employee”), DataTable)

End If

dgEmployee.DataSource = dt

Data Access with ADO.NET 323

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 323

DataBind()

End Sub

Private Sub dgEmployee_Init(_

ByVal sender As Object, _

ByVal e As System.EventArgs) Handles dgEmployee.Init

dgEmployee.AutoGenerateColumns = False

Dim colWidth As Integer = 110

dgEmployee.DataKeyField=”emp_id”

Dim colEdit As New EditCommandColumn()

colEdit.ButtonType = ButtonColumnType.PushButton

colEdit.EditText = “Edit”

colEdit.CancelText = “Cancel”

colEdit.UpdateText = “Update”

colEdit.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(colEdit)

Dim col As New BoundColumn()

col.HeaderText = “Employee
ID”

col.DataField = “emp_id”

col.ItemStyle.HorizontalAlign = HorizontalAlign.Left

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(col)

‘Store this info for later use.

dgEmployee.Attributes(col.DataField) = _

dgEmployee.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “Last
Name”

col.DataField = “LName”

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(col)

dgEmployee.Attributes(col.DataField) = _

dgEmployee.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “First
Name”

col.DataField = “FName”

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(col)

dgEmployee.Attributes(col.DataField) = _

dgEmployee.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “Middle
Init”

col.DataField = “minit”

col.ItemStyle.HorizontalAlign = HorizontalAlign.Center

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(col)

dgEmployee.Attributes(col.DataField) = _

dgEmployee.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “Hire
Date”

324 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 324

col.DataField = “hire_date”

col.DataFormatString = “{0:d}”

col.ItemStyle.HorizontalAlign = HorizontalAlign.Right

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(col)

dgEmployee.Attributes(col.DataField) = _

dgEmployee.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “Job
ID”

col.DataField = “job_id”

col.ItemStyle.HorizontalAlign = HorizontalAlign.Right

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(col)

dgEmployee.Attributes(col.DataField) = _

dgEmployee.Columns.Count - 1

col = New BoundColumn()

col.HeaderText = “Job
Level”

col.DataField = “job_lvl”

col.ItemStyle.HorizontalAlign = HorizontalAlign.Right

col.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

col.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(col)

dgEmployee.Attributes(col.DataField) = _

dgEmployee.Columns.Count - 1

End Sub

Editing a DataRow with the DataGrid
The DataGrid can be used to edit a DataRow by setting the EditItemIndex
property of the DataGrid to the item number to be edited (see Figure 8.9). In
addition, canceling the edit must set the EditItemIndex to -1. The following
code shows the implementation.

Private Sub dgEmployee_EditCommand(_

ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles dgEmployee.EditCommand

dgEmployee.EditItemIndex = e.Item.ItemIndex

BindTable()

End Sub

Private Sub dgEmployee_CancelCommand(_

ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles dgEmployee.CancelCommand

dgEmployee.EditItemIndex = -1

BindTable()

End Sub

Data Access with ADO.NET 325

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 325

Figure 8.9 The DataGrid in edit mode.

This code allows dgEmployee to be displayed with edit buttons, and clicking
edit causes the row to go into edit mode. Clicking cancel cancels edit mode.
Note that the BindTable method must be executed after the EditItemIndex is
changed. Otherwise, the button needs to be clicked twice to get into edit mode
and twice to cancel it.

The last piece of code that needs to be added is the code to update the Data-
Table. This code is placed into the dgEmployee_UpdateCommand as follows:

Private Sub dgEmployee_UpdateCommand(_

ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles dgEmployee.UpdateCommand

‘Get the DataTable from the Session.

Dim dt As DataTable = CType(Session(“Employee”), DataTable)

‘get the DataRow to be updated

Dim PrimaryKey As String = dgEmployee.DataKeys(e.Item.DataSetIndex)

Dim dr As DataRow = dt.Rows.Find(PrimaryKey)

‘Start editing this row.

dr.BeginEdit()

‘Loop through all the columns.

Dim col As DataGridColumn

For Each col In dgEmployee.Columns

‘Check to see if this is a data column.

If TypeOf col Is BoundColumn Then

‘Cast this col to a bound column.

Dim colItem As BoundColumn = CType(col, BoundColumn)

‘Check to see if there is data worth getting.

If colItem.Visible And _

(colItem.DataField.ToString().Length > 0) Then

‘Get the field name.

Dim colName As String = colItem.DataField

‘Find the cell number from the saved number.

326 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 326

Dim cellNumber As Integer = _

Integer.Parse(dgEmployee.Attributes(colName))

‘The cell has a text box with data.

Dim curText As TextBox

curText = _

CType(e.Item.Cells(cellNumber).Controls(0), _

TextBox)

‘Assign the data.

dr(colName) = curText.Text

End If

End If

Next

‘finished!

dr.EndEdit()

dt.DefaultView.RowFilter = “”

dgEmployee.EditItemIndex = -1

BindTable()

End Sub

This code starts by retrieving the DataTable from Session state. When items
are retrieved from Session state, they are returned as objects and must be cast
to the proper type using the CType function. The DataRow is then retrieved
from the DataTable, based on the DataSetIndex that was automatically saved
in the DataGrid. Then, the updating of the DataRow begins.

A loop enumerates all of the DataGrid columns. Each column is checked to
see if it is a BoundColumn. If the column is a BoundColumn, then the column
is cast to a BoundColumn and placed into the colItem variable. Invisible
columns and columns that have no DataField are ignored in the loop.

The colName variable is assigned the name of the DataField. The colName
retrieves the cellNumber from the dgEmployee attributes. The cell number
was explicitly stored when the columns were created in the dgEmployee init
method. Without this number, each cell would be accessed by a hard-coded
cell number. Each of the edited cells contains a TextBox control, which is the
first control in the cell. This TextBox is referenced with the curText variable,
then the text is retrieved and stored in the DataRow’s field. Finally, the editing
is completed, the EditItemIndex is set to -1, and the DataGrid is bound.

Adding a DataRow with the DataGrid
Adding a DataRow to the DataGrid is probably the most difficult task to
accomplish in terms of modifying data with a DataGrid. To add a DataRow to
the DataGrid, the best approach is to add a new DataRow to the DataTable. A
button needs to be added to the DataGrid to add a new DataRow. The button
can be added anywhere on the Web page, but this button will be added to the
header of the Edit button column. The following example shows the Add but-
ton code:

Data Access with ADO.NET 327

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 327

Dim colEdit As New EditCommandColumn()

colEdit.ButtonType = ButtonColumnType.PushButton

colEdit.HeaderText = _

“<input type=’submit’ runat=’server’ name=’” & _

“ dgEmployee:Add’ value=’Add’ />”

colEdit.EditText = “Edit”

colEdit.CancelText = “Cancel”

colEdit.UpdateText = “Update”

colEdit.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(colEdit)

Next, this new Add button will post back to the Web server; a method needs
to be added to detect when this has been clicked. This is done by changing the
Load method as follows:

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Not IsPostBack Then

BindTable()

ElseIf Request(“dgEmployee:Add”) = “Add” Then

AddEmployee()

End If

End Sub

This code checks to see if the Add button was clicked. If so, a call is made to
the AddEmployee method. The AddEmployee method checks to see if a new
row already exists. If it does, this row will be used. If not, a new row is
appended to the DataTable. Unfortunately, the primary key field is a string,
and it is required. An arbitrary string is assigned to the primary key field. This
would be much better in an environment with an autonumber primary key
field, because the autonumber.field would automatically assign the next avail-
able number. The AddEmployee method follows:

Private Sub AddEmployee()

Const newId As String = “*NEW ID*”

dgEmployee.EditItemIndex = 0

‘Get the DataTable from the Session.

Dim dt As DataTable = CType(Session(“Employee”), DataTable)

‘Get the DataRow to be updated.

Dim dr As DataRow = dt.Rows.Find(newId)

If dr Is Nothing Then

dr = dt.NewRow()

‘Start editing this row.

dr.BeginEdit()

‘This is better with an autonumber key.

dr(“emp_id”) = newId

dt.Rows.Add(dr)

Else

328 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 328

dr.CancelEdit()

dr.BeginEdit()

End If

dt.DefaultView.RowFilter = “emp_id=’” & newId & “‘“

BindTable()

End Sub

This code sets a RowFilter to the added row. This ensures that the correct
row will be in edit mode and no other rows are available to distract the user.
Finally, the Cancel method is modified to delete the new row if the Cancel but-
ton has been clicked. This code follows:

Private Sub dgEmployee_CancelCommand(_

ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles dgEmployee.CancelCommand

dgEmployee.EditItemIndex = -1

‘Get the DataTable from the Session.

Dim dt As DataTable = CType(Session(“Employee”), DataTable)

‘Get the DataRow to be canceled.

Dim PrimaryKey As String = dgEmployee.DataKeys(e.Item.DataSetIndex)

‘would be better if this was an autonumber

If PrimaryKey = “*NEW ID*” Then

Dim dr As DataRow = dt.Rows.Find(PrimaryKey)

dt.Rows.Remove(dr)

End If

dt.DefaultView.RowFilter = “”

BindTable()

End Sub

Figure 8.10 shows the Add method in action. Notice that when the Add but-
ton is clicked, the DataGrid automatically resizes to a single row, which is the
row that is being added. The only thing left is to allow the deletion of DataRows.

Figure 8.10 The Add button in action.

Data Access with ADO.NET 329

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 329

Deleting a DataRow with the DataGrid
Deleting a DataRow with the DataGrid is a relatively easy task. A Delete but-
ton column and a little bit of code are needed to handle the button. The new
Delete button code follows:

Dim colDel As New ButtonColumn()

colDel.CommandName = “Delete”

colDel.Text = “Delete”

colDel.ButtonType = ButtonColumnType.PushButton

colDel.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(colDel)

This code adds a ButtonColumn and sets the button type to a PushButton.
The next code snippet shows the code for the Delete button.

Private Sub dgEmployee_DeleteCommand(_

ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles dgEmployee.DeleteCommand

‘Get the DataTable from the Session.

Dim dt As DataTable = CType(Session(“Employee”), DataTable)

‘Get the DataRow to be updated.

Dim PrimaryKey As String = dgEmployee.DataKeys(e.Item.DataSetIndex)

Dim dr As DataRow = dt.Rows.Find(PrimaryKey)

dr.CancelEdit()

‘Delete the row.

dr.Delete()

dt.DefaultView.RowFilter = “”

dgEmployee.EditItemIndex = -1

dgEmployee.SelectedIndex = -1

BindTable()

End Sub

This code locates the DataRow and marks it for deletion. The last items
ensure that the RowFilter is clear and no Item is being edited. The completed
DataGrid with the Delete button is shown in Figure 8.11.

Updating the Data Store

Until now, all data modification has been done in a local DataTable or DataSet.
This section examines several methods of updating the data store. The Data-
Grid from the previous section will be used as a graphical interface for these
operations.

330 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 330

Figure 8.11 The completed DataGrid contains the Add, Edit, and Delete buttons.

The DataAdapter can be used to update the data store. The DataAdapter
requires select, insert, update, and delete commands to successfully send
changes back to the data store. Rather that create each of these commands,
ADO.NET offers a class called the CommandBuilder, which can create the
insert, update, and delete commands as long as the select command has been
supplied. The command builder can only be used when the data store that is
being updated represents a single table.

In this example, a command button is placed in the header of the delete col-
umn. When the command button is clicked, the UpdateDB method is executed.
The following code shows the UpdateDB button.

Dim colDel As New ButtonColumn()

colDel.HeaderText = _

“<input type=’submit’ runat=’server’ “ & _

“ name=’dgEmployee:UpdateAll’ value=’Update DB’ />”

colDel.CommandName = “Delete”

colDel.Text = “Delete”

colDel.ButtonType = ButtonColumnType.PushButton

colDel.ItemStyle.Width = New Unit(colWidth, UnitType.Pixel)

dgEmployee.Columns.Add(colDel)

The Page Load method has been modified to called the UpdateDB method,
as shown in the following code:

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Not IsPostBack Then

BindTable()

ElseIf Request(“dgEmployee:Add”) = “Add” Then

AddEmployee()

Data Access with ADO.NET 331

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 331

ElseIf Request(“dgEmployee:UpdateAll”) = “Update DB” Then

UpdateDB()

End If

End Sub

Finally, the UpdateDB method contains the code to modify the data store.
This code follows:

Public Sub UpdateDB()

Dim dt As DataTable

If Not Session(“Employee”) Is Nothing Then

Dim cnstr As String = “integrated security=yes;database=pubs”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = “Select * from employee”

Dim daEmployee As New SqlDataAdapter(sql, cn)

Dim cmdBld As New SqlCommandBuilder(daEmployee)

dt = CType(Session(“Employee”), DataTable)

daEmployee.Update(dt)

End If

BindTable()

End Sub

This code starts by connecting to the Session variable that contains the
DataTable. Next, the connection and DataAdapter are created. Finally, a
CommandBuilder is created, which will create the insert, update, and delete
commands automatically when required. The finished Web page is shown in
Figure 8.12.

Although the CommandBuilder object was used in the example, separate
command objects may be assigned to each of the DataAdapter’s commands.
The commands may contain calls to stored procedures as well.

Figure 8.12 The completed DataGrid with Add, Delete, Edit, and Update DB buttons added.

332 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 332

Paging the DataGrid

A DataGrid can be set up to allow paging of data. This is especially useful
when displaying a significant amout of data. Paging can be enabled by adding
the following settings into the init code of the DataGrid.

Private Sub dgEmployee_Init(_

ByVal sender As Object, _

ByVal e As System.EventArgs) Handles dgEmployee.Init

dgEmployee.AllowPaging = True

dgEmployee.PageSize = 10

dgEmployee.PagerStyle.Mode = PagerMode.NumericPages

dgEmployee.PagerStyle.PageButtonCount = 5

dgEmployee.PagerStyle.HorizontalAlign = HorizontalAlign.Right

‘Other code to initialize columns here

End Sub

This code turns on paging and sets the PageSize and the style of paging.
Meanwhile, the following code must be added for the paging to operate.

Private Sub dgEmployee_PageIndexChanged(_

ByVal source As Object, _

ByVal e As _

System.Web.UI.WebControls.DataGridPageChangedEventArgs) _

Handles dgEmployee.PageIndexChanged

dgEmployee.CurrentPageIndex = e.NewPageIndex

dgEmployee.EditItemIndex = -1

BindTable()

End Sub

This code simply changes the CurrentPageIndex to the NewPageIndex and
then assures that no item is being edited. Figure 8.13 shows the DataGrid with
paging enabled.

Figure 8.13 The DataGrid with paging enabled.

Data Access with ADO.NET 333

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 333

Sorting Data with the DataGrid

A DataGrid also can allow the user to select which column to edit. Sorting is
enabled by setting the AllowSorting property of the DataGrid to true in the Init
method, as follows:

dgEmployee.AllowSorting = True

Next, the SortExpression must be set for each column for which sorting is
enabled. This can be done by adding the following line of code to the DataGrid
Init method for each of these columns. Be sure to add this line of code after the
assignment of the DataField.

col.SortExpression = col.DataField

Finally, code needs to be added to the DataGrid’s sort command. This code
will read the Sort Expression from the column and compare it with the value
that was stored.

Private Sub dgEmployee_SortCommand(_

ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridSortCommandEventArgs) _

Handles dgEmployee.SortCommand

‘Get the DataTable from the Session.

Dim dt As DataTable = CType(Session(“Employee”), DataTable)

Dim PrevSortExpression As String = “”

Dim PrevSortOrder As String = “”

If Not dgEmployee.Attributes(“SortExpression”) Is Nothing Then

PrevSortExpression = _

dgEmployee.Attributes(“SortExpression”).ToString()

End If

If Not dgEmployee.Attributes(“SortOrder”) Is Nothing Then

PrevSortOrder = dgEmployee.Attributes(“SortOrder”).ToString()

End If

Dim NewSortOrder As String = “”

If PrevSortExpression = e.SortExpression Then

If PrevSortOrder = “DESC” Then

NewSortOrder = “ASC”

Else

NewSortOrder = “DESC”

End If

Else

NewSortOrder = “ASC”

End If

dgEmployee.Attributes(“SortExpression”) = e.SortExpression

dgEmployee.Attributes(“SortOrder”) = NewSortOrder

dt.DefaultView.Sort = e.SortExpression & “ “ & NewSortOrder

BindTable()

End Sub

334 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 334

Figure 8.14 The sorted DataGrid, along with data paging.

The completed DataGrid with sort capabilities is shown in Figure 8.14.

Lab 8.1 Data Access

In this lab, you will add a new page to browse the customer table in the
Northwind database. First, you will create a customer list page. After the
page is created and the controls are placed on the page, you will add code
to fill the DataGrid. Finally, you will test your work.

Creating the Customer List Page
In this section, you will create a Web page to display the customer table
in the Northwind database.

1. Open the OrderEntrySolution from Lab 7.1.

2. Right-click the OrderEntrySolution in the Solution Explorer, and
click Check Out to check out the complete solution.

3. Right-click the Customer project in the Solution Explorer, and then
click Set As StartUp Project.

4. Right-click the Inventory project, and click Add, Add Web Form.
Name the page CustomerList.aspx.

5. Change the layout to FlowLayout, which allows text to be simply
typed onto the control and will push other controls downward
when upper controls are too large.

6. Type Customer List at the top of the page.

7. Drag a DataGrid on to the Web Page. Change the name of the
DataGrid to dgCustomers.

Data Access with ADO.NET 335

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 335

8. User your mouse to select everything on the page, and then click
Format, Justify, Center.

9. Select the text, and change the font to Arial and the font size to 6.

10. Save your work. Figure 8.15 shows the page.

Filling the DataGrid
In this section, you will create a connection to the Northwind database.

1. Open the CustomerList.aspx.vb code-behind page.

2. Add an Imports state to the top of the code for System.Data and for
System.Data.SqlClient. Locate the Page_Load event method and
add a test to check for the postback. (If this is the first time that the
page is being called, make a call to the BindTable method.) Your
code should look like the following:
Imports System.Data

Imports System.Data.SqlClient

‘....other code

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Not IsPostBack Then

BindTable()

End If

End Sub

3. Add the BindTable method, which will contain code as described in
the following steps.

Figure 8.15 CustomerList Web page with DataGrid.

336 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 336

a. Add code to create a SqlConnection, along with the connection
string.

b. Add a variable called sql, which will contain the command to
retrieve the CustomerID, CompanyName, ContactName fields,
and all rows from the Customers table.

c. Add code to create a SqlDataAdapter, using the SqlConnection
and the sql variable.

d. Add code to create a variable called dt, which is a DataTable
called Customers.

e. Fill the DataTable using the SqlDataAdapter.

f. Add a DataBind command. The completed BindTable code
should like the following:
Public Sub Bindtable()

Dim cnstr As String

cnstr = “server=.;integrated security=yes;” _

& “database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim sql As String

Sql = “Select CustomerID, CompanyName, ContactName” _

& “from customers”

Dim daCustomers As New SqlDataAdapter(sql, cn)

Dim dt As New DataTable(“Customers”)

‘Execute

daCustomers.Fill(dt)

dgCustomers.DataSource = dt

DataBind()

End Sub

4. Save your work.

Testing the DataGrid
You can test the DataGrid by setting the CustomerList.aspx as the start
page and running the application.

1. Set the Customer project to be the startup project. This can be done
by right-clicking the Customer project in the Solution Explorer and
clicking Set As StartUp Project.

2. Set the CustomerList page as the startup page. This can be done by
right-clicking the CustomerList.aspx page and clicking Set As Start
Page.

3. Run the application. The result should look like Figure 8.16.

4. Check your work back into Visual SourceSafe.

Data Access with ADO.NET 337

j 430234 Ch08.qxd 7/1/03 9:01 AM Page 337

Figure 8.16 The CustomerList page filled with Customers.

Summary

■■ ADO.NET is a disconnected-data-centric environment. Disconnected
data retrieves the data from the data store and then closes the connec-
tion. An advantage of this model is that the data can be downloaded
to the client, the connection can be closed, and the user can work with
the data while offline. Updates can be sent back to the server when
appropriate.

■■ A data provider supplies a bridge from the application to the data
source. Think of the data provider as a set of drivers that are specific
to a data store.

■■ The following data objects are provider specific: the Connection,
DataAdapter, Command, Parameter, CommandBuilder, and DataReader.

■■ The Command object is used to issue a command to the data store. The
command can be a command to retrieve data or a command to insert,
update, or delete data.

■■ The DataSet is a complete in-memory database.

■■ The DataTable contains DataRows, DataColumns, Constraints, and
references to ParentRelations and ChildRelations.

■■ The DataView is a window into a DataTable that provides filtering and
sorting.

338 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:02 AM Page 338

■■ The DataAdapter is responsible for moving data between a data store
and a DataTable or DataSet.

■■ Before changes can be made to the DataTable, the DataTable’s Primary-
Key property should be assigned.

■■ The DataGrid has abilities for adding, deleting, and in-place editing,
sorting, and paging.

■■ A DataRow can be edited by assigning new contents to the DataRow.
Using this method, however, triggers validation with each change.
It is better to use the BeginEdit method of the DataRow, which will
postpone validation until the EndEdit method is executed.

Data Access with ADO.NET 339

j 430234 Ch08.qxd 7/1/03 9:02 AM Page 339

Review Questions

1. What is the proper method for creating a DataRow?

2. How is a DataReader created?

3. What is the purpose of BeginEdit and EndEdit?

4. Name two of the objects that are contained in a DataSet.

5. Name four data providers.

6. What method of which object is used to send all of the modified data in a DataSet
back to the data store?

7. What is the most efficient method of the Command object that can retrieve the result
of the following SQL statement: “Select count(*) from Employees”?

340 Chapter 8

j 430234 Ch08.qxd 7/1/03 9:02 AM Page 340

Answers to Review Questions

1. Use the DataTable’s NewRow method.

2. Use the Command’s ExecuteReader method.

3. BeginEdit postpones validation checking until the EndEdit method is executed.

4. DataTable and DataRelation objects.

5. Sql, OleDb, Odbc, and Oracle.

6. The Update method of the DataAdapter.

7. Use the ExecuteScaler method.

Data Access with ADO.NET 341

j 430234 Ch08.qxd 7/1/03 9:02 AM Page 341

j 430234 Ch08.qxd 7/1/03 9:02 AM Page 342

343

Companies have always had a need to communicate with each other in an
automated fashion. Communication between companies has been problem-
atic, primarily due to the type of data that was being exchanged. Data has been
exchanged using delimited files, fixed-width files, structured files, and every-
thing in between. Each type of data had limitations. Delimited and fixed-
width files could not easily reflect a relational structure, and structured data
files were typically custom implementations that were not reusable. A method
of communicating data that could be used by everyone was required. This
new communications method needed features such as the support for struc-
tured data, validation, and extensibility, and the capability to pass through
firewalls.

The World Wide Web Consortium (W3C) was created in October 1994 to
help further the Web’s potential by developing common protocols to ensure
interoperability. In February 1998, the W3C published “The XML 1.0 Recom-
mendation.” Extensible Markup Language (XML) provides a foundation for
text-based data communications that support validation, structured data, and
extensibility, and the capability to pass through firewalls.

The world has big plans for XML and its supporting technologies. Many
companies have already embraced XML, and many companies are planning
implementations of XML technologies in new applications. The W3C envi-
sions the future Web as being completely based on XML technologies.

Working with XML Data

C H A P T E R

9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 343

This chapter looks at Microsoft’s approach to XML in the .NET Framework.
The chapter starts by examining the XML classes. After the classes have been
examined, the chapter presents various ways of implementing these classes.

Classroom Q & A
Q: Is it possible to apply XML transformations with the .NET Frame-

work?
A: It sure is. The XslTransform class can be used. Also, ASP.NET pro-

vides an XML Web control, which can perform transformations
and produce output to the browser.

Q: When working with our vendors, we need to verify that each ven-
dor is providing XML files to us in the correct format. Ideally, we
don’t want to attempt to process a document if it is not valid. Is
there a way to check an XML file to see if it has extra nodes or if it
is missing mandatory nodes?

A: Yes. The XmlValidatingReader class can be used with the other
classes. This class throws an exception if the file is not validated
against a data type definition (DTD) or an XML Data Reduced
(XDR) or an XML Schema (XSD) file.

Q: Is there a way to use XPath queries on a DataSet?
A: Yes. The XmlDataDocument class was created to provide the abil-

ity to connect to a DataSet and allow XPath queries.

XML in the .NET Framework

The .NET Framework provides vast support for XML. The implementation of
XML is focused on performance, reliability, and scalability. Many of the XML
classes are stream based and require only small portions of the document to be
in memory when it’s being read.

The integration of XML with ADO.NET offers the ability to use XML docu-
ments as a data source. DataSets offer many XML methods, such as the ability
to read and write XML documents. When a DataSet is transferred from one
location to another, it is sent in an XML format.

The XML Document Object Model

The W3C has provided standards that define the structure and provide a stan-
dard programming interface that can be used in a wide variety of environments

344 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 344

and applications for XML documents. This is called the Document Object
Model (DOM). Classes that support the DOM are typically capable of random
access navigation and modification of the XML document.

XML Namespace

The XML classes can be accessed by setting a reference to the System.XML.dll
file, and adding the Imports System.XML directive to the code.

The System.Data.dll file also extends the System.XML namespace. This is
the location of the XmlDataDocument class. If this class is required, a reference
must be set to the System.Data.dll file.

XML Objects

This section covers the primary XML classes in the .NET Framework. Each of
these classes offers varying degrees of functionality. It’s important to look at
each of the classes in detail, in order to make the correct decision on which
classes should be used. Figure 9.1 shows a high-level view of the objects that
are covered.

Figure 9.1 Some of the objects that are covered in this chapter and how they relate to
each other.

XmlDocument XmlDataDocument

XPathNavigator

XPathDocument

XslTransform

XSLT
Stylesheet

File

XML
Document

File

XML
Document

File

Read-Only Stream
XmlReader

XmlTextReader
XmlTextWriter

Working with XML Data 345

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 345

XmlDocument and XmlDataDocument
These are in-memory representations of XML using the Document Object
Model (DOM) Level 1 and Level 2. These classes can be used to navigate and
edit the XML nodes.

The XmlDataDocument is inherited from XmlDocument and also represents
relational data. The XmlDataDocument can expose its data as a DataSet to pro-
vide relational and nonrelational views of the data. The XmlDataDocument is
located in the System.Data.dll assembly.

These classes provide many methods in order to implement the Level 2
specification, and also contain methods to facilitate common operations. The
methods are summarized in Table 9.1. The XmlDocument contains all of the
methods for creating XmlElements and XmlAttributes.

Table 9.1 XmlDocument and XmlDataDocument Methods

METHOD DESCRIPTION

CreateNodeType Creates an XML node in the document. There are
Create methods for each node type.

CloneNode Creates a duplicate of an XML node. This method takes
a Boolean argument called deep. If deep is false, only
the node is copied. If deep is true, all child nodes are
recursively copied as well.

GetElementById Locates and returns a single node based on its ID
attribute. Note that this requires a DTD that identifies
an attribute as being an ID type. An attribute whose
name is ID is not an ID type by default.

GetElementsByTagName Locates and returns an XmlNodeList containing all of
the descendent elements based on the element name.

ImportNode Imports a node from a different XmlDocument into this
document. The source node remains unmodified in the
original XmlDocument. This method takes a Boolean
argument called deep. If deep is false, only the node is
copied. If deep is true, all child nodes are recursively
copied as well.

InsertBefore The XmlNode immediately before the referenced node.
If the referenced node is nothing, then the new node
is inserted at the end of the child list. If the node
already exists in the tree, the original node is removed
when the new node is inserted.

InsertAfter The XmlNode immediately after the referenced node. If
the referenced node is nothing, then the new node is
inserted at the beginning of the child list. If the node
already exists in the tree, the original node is removed
when the new node is inserted.

346 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 346

Table 9.1 (continued)

METHOD DESCRIPTION

Load Loads an XML document from a disk file, URL, or
Stream.

LoadXml Loads an XML document from a string.

Normalize Normalize assures that there are no adjacent text
nodes in the document. This is like saving the
document and reloading it. This method may be
desirable when text nodes are being programmatically
added to an XmlDocument, and the text nodes could
be side-by-side. Normalizing combines the adjacent
text nodes to produce a single text node.

PrependChild This method inserts a node at the beginning of the
child node list. If the new node is already in the tree, it
is removed before it is inserted. If the node is an
XmlDocumentFragment, the complete fragment is
added.

ReadNode Loads a node from an XML document using an
XmlTextReader or XmlNodeReader object. The
reader must be on a valid node before executing this
method. The reader reads the opening tag, all child
nodes, and the closing tag of the current element.
This repositions the reader to the next node.

RemoveAll This removes all children and attributes from the
current node.

RemoveChild This removes the referenced child.

ReplaceChild This replaces the referenced child with a new node. If
the new node is already in the tree, it is removed first.

Save Saves the XML document to a disk file, URL, or stream.

SelectNodes Selects a list of nodes that match the XPath expression.

SelectSingleNode Selects the first node that matches the XPath
expression.

WriteTo Writes a node to another XML document using an
XmlTextWriter.

WriteContentsTo Writes a node and all of its descendents to another
XML document using an XmlTextWriter.

Working with XML Data 347

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 347

XPathDocument
The XPathDocument provides a cached read-only XmlDocument that can be
used for performing quick XPath queries. This constructor for this class
requires a stream object in order to create an instance of this object. The only
useful method that this class exposes is the CreateNavigator method.

XmlConvert
The XmlConvert class has many static methods for converting between XSD
data types and the common language runtime data types. This class is espe-
cially important when working with data sources that allow names that are
not valid XML names. For example, if a column in a database table is called List
Price, trying to create an element or attribute with a space character throws an
exception. Using XmlConvert to encode the name converts the space to
0x0020, so the XML element name becomes List_x0020_Price. Later, this
name can be decoded using the XmlConvert.DecodeName method.

XmlConvert also provides many static methods for converting strings to
numeric values.

XPathNavigator
The DocumentNavigator provides efficient navigation of an XmlDocument by
providing XPath support for navigation. The XPathNavigator uses a cursor
model and XPath queries to provide read-only, random access to the data. The
XPathNavigator supports XSLT and can be used as the input to a transform.

XmlNodeReader
The XmlNodeReader provides forward-only access to data in an XmlDocu-
ment or XmlDataDocument. It provides the ability to start at a given node in
the XmlDocument, and sequentially read each node.

XmlTextReader
The XmlTextWrite provides noncached, forward-only access to XML data. It
parses XML tokens, but makes no attempt to represent the XML document as
a DOM. The XmlTextReader does not perform document validation, but it
checks the XML data to ensure that it is well formed.

XmlTextWriter
The XmlTextWriter provides noncached, forward-only writing of XML data to
a stream or file, ensuring that the data conforms to the W3C XML 1.0 standard.

348 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 348

The XmlTextWriter contains logic for working with namespaces and resolving
namespace conflicts.

XmlValidatingReader
The XmlValidatingReader provides an object for validating against DTD, XML
Schema Reduced (XDR), or XML Schema Definition (XSD). The constructor
expects a Reader or a string as the source of the XML that is validated.

XslTransform
The XslTransform can transform an XML document using an XSL stylesheet.
The XslTransform supports XSLT 1.0 syntax and provides two methods: Load
and Transform.

The Load method is used to load an XSLT stylesheet from a file or a stream.
The Transform method is used to perform the transformation. The Transform
method has several overloads, but essentially expects a XmlDocument or
XmlNode as the first argument, an XsltArgumentList, and an output stream.

Working with XML Documents

There are certainly many ways of working with XML data in the .NET Frame-
work. This section covers some of the methods, such as creating a new XML
file from scratch, reading and writing XML files, searching XML data, and
transforming XML data.

Creating a New XmlDocument from Scratch
The following code shows how an XmlDocument can be created from scratch,
and saved to a file:

‘Declare and create new XmlDocument.

Dim xmlDoc As New XmlDocument()

Dim el As XmlElement

Dim childCounter As Integer

Dim grandChildCounter As Integer

‘Create the XML declaration first.

xmlDoc.AppendChild(_

xmlDoc.CreateXmlDeclaration(“1.0”, “utf-8”, Nothing))

‘Create the root node and append into doc

el = xmlDoc.CreateElement(“myRoot”)

xmlDoc.AppendChild(el)

‘Child loop

Working with XML Data 349

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 349

For childCounter = 1 To 4

Dim childelmt As XmlElement

Dim childattr As XmlAttribute

‘Create child with ID attribute

childelmt = xmlDoc.CreateElement(“myChild”)

childattr = xmlDoc.CreateAttribute(“ID”)

childattr.Value = childCounter.ToString()

childelmt.Attributes.Append(childattr)

‘Append element into the root element

el.AppendChild(childelmt)

For grandChildCounter = 1 To 3

‘Create grandchildren.

childelmt.AppendChild(xmlDoc.CreateElement(“GrandChild”))

Next

Next

‘Save to file

xmlDoc.Save(“C:\xmltest.XML”)

This code starts by creating an instance of an XmlDocument. Next, the XML
declaration is created and placed inside the child collection. Figure 9.2 shows
the XML file. An exception is thrown if this is not the first child of the Xml-
Document. If the root element already exists, the declaration may be inserted
as follows:

xmlDoc.PrependChild(_

xmlDoc.CreateXmlDeclaration(“1.0”, “utf-8”, Nothing))

This code creates the XML declaration and inserts it before all other child
nodes.

Figure 9.2 The XML file created from scratch.

350 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 350

The previous code also works with the XmlDataDocument, but the Xml-
DataDocument has more features for working with relational data. These fea-
tures are explored later in this chapter.

Parsing XmlDocument Using the DOM
An XmlDocument can be parsed by using a recursive routine to loop through
all elements. The following code has an example of parsing an XmlDocument:

Private Sub Button2_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button2.Click

Dim xmlDoc As New XmlDocument()

xmlDoc.Load(“C:\xmltest.XML”)

RecurseNodes(xmlDoc.DocumentElement)

End Sub

Public Sub RecurseNodes(ByVal node As XmlNode)

‘Start recursive loop with Level 0.

RecurseNodes(node, 0)

End Sub

Public Sub RecurseNodes(ByVal node As XmlNode, ByVal level As Integer)

Dim s As String

Dim n As XmlNode

Dim attr As XmlAttribute

s = s.Format(“{0} Type:{1} Name:{2} Attr: “, _

New String(“-”, level), node.NodeType, node.Name)

For Each attr In node.Attributes

s &= s.Format(“{0}={1} “, attr.Name, attr.Value)

Next

Response.Write(s & “
”)

For Each n In node.ChildNodes

RecurseNodes(n, level + 1)

Next

End Sub

The output of this code is shown in Figure 9.3. This code starts by loading an
XML file and then calling a procedure called RecurseNodes. The Recurse-
Nodes procedure is overloaded. The first call simply passes the xmlDoc’s root
node. The recursive calls pass the recursion level. Each time the RecurseNodes
procedure executes, the node information is printed, and for each child that
the node has, a recursive call is made.

Working with XML Data 351

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 351

Figure 9.3 Parsing the XmlDocument.

Parsing XmlDocument Using the XPathNavigator
The XPathNavigator provides an alternate method of walking the XML docu-
ment recursively. This object does not use the methods that are defined in the
DOM. Instead, it uses XPath queries to navigate the data. It offers many meth-
ods and properties that can be used as shown in the following code example:

Private Sub Button3_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button3.Click

Dim xmlDoc As New XmlDocument()

xmlDoc.Load(“C:\xmltest.XML”)

Dim xpathNav As XPathNavigator = xmlDoc.CreateNavigator()

xpathNav.MoveToRoot()

RecurseNavNodes(xpathNav)

End Sub

Public Sub RecurseNavNodes(ByVal node As XPathNavigator)

‘Start recursive loop with Level 0.

RecurseNavNodes(node, 0)

End Sub

352 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 352

Public Sub RecurseNavNodes(ByVal node As XPathNavigator, _

ByVal level As Integer)

Dim s As String

s = s.Format(“{0} Type:{1} Name:{2} Attr: “, _

New String(“-”, level), node.NodeType, node.Name)

If node.HasAttributes Then

node.MoveToFirstAttribute()

Do

s &= s.Format(“{0}={1} “, node.Name, node.Value)

Loop While node.MoveToNextAttribute()

node.MoveToParent()

End If

Response.Write(s & “
”)

If node.HasChildren Then

node.MoveToFirstChild()

Do

RecurseNavNodes(node, level + 1)

Loop While node.MoveToNext()

node.MoveToParent()

End If

End Sub

This is recursive code that works in a similar fashion to the DOM example
that was previously covered. The difference is the methods that are used to get
access to each node.

To get access to the attributes, there is a HasAttributes property that is true
if the current node has attributes. The MoveToFirstAttribute and MoveToNext-
Attribute method are used to navigate the attributes. After the attribute list has
been navigated, the MoveToParent method moves back to the element.

The HasChildren property returns true if the current node has child nodes.
The MoveToFirstChild and MoveToNext are used to navigate the child nodes.
After the children have been navigated, the MoveToParent method moves
back to the parent element.

Depending on the task at hand, it may be more preferable to use the XPath-
Navigator instead of the DOM. In this example, other than syntax, there is lit-
tle difference between the two methods.

Searching the XmlDocument Using the DOM
The DOM provides the GetElementById and the GetElementsByTagName
methods for searching an XmlDocument. The GetElementById method locates
an element based on its ID. The ID refers to an ID type that has been defined in
a DTD document. In order to demonstrate this, the XML document in Listing
9.1 is used.

Working with XML Data 353

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 353

<?XML version=”1.0” encoding=”utf-8”?>

<!DOCTYPE myRoot [

<!ELEMENT myRoot ANY>

<!ELEMENT myChild ANY>

<!ELEMENT myGrandChild EMPTY>

<!ATTLIST myChild

ChildID ID #REQUIRED

>

]>

<myRoot>

<myChild ChildID=”ref-1”>

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

<myChild ChildID=”ref-2”>

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

<myChild ChildID=”ref-3”>

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

<myChild ChildID=”ref-4”>

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

</myRoot>

Listing 9.1 Sample XML document with an embedded data type definition (DTD). This file
is used in many of the chapter’s examples.

The ChildID has been defined as an ID data type, and the IDs are required
to begin with a character, underscore, or colon. The following code performs a
lookup of the element with an ID of ref-3:

Private Sub Button5_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button5.Click

Dim s As String

‘Declare and create new XmlDocument

Dim xmlDoc As New XmlDocument()

354 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 354

xmlDoc.Load(“C:\xmltest.XML”)

Dim node As XmlNode

node = xmlDoc.GetElementById(“ref-3”)

s = s.Format(“Type:{0} Name:{1} Attr:”, _

node.NodeType, node.Name)

Dim a As XmlAttribute

For Each a In node.Attributes

s &= s.Format(“{0}={1} “, a.Name, a.Value)

Next

Response.Write(s & “
”)

End Sub

The browser output is shown in Figure 9.4. When an ID data type is defined,
the ID must be unique. This code locates ref-3 and displays the node and
attributes information.

The SelectSingleNode method can also be used to locate an element. The
SelectSingleNode method requires an XPath query to be passed into the
method. The call to GetElementById, shown in the previous code sample, can
be changed to SelectSingleNode to achieve the same result, as shown next.

node = xmlDoc.SelectSingleNode(“//myChild[@ChildID=’ref-3’]”)

Note that this method does not require a DTD to be provided, and it can per-
form an XPath lookup on any element or attribute where the SelectSingleNode
required an ID data type.

The GetElementsByTagName method returns an XmlNodeList containing
all matched elements. This following code returns a list of nodes whose tag
name is myGrandChild:

Private Sub Button4_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button4.Click

Dim s As String

‘Declare and create new XmlDocument

Dim xmlDoc As New XmlDocument()

xmlDoc.Load(“C:\xmltest.XML”)

Dim elmts As XmlNodeList

elmts = xmlDoc.GetElementsByTagName(“myGrandChild”)

Dim node As XmlNode

For Each node In elmts

s = s.Format(“Type:{0} Name:{1}”, _

node.NodeType, node.Name)

Response.Write(s & “
”)

Next

End Sub

Working with XML Data 355

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 355

Figure 9.4 The brower output when using the GetElementById method to locate an XML
node.

This code retrieves the list of elements whose tag name is myGrandChild.
The browser output is shown in Figure 9.5. This method does not require a
DTD to be included, which makes this method preferable even for a single
node lookup.

The SelectNodes method can also be used to locate an XmlNodeList. The
SelectNodes method requires an XPath query to be passed into the method. In
the previous code sample, the call to GetElementsByTagName can be changed
to SelectNodes to achieve the same result as follows:

elmts = xmlDoc.SelectNodes(“//myGrandChild”)

Note that this method can perform an XPath lookup on any element or
attribute, with much more querying flexibility where the SelectElementsBy-
TagName was limited to a tag name.

Figure 9.5 The browser output when executing the GetElementsByTagName method.

356 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 356

Searching XPathDocument Using the XPathNavigator
The XPathNavigator offers much more flexibility for performing searches than
what is available through the DOM. The XPathNavigator has many methods
that are focused around XPath queries, using a cursor model. The XPathNavi-
gator works with the XmlDocument, but the XPathDocument object is tuned
for the XPathNavigator and uses fewer resources than the XmlDocument. If
the DOM is not required, use the XPathDocument instead of the XmlDocu-
ment. The following code example performs a search for the myChild element
where the ChildID attribute equals ref-3:

Private Sub Button8_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button8.Click

Dim s As String

Dim xmlDoc As New XPathDocument(“C:\xmltest.XML”)

Dim nav As XPathNavigator = xmlDoc.CreateNavigator()

Dim expr As String = “//myChild[@ChildID=’ref-3’]”

‘Display the selection.

Dim iterator As XPathNodeIterator = nav.Select(expr)

Dim navResult As XPathNavigator = iterator.Current

While (iterator.MoveNext())

s = s.Format(“Type:{0} Name:{1} “, _

navResult.NodeType, navResult.Name)

If navResult.HasAttributes Then

navResult.MoveToFirstAttribute()

s &= “Attr: “

Do

s &= s.Format(“{0}={1} “, _

navResult.Name, navResult.Value)

Loop While navResult.MoveToNextAttribute()

End If

Response.Write(s & “
”)

End While

End Sub

Figure 9.6 shows the browser output. This code uses an XPath query to
locate the myChild element. The Select method is called with the query string.
The Select method returns an XPathNodeIterator object, which allows naviga-
tion over the node or nodes that are returned. The XPathNodeIterator has a
property called Current, which represents the current node and is, in itself, an
XPathNavigator data type. Rather than use iterator.Current throughout the
code, a variable called navResult is created, and assigned a reference to itera-
tor.Current. Note that the call to MoveToParent is not required when finishing
the loop through the attributes. This is because the iterator.MoveNext doesn’t
care where the current location is, because it is simply going to the next node
in its list.

Working with XML Data 357

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 357

Figure 9.6 Searching for a node with the XPathNavigator.

Some of the real power of the XPathNavigator starts to show when the
requirement is to retrieve a list of nodes, and sort the output. Sorting involves
compiling an XPath query string to an XPathExpression object, and then
adding a sort to the compiled expressions. The following is an example of
compiling and sorting:

Private Sub Button9_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button9.Click

Dim s As String

Dim xmlDoc As New XPathDocument(“C:\xmltest.XML”)

Dim nav As XPathNavigator = xmlDoc.CreateNavigator()

‘Select all myChild elements.

Dim expr As XPathExpression

expr = nav.Compile(“//myChild”)

‘Sort the selected books by title.

expr.AddSort(“@ChildID”, _

XmlSortOrder.Descending, _

XmlCaseOrder.None, “”, _

XmlDataType.Text)

‘Display the selection.

Dim iterator As XPathNodeIterator = nav.Select(expr)

Dim navResult As XPathNavigator = iterator.Current

While (iterator.MoveNext())

s = s.Format(“Type:{0} Name:{1} “, _

navResult.NodeType, navResult.Name)

If navResult.HasAttributes Then

navResult.MoveToFirstAttribute()

s &= “Attr: “

Do

s &= s.Format(“{0}={1} “, _

navResult.Name, navResult.Value)

Loop While navResult.MoveToNextAttribute()

End If

Response.Write(s & “
”)

End While

End Sub

358 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 358

Figure 9.7 The browser output when compiling and sorting an XPath query.

Figure 9.7 shows the browser output. This code is similar to the previous
example, with the exception of the creation of the expr variable. The expr vari-
able is created by compiling the query string to an XPathExpression. After that,
the AddSort method is used to sort the output in descending order, based on
the ChildID attribute.

When working with XML, it may seem easier to use the DOM methods to
access data, but there are limits to the search capabilities that could require
walking the tree to get the desired output. On the surface, the XPathNavigator
may appear to be more difficult to use, but having the ability to perform XPath
queries and sorting make this the object of choice for more complex XML prob-
lem solving.

Writing a File Using the XmlTextWriter
The XmlTextWriter can be used to create an XML file from scratch. This class
has many properties that aid in the creation of XML nodes. The following sam-
ple creates an XML file called EmployeeList.XML, and writes two employees
to the file:

Private Sub Button10_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button10.Click

Dim xmlWriter As New _

XmlTextWriter(“C:\EmployeeList.XML”, _

System.Text.Encoding.UTF8)

With xmlWriter

.Formatting = Formatting.Indented

.Indentation = 5

.WriteStartDocument()

.WriteComment(“XmlTextWriter Test Date: “ & _

DateTime.Now.ToShortDateString())

.WriteStartElement(“EmployeeList”)

‘New employee

.WriteStartElement(“Employee”)

Working with XML Data 359

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 359

.WriteAttributeString(“EmpID”, “1”)

.WriteAttributeString(“LastName”, “GaryLast”)

.WriteAttributeString(“FirstName”, “Gary”)

.WriteAttributeString(“Salary”, XmlConvert.ToString(50000))

.WriteElementString(“HireDate”, _

XmlConvert.ToString(#1/1/2003#))

.WriteStartElement(“Address”)

.WriteElementString(“Street1”, “123 MyStreet”)

.WriteElementString(“Street2”, “”)

.WriteElementString(“City”, “MyCity”)

.WriteElementString(“State”, “My”)

.WriteElementString(“ZipCode”, “12345”)

‘Address

.WriteEndElement()

‘Employee

.WriteEndElement()

‘New employee

.WriteStartElement(“Employee”)

.WriteAttributeString(“EmpID”, “2”)

.WriteAttributeString(“LastName”, “RandyLast”)

.WriteAttributeString(“FirstName”, “Randy”)

.WriteAttributeString(“Salary”, XmlConvert.ToString(40000))

.WriteElementString(“HireDate”, _

XmlConvert.ToString(#1/2/2003#))

.WriteStartElement(“Address”)

.WriteElementString(“Street1”, “234 MyStreet”)

.WriteElementString(“Street2”, “”)

.WriteElementString(“City”, “MyCity”)

.WriteElementString(“State”, “My”)

.WriteElementString(“ZipCode”, “23456”)

‘Address

.WriteEndElement()

‘Employee

.WriteEndElement()

‘EmployeeList

.WriteEndElement()

.Close()

End With

Dim xmlDoc As New XmlDocument()

xmlDoc.PreserveWhitespace = True

xmlDoc.Load(“C:\EmployeeList.XML”)

Response.Write(“<pre>”)

Response.Write(Server.HtmlEncode(xmlDoc.OuterXml))

Response.Write(“</pre>”)

End Sub

Figure 9.8 shows the browser output. This code starts by opening the file as
part of the constructor for the XmlTextWriter. The constructor also expects an
encoding type. Since an argument is required, passing Nothing causes the
encoding type to be UTF-8, which is that same as the value that is explicitly
being passed.

360 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 360

There are many statements that are doing nothing more that writing to the
textWriter using xmlWriter. Typing time is saved by the use of With xmlWriter
statement, which allows a simple dot to be typed to represent the xmlWriter
object.

The XmlTextWriter handles the formatting of the document by setting the
Formatting and Indentation properties.

The WriteStartDocument method writes the XML declaration to the file. The
WriteComment writes a comment to the file.

When writing elements, either the WriteStartElement method can be used,
or the WriteElementString method can be used. The WriteStartElement only
writes the starting element, but keeps track of the nesting level, and adds new
elements inside this element. The element is completed when a call is made to
the WriteEndElement method. The WriteElementString simply writes a closed
element to the file.

The WriteAttribute method take a name and value pair, and writes the
attribute into the current open element.

When writing is complete, a call to the Close method must be called to avoid
losing data. The file is now saved.

The last part of this procedure is used to display the file on the browser, as
shown in Figure 9.8. This procedure reads the document back into an Xml-
Document, turns on the WhiteSpacePreserve property, and sends the out-
erXML of the XmlDocument to the browser by encoding it in HTML, between
the HTML pre tags.

Figure 9.8 The browser output when an XML file is created. The file is then read into an
XmlDocument and displayed.

Working with XML Data 361

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 361

Reading a File Using the XmlTextReader
The XmlTextReader is used to read an XML file, node by node. The reader pro-
vides forward-only, noncaching, access to an XML data stream. The reader is
ideal for use when there is a possibility that the information that is desired is
near the top of the XML file, and the file is large. If random access is required,
use the XPathNavigator or the XmlDocument. The following code reads the
XML file that was created in the previous example and displays information
about each node:

Private Sub Button11_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button11.Click

Dim xmlReader As New _

XmlTextReader(“C:\EmployeeList.XML”)

Do While xmlReader.Read()

Select Case xmlReader.NodeType

Case XmlNodeType.XmlDeclaration, _

XmlNodeType.Element, _

XmlNodeType.Comment

Dim s As String

s = s.Format(“{0}: {1} = {2}
”, _

xmlReader.NodeType, _

xmlReader.Name, _

xmlReader.Value)

Response.Write(s)

Case XmlNodeType.Text

Dim s As String

s = s.Format(“ - Value: {0}
”, _

xmlReader.Value)

Response.Write(s)

End Select

If xmlReader.HasAttributes Then

Do While xmlReader.MoveToNextAttribute()

Dim s As String

s = s.Format(“ - Attribute: {0} = {1}
”, _

xmlReader.Name, xmlReader.Value)

Response.Write(s)

Loop

End If

Loop

xmlReader.Close()

End Sub

Figure 9.9 shows the browser output. This code opens the EmployeeList file
and then performs a simple loop, reading one element at a time until finished.
For each node that is read, a check is made on the NodeType, and the node
information is printed.

362 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 362

Figure 9.9 The browser output when reading an XML file and displaying information
about each node.

When a node is read, its corresponding attributes are read as well. A check
is made to see if the node has attributes, and, if so, they are displayed.

XslTransform
The XslTransform class provides a simple method of transforming an XML
file, using an xsl stylesheet. The XslTransform supports XSLT 1.0 syntax. The
XSLT stylesheet must reference the following namespace:

http://www.w3.org/1999/XSL/Transform

Working with XML Data 363

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 363

This class has two methods: Load and Transform. The Load method is used
to load an xsl stylesheet. The Transform method has several overloads, but
basically expects an XML source, a destination, and, optionally, an XsltArgu-
mentList object.

The XSL stylesheet supports script as well as .NET languages. The example
that follows embeds a Visual Basic .NET function to format the hire date of the
employee before placing the date into the HTML table.

The following example uses the EmployeeList.XML file that was created in
the previous XmlTextWriter example (see Figure 9.8). This example takes an
XSL stylesheet, and transforms the EmployeeList into formatted HTML. The
HTML is sent to a file, and then the HTML is sent to right out to the Response
stream to the browser. The following is the EmployeeList.xsl file:

<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:msxsl=”urn:schemas-microsoft-com:xslt”

xmlns:labs=”http://labs.com/mynamespace”>

<msxsl:script implements-prefix=’labs’ language=’VB’>

<![CDATA[

‘Add code here.

function FormatDate(_

d as System.XML.XPath.XPathNodeIterator) as string

dim ret as string=””

dim nav as XPathNavigator = d.Current

nav.MoveToFirstChild()

ret = XmlConvert.ToDateTime(_

nav.Value).ToShortDateString()

return ret

end function

]]>

</msxsl:script>

<xsl:template match=”/”>

<html>

<head>

<title>Employee List</title>

</head>

<body>

<center>

<h1>Employee List</h1>

<xsl:call-template name=”CreateHeading”/>

</center>

</body>

</html>

</xsl:template>

<xsl:template name=”CreateHeading”>

<table border=”1” width=”100%” cellpadding=”4”>

<tr >

<th>

Employee ID

</th>

364 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 364

<th>

Last Name

</th>

<th>

First Name

</th>

<th>

Hire Date

</th>

<th>

Salary

</th>

</tr>

<xsl:call-template name=”CreateTable”/>

<xsl:call-template name=”GetTotal”/>

</table>

</xsl:template>

<xsl:template name=”CreateTable”>

<xsl:for-each select=”/EmployeeList/Employee”>

<tr>

<td align=”center”>

<xsl:value-of select=”@EmpID”/>

</td>

<td>

<xsl:value-of select=”@LastName”/>

</td>

<td>

<xsl:value-of select=”@FirstName”/>

</td>

<td>

<xsl:value-of select=

“labs:FormatDate(HireDate)”/>

</td>

<td align=”right”>

<xsl:value-of select=

“format-number(@Salary,’$#,##0.00’)”/>

</td>

</tr>

</xsl:for-each>

</xsl:template>

<xsl:template name=”GetTotal”>

<tr>

<td align=”right” colspan=”4”>

Total Salaries:

</td>

<td align=”right”>

<xsl:value-of select=

“format-number(sum(

/EmployeeList/Employee/@Salary),

‘$#,##0.00’)”/>

Working with XML Data 365

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 365

</td>

</tr>

</xsl:template>

</xsl:stylesheet>

The first part of the stylesheet defines a function called FormatDate, which
is written in Visual Basic .NET. This function receives an XPathNodeIterator,
which is pointing to the current node. The XmlConvert class is then used to
format the output and return the short date representation of the hire date.

The next part of the XSL stylesheet contains the main template, which is a
search for a matching root node, and is essentially the entry point into the XSL
stylesheet. This section creates the HTML formatted output, and makes a call
to the CreateHeading template.

The CreateHeading template sets up the HTML table, along with the table
header. It then makes a call to the CreateTable template, which has a for-each
loop to enumerate the Employee nodes. This prints the Employee information,
making calls to the FormatDate function as required.

Finally, the CreateHeading template also calls the GetTotal template, which
outputs a total of all salaries as the last row of the table.

There is a good amount of stylesheet code, but there is very little code to exe-
cute the transformation. The following code executes the transformation:

Private Sub Button12_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button12.Click

‘Added to top of code

‘Imports System.XML.Xsl

Dim xfrm As New XslTransform()

xfrm.Load(“c:\EmployeeList.xsl”)

‘Transform to output file

xfrm.Transform(“c:\EmployeeList.XML”, _

“c:\EmployeeList.htm”)

‘Transform to response stream

Dim xpDoc As New XPathDocument(“c:\EmployeeList.XML”)

Dim xpNav As XPathNavigator = xpDoc.CreateNavigator()

xfrm.Transform(xpNav, Nothing, Response.OutputStream)

End Sub

This code sample loads the XSL stylesheet and executes the Transform
method. The first time that the Transform is executed, the output is sent to the
EmployeeList.htm file.

The second transform took a few more lines of code, but the output is not
sent to a file. Instead, the output is sent directly to the output stream, which
goes directly to the browser. Figure 9.10 show the browser output.

366 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 366

Figure 9.10 The browser output when performing XSL transformation on the
EmployeeList file.

The ASP.NET XML Web Control
The ASP.NET XML Web server control can perform XSL transformations. This
control can be dragged and dropped onto a Web form, as shown in Figure 9.11.
The properties allow a XSL transformation to be assigned and an XML docu-
ment to be assigned. The output is automatically sent to the browser.

DataSets and XML
In the last chapter, the DataSet was covered in detail, and in this chapter, many
aspects of XML have been covered in detail. This section takes a closer look at
the DataSet and how it can use XML.

The DataSet can load XML directly from a file. The DataSet can also use the
XmlDataDocument to populate a DataSet. This section takes a look at both
methods of working with XML data.

Figure 9.11 The ASP.NET XML Web server control along with its properties window.

Working with XML Data 367

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 367

Reading an XML Document into the DataSet

Reading XML data into a DataSet can be done by simply using the ReadXml
method of the DataSet. This method has several overloads, but one of the over-
loads allows a filename to be passed into the method. The filename must be a
physical path, which means that when the XML document is on the Web
server, the Server.MapPath method can be used with a relative virtual address
to obtain the physical path. The following code shows an example of reading
an XML file into the DataSet and then displaying the data in a DataGrid:

Private Sub Button13_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button13.Click

Dim ds As New DataSet(“MyCompany”)

ds.ReadXml(“C:\EmployeeList.XML”)

DataGrid1.DataSource = ds.Tables(“Employee”)

DataBind()

End Sub

The browser output is shown in Figure 9.12. This code reads the Employ-
eeList.XML file into the DataSet. The DataSet parses the repeating rows into
tables. The end result is that two tables are created: the Employee table and the
Address table.

The DataSet does well at identifying the XML data, but all of the data types
are strings and many of the data types, such as dates and numbers, produce
the desired results. This can be corrected by supplying an XML schema. An
XSL schema can be supplied as a separate file, or it can be embedded into the
XML file. For the EmployeeList.XML file, an XML schema might look like the
following:

<?XML version=”1.0” standalone=”yes”?>

<xs:schema id=”EmployeeList” xmlns=””

xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns:msdata=”urn:schemas-microsoft-com:XML-msdata”>

<xs:element name=”EmployeeList” msdata:IsDataSet=”true”>

<xs:complexType>

<xs:choice maxOccurs=”unbounded”>

<xs:element name=”Employee” id=”EmpID”>

<xs:complexType>

<xs:sequence>

<xs:element name=”HireDate”

type=”xs:dateTime”

minOccurs=”0”

msdata:Ordinal=”0” />

<xs:element name=”Address”

minOccurs=”0”

maxOccurs=”unbounded”>

368 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 368

<xs:complexType>

<xs:sequence>

<xs:element name=”Street1”

type=”xs:string”

minOccurs=”0” />

<xs:element name=”Street2”

type=”xs:string”

minOccurs=”0” />

<xs:element name=”City”

type=”xs:string”

minOccurs=”0” />

<xs:element name=”State”

type=”xs:string”

minOccurs=”0” />

<xs:element name=”ZipCode”

type=”xs:string”

minOccurs=”0” />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name=”EmpID”

type=”xs:integer” use=”required” />

<xs:attribute name=”LastName” type=”xs:string” />

<xs:attribute name=”FirstName” type=”xs:string” />

<xs:attribute name=”Salary” type=”xs:decimal” />

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

</xs:schema>

Using this schema, the DataSet knows that the HireDate is indeed a date
field, the EmpID is an integer, and the Salary is a decimal.

The DataSet has a WriteXmlSchema method that can save the derived
schema to a file. This produces a baseline schema that can modified and
loaded back into the DataSet using the ReadXmlSchema.

Figure 9.12 The EmployeeList is read into memory and bound to the DataGrid.

Working with XML Data 369

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 369

Writing an XML Document from the DataSet

A DataSet can be saved to an XML file using the WriteXml method, regardless
of its original source. One option that is available is the ability to change the
output type of each column when writing the data. For example, the HireDate
can be an element or an attribute. The following code changes all columns of
all tables to attributes and then writes the XML with an embedded schema to
a file called EList.XML:

Private Sub Button14_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button14.Click

Dim ds As New DataSet(“MyCompany”)

ds.ReadXmlSchema(“c:\el.xsd”)

ds.ReadXml(“C:\EmployeeList.XML”)

Dim t As DataTable

For Each t In ds.Tables

Dim c As DataColumn

For Each c In t.Columns

c.ColumnMapping = MappingType.Attribute

Next

Next

ds.WriteXml(“c:\EList.XML”, XmlWriteMode.WriteSchema)

End Sub

The code changes all columns by changing the ColumnMapping properties
of all Columns of all Tables to MappingType.Attribute. The options for the
MappingType are Attribute, Element, Hidden, or SimpleContent.

Another change that can be made to the XML output is nesting of parent and
child tables. The relation has a Nested property that can be set to control the
nesting. The following code sets the Nested property to false for all relation-
ships in the DataSet:

Dim r As DataRelation

For Each r In ds.Relations

r.Nested = False

Next

When the columns are all changed to attributes and the nesting is set to
false, the XML output looks like the following:

370 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 370

<?XML version=”1.0” standalone=”yes”?>

<EmployeeList>

<Employee HireDate=”2003-01-01T00:00:00.0000000-05:00” EmpID=”1”

LastName=”GaryLast” FirstName=”Gary” Salary=”50000”

Employee_Id=”0” />

<Employee HireDate=”2003-01-02T00:00:00.0000000-05:00” EmpID=”2”

LastName=”RandyLast” FirstName=”Randy” Salary=”40000”

Employee_Id=”1” />

<Address Street1=”123 MyStreet” Street2=”” City=”MyCity”

State=”My” ZipCode=”12345” Employee_Id=”0” />

<Address Street1=”234 MyStreet” Street2=”” City=”MyCity”

State=”My” ZipCode=”23456” Employee_Id=”1” />

</EmployeeList>

The Employee_ID is a column that was dynamically added in order to main-
tain the relationship between the Employee table and the Address table.

Last, the name that is passed into the DataSet’s constructor is the name of
the DataSet, and also the name of the root element for the XML output.

Using the XmlDataDocument with a DataSet
There may be times when is it more desirable to work with data in an XML
fashion instead of table rows and columns. This can be done by creating an
XmlDataDocument and passing a DataSet into the class constructor. In the fol-
lowing example, the Suppliers table is read from the Northwind database, and
then an XmlDataDocument is created from the DataSet. Finally, a resultant
table is created, containing the SupplierID, CompanyName, and Contact-
Name, as shown in Figure 9.13.

Figure 9.13 Creating an HTML table by navigating the XmlDataDocument.

Working with XML Data 371

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 371

Private Sub Button15_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button15.Click

‘Connection

Dim cn As New SqlConnection()

Dim cnstr As String

cnstr = “server=.;integrated security=yes;database=northwind”

cn.ConnectionString = cnstr

‘Command

Dim cmd As New SqlCommand()

cmd.CommandText = _

“Select SupplierID, CompanyName, ContactName from Suppliers”

cmd.Connection = cn

Dim da As New SqlDataAdapter(cmd)

Dim ds As New DataSet(“NW”)

da.Fill(ds, “Suppliers”)

Dim x As New XmlDataDocument(ds)

Dim nav As XPathNavigator = x.CreateNavigator()

Dim node As XPathNodeIterator

node = nav.Select(“//Suppliers”)

Response.Write(“<table border=’1’>”)

Do While node.MoveNext()

Response.Write(“<tr>”)

Dim nav2 As XPathNavigator

nav2 = node.Current

Response.Write(“<td>”)

nav2.MoveToFirstChild() ‘ID

Response.Write(nav2.Value & “ “)

Response.Write(“</td>”)

Response.Write(“<td>”)

nav2.MoveToNext()

Response.Write(nav2.Value & “ “)

Response.Write(“</td>”)

Response.Write(“<td>”)

nav2.MoveToNext()

Response.Write(nav2.Value & “
”)

Response.Write(“</td>”)

Response.Write(“</tr>”)

Loop

Response.Write(“</table>”)

End Sub

This code builds a simple table containing the SupplierID, CompanyName,
and ContactName, using an XPathNavigator.

372 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 372

Validating XML Documents

Having the ability to define the structure of an XML document and then vali-
date the XML document against its defined structure is an important element
of being able to exchange documents between disparate systems. The .NET
Framework offers the ability to perform validation against a document type
definition (DTD) or schema. This section explores XML document validation
using the XmlValidatingReader class.

XmlValidatingReader
The XmlValidatingReader class performs forward-only validation of a stream
of XML. The XmlValidatingReader constructor can be passed to an XmlReader,
a string, or a stream. This class has a ValidationType property that can be set to
Auto, DTD, None, Schema, or XDR. If the setting is set to None, this class
becomes an XmlTextReader.

In the next example, the file in Listing 9.1 is validated using the following code:

Private Sub Button16_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button16.Click

Dim vr As New XmlValidatingReader(_

New XmlTextReader(“C:\xmltest.XML”))

vr.ValidationType = ValidationType.DTD

Dim xd As New XmlDocument()

xd.Load(vr)

Response.Write(“Valid Document!
”)

vr.Close()

End Sub

This code simply opens the XML file with an XmlTextReader, and the reader
is used as the input to the XmlValidatingReader. Since this code has an embed-
ded DTD, the document is validated.

In the next test, the input file has been modified.

<?XML version=”1.0” encoding=”utf-8”?>

<!DOCTYPE myRoot [

<!ELEMENT myRoot ANY>

<!ELEMENT myChild ANY>

<!ELEMENT myGrandChild EMPTY>

<!ATTLIST myChild

ChildID ID #REQUIRED

>

Working with XML Data 373

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 373

]>

<myRoot>

<myChild ChildID=”ref-1”>

<myGrandChild/>

<myGrandChild>Hi</myGrandChild>

<myGrandChild/>

</myChild>

<myChild ChildID=”ref-2”>

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

<myChild ChildID=”ref-3”>

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

<myChild ChildID=”ref-4”>

<myGrandChild/>

<myGrandChild/>

<myGrandChild/>

</myChild>

</myRoot>

The DTD states that the myGrandChild element must be empty, but one of
the myGrandChild elements of myChild ref-1 has a myGrandChild element
containing the word Hi. This causes an error, as shown in Figure 9.14.
Attempts to read from the XmlValidatingRead should always occur within a
Try/Catch block to catch possible validation exceptions.

Figure 9.14 The error that is generated when an invalid document is validated using the
XmlValidatingReader.

374 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 374

Lab 9.1: Working with XML Data

You have a requirement to be able to save a customer’s orders, along with
the order details, to an XML file. The XML file must have only three levels
of elements. The first level is the root element, which is called Customers,
and has attributes for the CustomerID, CompanyName, and Contact-
Name. The second level is the Orders element, which contains an Orders
element for each order that the customer has. The third level contains
Order_Details elements, which contain an element for each item in the
order. The XML document essentially contains an element for each row of
each table, and all column data must be presented as XML attributes.

In this lab, you modify the DataGrid from the previous lab, to add a
Save Orders button to the DataGrid; this button writes the current
customer’s orders to an XML file.

Retrieving the Data
In this section, you modify the Bindtable method to retrieve the cus-
tomers, orders and order details for all customers, and store the results in
a Session variable. DataRelations also is created to join these tables
together, and the ColumnMapping must be set to be an attribute for
every column in the DataSet.

1. Start this lab by opening the OrderEntrySolution from Lab 8.1.

2. Right-click the OrderEntrySolution in the Solution Explorer, and
click Check Out. This checks out the complete solution.

3. Open the CustomerList.aspx.vb code-behind page.

4. In the Bindtable method, modify the code to check for the existence
of a Session variable named Customers. If it exists, assign the Ses-
sion variable to a DataSet.

5. If the Session variable does not exist, populate a new DataSet with
Customers, Orders, and Order Details from the Northwind SQL
database. Add relations between the Customers and Orders tables,
and between the Orders and Order Details tables.

6. Add a loop, which enumerates all tables and all columns of the
DataSet, setting the ColumnMapping to Attribute.

7. Store the DataSet in the Customers Session variable. Your code
should look like the following:

Public Sub Bindtable()

Dim ds As DataSet

If Session(“Customers”) Is Nothing Then

Dim cnstr As String

Working with XML Data 375

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 375

cnstr = “server=.;integrated security=yes;” _

& “database=northwind”

Dim cn As New SqlConnection(cnstr)

Dim sql As String = _

sql = “Select CustomerID, CompanyName, ContactName “ _

& “ from customers”

Dim da As New SqlDataAdapter(sql, cn)

ds = New DataSet(“NW”)

‘Fill Customers

da.Fill(ds, “Customers”)

ds.Tables(“Customers”).PrimaryKey = _

New DataColumn() _

{ds.Tables(“Customers”).Columns(“CustomerID”)}

‘Fill Orders

sql = “Select * from Orders”

da.SelectCommand.CommandText = sql

da.Fill(ds, “Orders”)

ds.Tables(“Orders”).PrimaryKey = _

New DataColumn() _

{ds.Tables(“Orders”).Columns(“OrderID”)}

‘Fill Order Details

sql = “Select * from [Order Details]”

da.SelectCommand.CommandText = sql

da.Fill(ds, “Order_Details”)

ds.Tables(“Order_Details”).PrimaryKey = _

New DataColumn() _

{ds.Tables(“Order_Details”).Columns(“OrderID”), _

ds.Tables(“Order_Details”).Columns(“ProductID”)}

‘Create Customers to Orders Relation

ds.Relations.Add(_

“CustomersOrders”, _

ds.Tables(“Customers”).Columns(“CustomerID”), _

ds.Tables(“Orders”).Columns(“CustomerID”), _

True)

ds.Relations(“CustomersOrders”).Nested = True

‘Create Orders to Order Details Relation

ds.Relations.Add(_

“OrdersOrderDetails”, _

ds.Tables(“Orders”).Columns(“OrderID”), _

ds.Tables(“Order_Details”).Columns(“OrderID”), _

True)

ds.Relations(“OrdersOrderDetails”).Nested = True

‘Change all columns to attributes

Dim t As DataTable

For Each t In ds.Tables

Dim c As DataColumn

For Each c In t.Columns

c.ColumnMapping = MappingType.Attribute

Next

Next

Session(“Customers”) = ds

Else

376 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 376

ds = CType(Session(“Customers”), DataSet)

End If

dgCustomers.DataSource = ds.Tables(“Customers”)

dgCustomers.DataKeyField = “CustomerID”

DataBind()

End Sub

Preparing the Data Grid
The DataGrid needs to be updated to have a Save button beside each cus-
tomer. The Save button is used to initiate the storing of customer data in
an XML file.

1. In the Init event method of the DataGrid, add code to create a button
column.

2. Set the properties of the button. Be sure that the CommandName is
called Save. This is used in the ItemCommand method, in order to
find out which button was pressed.

3. Your code should look like the following:

Private Sub dgCustomers_Init(_

ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles dgCustomers.Init

Dim colButton As New ButtonColumn()

With colButton

.ButtonType = ButtonColumnType.PushButton

.CommandName = “Save”

.ItemStyle.Width = New Unit(100, UnitType.Pixel)

.ItemStyle.HorizontalAlign = HorizontalAlign.Center

.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

.HeaderText = “Save Orders
as XML”

.Text = “Save”

End With

dgCustomers.Columns.Add(colButton)

End Sub

Save Customer’s Orders to XML File
In this section, you add code to the ItemCommand method of the Data-
Grid. This code retrieves the customer primary key of the selected cus-
tomer. The code then uses an XmlDataDocument to get data from the
DataSet and write the data to the XML file.

1. Add an if statement to the ItemCommand, which checks to see if the
Command is Save. All additional code is placed inside the if statement.

2. Add code to retrieve the DataSet from the Session variable.

3. Declare a variable called XML as a XmlDataDocument. Check to see
if a Session variable called CustomersXml exists. If so, assign the

Working with XML Data 377

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 377

Session variable to the XML variable. If not, create a new XmlData-
Document, based on the DataSet, and assign it to the XML variable.

4. The XML file is stored in the current Web site folder. Add code to get
the current path.

5. Add a variable called CustomerKey. Retrieve the CustomerKey from
the DataKeys collection of the DataGrid.

6. Declare a variable called xmlWriter, and assign a new instance of the
XmlTextWriter to it. The filename is the CustomerKey name, with a
.XML extension. This file is stored in the current folder.

7. Write an XML declaration to the file.

8. Write code to locate the customer within the XmlDataDocument,
and write the customer details to the file.

9. Add code to close the XmlTextWriter.

10. Save your work. Your code should look the following:

Private Sub dgCustomers_ItemCommand(_

ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles dgCustomers.ItemCommand

If e.CommandName = “Save” Then

Dim ds As DataSet = _

CType(Session(“Customers”), DataSet)

Dim XML As XmlDataDocument

If Session(“CustomersXml”) Is Nothing Then

XML = New XmlDataDocument(Session(“Customers”))

Session(“CustomersXml”) = XML

Else

XML = CType(_

Session(“CustomersXml”), XmlDataDocument)

End If

Dim path As String = Server.MapPath(“.”) & “\”

‘Get Customer Key

Dim CustomerKey As String

CustomerKey = dgCustomers.DataKeys(e.Item.ItemIndex)

path &= CustomerKey & “.XML”

‘Open the XmlWriter.

Dim xmlWriter As New XmlTextWriter(path, _

System.Text.Encoding.UTF8)

xmlWriter.WriteStartDocument()

Dim CustomerXml As XmlNode

Dim xPathQuery As String

xPathQuery = String.Format(_

“//Customers[@CustomerID=’{0}’]”, CustomerKey)

CustomerXml = XML.SelectSingleNode(xPathQuery)

CustomerXml.WriteTo(xmlWriter)

xmlWriter.Close()

End If

End Sub

378 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 378

Test the DataGrid
The DataGrid can be tested by setting the CustomerList.aspx as the start
page and running the application.

1. Right-click the Customer project in the Solution Explorer. Click Set
As StartUp Project.

2. Right-click the CustomerList.aspx page. Click Set As Start Page.

3. Run the application. The result should look like that shown in
Figure 9.15.

Figure 9.15 The CustomerList page filled with Customers.

4. Click the Save button for CustomerID ANTON. The browser output
is shown in Figure 9.16. Notice that there is only one root element,
which represents ANTON, followed by the orders and order items.

Figure 9.16 The browser output of CustomerID = ANTON.

5. Check you work back into Visual SourceSafe.

Working with XML Data 379

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 379

Summary

■■ XML documents can be accessed using the Document Object Model
(DOM) Level 1 and Level 2.

■■ The XPathNavigator uses a cursor model and XPath queries to provide
read-only, random access to the data.

■■ The XmlValidatingReader provides an object for validation against
DTD, XML Schema Reduced (XDR), or XML Schema Definition (XSD).

■■ The XslTransform class provides a simple method of transforming an
XML file, using an XSL stylesheet.

■■ The DataSet provides methods for easily reading and writing XML files.

380 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 380

Working with XML Data 381

Review Questions

1. What class can be used to create an XML document from scratch?

2. What class can be used to perform data type conversion between .NET data types
and XML types?

3. What class can be used to perform XSL transformations?

4. What is the simplest method of storing a DataSet in an XML file?

5. How are large XML files quickly searched without loading the complete file into
memory?

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 381

Answers to Review Questions

1. The XmlDocument class.

2. The XmlConvert class.

3. The XslTransform class or the ASP.NET XML Web control.

4. Using the WriteXml method of the DataSet.

5. Using the XPathDocument class with the XpathNavigator.

382 Chapter 9

k 430234 Ch09.qxd 7/1/03 9:02 AM Page 382

383

When data must be transferred from one location to another, a method of
moving data across the media is required. This method typically involves the
sending of bytes in a sequential fashion and the ability to read and process
these bytes in chunks, while the information is still being received. Streams are
the answer to this problem.

The previous chapters have looked at data access using ADO.NET and XML
technologies. Although those technologies should be the primary technologies
for storing and retrieving data, there are many instances where the need for
file and folder access is necessary.

It’s also a common requirement to persist, or store, objects with their state,
and to retrieve these persisted objects. This is sometimes referred to as object
dehydration and rehydration, but is more commonly called serialization.

Many of the types covered in this chapter are located in the System.IO
namespace. This chapter starts by exploring streams in detail. After that, file
and folder classes are covered. Finally, this chapter covers serialization.

Streams, File Access,
and Serialization

C H A P T E R

10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 383

Classroom Q & A
Q: Is it possible to access the file system to display a list of files that

are in a folder and allow a user to select a file to download?
A: Yes. Using the file and directory objects, you can create a view of

files and folders from which users can select a file for downloading.

Q: Is it possible to allow users to upload files to the Web server?
A: Yes. The HTML file field control can be used for this. We will look

at this control in this chapter.

Q: Can serialization be used to make copies of objects?
A: Absolutely. Serialization can be used to perform a deep copy of an

object by serializing to a memory stream then deserializing to a
new object.

Stream Classes

In the .NET Framework, many classes require the ability to move data. This
data movement may be to and from a file, a TCP socket, memory, or something
else. If a class were written to simply write to a file, there could be a problem
later when the requirement for writing to a file changed to writing content to a
browser window. This is where streams can help.

The stream provides a method for moving data to and from somewhere,
depending on the stream class that is implemented. Instead of writing to a file,
a class should write to a stream. This allows the programmer to decide what
the destination of the stream will be.

In the .NET Framework, some .NET streams have endpoints, or data sinks,
such as a file stream. The .NET Framework also provides intermediate streams
that provide processing and are spliced into other streams, such as the buffered
stream and the Crypto stream.

All streams typically have the same pattern for reading and writing data, as
shown here. This section examines each of these streams in detail.

‘Writing data

Open the stream

While more data exists

Write the data

Close the stream

‘Reading data

384 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 384

Open the stream

While more data exists

Read the data

Process the data

Close the stream

The .NET Framework provides stream classes, which are classes that derive
from System.IO.Stream, and helper classes, which are wrapper classes that use
a stream and provide additional methods to simplify stream access. The helper
classes are typically called reader and writer classes. Figure 10.1 shows the
relationship between the stream and reader/writer classes.

Stream
The Stream class is an abstract base class for all stream classes. The constructor
for this class is protected, which means that it is not possible to create a new
instance of this class. The Stream class members are shown in Table 10.1.

The Stream class has a Close method, which releases all resourses, such as
file handles and windows sockets. The opening of the stream is accomplished
in the constructor of the Stream class.

Using one of the available streams helps to isolate the programmer from the
low-level operating system and device details.

All stream classes handle the movement of binary data using bytes or byte
arrays. The System.Text.Encoding class provides routines for converting bytes
and byte arrays to and from Unicode text.

Figure 10.1 Stream class children and stream helper classes.

BinaryWriter BinaryReader

TextReader

StreamReader StringReader

TextWriter

StreamWriter StringWriter

StreamStreams

Stream Helpers

BufferedStream FileStream MemoryStream CryptoStream NetworkStream

Streams, File Access, and Serialization 385

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 385

Table 10.1 Stream Properties and Methods

STREAM MEMBER DESCRIPTION

Null A static property that can be used to send data to the bit
bucket. Use this when a stream is required, but there is no
desire to actually move data.

CanRead Returns a Boolean, indicating whether the stream can be
read. This is an abstract method that must be overridden.

CanSeek Returns a Boolean, indicating whether this stream
supports seeking. This is an abstract method that must be
overridden.

CanWrite Returns a Boolean, indicating whether this stream can
be written to. This is an abstract method that must be
overridden.

Length Returns a Long, indicating the length of the stream. This is
an abstract method that must be overridden.

Position This changeable property can be used to get or set the
position within the stream. The stream must support
seeking to use this property. This is an abstract method
that must be overridden.

BeginRead Starts an asynchronous read from the stream.

BeginWrite Starts an asynchronous write from the stream.

Close Closes the stream. This method will also flush all data that
is buffered. All resources, including file and socket handles
will be released.

EndRead Called to wait for a pending asynchronous read operation
to complete.

EndWrite Called to wait for a pending asynchronous write operation
to complete.

Flush Forces the movement of any data that is in memory to
its destination. This is an abstract method that must be
overridden.

Read If the stream supports reading, this method is used to
retrieve a sequence of bytes from the stream and update
the position within the stream. This is an abstract method
that must be overridden.

ReadByte If the stream supports reading, this method is used to
read a single byte from a stream and update the position
within the stream.

386 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 386

Table 10.1 (continued)

STREAM MEMBER DESCRIPTION

Seek This method is used to set the position within the stream.
The stream must support seeking to execute this method.
This method requires an offset and a relative origin. The
relative origin can be Begin, Current, or End. This is an
abstract method that must be overridden.

SetLength If the stream supports writing and seeking, this method
can be used to expand or truncate the current stream. This
is an abstract method that must be overridden.

Write If the stream supports writing, this writes a sequence of
bytes to the current stream and advances the position.
This is an abstract method that must be overridden.

WriteByte If the stream supports writing, this method writes a byte
to the current stream and advances the position.

FileStream
The FileStream class provides the ability to move data to and from a disk file.
This class inherits all the methods in the Stream class and has additional file-
centric properties and methods.

FileStream Constructor

The following parameters may be passed to the constructor when opening a
file.

FilePath

This is the location of the file that is to be opened. The path can be absolute or
relative, and the path can be a UNC path. The path can also be a system device.

FileMode

The FileMode indicates how the file will be opened. This parameter is always
required to open a file. The following FileModes are available.

Append. Using the Append mode opens the file and sets the position
to the end of the file. If the file does not exist, a new file is created. This
option can only be used with the FileAccess property set to Write. An
attempt to read from the file will throw an ArgumentException.

Create. Using the Create mode opens a new file if the file does not exist.
If the file does exist, the file will be truncated.

Streams, File Access, and Serialization 387

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 387

CreateNew. The CreateNew mode creates a new file if the file does not
exist. If the file exists, an IOException will be thrown.

Open. The Open mode opens an existing file. If the file does not exist, a
FileNotFound exception will be thrown.

OpenOrCreate. The OpenOrCreate mode opens the file if it exists.
If the file does not exist, a new file is created. This mode differs from the
CreateNew mode in that this mode does not truncate an existing file.

Truncate. The Truncate mode opens and truncates an existing file for
writing. If the file does not exist, a FileNotFoundException is thrown. If
an attempt is made to read from the file, an exception will be thrown.

FileAccess

The FileAccess parameter specifies whether the file is being opened for read or
write access. This is a bit enumeration method, which means that settings can
be combined with the Or operator. The following settings are available.

Read. Read access is used to specify that the file will be opened for read-
only use.

Write. Write access is used to specify that the file will be opened for
write-only use.

ReadWrite. ReadWrite access is used to specify that the file will be
opened for read or write access.

FileShare

The FileShare parameter is used to specify how other streams can access this
file. Available options are listed here. Generally, the best setting is None (the
default), unless all users need read-only access to the file, in which the setting
could be set to Read.

Inheritable. The Inheritable share specifies that the file handle is inheri-
table by child processes. This option is not available with Win32.

None. The None share does not allow any sharing of this file until the file
is closed. This is the default when the FileShare parameter is not specified.
An additional attempt to open the file will result in an IOException
being thrown.

Read. The Read share allows other processes to also open the same file
for read access. The file cannot be opened for write access until the file
has been closed.

388 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 388

ReadWrite. The ReadWrite share allows other processes to open this file
for reading and writing.

Write. The Write share allows other processes to open this file for writing.
This file cannot be opened for read access until the file has been closed.

BufferSize

The BufferSize specifies the size of the buffer to be used when accessing this
file. If the number is between zero and eight, the buffer size will be set to eight.
Generally, performance gains can be realized by increasing this number.

UseAsync

The UseAsync setting can be used to allow asynchronous access to the file.
When set to true, file access is done by using the BeginRead and BeginWrite
methods.

FileStream Examples

The section examines several ways of creating a FileStream object. These
examples explore several options that are available when opening and work-
ing with the FileStream.

Opening and Writing to a File

The following code examples show how a file can be opened, written to, and
closed:

Private Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button1.Click

Dim s1 As New FileStream(_

“c:\test.txt”, FileMode.Create)

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Response.Write(s1options)

Dim b As Byte()

b = System.Text.Encoding.Unicode.GetBytes(“Hello World”)

s1.Write(b, 0, b.Length)

s1.Close()

End Sub

Streams, File Access, and Serialization 389

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 389

The browser displays the following information about the stream:

s1 - CanRead:True CanSeek:True CanWrite:True

Figure 10.2 shows the file contents when viewed in the Visual Studio .NET
binary editor. Viewing the output in the binary editor reveals that the message
was saved using two bytes per character (Unicode). Writing to the stream
required either a byte or an array of bytes. Therefore, this code converts the
Unicode string to an array of bytes and writes the byte array, starting at offset
zero of the byte array, and writing all bytes by setting the count to the length
of the byte array.

Writing and Reading from the FileStream

Since the CanRead and CanSeek properties were set to true, the code can be
modified to reset the position to the beginning of the file and read its contents.
The following code shows the writing and reading of the file:

Private Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button1.Click

Dim s1 As New FileStream(_

“c:\test.txt”, FileMode.Create)

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Response.Write(s1options)

Dim b As Byte()

b = System.Text.Encoding.Unicode.GetBytes(“Hello World”)

s1.Write(b, 0, b.Length)

Dim strOutput As String = “”

Dim bInput(9) As Byte

Dim count As Integer = bInput.Length

Do While (count > 0)

count = s1.Read(bInput, 0, bInput.Length)

strOutput &= _

System.Text.Encoding.UTF8.GetString(bInput, 0, count)

Loop

s1.Close()

Response.Write(strOutput & “
”)

End Sub

390 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 390

Figure 10.2 Displaying the file in the binary editor reveals that hello world was stored using
two bytes per character (Unicode).

To read the file, a byte array must be supplied to act as a buffer. The size of
the buffer could be set much higher to achieve better performance. Each time
the loop is executed, count will hold the quantity of bytes read from the
stream. This loop will run until the Read method returns zero, then the file is
closed and the string is output to the browser. The browser output is shown in
Figure 10.3.

The stream is not obliged to fill the buffer each time the Read method is
executed. The stream is only obliged to return one or more bytes. If no
bytes have been received, the call will block until a single byte has been
received. This operation works especially well in situations where a slow
stream is involved. The loop can process bytes while the slow stream is
sending data.

Opening the Same File with Multiple Streams

In this example, two streams can be opened. Both streams are opening the
same file, and each stream has its own position.

Figure 10.3 Browser output when writing and reading a file.

Streams, File Access, and Serialization 391

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 391

Private Sub Button2_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs)

Handles Button2.Click

Dim s1 As New FileStream(_

“c:\test.txt”, _

FileMode.OpenOrCreate, _

FileAccess.Read, FileShare.Read)

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Dim s2 As New FileStream(_

“c:\test.txt”, _

FileMode.OpenOrCreate, _

FileAccess.Read, FileShare.Read)

Dim s2options As String

s2options = String.Format(_

“s2 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s2.CanRead, _

s2.CanSeek, _

s2.CanWrite)

Response.Write(s1options)

Response.Write(s2options)

s1.Seek(0, SeekOrigin.Begin)

s2.Seek(0, SeekOrigin.Begin)

Dim strOutput As String = “”

Dim bInput(10) As Byte

Dim count As Integer

count = s1.Read(bInput, 0, bInput.Length)

Do While (count > 0)

strOutput &= _

System.Text.Encoding.UTF8.GetString(bInput, 0, count)

count = s1.Read(bInput, 0, bInput.Length)

strOutput &= “
”

Loop

count = s2.Read(bInput, 0, bInput.Length)

Do While (count > 0)

strOutput &= _

System.Text.Encoding.UTF8.GetString(bInput, 0, count)

count = s2.Read(bInput, 0, bInput.Length)

strOutput &= “
”

Loop

s1.Close()

s2.Close()

Response.Write(strOutput & “
”)

End Sub

392 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 392

Figure 10.4 Browser output with two streams open for reading.

This code would normally throw an IOException, but does not because the
FileAccess is set to Read on both streams. Also, an HTML line break has been
added to the output each time through the loops. This gives an indication of the
number of times that the loop has run. Figure 10.4 shows the browser output.

Null Stream
The Null Stream is a bit bucket, meaning that it is a dummy stream. This can
be useful in situations where a stream is required to execute a process, but
there is no desired endpoint.

The following code example shows how a Null stream can be written to and
read from. Note that a new Stream instance is not, and cannot be, created. The
Stream class is abstract, which means that it must be inherited. Instead, the
assignment is made to System.Null.

Private Sub Button4_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button4.Click

Dim s1 As Stream = Stream.Null

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Response.Write(s1options)

Dim b As Byte()

b = System.Text.Encoding.Unicode.GetBytes(“Hello World”)

s1.Write(b, 0, b.Length)

s1.Seek(0, SeekOrigin.Begin)

Dim strOutput As String = “”

Streams, File Access, and Serialization 393

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 393

Dim bInput(10) As Byte

Dim count As Integer = bInput.Length

count = s1.Read(bInput, 0, bInput.Length)

Do While (count > 0)

strOutput &= _

System.Text.Encoding.UTF8.GetString(bInput, 0, count)

count = s1.Read(bInput, 0, bInput.Length)

Loop

s1.Close()

Response.Write(strOutput & “
”)

End Sub

This code is the same as the code in the FileStream example for opening and
writing to a file, except that the FileStream was replaced with the Stream class
and initialized to Stream.Null. The browser output is shown in Figure 10.5.

When writing to the Null stream, calling the Write method results in it sim-
ply returning without writing anything, and executing the Read method
returns zero, indicating that the end of the stream has been reached. CanRead
returns true, CanWrite returns true, and CanSeek returns true.

MemoryStream
The MemoryStream class provides the ability to move data to and from a
memory buffer. This class inherits all methods in the Stream class and has
additional memory-centric properties and methods. MemoryStreams are use-
ful in helping to eliminate the need for temporary files when processing data.
The memory buffer that is created by the memory stream is directly accessible
as well.

MemoryStream Constructor

The following parameters may be passed to the constructor when opening the
stream.

Buffer. An optional byte array that may be passed to the MemoryStream
constructor. If this parameter is used, the buffer size cannot be increased,
but it can be truncated. Use of this parameter will isolate the internal
buffer, which means that executing the GetBuffer method will throw an
exception.

Capacity. An optional integer that sets the initial size of the internal
buffer. Writing past the end of the buffer will cause the buffer to increase
its size. Using the SetLength method will also update the length of the
buffer.

394 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 394

Figure 10.5 Browser output when using the Null stream.

Writeable. An optional setting that can be used with the Buffer parameter
to indicate whether the buffer can be written to.

Index. An optional parameter that can be used with the Buffer parameter;
it indicates the starting location in the buffer that will be used.

Count. An optional parameter that can be used with the Buffer parameter;
it indicates the quantity of bytes that may be used in the buffer.

PubliclyVisible. An optional parameter that enables the GetBuffer
method. The GetBuffer method returns the buffer as an unsigned
byte array.

MemoryStream Examples

The section examines several ways of working with the MemoryStream object.
These examples explore several of the options that are available when opening
and working with the MemoryStream.

Opening and Writing to a MemoryStream

The following code example shows how a Memory stream can be written to
and read from.

Private Sub Button3_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button3.Click

Dim s1 As New MemoryStream()

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Response.Write(s1options)

Dim b As Byte()

Streams, File Access, and Serialization 395

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 395

b = System.Text.Encoding.Unicode.GetBytes(“Hello World”)

s1.Write(b, 0, b.Length)

s1.Seek(0, SeekOrigin.Begin)

Dim strOutput As String = “”

Dim bInput(10) As Byte

Dim count As Integer

count = s1.Read(bInput, 0, bInput.Length)

Do While (count > 0)

strOutput &= _

System.Text.Encoding.UTF8.GetString(bInput, 0, count)

count = s1.Read(bInput, 0, bInput.Length)

Loop

s1.Close()

Response.Write(strOutput & “
”)

End Sub

This code is the same as the code in the FileStream example for opening and
writing to a file, except that the FileStream was replaced with the Memory-
Stream class and initialized with the empty constructor. The browser output is
shown in Figure 10.6. CanRead returns true, CanWrite returns true, and
CanSeek returns true.

Accessing the MemoryStream’s Buffer

The following code example shows how a Memory stream’s internal buffer can
be accessed directly. This simplifies retrieving the data, and doesn’t require
changing the stream’s position.

Private Sub Button5_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button5.Click

Dim s1 As New MemoryStream()

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Response.Write(s1options)

Dim b As Byte()

b = System.Text.Encoding.Unicode.GetBytes(“Hello World”)

s1.Write(b, 0, b.Length)

Dim strOutput As String = “”

Dim bInput() As Byte = s1.GetBuffer()

strOutput &= _

System.Text.Encoding.UTF8.GetString(bInput, 0, bInput.Length)

s1.Close()

Response.Write(strOutput & “
”)

End Sub

396 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 396

Figure 10.6 Browser output when using the MemoryStream.

NetworkStream
The NetworkStream class provides the ability to move data to and from a net-
work endpoint. This class inherits all the methods in the Stream class and has
additional network-centric properties and methods. NetworkStreams can be
used to access a Web site, as well as to communicate between local computers.

It takes a little bit more code to set up the NetworkStream. Figure 10.7 shows
a high-level view of the program flow when using the NetworkStream to
retrieve the default Web page from a Web server.

The following helper objects are required in order to communicate using the
NetworkStream class:

IPAddress. The IPAddress class is used to encapsulate an IP address that
represents the URL of the final endpoint. This uses the static Resolve
method of the Dns class to perform a Domain Name Service (DNS)
search of the Internet for the IP address that corresponds to the domain
name that is supplied by the user. Since the endpoint may be part of a
Web farm, an array of addresses may be returned, of which the first
address is customarily used, unless there is a communication failure.

IPEndPoint. The IPEndPoint class consists of the IPAddress and the Port
number of the endpoint. The IPEndPoint is required to create a Socket.

Encoder.ASCII. The Encoder.ASCII class is used to create an encoder
that will be used to convert ASCII strings to byte arrays and back.

NetworkStream Constructor

The following parameters may be passed to the constructor when opening the
stream.

Socket

The Socket class provides the .NET managed transport service. The Socket
requires an IPEndPoint, an AddressFamily, and a ProtocolType. Examples of
the AddressFamily are AppleTalk, Ipx, DecNet, and InternetNetwork (IP).
Examples of the ProtocolType are SPX, TCP, and UDP.

Streams, File Access, and Serialization 397

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 397

Figure 10.7 A high-level view of the progam flow when working with the NetworkStream
to retrieve the default Web page from a Web server.

OwnsSocket

Setting this to true causes the Close method of the NetworkStream to also call
the Close method of the Socket. The default is false, so this should always be
set to true unless the Socket is being used for other purposes.

NetworkStream Example

The section examines the creation and use of a NetworkStream object. This
example looks up the IP address of www.wiley.com, then creates an IPAddress
object based on the URL. Next, the IPEndPoint will be created, and finally the
Socket is created and connected. The code is as follows:

Private Sub Button6_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button6.Click

Dim strServer As String = “www.wiley.com”

Dim getCmd As String

Dim getBytes As Byte()

Dim recvBytes(1024) As Byte

Dim strRespose As String = “”

Dim enc As Encoding = Encoding.ASCII

Create IPEndPoint with IP and Port

Send Get Request

Receive Response from Stream

Response to User

Get IPAddress from URL

Get URL from User

Connect Socket to EndPointCreate Get Request

Create Socket

398 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 398

‘Resolve the DNS name to an IP Address.

‘by taking the first address in the resolved list

Dim host As IPAddress = Dns.Resolve(strServer).AddressList(0)

Dim EPhost As New IPEndPoint(host, 80)

‘Creates the Socket for sending data over TCP

Dim sokt As New Socket(

AddressFamily.InterNetwork, _

SocketType.Stream, _

ProtocolType.Tcp)

getCmd = String.Format(_

“GET / HTTP/1.1{0}Host: {1}{0}Connection: Close{0}{0}”, _

ControlChars.CrLf, strServer)

getBytes = enc.GetBytes(getCmd)

‘ Connects to the host using IPEndPoint.

sokt.Connect(EPhost)

If Not sokt.Connected Then

strRespose = “Cannot connect to host: “ & strServer

Response.Write(strRespose)

End If

Dim s1 As New NetworkStream(sokt, True)

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Response.Write(s1options)

s1.Write(getBytes, 0, getBytes.Length)

Dim strOutput As String = “”

Dim bInput(10) As Byte

Dim count As Integer

count = s1.Read(bInput, 0, bInput.Length)

Do While (count > 0)

strOutput &= _

System.Text.Encoding.UTF8.GetString(bInput, 0, count)

count = s1.Read(bInput, 0, bInput.Length)

Loop

s1.Close()

Response.Write(strOutput)

End Sub

The browser output, shown in Figure 10.8, demonstrates that the stream’s
CanRead and CanWrite properties are true, while the CanSeek property is set
to false. An attempt to seek will cause an exception to be thrown.

This stream operates much like the previous streams that have been
examined, except that more setup is required in order to communicate over the
network.

Streams, File Access, and Serialization 399

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 399

Figure 10.8 An example of using the NetworkStream to read a Web page.

CryptoStream
The CryptoStream class provides the ability to move and process data from
one stream to another. This stream does not have an endpoint. This class inher-
its all the methods in the Stream class and has additional cryptographic-centric
properties and methods. CryptoStream can be used to encrypt any data.

The CryptoStream provides the ability to perform symmetrical encryption
with little extra work. Symmetrical encryption is done by sharing a secret. In
this case, the secret will be the initialization vector (IV) and the key. Depend-
ing on the usage, it may be desirable to regenerate the IV and key each time
that a session has started, or it may be desirable to store the IV and key for
repeated use.

CryptoStream Constructor

The following parameters may be passed to the constructor when opening a
CryptoStream for encryption or decrytpion.

Stream

The stream that is passed to the constructor is the input (decryption) or output
(encryption) stream.

SymmetricAlgorithm

The SymmetricAlgorithm class can be used to create a CryptoServiceProvider.
This is an abstract class and, although this can be used to create the

400 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 400

TripleDESCryptoServiceProvider, it may be better to use one of the explicit
CryptoServiceProvider classes. The following CryptoServiceProvider classes
are available:

■■ RijndaelManaged

■■ DESCryptoServiceProvider

■■ RC2CryptoServiceProvider

■■ TripleDESCryptoServiceProvider

ICryptoTransform

The CryptoServiceProvider class contains a Create and CreateDecryptor
method. Each of these methods returns an object that implements the ICrypto-
Transform interface, which is used to perform encryption and decryption.

CryptoStream Encryption Example

The following example shows how encryption may be done by encrypting the
words Encrypted Hello World and placing them in a file called c:\test.txt.

Private Sub Button7_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button7.Click

Dim s1 As New FileStream(_

“c:\test.txt”, FileMode.Create)

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Response.Write(s1options)

Dim cryptoProvider As TripleDESCryptoServiceProvider

cryptoProvider = TripleDESCryptoServiceProvider.Create()

If Session(“iv”) Is Nothing Then

Session(“iv”) = cryptoProvider.IV

Session(“key”) = cryptoProvider.Key

txtIV.Text = Convert.ToBase64String(cryptoProvider.IV)

txtKey.Text = Convert.ToBase64String(cryptoProvider.Key)

End If

Dim xfrm As ICryptoTransform

xfrm = cryptoProvider.CreateEncryptor(_

Session(“key”), Session(“iv”))

Dim c1 As New CryptoStream(s1, xfrm, CryptoStreamMode.Write)

Dim c1options As String

s1options = String.Format(_

“c1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

Streams, File Access, and Serialization 401

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 401

c1.CanRead, _

c1.CanSeek, _

c1.CanWrite)

Response.Write(c1options)

Dim b As Byte()

b = System.Text.Encoding.Unicode.GetBytes(_

“Encrypted Hello World”)

c1.Write(b, 0, b.Length)

c1.Close()

s1.Close()

End Sub

This code creates a FileStream, then creates the TripleDESCryptoService-
Provider. The TripleDESCryptoServiceProvider will generate an IV and key,
which must be recorded to decrypt the message. They are saved into Session
variables. Next, the CreateEncryptor method is executed to produce an ICrypto-
Transform, and finally the CryptoStream is opened with the appropriate para-
meters. The browser output, shown in Figure 10.9, demonstrates that although
the FileStream supports reading, writing, and seeking, the CryptoStream only
supports writing.

CryptoStream Decryption Example

The following example shows how decryption may be done by decrypting the
words Encrypted Hello World from the file called c:\test.txt and sending them to
the browser.

Private Sub Button8_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button8.Click

Dim s1 As New FileStream(_

“c:\test.txt”, FileMode.Open)

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Response.Write(s1options)

Dim cryptoProvider As TripleDESCryptoServiceProvider

cryptoProvider = TripleDESCryptoServiceProvider.Create()

Dim xfrm As ICryptoTransform

xfrm = cryptoProvider.CreateDecryptor(Session(“key”),

Session(“iv”))

402 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 402

Dim c1 As New CryptoStream(s1, xfrm, CryptoStreamMode.Read)

Dim c1options As String

c1options = String.Format(_

“c1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

c1.CanRead, _

c1.CanSeek, _

c1.CanWrite)

Response.Write(c1options)

Dim strOutput As String = “”

Dim bInput(10) As Byte

Dim count As Integer

count = c1.Read(bInput, 0, bInput.Length)

Do While (count > 0)

strOutput &= _

System.Text.Encoding.UTF8.GetString(bInput, 0, count)

count = c1.Read(bInput, 0, bInput.Length)

Loop

Response.Write(strOutput & “
”)

c1.Close()

s1.Close()

End Sub

The browser output, Figure 10.10, shows the decrypted file contents. The
FileStream supports reading, writing, and seeking, but the CryptoStream only
supports reading. Also note that the IV and key were initialized from the
storedSession variables.

BufferedStream
The BufferedStream class provides the ability to take an existing stream and
give it buffering capabilities. This stream does not have an endpoint. This class
inherits all the methods in the Stream class and has additional buffer-centric
properties and methods.

Figure 10.9 Encryption IV and key. This also reveals that the CryptoStream only supports
writing.

Streams, File Access, and Serialization 403

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 403

Figure 10.10 The file is decrypted and displayed in the browser.

BufferedStream Constructor

The following parameters may be passed to the constructor when opening a
BufferedStream.

Stream. The stream passed to the constructor is the stream that will
benefit from being buffered.

BufferSize. If a buffer size is provided, a shared buffer is created. If the
size of the buffer needs to increase beyond the size of BufferSize, an
internal buffer will be used.

BufferedStream Example

The following example shows how a BufferedStream can be used with the
existing FileStream:

Private Sub Button9_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button9.Click

Dim s1 As New FileStream(_

“c:\test.txt”, FileMode.Create)

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Response.Write(s1options)

Dim b1 As New BufferedStream(s1)

Dim b1options As String

b1options = String.Format(_

404 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 404

“b1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

b1.CanRead, _

b1.CanSeek, _

b1.CanWrite)

Response.Write(b1options)

Dim b As Byte()

b = System.Text.Encoding.Unicode.GetBytes(“Hello World”)

b1.Write(b, 0, b.Length)

b1.Seek(0, SeekOrigin.Begin)

Dim strOutput As String = “”

Dim bInput(10) As Byte

Dim count As Integer

count = b1.Read(bInput, 0, bInput.Length)

Do While (count > 0)

strOutput &= _

System.Text.Encoding.UTF8.GetString(bInput, 0, count)

count = b1.Read(bInput, 0, bInput.Length)

Loop

b1.Close()

s1.Close()

Response.Write(strOutput & “
”)

End Sub

The browser output is shown in Figure 10.11. Notice that the buffered stream
supports reading, writing, and seeking.

Response.OutputStream
The Response.OutputStream is an instance of the Stream object. The Output-
Stream can be used when outputting binary information to the browser. The
following example (see Figure 10.12) opens a FileStream containing a picture.
The FileStream is read and then written to the OutputStream.

Figure 10.11 In this browser output, notice that the BufferedStream supports reading,
writing, and seeking.

Streams, File Access, and Serialization 405

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 405

Figure 10.12 An image file is read with a FileStream object and written to the Response
object’s output stream.

Private Sub Button10_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button10.Click

Response.Clear()

Response.ContentType = “image/gif”

Dim s1 As New FileStream(_

“c:\whe_logo.gif”, FileMode.Open)

Dim s2 As Stream = Response.OutputStream()

Dim b(512) As Byte

Dim count As Integer

count = s1.Read(b, 0, b.Length)

Do While (count > 0)

s2.Write(b, 0, count)

count = s1.Read(b, 0, b.Length)

Loop

Response.End()

End Sub

To ensure that the image is output properly without being corrupted, the
response buffer is cleared first. Next, the content type is set to image/gif,
which tells the browser what kind of file is being sent. Finally, a loop is created,
which reads a block of bytes from the FileStream, and outputs the block to the
OutputStream.

This same concept can be applied to delivering other document types, such
as Word documents and Excel spreadsheets.

Stream Helper Classes

Many stream helper classes can be used to simplify the coding of the streams
that have been covered in this chapter. This section explores some of these
classes and provide examples where appropriate.

406 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 406

BinaryWriter
The BinaryReader class provides many Write overloads to simplify writing to
a file. The following example shows how this can be used:

Private Sub Button14_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button14.Click

Dim s1 As New FileStream(_

“c:\test.txt”, FileMode.Create)

Dim b1 As New BinaryWriter(s1, Encoding.Unicode)

b1.Write(“Hello BinaryWriter World”)

b1.Close()

s1.Close()

End Sub

This code can reduce the complexity of working with the stream directly,
but the BinaryWriter requires a stream to be passed to its constructor.

BinaryReader
The BinaryWriter class provides many Read overloads to simplify the reading
of data from files. The following is an example of its use:

Private Sub Button15_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button15.Click

Dim s1 As New FileStream(_

“c:\test.txt”, FileMode.Open)

Dim b1 As New BinaryReader(s1, Encoding.Unicode)

Response.Write(b1.ReadString())

b1.Close()

s1.Close()

End Sub

This code simplifies the retrieval of data, but requires that two streams be
opened.

TextWriter and TextReader
These classes are abstract and provide many methods that simplify reading
and writing textual information.

Streams, File Access, and Serialization 407

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 407

StreamWriter
The StreamWriter class inherits from TextWriter and can be used to easily write
text to a file. The following code shows an example of StreamWriter class:

Private Sub Button12_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button12.Click

Dim s1 As New StreamWriter(“C:\test.txt”, False, Encoding.Unicode)

s1.Write(“Hello StreamWriter World”)

s1.Close()

End Sub

This is substantially less code than writing directly to the FileStream. The
second parameter is a Boolean that specifies whether the file should be
appended. Notice that the encoding is set up in the constructor as well.

StreamReader
The StreamReader inherits from TextWriter and can be used to read text easily
from a file. The following code shows how this can be used:

Private Sub Button13_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button13.Click

Dim s1 As New StreamReader(“C:\test.txt”, Encoding.Unicode)

Response.Write(s1.ReadToEnd())

s1.Close()

End Sub

This code is also much simpler than accessing the FileStream to read its con-
tents. The constructor optionally accepts an encoding type. Notice that the
ReadToEnd method is provided to read the entire contents of the file and
return a string. The returned string is passed to the Write method of the
Response object.

HttpWebRequest
HttpWebRequest can be used to simplify the use of the NetworkStream. This
class has the ability to use proxy settings and can also operate with SSL. The
constructor of this class is not used. Instead, the Create method returns a valid
instance of this class. The following code shows the use of HttpWebRequest:

Private Sub Button16_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

408 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 408

Handles Button16.Click

Dim h As HttpWebRequest

h = CType(HttpWebRequest.Create(“http://www.wiley.com”), _

HttpWebRequest)

Dim r As WebResponse = h.GetResponse()

Dim s1 As Stream = r.GetResponseStream()

Dim count As Integer

Dim b(128) As Byte

count = s1.Read(b, 0, b.Length)

Do While count > 0

Response.OutputStream.Write(b, 0, count)

count = s1.Read(b, 0, b.Length)

Loop

s1.Close()

End Sub

This greatly simplifies the use of the NetworkStream. Notice that there is no
need to create IPAddresses, EndPoints, and Sockets. HttpWebRequest also
provides all the functionality to communicate through proxy servers, commu-
nicate via SSL, and log in using credentials.

File Classes

The .NET Framework provides file classes that are used when manipulating
files on the disk. The file classes covered in this section are File, FileInfo, and
File Upload control. Each of these classes provides different functionality,
although the File and FileInfo classes have a fair amount of overlap.

File Class
The File class provides many static classes that perform file manipulation. The
File class is typically used when performing a single file operation that
requires a string for the file path. Table 10.2 show a list of the static methods
that are provided by the File class.

Table 10.2 File Class Static Methods to Manipulate a File

FILE METHOD DESCRIPTION

AppendText Creates and returns a StreamWriter that can be used to
append to the current file.

Copy Copies an existing source file to the destination location.
Throws an IOException if the destination file already
exists.

(continued)

Streams, File Access, and Serialization 409

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 409

Table 10.2 (continued)

FILE METHOD DESCRIPTION

Create Creates a file and returns a FileStream using a fully
qualified path.

CreateText Creates a file and returns a StreamWriter using the fully
qualified path.

Delete Deletes the file that is specified by its fully qualified path.
This does not throw an exception if the file does not
exist.

Exists Returns a Boolean, indicating the existence of the
specified file.

GetAttributes Retrieves and sets the attributes of the specified file as a
SetAttributes FileAttributes bitwise enumeration. Note that each

attribute is exposed as a property of the enumeration.

GetCreationTime Retrieves and sets the time that the file was created.
SetCreationTime

GetLastAccessTime Retrieves and sets the last access time on the file.
SetLastAccessTime

GetLastWriteTime Retrieves and sets the last time of the last write to the
SetLastWriteTime file.

Move Moves the file to a new location. This will throw an
exception if the destination file already exists, or if the
source file does not exist.

Open Opens the file and returns a FileStream that can be used
to access the file.

OpenRead Opens the file for read-only access and returns a
FileStream object.

OpenText Opens the file and returns a StreamReader object for
read only access.

OpenWrite Opens the file for write access and returns a FileStream
object.

The File class provides many methods; this section shows some examples of
File class use. The following code provides a simple example of copying a file
from one location to another:

Private Sub Button17_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button17.Click

410 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 410

‘Copies from the source, to the destination

File.Copy(“C:\test.txt”, “C:\testbackup.txt”)

End Sub

This is a simple example of moving a file from one location to another:

Private Sub Button17_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button17.Click

‘Moves from the source, to the destination

File.Move(“C:\test.txt”, “C:\testbackup.txt”)

End Sub

This example retrieves the last write time and displays it in the browser as a
formatted string:

Private Sub Button21_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button21.Click

Dim lastWrite As String

lastWrite = File.GetLastWriteTime(“C:\test.txt”).ToUniversalTime()

Response.Write(lastWrite & “
”)

End Sub

This example sets the last write time on the file to Jan 1, 2005 at midnight:

Private Sub Button22_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button22.Click

Dim d As DateTime

d = DateTime.Parse(“Jan 1, 2005”)

File.SetLastWriteTime(“C:\test.txt”, d)

End Sub

This code reads the attributes of a file. First, the attributes are enumerated
and displayed, then a test is made to see if a certain attribute is set.

Private Sub Button19_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button19.Click

Dim a As FileAttributes

a = File.GetAttributes(“C:\test.txt”)

‘Display all attributes

Dim attrArray As Integer()

attrArray = System.Enum.GetValues(a.GetType())

Streams, File Access, and Serialization 411

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 411

Dim attr As Integer

For Each attr In attrArray

If attr And a Then

Response.Write(System.Enum.GetName(a.GetType, attr))

Response.Write(“
”)

End If

Next

‘Check a single attribute.

If a.ReadOnly And a Then

Response.Write(“This is a Read Only File”

Response.Write(“
”)

End If

End Sub

The following code example initially demonstrates the setting of a single
attribute that clears other attributes. The next line retrieves the existing attrib-
utes and adds the ReadOnly attribute.

Private Sub Button23_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button23.Click

‘Explicitly set Hidden attribute

File.SetAttributes(“C:\test.txt”, FileAttributes.Hidden)

‘Retrieve existing settings and add ReadOnly

File.SetAttributes(_

“C:\test.txt”, File.GetAttributes(“c:\test.txt”) _

Or FileAttributes.ReadOnly)

End Sub

FileInfo Class
The FileInfo class provides many of the same methods as the File class, except
that FileInfo requires an instance to be created. When the FileInfo instance is
created, the name and path to the file must be specified in the constructor.
After that, the object can be reused to perform subsequent operations on the
same file. This can translate to increased performance over the File class when
the same file is being manipulated many times. Table 10.3 lists the methods
that are available in the FileInfo class.

The following example shows how the FileInfo class can be used to copy
files. A CopyTo method is used to copy a file. The CopyTo method returns a
FileInfo object that points to the destination file. The returned FileInfo object is
assigned to a variable, and the information is sent to the browser, as shown in
Figure 10.13.

412 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 412

Table 10.3 FileInfo Methods

FILEINFO METHOD DESCRIPTION

AppendText Creates and returns a StreamWriter that can be used
to append text to the file.

CopyTo Copies an existing file to a new file. This method has
an overload that allows the passing of a Boolean
overwrite indicator. If the overwrite is true, the
destination file will be overwritten without error. If the
overwrite is false, an exception will be thrown if an
attempt is made to overwrite a file that already exists.

Create Creates a new file and returns a FileStream object that
can be used to access the file.

CreateText Creates a file and returns a StreamWriter that can be
used to access the file.

Delete Deletes the file. If the file does not exist, no exception
will be thrown.

MoveTo Moves a file to the destination.

Open Opens the file and returns a FileStream object that
may be used to manipulate the file.

OpenRead Opens the file and returns a read-only FileStream
object.

OpenText Opens the file and returns a StreamReader object that
can be used to write text.

OpenWrite Opens the file and returns a write only FileStream.

Refresh Refreshes the state of the file.

Figure 10.13 The returned FileInfo object has been assigned to a variable, and the
information has been sent to a browser.

Streams, File Access, and Serialization 413

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 413

Private Sub Button24_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button24.Click

Dim f As New FileInfo(“C:\test.txt”)

Dim d As FileInfo = f.CopyTo(“C:\temp\test.txt”, True)

Response.Write(“Name: “ & d.Name & “
”)

Response.Write(“Extention: “ & d.Extension & “
”)

Response.Write(“Full Name: “ & d.FullName & “
”)

Response.Write(“Directory Name: “ & d.DirectoryName & “
”)

End Sub

Notice that the CopyTo method has a Boolean parameter. This parameter is
used to specify whether an existing file should be overwritten by the copy
operation. If this option is false, or not specified, an attempt to copy over an
existing file will throw an exception.

File Uploading with the File Field Control
The File Field upload control is used to allow users to upload documents to a
directory on the Web server, without the need to use Visual Studio .NET. This
is an HTML server control.

To use the File Field control, drag a File Field to the Web page. The File Field
is located in the HTML tab of the Toolbox. Right-click the control, and click
Run As Server Control. Next, add a button that will post the file when clicked.
Figure 10.14 shows the designer screen with the File Field control and the
Upload button.

In the HTML of the page, the form tag must be modified to specify that it
will be posting a file. This is done by making the following change to the form
tag:

<form id=”Form1”

method=”post”

enctype=”multipart/form-data”

runat=”server”>

The accept property of the File Field control can also be modified to allow
only certain types of files to be uploaded. This is done by adding the following
attribute to the File Field:

accept=”image/*”

414 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 414

Figure 10.14 The HTML file field and the Upload button.

In the code-behind page, the button click event method must have the fol-
lowing code to process the uploaded file:

Private Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button1.Click

Dim fileTarget As String = “C:\MyUploadDocs\”

If UpLoadControl.PostedFile Is Nothing Then

Response.Write(“No file uploaded.
”)

Return

End If

fileTarget &= _

Path.GetFileName(UpLoadControl.PostedFile.FileName.ToString())

If File.Exists(fileTarget) Then

Response.Write(“File already exists.
”)

Return

End If

Response.Write(“File Uploaded to: “ + fileTarget + “
”)

Response.Write(_

UpLoadControl.PostedFile.ContentType.ToString() + “
”)

Response.Write(_

UpLoadControl.PostedFile.ContentLength.ToString() + “
”)

UpLoadControl.PostedFile.SaveAs(fileTarget)

End Sub

The upload control can be used to upload very large files. Care should be
taken to ensure that the destination of the uploaded files does not allow exe-
cution of an uploaded file.

Streams, File Access, and Serialization 415

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 415

Directory Classes

Two Directory classes assist in browsing and manipulation of the operating
system directories: Directory and DirectoryInfo. These classes contain a fair
amount of overlapping methods. If directory information or manipulation
needs to take place only once on a directory, then use the Directory class. If
there will be repeated calls to access the directory information, then use the
DirectoryInfo class.

Directory Class
The Directory class contains many static methods for accessing and manipu-
lating a directory; thus, there is no need to create an instance of the Directory
class. When specifying a path, the path may be absolute or relative, and it may
be a UNC path. These methods are listed in Table 10.4.

Table 10.4 Directory Class Methods

DIRECTORY METHOD DESCRIPTION

CreateDirectory Creates a new directory and any required
subdirectories.

Delete Deletes the specified directory.

Exists Returns a Boolean true if the specified directory exists.

GetCreationTime Gets and sets the creation time of the specified
SetCreationTime folder.

GetCurrentDirectory Gets and sets the current default directory.
SetCurrentDirectory

GetDirectories Returns a string array containing a list of all
directories that are under the specified directory.

GetDirectoryRoot Gets the name of the root directory or volume
information of the specified directory. For example,
if c:\test\abc\def is specified as the directory, this
method returns C:\ as the directory root.

GetFiles Returns a string array containing a list of files that
are in the specified directory.

GetFileSystemEntries Returns a string array containing the list of all files
and folders in the specified directory.

GetLastAccessTime Gets and sets the last access time of the specified
SetLastAccessTIme directory.

GetLastWriteTime Gets and sets the last write time of the specified
SetLastWriteTime directory.

416 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 416

Table 10.4 (continued)

DIRECTORY METHOD DESCRIPTION

GetLogicalDrives Retrieves a list of logical drives on the current
machine. This method does not return mapped
drives.

GetParent Returns the parent directory of the specified directory.

Move Moves the specified directory to a new location.

The following examples show how the Directory class can be used. Notice
that an instance of the Directory class does not need to be created, since the
methods are static.

Get All File and Folder Entries

The following code is an example of reading the files and folders in a directory
and using the list to populate a ListBox.

Private Sub Button25_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button25.Click

Dim f As String

Dim d As String

d = “C:\DEVELOPMENT\ORDERENTRYSYSTEM\OrderEntrySystemSolution”

For Each f In Directory.GetFileSystemEntries(d)

ListBox1.Items.Add(f)

Next

End Sub

Figure 10.15 shows the browser output. Notice that the full path is retrieved
for each entry, even though they are in the same directory.

Get Computer Drive List

The following code shows how to obtain a list of logical drives that are on the
current machine. This list will not include mapped drives, however.

Private Sub Button27_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button27.Click

Dim d As String

For Each d In Directory.GetLogicalDrives()

ListBox1.Items.Add(d)

Next

End Sub

Streams, File Access, and Serialization 417

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 417

Figure 10.15 The Directory class can be used to retrieve a list of files and folders and
populate a ListBox.

Figure 10.16 shows the browser output. Notice that the drives have the colon
and backslash already appended to each letter.

DirectoryInfo Class
The DirectoryInfo class provides many of the same methods that the Directory
class provides, except that DirectoryInfo requires an instance to be created.
When the DirectoryInfo instance is created, the path must be specified in the
constructor. After that, the object can be reused to perform subsequent opera-
tions on the same directory. This can translate to increased performance over
the Directory class when the same directory is being manipulated many times.
Table 10.5 lists some of the methods that are available in the DirectoryInfo class.

Figure 10.16 The Directory class can be used to retrieve a list of logical drives on the current
machine.

418 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 418

Table 10.5 DirectoryInfo Methods

DIRECTORYINFO
METHOD DESCRIPTION

Create Creates a new directory under the current directory. No
exception is thrown if the current directory already exists.

CreateSubdirectory Creates a new directory under the current directory; this
directory can be several directories under the current
directory and any required subdirectories will be created.

Delete Deletes the current directory and its contents.

GetDirectories Gets the directories that are in the current directory and
returns them as an array of DirectoryInfo objects.

GetFiles Gets the files that are in the current directory and returns
them as an array of FileInfo objects.

GetFileSystemInfos Gets the files and directories that are in the current
directory and returns them as an array of FileSystemInfo
objects. The FileSystemInfo class is the base class for both
the FileInfo and DirectoryInfo classes.

MoveTo Moves the current directory to a new location.

Refresh Refreshes the state of the directory.

The following example shows how the DirectoryInfo class can be used to
create a new directory along with any required directories. In this situation, a
folder called temp exists, but it is empty. The new directory is C:\temp\abc\
def\ghi\jkl\mno\pqr\stu\vwx\yz.

Private Sub Button26_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button26.Click

Dim d As String

d = “C:\temp”

Dim di As New DirectoryInfo(d)

di.CreateSubdirectory(“abc\def\ghi\jkl\mno\pqr\stu\vwx\yz”)

End Sub

The created folder structure is shown in Figure 10.17. Notice that each direc-
tory was created as needed in order to create the final yz directory. Also, the
new folder is listed relative to the current folder.

Streams, File Access, and Serialization 419

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 419

Figure 10.17 All subdirectories were automatically created in order to create the final yz
folder.

Isolated Storage

One problem that developers have been challenged with is the ability to store
data on the local user’s machine. Part of the problem is that there may be secu-
rity permissions required that the current user does not have, as is the case when
the program attempts to store data in the same folder in which a Windows appli-
cation normally resides (under the Program Files folder). Another problem is
that an unauthorized program may attempt to read this information.

Isolated storage provides a method of storing information on a user’s fixed
disk without requiring any additional security and without exposing the infor-
mation to other programs. The developer need only be concerned with the
data that is to be stored, not the location of the data.

The data store may include files and folders arranged hierarchically. This is
up to the developer’s discretion. The data store is assigned a scope, and if code
is not included within the assigned scope, the code will not be able to access
the data store. Scopes may be assigned based on application domain, assem-
bly, or user. An administrator may also set a quota on the size of the data store.

Each data store is physically isolated from other data stores. Therefore, an
assembly that resides on the local drive will have a data store different from
that of the same assembly loaded from the Internet. To use Isolated Storage be
sure to import the System.IO.IsolatedStorage namespace.

The following example creates a file within Isolated Storage and writes
Hello World.

420 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 420

Private Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button1.Click

Dim s1 As New IsolatedStorageFileStream(“\test.txt”, _

FileMode.Create)

Dim s1options As String

s1options = String.Format(_

“s1 - CanRead:{0} CanSeek:{1} CanWrite:{2}
”, _

s1.CanRead, _

s1.CanSeek, _

s1.CanWrite)

Response.Write(s1options)

Dim b As Byte()

b = System.Text.Encoding.Unicode.GetBytes(“Hello World”)

s1.Write(b, 0, b.Length)

s1.Seek(0, SeekOrigin.Begin)

Dim strOutput As String = “”

Dim bInput(10) As Byte

Dim count As Integer

count = s1.Read(bInput, 0, bInput.Length)

Do While (count > 0)

strOutput &= _

System.Text.Encoding.UTF8.GetString(bInput, 0, count)

count = s1.Read(bInput, 0, bInput.Length)

Loop

s1.Close()

Response.Write(strOutput & “
”)

End Sub

Streams, File Access, and Serialization 421

♦ Where Did the Isolated Storage File Go?

Although the intent is that the developer does not need to be concerned with the location
of the Isolated Storage file, the first thing that most people ask is whether the file is being
backed up.

A search on the hard drive, using the Windows search, does not expose the file. A search
from the command prompt using the following command does find the file:

Dir \test.txt /s

This search starts at the root directory and searches each subdirectory, looking for all
instances of test.txt. The file turned up in the following location:

C:\Documents and Settings\LocalService\Local Settings\

Application Data\IsolatedStorage\ljytwfxx.wrt\rpgje1zq.e4o\

Url.f44my4kvl2hzhmacq1gws4w0cswi1zr0\

Url.z0hlqcdjxqmjeuh3hglpmfpz3cbo1c5w\Files

This location will probably be different on each machine, and it will be different based
on the scope of the data store. The good news is that the file can be found, and this means
that the ability to verify that the file is being backed up does exist.

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 421

Notice that this code is identical to the code example for the FileStream,
except that the IsolatedStorageFileStream is created. The accompanying side-
bar explains the location of isolated storage files.

Serialization

Serialization is the process of converting an object into a stream of data, which
allows the object to be transported. For example, an instance of a Car class
might contain the Car’s vehicle identification number (VIN), color, make,
model, and year. If several instances of the Car class are in memory, it might be
desirable to transport these to disk storage, and later transport the instances
back to memory to deserialize the Car instances without losing the data.

The .NET Framework has support for binary, SOAP, and XML serialization.
The different reasons for choosing one type of serialization over another will
be covered in this section.

It is usually better to serialize a single item to a stream, although this item
could be a collection, such as an ArrayList. This is especially important with
SOAP serialization, in which serializing more that one object creates an XML
document with multiple root elements.

To serialize an object, the class must implement the <Serializable()>
attribute. If there are any members of the class that should not be serialized,
those members may contain the <NonSerialized()> attribute.

In Visual Basic .NET, Attributes are placed only on the same line as the class
or member definition. Thus, the LineItem class would appear as follows:

<Serializable()>Public class LineItems

Most other .NET languages place the attribute on the line above the defini-
tion, which may look and feel better. This can be done in Visual Basic .NET by
using the line continuation character, which looks like this:

<Serializable()> _

Public class LineItems

In this section, an ArrayList is serialized. The ArrayList is called Shopping-
Cart and contains instances of the LineItem class, which are items that a poten-
tial customer wishes to purchase. Listing 10.1 shows the code for the LineItem
class and the manual population of the ShoppingCart collection.

Imports System.Runtime.Serialization.Formatters.Binary

Imports System.Collections

Imports System.IO

Listing 10.1 ShoppingCart code that will be used and modified with the serialization
examples.

422 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 422

Public Class SerializationTest

Inherits System.Web.UI.Page

Protected WithEvents btnRestoreCart As _

System.Web.UI.WebControls.Button

Protected WithEvents btnPopulateCart As _

System.Web.UI.WebControls.Button

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

‘Put user code to initialize the page here.

End Sub

Private Sub btnPopulateCart_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnPopulateCart.Click

Dim ShoppingCart As New ArrayList()

ShoppingCart.Add(New LineItem(“Apple-123”, 1))

ShoppingCart.Add(New LineItem(“Orange-234”, 2))

ShoppingCart.Add(New LineItem(“Pear-567”, 3))

ShoppingCart.Add(New LineItem(“Plum-890”, 4))

ShoppingCart.Add(New LineItem(“Grape-999”, 5))

End Sub

Private Sub btnRestoreCart_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnRestoreCart.Click

End Sub

End Class

<Serializable()> _

Public Class LineItem

Private _productID As String

Private _Quantity As Integer

Public Sub New(ByVal ProductID As String, _

ByVal Quantity As Integer)

_productID = ProductID

_Quantity = Quantity

End Sub

Public ReadOnly Property ProductID() As String

Get

Return _productID

End Get

End Property

Public Property Quantity() As Integer

Get

Return _Quantity

End Get

Set(ByVal Value As Integer)

Listing 10.1 (continued)

Streams, File Access, and Serialization 423

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 423

If Quantity > 1000 Then

Throw New ArgumentOutOfRangeException(_

“Quantity must be less than 1000”)

End If

_Quantity = Value

End Set

End Property

End Class

Listing 10.1 (continued)

Binary Serialization
Binary serialization is the fastest and most compact serialization type. Binary
serialization is included in the base class library, mscorlib.dll, so no references
need be made to external .dll files.

Binary serialization classes are located in the System.Runtime.Serialization
.Formatters.Binary namespace. To serialize and store the ShoppingCart to a
disk file, the btnPopulateCart_click method can be modified as follows:

Private Sub btnPopulateCart_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnPopulateCart.Click

Dim ShoppingCart As New ArrayList()

ShoppingCart.Add(New LineItem(“Apple-123”, 1))

ShoppingCart.Add(New LineItem(“Orange-234”, 2))

ShoppingCart.Add(New LineItem(“Pear-567”, 3))

ShoppingCart.Add(New LineItem(“Plum-890”, 4))

ShoppingCart.Add(New LineItem(“Grape-999”, 5))

Dim filename As String = “c:\cart.bin”

Dim s As New FileStream(filename, FileMode.Create)

Dim f As New BinaryFormatter()

f.Serialize(s, ShoppingCart)

s.Close()

End Sub

Figure 10.18 shows the cart.bin file contents, using the Visual Studio .NET
binary editor. Although some of the information is not readable, a good
amount of the data is readable.

424 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 424

Figure 10.18 The cart.bin file contents, using the Visual Studio .NET binary editor.

Deserializing the shopping cart is a relatively simple task. The following
code deserializes the ShoppingCart and displays the LineItems in a DataGrid:

Private Sub btnRestoreCart_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnRestoreCart.Click

Dim ShoppingCart As ArrayList

Dim filename As String = “c:\cart.bin”

Dim s As New FileStream(filename, FileMode.Open)

Dim f As New BinaryFormatter()

ShoppingCart = CType(f.Deserialize(s), ArrayList)

s.Close()

DataGrid1.DataSource = ShoppingCart

DataBind()

End Sub

This code declares an ArrayList, but does not create the instance of the
ArrayList. The stream is created, thus essentially opening the file. The Shop-
pingCart is deserialized, but the BinaryFormatter always returns an object
data type, so the CType command is used to cast the object to the desired
ArrayList.

Finally, the ShoppingCart is assigned to the DataGrid, and the DataBind
command is executed. The browser output is shown in Figure 10.19.

SOAP Serialization
SOAP serialization is the most cross-platform-compatible method of serializa-
tion, but it is also the most verbose serialization type. SOAP serialization is not
included in the base class library, so a reference must be added to the System
.Runtime.Serialization.Formatters.Soap.dll file.

Streams, File Access, and Serialization 425

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 425

Figure 10.19 Shows the deserialized ShoppingCart in the DataGrid.

The SOAP serialization classes are located in the System.Runtime.Serialization
.Formatters.Soap namespace, so the following imports statement is added to
the top of the code-behind page:

Imports System.Runtime.Serialization.Formatters.Soap

To serialize and store the ShoppingCart to a disk file, the btnPopulateCart_click
method can be modified as follows:

Private Sub btnPopulateCart_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnPopulateCart.Click

Dim ShoppingCart As New ArrayList()

ShoppingCart.Add(New LineItem(“Apple-123”, 1))

ShoppingCart.Add(New LineItem(“Orange-234”, 2))

ShoppingCart.Add(New LineItem(“Pear-567”, 3))

ShoppingCart.Add(New LineItem(“Plum-890”, 4))

ShoppingCart.Add(New LineItem(“Grape-999”, 5))

Dim filename As String = “c:\cart.xml”

Dim s As New FileStream(filename, FileMode.Create)

Dim f As New SoapFormatter()

f.Serialize(s, ShoppingCart)

s.Close()

End Sub

Deserializing the shopping cart is the same as using the binary formatter,
except that the filename and formatter are different. The following code dese-
rializes the ShoppingCart and displays the LineItems in a DataGrid:

426 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 426

Private Sub btnRestoreCart_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnRestoreCart.Click

Dim ShoppingCart As ArrayList

Dim filename As String = “c:\cart.xml”

Dim s As New FileStream(filename, FileMode.Open)

Dim f As New SoapFormatter()

ShoppingCart = CType(f.Deserialize(s), ArrayList)

s.Close()

DataGrid1.DataSource = ShoppingCart

DataBind()

End Sub

The only change is the filename and the use of the SoapFormatter instead of
the BinaryFormatter. This code produces the XML file shown in Figure 10.20.
Note that the data is very readable, but is very verbose, which may influence
whether a programmer chooses to use SOAP serialization.

Before looking at XML serialization, some changes can be made to the code
to reduce the verbosity of this file. First, much of the verbosity is from name-
spaces. This can be reduced by declaring a very short namespace for the List-
Item class. If the namespace is eliminated, the class cannot be deserialized, so
a dot (.) is used as the namespace, as shown in the following attribute:

<System.Runtime.Remoting.Metadata.SoapType(XmlNamespace:=”.”), _

Serializable()> _

Public Class LineItem

End Class

Figure 10.20 Part of the cart.xml file, which is very readable and very verbose.

Streams, File Access, and Serialization 427

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 427

Next, because fully qualified namespaces are not being used, the assembly’s
data types need to be preloaded into SoapServices in order for the data types
to be found when deserializing. This requires importing more namespaces at
the top of the code-behind page as follows:

Imports System.Reflection

Imports System.Runtime.Remoting

The deserialization code now looks like this:

Private Sub btnRestoreCart_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnRestoreCart.Click

Dim ShoppingCart As ArrayList

Dim filename As String = “c:\cart.xml”

Dim s As New FileStream(filename, FileMode.Open)

Dim f As New SoapFormatter()

Dim a As [Assembly] = [Assembly].GetExecutingAssembly()

SoapServices.PreLoad(a)

ShoppingCart = CType(f.Deserialize(s), ArrayList)

s.Close()

DataGrid1.DataSource = ShoppingCart

DataBind()

End Sub

The cart.xml file is shown in Figure 10.21. Note that the use of the shortened
namespace dramatically reduces the file size. This may be a desired option, but
remember that namespaces exist to prevent name collision, so the namespace
should be set to something that makes logical sense.

Figure 10.21 The cart.xml file with the shortened namespace.

428 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 428

XML Serialization
XML serialization is sometimes considered as a compromise between using
binary serialization and SOAP serialization. Although this produces a very
readable output, the lack of a standard implementation means that it should
not be used for exchanging data across platforms.

Another problem with XML serialization is that it requires the implementa-
tion of the empty constructor for all serialized classes. Thus, the LineItem class
needs to be modified by adding the empty constructor.

Yet another problem with XML serialization is that read-only properties are
not serialized. Therefore, the ProductID property must be modified to a
changeable property.

The new LineItem class follows:

<Serializable()> _

Public Class LineItem

Private _productID As String

Private _Quantity As Integer

Public Sub New()

End Sub

Public Sub New(ByVal ProductID As String, _

ByVal Quantity As Integer)

_productID = ProductID

_Quantity = Quantity

End Sub

Public Property ProductID() As String

Get

Return _productID

End Get

Set(ByVal value As String)

_productID = value

End Set

End Property

Public Property Quantity() As Integer

Get

Return _Quantity

End Get

Set(ByVal Value As Integer)

If Quantity > 1000 Then

Throw New ArgumentOutOfRangeException(_

“Quantity must be less than 1000”)

End If

_Quantity = Value

End Set

End Property

End Class

XML serialization is not included in the base class library. Therefore, a refer-
ence to the System.XML.dll file must be added. Because the XML serialization

Streams, File Access, and Serialization 429

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 429

classes are located in the System.XML.Serialization namespace, the following
statements need to be added to the top of the code-behind page:

Imports System.XML

Imports System.XML.Serialization

To serialize and store the ShoppingCart to a disk file, the btnPopulate-
Cart_click method can be modified as follows:

Private Sub btnPopulateCart_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnPopulateCart.Click

Dim ShoppingCart As New ArrayList()

ShoppingCart.Add(New LineItem(“Apple-123”, 1))

ShoppingCart.Add(New LineItem(“Orange-234”, 2))

ShoppingCart.Add(New LineItem(“Pear-567”, 3))

ShoppingCart.Add(New LineItem(“Plum-890”, 4))

ShoppingCart.Add(New LineItem(“Grape-999”, 5))

Dim filename As String = “c:\cart.xml”

Dim s As New FileStream(filename, FileMode.Create)

Dim extraTypes() As Type = {Type.GetType(“Ch10Web.LineItem”)}

Dim f As New XmlSerializer(_

Type.GetType(“System.Collections.ArrayList”), _

extraTypes)

f.Serialize(s, ShoppingCart)

s.Close()

End Sub

Notice that the serialization required a list of types to be preloaded into the
XmlSerializer. The cart.xml file is shown in Figure 10.22. Notice that this file is
not too verbose, but some of the limitations that have already been identitified
may make this a bad choice.

The deserialization code looks like this:

Private Sub btnRestoreCart_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnRestoreCart.Click

Dim ShoppingCart As ArrayList

Dim filename As String = “c:\cart.xml”

Dim s As New FileStream(filename, FileMode.Open)

Dim extraTypes() As Type = {Type.GetType(“Ch10Web.LineItem”)}

Dim f As New XmlSerializer(_

Type.GetType(“System.Collections.ArrayList”), _

extraTypes)

ShoppingCart = CType(f.Deserialize(s), ArrayList)

s.Close()

DataGrid1.DataSource = ShoppingCart

DataBind()

End Sub

430 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 430

Figure 10.22 The serialized cart.xml file, using the XmlSerializer.

This code is similar to the serialization code in that the data types were
required to be preloaded before they could be deserialized.

Final Notes on Serialization
Serialization is used extensively throughout the .NET Framework. Anytime
data needs to be transported from one location to another, serialization is used.
As a general rule, binary serialization or SOAP serialization should be used,
because of the limitations of XML serialization.

Lab 10.1: Working with File and
Directory Objects

You are required to allow users to upload files to the Web server, and the
files need to be immediately available for download by other users.

In this lab, you will create an upload page and a download page. The
upload page will contain a File Field control for uploading. The down-
load page will contain a ListBox that will cause the file to be sent to the
ResponseStream.

Uploading the File
In this section, you will add a new page with the File Field control.

1. Start this lab by opening the OrderEntrySolution from Lab 9.1.

Streams, File Access, and Serialization 431

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 431

2. Right-click the OrderEntrySolution in the Solution Explorer and
clickCheck Out. This will check out the complete solution.

3. Add a new Web Form page called DocumentUpload.aspx to the
Customer project.

4. Add a new folder to the Customer project called Uploaded-
Documents. This will hold all documents that have been uploaded.

5. From the HTML tab in the Toolbox, add a File Field control.
Right-click the contol, and click Run As Server Control. Change
the ID and name of the control to UploadControl.

6. Change to the Web Forms tab in the Toolbox. Add a button from this
menu to the page. Set the Text of the control to Upload. Change the
ID of the button to btnUpload.

7. Click the HTML tab on the page. Change the form tag to look like
this:
<form id=”Form1”

method=”post”

enctype=”multipart/form-data”

runat=”server”>

8. Double-click the button to go to the button’s click event in the code-
behind page.

9. Add Imports System.IO to the top of the code-behind page.

10. Add code to store the uploaded document in the Uploaded-
Documents folder. Your code should look like the following:
Private Sub btnUpload_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnUpload.Click

If UploadControl.PostedFile Is Nothing Then

Response.Write(“No file uploaded.
”)

Return

End If

Dim fileTarget As String = Server.MapPath(_

“UploadedDocuments\”)

fileTarget &= Path.GetFileName(_

UploadControl.PostedFile.FileName.ToString())

If File.Exists(fileTarget) Then

Response.Write(“File already exists.
”)

Return

End If

Response.Write(“File Uploaded to: “ & fileTarget _

& “
”)

432 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 432

Response.Write(_

UploadControl.PostedFile.ContentType.ToString() _

& “
”)

Response.Write(_

UploadControl.PostedFile.ContentLength.ToString() _

& “
”)

UploadControl.PostedFile.SaveAs(fileTarget)

End sub

Test File Uploading
The File Field control can be tested by setting the DocumentUpload.aspx
as the start page and running the application.

1. Right-click the Customer project in the Solution Explorer. Click Set
As StartUp Project.

2. Right-click the DocumentUpload.aspx page. Click Set As Start Page.

3. Run the application. Upload some text and picture files.

4. After stopping the program, check the folder to verify that the files
are being saved properly.

Create the Download Page
In this section, a download page will be created. This page will use the
DirectoryInfo class to populate a ListBox with the file list.

1. Add a new Web Form page called DocumentDownload.aspx to the
Customer project.

2. Add a ListBox to the page.

3. Set the AutoPostBack property of the ListBox to true.

4. Double-click the ListBox to go to the code-behind page.

5. Add Imports System.IO to the top of the code-behind page.

6. Add code to the Page_Load to populate the ListBox if the page is
not being posted back. The code should look like the following:
Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

‘Put the user code to initialize the page here.

If Not IsPostBack Then

Dim d As DirectoryInfo

d = New DirectoryInfo(Server.MapPath(_

“UploadedDocuments/”))

Dim fi() As FileInfo

fi = d.GetFiles()

Dim f As FileInfo

Streams, File Access, and Serialization 433

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 433

For Each f In fi

ListBox1.Items.Add(_

New ListItem(f.Name, f.FullName))

Next

End If

End Sub

7. Add code to the ListBox’s SelectedIndexChanged method to deliver
the file to the user. Your code should look like the following:
Private Sub ListBox1_SelectedIndexChanged(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles ListBox1.SelectedIndexChanged

Dim f As String

f = ListBox1.SelectedItem.Value

If File.Exists(f) Then

Response.Clear()

‘Default to force the save messagebox

Response.ContentType = “application/octet-stream”

If String.Compare(_

Path.GetExtension(f), “.gif”, True) Then

Response.ContentType = “image/gif”

End If

Response.WriteFile(f)

Response.End()

Else

Response.Write(“File not found
”)

End If

End Sub

8. Check your work back into Visual SourceSafe.

Test File Downloading
The download can be tested by setting the DownLoadDocument.aspx as
the start page and running the application.

1. Right-click the Customer project in the Solution Explorer. Click Set
As StartUp Project.

2. Right-click the DownLoadDocument.aspx page. Click Set As Start
Page.

3. Run the application. Click some of the files that are in the ListBox.

434 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 434

Summary

■■ Using one of the available streams helps to isolate the programmer
from the low-level operating system and device details.

■■ The File class provides many static classes that perform file manipulation.

■■ The FileInfo class requires an instance to be created.

■■ The Directory class contains many static methods for accessing and
manipulating a directory.

■■ The DirectoryInfo class requires an instance to be created.

■■ Isolated storage provides a method of storing information on a user’s
fixed disk without requiring any additional security and without expos-
ing the information to other programs.

■■ Serialization is the process of converting an object into a stream of data,
which allows the object to be transported.

Streams, File Access, and Serialization 435

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 435

Review Questions

1. What are three of the Stream classes?

2. What are three of the Stream helper classes?

3. What is the difference between the File and FileInfo class?

4. What control can be used to upload files to the Web server?

5. How can you save data to the file system without needing to worry about the location
and file system type for the data?

6. What type of serialization should be used for optimal performance?

436 Chapter 10

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 436

Answers to Review Questions

1. The FileStream, NetworkStream, Null Stream, MemoryStream, CryptoStream,
BufferedStream.

2. The BinaryWriter, BinaryReader, TextWriter, TextReader, StreamWriter, StreamReader,
HttpWebRequest.

3. The File class uses static methods, whereas the FileInfo class uses instance methods.

4. The File Field HTML control.

5. Use Isolated Storage.

6. Binary Serialization.

Streams, File Access, and Serialization 437

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 437

l 430234 Ch10.qxd 7/1/03 9:03 AM Page 438

439

Until now, the focus of this book has been on the use of textual data in a Web
application. There is often a requirement to work with images, either by stor-
ing and retrieving images on the Web server, or by creating images on the fly.

This chapter starts by looking at the image and bitmap classes. These classes
can be used to work with images, by using most of the techniques that have
been defined in previous chapters.

The latter part of the chapter looks closely at GDI+ and the ability to create
images on the fly. Many of the types that are covered in this chapter are located
in the System.Drawing and System.Drawing.Imaging namespaces.

Classroom Q & A
Q: Is it possible to upload images to a database?
A: Yes. This chapter covers uploading images to a database and

retrieving images from the database.

Q: How difficult is it to rotate or flip an image?
A: Actually, it’s very easy to rotate or flip an image after it’s loaded

into memory. The Image class contains a RotateFlip method that
simplifies this process.

Working with GDI+ and Images

C H A P T E R

11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 439

Q: I have a graphical menu on my site, and I would like to generate
on-the-fly text graphics for the menu selections. Is this possible in
ASP.NET?

A: It sure is. This chapter covers the creation of on-the-fly graphics.

Understanding How the Browser Retrieves Images

When a user requests a Web page, the Web page typically contains HTML con-
tent, which may also include tags. When the browser
receives this image tag, the browser then needs go to the source and request
the image. In effect, when the browser sees an image tag, the browser knows
that the content isn’t included in the Web page, it is in a different file, which
must be retrieved to display the image. Figure 11.1 shows an example of the
requests and responses between the browser and the Web server.

The source of the image tag is typically a file, such as Image1.gif, but it doesn’t
need to be a file. Instead, the source attribute could be set to a handler that will
locate the image and respond with it. The handler may be a simple .aspx page
that has no HTML content, but the code-behind page may be retrieving the
image from a database, and sending the image to the browser. Think of this
handler as being the image engine for the site. The query string could contain
the ID of the image to be retrieved and the image engine will locate and
respond with the correct image, as shown in Figure 11.2.

Figure 11.1 The typical series of requests and responses between the browser and the
Web server when images appear on the Web page.

Request Default.aspx Page Containing
Images

Browser Requests Image1.gif

Response = Image1.gif

Browser Requests Image2.gif

Response = Image2.gif

Response = Default.aspx Page Containing

Browser

Web
Server

440 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 440

Figure 11.2 The image tags contain a URL to the image. The URL is always the same, but
the QueryString is different for each image.

Creating the image engine has many advantages. These advantages become
more apparent as more graphics are added to the site. Some advantages are as
follows:

Logging. All requests for images can be logged.

Sizing. All images can be sized to the same size that the browser will be
using to display the image. This lowers the bandwidth requirements by
downloading only thumbnails instead large graphics.

Storage. The images don’t need to be stored on the file system. Instead
the images may be located in a database.

Building the Image Engine
The first step in building an image engine is to add a Web page to the project.
In this example, it will be called Imager.aspx. When you click the HTML tab,
all HTML is removed from the page except for the first line, which contains the
page directive.

In the code-behind page, the Imports System.IO directive is added to the top
of the page to provide access to the File and Path classes. The following code is
added to locate an image in the images folder and write the file to the response
stream:

Browser Requests
Imager.aspx?ID=Image2.gif

Request Default.aspx Page Containing
Images

Browser Requests
Imager.aspx?ID=Image1.gif

Response = Image1.gif

Response = Image2.gif

Response = Default.aspx Page Containing

Browser

Web
Server

Working with GDI+ and Images 441

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 441

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

Dim ImageID As String

ImageID = Request(“ID”).ToString()

Dim fileLocation As String

fileLocation = Server.MapPath(“images/” + ImageID)

If Not File.Exists(fileLocation) Then

Response.Write(“Image not found”)

Return

End If

‘Get extension to use with

‘the MIME content type

Dim ext As String

ext = Path.GetExtension(fileLocation)

ext = ext.Replace(“.”, “”)

‘Ensure that nothing has already been

‘sent to the browser.

Response.Clear()

Response.ContentType = “image/” & ext

Response.WriteFile(fileLocation)

Response.End()

End Sub

This code retrieves the ID from the Request object. The Request(“ID”)
retrieves the ID, regardless of whether the ID is in the query string or in posted
form data. Next, the code verifies the existence of the file. If the file exists, the
extension is extracted from the file and used to build the MIME ContentType
that is sent to the browser. Finally, the image is written to the browser stream.
It’s important to make sure that no other information is sent to the browser.
You do this by executing the Response.Clear and Response.End methods.

You test this code by adding some pictures to the images folder and then
adding image tags to a Web page as follows:

<body>

<form id=”Form1” method=”post” runat=”server”>

</form>

</body>

The images that are being requested are 1,152 pixels by 864 pixels. This pre-
sents a problem, because the user’s screen may only be 800 pixels by 600 pix-
els. A simple solution to this problem is to add a width attribute to the image
tags, as shown in the following code:

<body >

<form id=”Form1” method=”post” runat=”server”>

442 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 442

</form>

</body>

Adding these attributes solves the problem of being able to see the images
in an 800 x 600 window, as shown in Figure 11.3. The problem with simply set-
ting the width attribute to 300 px is that the large image still downloads to the
browser and is scaled at the browser, which uses bandwidth. Displaying the
properties of each image reveals that flower3.jpg is 518,484 bytes, and cat1.jpg
is 551,831 bytes.

The ideal solution is to have the Web server scale the image appropriately
and deliver a smaller file to the browser. This is where the image and bitmap
classes can help. The next section covers these classes in detail and presents a
solution to this problem.

Image
The Image class is an abstract class that provides the base functionality for the
Bitmap and the Imaging.Metafile class. The Image class is located in the System
.Drawing.dll file and in the System.Drawing namespace. Don’t confuse this
with the image that is in the System.Web.UI.WebControls namespace. Confu-
sion can be avoided by adding the following imports statement to the top of
the code-behind page:

Imports System.Drawing

Imports Image = System.Drawing.Image

Figure 11.3 Although large images, in this case 800 x 600, fit nicely in the browser window,
the complete 1,152 x 864 images are downloaded to the browser.

Working with GDI+ and Images 443

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 443

The second imports statement sets the image to explicitly resolve to the Sys-
tem.Drawing.Image. The properties are shown in Table 11.1.

The methods are shown in Table 11.2.
Although the Bitmap class has many properties and methods, the real

power is in the Bitmap class, which is the focus of this section.

The Image and Bitmap classes that are part of the System.Drawing
namespace represent in-memory objects. By themselves, these objects
have no visual component. These objects are visible when assigned to a
control that will render the object.

Table 11.1 Properties

IMAGE PROPERTIES DESCRIPTION

Flags Gets the flags for the current image. The flag will be a
member of the System.Drawing.Imaging.ImageFlags
enumeration.

FrameDimensionList This property gets an array of globally unique IDs
(GUIDs) that represent the dimensions of frames
within the current image. This property is used with
images object that contain multiple images in one
package, such as animated .gif files, which contain a
sequence of images, or images that contain the same
image, but at different resolutions.

Height This property retrieves the height of the image.

HorizontalResolution This property retrieves the horizontal pixels per inch of
the current image.

Palette This property gets or sets the color palette for the
current image.

PhysicalDimension This property returns a SizeF structure representing the
height and width of the current image.

PixelFormat This property returns a member of the PixelFormat
enumeration. There are many formats, but they include
indexed color and 32-bit color.

RawFormat This property returns the ImageFormat of the current
image. Some of the Image formats are .bmp, .gif, .icon,
.jpeg, .tiff.

Size This property returns a Size data type, indicating the
height and width of the image.

VerticalResolution This property represents the vertical resolution in pixels
per inch.

Width This property retrieves the width of the current image.

444 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 444

Table 11.2 Methods

IMAGE METHODS DESCRIPTION

Clone Creates a deep copy of the image.

FromFile Static; creates a new images by loading the image
from a file.

FromHbitmap Static; creates a new bitmap by loading the image
from a Window handle.

FromStream Static; creates a new image by loading the image
from a stream.

GetBounds This method returns the bounding rectangle as a
RectangleF data type with the specified units.

GetEncoderParameterList This method returns information about the
parameters that are supported by the specified
image encoder.

GetFrameCount This method returns the quantity of frames that are a
specified dimension in this image.

GetPixelFormatSize Static; this method returns the color depth of a
specified pixel format.

GetPropertyItem This method retrieves the specified property item
from the image object.

GetThumbnailImage This property returns an image that represents the
thumbnail of the current image, by first looking
inside the image to see whether it contains an
embedded thumbnail, and then generating a
thumbnail image if an embedded one does not exist.

IsAlphaPixelFormat Static; this method returns true if the image contains
alpha information.

IsCanonicalPixelFormat Static; this method returns true if the pixel’s format is
known (canonical).

IsExtendedPixelFormat Static; this method returns true if the pixel’s format is
extended.

RemovePropertyItem This method removes a property from the image.

RotateFlip This method rotates or flips the current image.

Save This method saves the current image to a file or
stream.

SaveAdd This method can be used to add information from
the specified image to the current image and then
save it. The EncoderParameters determine how the
information is incorporated into the image.

Working with GDI+ and Images 445

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 445

Bitmap
The Bitmap class is derived from the Image class. The Bitmap class has all of
the properties and methods that the Image class has, plus a few more methods.
Table 11.3 lists the additional methods that the Bitmap class has. In addition,
the Bitmap class has several constructors that simplify the creation of a bitmap.

Using the Bitmap Class to Resize an Image
The image engine needs the ability to resize the image that is being retrieved
from the disk file. This resizing is done by using the Bitmap’s constructor,
which allows the bitmap to be resized as the object is being created.

The image engine needs to be flexible enough to be able to respond to
requests for different sized images, so the source of the image tags will be
changed to include a width as follows:

<body >

<form id=”Form1” method=”post” runat=”server”>

</form>

</body>

Table 11.3 Bitmap Methods

BITMAP METHOD DESCRIPTION

FromHIcon Static; this method creates a bitmap from a Windows
handle to an icon.

FromResource Static; this method creates a bitmap from the specified
Windows resource.

GetHBitmap This method creates an HBITMAP from the image. The
Windows.DeleteObject(handle) must be called to
deallocate the bitmap.

GetHIcon This method returns the handle to an icon.

GetPixel This method gets the color of the specified pixel in the
current bitmap.

LockBits This method locks the bitmap into the system memory.

MakeTransparent This method passes a color to be marked as the
transparent color for the bitmap.

SetPixel This method sets the color of the specified pixel in the
current bitmap.

446 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 446

Table 11.3 (continued)

BITMAP METHOD DESCRIPTION

SetResolution This method sets the resolution for the current bitmap.

UnlockBits This method unlocks the bitmap from the system
memory.

In the Imager code-behind page, the Page_Load method is modified to
resize the bitmap, based on the width or height that is supplied. The following
code loads an image from the file, determines whether the width or height are
specified, and then calculates any unassigned values based on maintaining the
image proportions.

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

Dim ImageID As String

If Request(“ID”) is nothing then

Return

else

ImageID = Request(“ID”).ToString()

End if

Dim fileLocation As String

fileLocation = Server.MapPath(“images/” + ImageID)

If Not File.Exists(fileLocation) Then

Response.Write(“Image not found”)

Return

End If

Dim i As Image = Image.FromFile(fileLocation)

Dim newWidth As Integer = 0

Dim newHeight As Integer = 0

If Not Request(“Width”) Is Nothing Then

newWidth = CType(Request(“Width”), Integer)

End If

If Not Request(“Height”) Is Nothing Then

newHeight = CType(Request(“Height”), Integer)

End If

If (newWidth = 0) And (newHeight = 0) Then

newWidth = i.Width

newHeight = i.Height

End If

If newWidth = 0 Then

newWidth = (i.Width * newHeight) / i.Height

End If

If newHeight = 0 Then

newHeight = (i.Height * newWidth) / i.Width

End If

Working with GDI+ and Images 447

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 447

Dim b As New Bitmap(i, newWidth, newHeight)

‘Ensure that nothing has already been

‘sent to the browser.

Response.Clear()

Response.ContentType = “image/jpg”

b.Save(Response.OutputStream, Imaging.ImageFormat.Jpeg)

Response.End()

End Sub

After the new dimensions are calculated, the bitmap is created, based on the
existing image and the new sizes. You can save the Save method of the bitmap
to a stream, which allows the bitmap to transfer the data straight to the
response’s OutputStream without requiring the bitmap to be saved to a file
first. The preceding code also calls the Save method, which requires an image
format parameter. Regardless of the type of file that was loaded, the bitmap
may be saved as a .jpeg to the stream.

The browser output looks the same as the output shown in Figure 11.3, but
the size of the files has changed. The flower3.jpg properties reveal that the
image size is 12,991 bytes, and cat1.jpg is 13,305 bytes. This represents a sig-
nificant change in size and bandwidth usage.

This example uses the constructor of the Bitmap class to generate a
resized image. Careful examination of the Image class will reveal that
there is a GetThumbnail method. If the GetThumbnail method is used, an
attempt is made to go to the original stream or file to see whether the
image contains any embedded thumbnails of the requested size. If no
thumbnail exists, one is created. The problem is that the stream must be
left open for this method to operate properly. If the stream is closed, the
program crashes. It may be better to always use the Bitmap’s constructor
to build the thumbnail on the fly.

Uploading Images to a Database
The previous chapter covered file uploading with the File Field control. In the
data access chapter, saving data to the database was covered. In this section,
many of the previous topics are combined to enable users to upload images to
a database.

In this example a new page is added, called ImageView.aspx. This page has
an HTML File Field, called UploadImage, as a server control. The encoding
attribute must be set on the form to allow file uploads. Finally, an Upload but-
ton is placed on the form, which causes the file to be uploaded to the Web
server, and a title is placed on the form. The HTML looks like the following.
(See Figure 11.4.)

448 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 448

Figure 11.4 The Web page in the browser.

<form id=”Form1” method=”post”

enctype=”multipart/form-data” runat=”server”>

<P align=center>

My Photo Gallery

</P>

<P align=center>

<INPUT type=”file”

id=UploadImage name=UploadImage

runat=”server”>

<asp:Button id=” btnUpload”

runat=”server” Text=”Upload”

Width=”75px” Height=”23px”>

</asp:Button></P>

<P align=center> </P>

<P> </P>

</form>

To store images in the database, a table must be created to hold the data. In
this example, the table is created in the Northwind database. It is called Image-
Gallery and contains the fields shown in Table 11.4.

Table 11.4 Fileds in ImageGallery

FIELD NAME DATA TYPE

ImageID Int; identity (auto number)

ImageName varChar(255)

ImageType VarChar(255)

ImageData Image

Working with GDI+ and Images 449

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 449

The SQL script to create the table and primary key looks like the following:

CREATE TABLE [dbo].[ImageGallery] (

[ImageID] [int] IDENTITY (1, 1) NOT NULL ,

[ImageName] [varchar] (255) NOT NULL ,

[ImageType] [varchar] (255) NOT NULL ,

[ImageData] [image] NOT NULL

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

The btnUpload’s click method contains code to add the image to the data-
base. The code checks to see whether a file has been posted. The code then
retrieves the uploaded file data, such as the filename, content type, content
length, and a reference to the InputStream.

A memory stream is created to retrieve the uploaded file. A loop is created
to continue reading the InputStream into the MemoryStream until the file has
finished uploading.

After the file is uploaded, a SQL Server connection is created to connect to
the local Northwind database. A new SQL command, which inserts the data
into the ImageGallery table, is created. SQL parameters are created, and the
command is executed using the ExecuteNonQuery method. The code is as
follows:

Private Sub btnUpload_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnUpload.Click

If UploadImage.PostedFile Is Nothing Then

Response.Write(“No file uploaded.
”)

Return

End If

Dim imageStream As Stream = UploadImage.PostedFile.InputStream

Dim imageLength As Integer = UploadImage.PostedFile.ContentLength

Dim imageType As String = UploadImage.PostedFile.ContentType

Dim imageName As String

imageName = Path.GetFileName(UploadImage.PostedFile.FileName)

Dim mStream As New MemoryStream()

Dim imageData(1024) As Byte

Dim count As Integer = imageData.Length

count = imageStream.Read(imageData, 0, imageData.Length)

Do While count > 0

mStream.Write(imageData, 0, count)

count = imageStream.Read(imageData, 0, imageData.Length)

Loop

Dim sqlConnect As String

sqlConnect = “server=.;database=northwind;Trusted_Connection=true”

Dim cn As New SqlConnection(sqlConnect)

Dim sqlCmd As String

450 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 450

sqlCmd = “insert into ImageGallery(imageName,imageType,imageData)”

sqlCmd &= “ values (@imageName, @imageType, @imageData)”

Dim cmd As New SqlCommand(sqlCmd, cn)

cmd.Parameters.Add(“@imageName”, imageName)

cmd.Parameters.Add(“@imageType”, imageType)

cmd.Parameters.Add(“@imageData”, mStream.GetBuffer())

cn.Open()

cmd.ExecuteNonQuery()

cn.Close()

End Sub

Figure 11.5 shows the SQL server view of the ImageGallery table after
uploading several images to the server.

Retrieving Images from the Database
Just as images can be saved to the database server, they can also be retrieved
from the database. This section uses most of the topics that were covered in
previous chapters to display images in the browser.

The images will be displayed as thumbnail image in a DataList control on
the ImageGallery.aspx page. If an image is clicked, a new browser window
will open with the full-sized image.

The Imager.aspx image engine needs to be modified to retrieve data from
the database instead of the file system. You make this modification by adding
another item, called Source, to the query string. Source is set to DB to specify
that it is retrieving data from the database. If the Source is DB, a SQL Server
connection is created, and a command is executed to retrieve the imageType
and imageData for the imageID that was requested. Then, the image that was
originally populated from a file is populated from a MemoryStream that rep-
resents the imageData field. The file access should still operate. The following
code shows the changes to the Imager code-behind page:

Figure 11.5 The ImageGallery table reveals that several images were successfully uploaded.

Working with GDI+ and Images 451

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 451

Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

‘Ensure that nothing as already been

‘sent to the browser.

Response.Clear()

Dim ImageID As String

If Request(“ID”) Is Nothing Then

Return

Else

ImageID = Request(“ID”).ToString()

End If

Dim i As Image

Dim fileLocation As String

If Not Request(“Source”) Is Nothing Then

If (String.Compare(_

Request(“Source”).ToString(), _

“DB”, True) = 0) Then

‘Retrive from DB

Dim sqlConnect As String

sqlConnect = _

“server=.;database=northwind;Trusted_Connection=true”

Dim cn As New SqlConnection(sqlConnect)

Dim sqlCmd As String

sqlCmd =

“Select imageType, imageData from ImageGallery where “

sqlCmd &= “ imageID = @imageID”

Dim cmd As New SqlCommand(sqlCmd, cn)

cmd.Parameters.Add(“@imageID”, ImageID)

cn.Open()

Dim dr As SqlDataReader = cmd.ExecuteReader()

If Not dr.Read() Then

Response.Write(“Image not found”)

Return

End If

Response.ContentType = dr(“imageType”).ToString()

Dim mStream As MemoryStream

Dim byteData() As Byte

byteData = dr(“imageData”)

mStream = New MemoryStream(byteData)

cn.Close()

i = Image.FromStream(mStream)

Else

Response.Write(“Unknown source”)

Return

End If

Else

‘Retrieve from file

fileLocation = Server.MapPath(“images/” + ImageID)

If Not File.Exists(fileLocation) Then

Response.Write(“Image not found”)

452 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 452

Return

End If

i = Image.FromFile(fileLocation)

Response.ContentType = “image/jpg”

End If

‘Common items

Dim newWidth As Integer = 0

Dim newHeight As Integer = 0

If Not Request(“Width”) Is Nothing Then

newWidth = CType(Request(“Width”), Integer)

End If

If Not Request(“Height”) Is Nothing Then

newHeight = CType(Request(“Height”), Integer)

End If

Dim b As Bitmap

If (newWidth = 0) And (newHeight = 0) Then

b = New Bitmap(i)

Else

If newWidth = 0 Then

newWidth = (i.Width * newHeight) / i.Height

End If

If newHeight = 0 Then

newHeight = (i.Height * newWidth) / i.Width

End If

b = New Bitmap(i, newWidth, newHeight)

End If

b.Save(Response.OutputStream, Imaging.ImageFormat.Jpeg)

Response.End()

End Sub

The HTML of the ImageView.aspx page needs to be changed to provide a
DataList containing thumbnail images from the database, along with the image-
Name. The images will be 150 pixels wide, but may be different heights to
maintain the proportion of the original image. To accommodate the different
heights and place the image name neatly under the image, an HTML table con-
taining a row for the image and a row for the imageName is placed inside the
ItemTemplate of the DataList. The height of the image row is fixed at 125 pix-
els, and the height of the image name row is fixed at 25 pixels.

The image and the image name are inside hyperlink (<a>) tags, which have
the target set to _blank. Setting the target to _blank causes a new browser win-
dow to open, containing the image. Notice that no size is set for the image that
is to be displayed in the new window. This allows the image to be delivered to
the browser at full size.

The image is displayed using an IMG tag. The source of the image tag is set
to the Imager.aspx page, passing the ID of the image, a Source of DB, and a
Width of 150 pixels. The following code shows the ImageView.aspx page:

<form id=”Form1” method=”post”

enctype=”multipart/form-data” runat=”server”>

Working with GDI+ and Images 453

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 453

<P align=center>

My Photo Gallery

</P>

<P align=center>

<INPUT type=”file”

id=UploadImage name=UploadImage

runat=”server”>

<asp:Button id=”btnUpload”

runat=”server” Text=”Upload”

Width=”75px” Height=”23px”>

</asp:Button></P>

<P align=center> </P>

<P align=center>

<asp:DataList id=”DataList1” runat=”server”

RepeatDirection=”Horizontal” RepeatColumns=”4”>

<ItemTemplate>

<table><tr><td height=”125px”>

<A href=’Imager.aspx?ID=<%#

container.dataitem(“ImageID”) %>&Source=DB’

target=”_blank”>

<IMG src=’Imager.aspx?ID=<%#

container.dataitem(“ImageID”) %>&Source=DB&Width=125’

border=”0”></td></tr>

<tr><td height=”25px”>

<A href=’Imager.aspx?ID=<%#

container.dataitem(“ImageID”) %>&Source=DB’

target=”_blank”>

<%# container.dataitem(“ImageName”) %></td></tr>

</table>

</asp:DataList></P>

</form>

The ImageView code-behind page needs to be modified to retrieve the
image data from the ImageGallery table. This code is a simple database query
for the imageID and imageName fields. Note that the imageData is not
required here, because the Web browser calls the Imager.aspx page to get the
imageData. The following code contains the changes to the code-behind page.
Figure 11.6 shows the final Web page.

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

If Not Page.IsPostBack Then

BindData()

End If

End Sub

Public Sub BindData()

Dim sqlConnect As String

sqlConnect = “server=.;database=northwind;Trusted_Connection=true”

454 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 454

Dim cn As New SqlConnection(sqlConnect)

Dim sqlCmd As String

sqlCmd = “Select ImageID,ImageName from ImageGallery”

Dim cmd As New SqlCommand(sqlCmd, cn)

Dim da As New SqlDataAdapter(cmd)

Dim dt As New DataTable(“ImageGallery”)

da.Fill(dt)

DataList1.DataSource = dt

DataBind()

End Sub

Private Sub btnUpload_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnUpload.Click

‘Existing code from previous example

DataBind()

End Sub

The final Web page displays the populated DataList control, and still allows
new images to be uploaded. Click the image or the image name to view the
full-sized photo in a new browser window, as shown in Figure 11.7.

This really is just the beginning of working with Images in a database. Some
things that should be added include the ability to delete images, allow flipping
and rotating, a check to see whether the filename already exists, and caching of
the images. Chapter 14 covers caching in detail, and this application is used to
perform baseline testing. The sidebar titled, Retrieving Existing Images from the
Northwind Database, also describes the method for retrieving the images that
contain OLE header information, such as the images that are stored in the
Employees table of the Northwind database.

Figure 11.6 The final Web page shows the populated DataList control.

Working with GDI+ and Images 455

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 455

Figure 11.7 The full-sized photo, which was opened in a new window when the thumbnail
was clicked. The URL is for the Imager.aspx page, and the proper ID and Source are included.

456 Chapter 11

♦ Retrieving Existing Images from the
Northwind Database

The code to upload and retrieve images works fine in new scenarios. This code doesn’t
seem to work with the existing images in the Northwind database.

The existing images were saved from within Microsoft Access and contain OLE header
information. To disregard the header information, the first 78 bytes (0–77) of data must be
skipped.

Besides changing the query to retrieve the pictures from the appropriate table, the code
needs to change to ignore the first 78 bytes, as shown in the following example:

Dim mStream As MemoryStream

Dim byteData() As Byte

byteData = dr(“imageData”)

mStream = New MemoryStream(byteData)

mStream = New MemoryStream(byteData, 78, byteData.Length - 78)

The MemoryStream in this example contains only the picture, which is a .bmp file. The
MemoryStream can be assigned directly to the Image object. Because these embedded
files were originally .bmp files, the bitmap’s Save method must include the .gif or .jpeg for-
mat to be viewable in most browsers.

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 456

GDI+

The first part of this chapter dealt with the storage and retrieval of existing
images. There was very little manipulation of the image, except to create the
thumbnail image.

This section explores the creation of an image on the fly, covering several of
the help types, then pen and brushes, and finally fonts.

GDI+ Helper Data Types
GDI+ contains several helper types that you will use extensively. In most cases,
there are two versions of the helper type. One version has a letter F suffix,
which indicates that this version uses floating-point numbers. The floating-
point types are desirable in situations where precision is important. This book
attempts to list the floating-point types, but uses only the standard versions of
these classes.

Point/PointF

The Point is a structure used to identify an x and y location in a two-
dimensional plane. The Point has X and Y properties, and methods for convert-
ing PointF objects to Point objects. The operators are overloaded to provide the
ability to add Point and Size instances, and check Point instances for equality.
There are several ways to create a new Point, but the most common method is
as follows:

Dim myLocation As New Point(10, 20)

In this case, 10 is the x coordinate and 20 is the y coordinate.

Rectangle/RectangleF

The Rectangle is a structure that is used to define a rectangular region. The
Rectangle consists of an origin point and a size, which is the width and height
of the rectangle.

You can create a Rectangle object by specifying the origin and size, or by spec-
ifying the X, Z, width, and height as four integers when creating the Rectangle.

The Rectangle provides many functions, such as the ability to inflate union,
intersect, and check for equality. Also some methods for converting Rectan-
gleF to Rectangle are included.

Working with GDI+ and Images 457

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 457

Size/SizeF

The Size is a structure that is used to define a width and height of a rectangular
region. The Size provides methods to test for equality, and to convert from
SizeF to Size. Methods are also provided to add and subtract Size instances.

Color

The Color is a structure that represents a color in terms of its Alpha, Red, Green,
and Blue byte values (ARGB). The Alpha component refers to the opacity of
the color, where 255 is the most opaque, and 0 is transparent.

The Color has static properties that represent many of the colors that are
available by name. You create a Color by using the following code:

Dim myColor As Color = Color.Red

The Color also has methods for creating a color from different color types.

Pen
All drawing requires a Pen object, a Brush object, or both. The Pen is used to
draw lines and curves. The Pen class is not inheritable or serializable.

Brush
The Brush is an abstract class. A brush is used to fill regions. To create a brush,
you must use one of the classes that inherits from the Brush class, such as
SolidBrush, TextureBrush, or LinearGradientBrush. The Brush class is not seri-
alizable.

Graphics
The Graphics class is the class that provides all the methods necessary for
drawing on a device. The device may be a visible or invisible window. The
Graphics object is related to the handle to a device context (HDC) that GDI
used in the past, except that the GDI+ Graphics object encapsulates this low-
level functionality.

When a Graphics object is created, it is associated with a Window (Win-
Forms) or an object that will be rendered, such as a bitmap. No drawing can
occur until a valid Graphics instance has been obtained.

The Graphics class provides many properties, as shown in Table 11.5.

458 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 458

Table 11.5 The Graphics Class Properties

GRAPHICS PROPERTY DESCRIPTION

Clip This changeable Region object can be used to limit
the drawing region of this Graphics object.

ClipBounds This read only RectangleF structure defines the
bounds of the clipping region of this Graphics
object.

CompositingMode This read-only value specifies how composite
images are drawn to this Graphics object.

CompositingQuality This changeable value represents the rendering
quality of composite images drawn to this Graphics
object.

DpiX This read-only value represents the horizontal
resolution of this Graphics object.

DpiY This read-only value represents the vertical
resolution of this Graphics object.

InterpolationMode This changeable value represents the interpolation
mode associated with this Graphics object.

IsClipEmpty This read-only value represents a value indicating
whether the clipping region of this Graphics object
is empty.

IsVisibleClipEmpty This read-only value represents a value indicating
whether the visible clipping region of this Graphics
object is empty.

PageScale This changeable value represents the scaling
between world units and page units for this
Graphics object.

PageUnit This changeable value represents the unit of
measure used for page coordinates in this Graphics
object.

PixelOffsetMode This changeable value represents a value specifying
how pixels are offset during rendering of this
Graphics object.

RenderingOrigin This changeable value represents the rendering
origin of this Graphics object for dithering and for
hatch brushes.

SmoothingMode This changeable value represents the rendering
quality for this Graphics object.

(continued)

Working with GDI+ and Images 459

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 459

Table 11.5 (continued)

GRAPHICS PROPERTY DESCRIPTION

TextContrast This changeable value represents the gamma
correction value for rendering text.

TextRenderingHint This changeable value represents the rendering
mode for text associated with this Graphics object.

Transform This changeable value represents the world
transformation for this Graphics object.

VisibleClipBounds This changeable value represents the bounding
rectangle of the visible clipping region of this
Graphics object.

The Graphics class also provides the methods shown in Table 11.6.

Table 11.6 The Graphics Class Methods

GRAPHICS METHOD DESCRIPTION

AddMetafileComment Adds a comment to the current Metafile object.

BeginContainer Saves a graphics container with the current state of
this Graphics object and opens and uses a new
graphics container.

Clear Clears the entire drawing surface and fills it with the
specified background color.

Dispose Releases all resources used by this Graphics object.

DrawArc Draws an arc representing a portion of an ellipse
specified by a pair of coordinates, a width, and a
height.

DrawBezier Draws a Bézier spline defined by four point
structures.

DrawBeziers Draws a series of Bézier splines from an array of
point structures.

DrawClosedCurve Draws a closed cardinal spline defined by an array
of point structures.

DrawCurve Draws a cardinal spline through a specified array of
point structures.

DrawEllipse Draws an ellipse defined by a bounding rectangle
specified by a pair of coordinates, a height, and a
width.

460 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 460

Table 11.6 (continued)

GRAPHICS METHOD DESCRIPTION

DrawIcon Draws the image represented by the specified Icon
object at the specified coordinates.

DrawIconUnstretched Draws the image represented by the specified Icon
object without scaling the image.

DrawImage Draws the specified Image object at the specified
location and with the original size.

DrawImageUnscaled Draws the specified Image object with its original
size at the location specified by a coordinate pair.

DrawLine Draws a line connecting the two points specified by
coordinate pairs.

DrawLines Draws a series of line segments that connect an
array of point structures.

DrawPath Draws a GraphicsPath object.

DrawPie Draws a pie shape defined by an ellipse specified by
a coordinate pair, a width, a height, and two radial
lines.

DrawPolygon Draws a polygon defined by an array of point
structures.

DrawRectangle Draws a rectangle specified by a coordinate pair, a
width, and a height.

DrawRectangles Draws a series of rectangles specified by rectangle
structures.

DrawString Draws the specified text string at the specified
location with the specified Brush and Font objects.

EndContainer Closes the current graphic container and restores
the state of this Graphic object to the state saved by
a call to the BeginContainer method.

EnumerateMetafile Sends the records in the specified Metafile object,
one at a time, to a callback method for display at a
specified point.

ExcludeClip Updates the clip region of this Graphics object to
exclude the area specified by a rectangle structure.

FillClosedCurve Fills the interior with a closed cardinal spline curve
defined by an array of point structures.

(continued)

Working with GDI+ and Images 461

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 461

Table 11.6 (continued)

GRAPHICS METHOD DESCRIPTION

FillEllipse Fills the interior of an ellipse defined by a bounding
rectangle specified by a pair of coordinates, a width,
and a height.

FillPath Fills the interior of a GraphicsPath object.

FillPie Fills the interior of a pie section defined by an
ellipse specified by a pair of coordinates, a width,
and a height and two radial lines.

FillPolygon Fills the interior of a polygon defined by an array of
points specified by point structures.

FillRectangle Fills the interior of a rectangle specified by a pair of
coordinates, a width, and a height.

FillRectangles Fills the interiors of a series of rectangles specified
by rectangle structures.

Flush Forces execution of all pending graphics operations
and returns immediately without waiting for the
operations to finish.

FromHdc Creates a new Graphics object from the specified
handle to a device context.

FromHwnd Creates a new Graphics object from the specified
handle to a window.

FromImage Creates a new Graphics object from the specified
Image object.

GetHalftonePalette Gets a handle to the current Windows halftone
palette.

GetHdc Gets the handle to the device context associated
with this Graphics object.

GetNearestColor Gets the nearest color to the specified Color
structure.

IntersectClip Updates the clip region of this Graphics object to
the intersection of the current clip region and the
specified rectangle structure.

IsVisible Indicates whether the point specified by a pair of
coordinates is contained within the visible clip
region of this Graphics object.

MeasureCharacterRanges Gets an array of Region objects, each of which
bounds a range of character positions within the
specified string.

462 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 462

Table 11.6 (continued)

GRAPHICS METHOD DESCRIPTION

MeasureString Measures the specified string when it is drawn with
the specified Font object.

MultiplyTransform Multiplies the world transformation of this Graphics
object and specified the Matrix object.

ReleaseHdc Releases a device context handle obtained by a
previous call to the GetHdc method of this Graphics
object.

ResetClip Resets the clip region of this Graphics object to an
infinite region.

ResetTransform Resets the world transformation matrix of this
Graphics object to the identity matrix.

Restore Restores the state of this Graphics object to the
state represented by a GraphicsState object.

RotateTransform Applies the specified rotation to the transformation
matrix of this Graphics object.

Save Saves the current state of this Graphics object and
identifies the saved state with a GraphicsState
object.

ScaleTransform Applies the specified scaling operation to the
transformation matrix of this Graphics object by
prepending it to the object’s transformation matrix.

SetClip Sets the clipping region of this Graphics object to
the Clip property of the specified Graphics object.

TransformPoints Transforms an array of points from one coordinate
space to another, using the current world and page
transformations of this Graphics object.

TranslateClip Translates the clipping region of this Graphics object
by specified amounts in the horizontal and vertical
directions.

TranslateTransform Prepends the specified translation to the
transformation matrix of this Graphics object.

Drawing an Image on the Fly
This example shows how to create an image on the fly and send it to the
browser. In previous image examples, a second page was used to render and
deliver the image to the browser. In this example, one page is used to create an
image on the fly, as shown in Figure 11.8.

Working with GDI+ and Images 463

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 463

Figure 11.8 The same page is used to deliver the HTML content and the images. Notice
that there are three calls to the page: one call for the HTML and a call for each of the images.

Code in the Page_Load method allows the browser to make a call to the
same page to retrieve any images that the page has created. The following
code handles a request for an image that was built and saved as a Session vari-
able. This code should be ahead of any other code in the Page_Load method:

Priv ate Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

If Not Request(“ImageID”) Is Nothing Then

If Not Session(Request(“ImageID”)) Is Nothing Then

Dim b As Bitmap

b = CType(Session(Request(“ImageID”)), Bitmap)

Response.Clear()

Response.ContentType = “image/jpeg”

b.Save(Response.OutputStream, ImageFormat.Jpeg)

Response.End()

Return

End If

End If

‘More code goes here...

End Sub

Web
Server

Browser Requests
GDI.aspx?ImageID=Image2

Request GDI.aspx Page Containing
Images

Browser Requests
GDI.aspx?ImageID=btnImage

Response = btnImage

Response = Image2

Response = GDI.aspx Page Containing

Browser

464 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 464

This code checks to see whether the Request object has an ImageID. If so, the
image is retrieved from a session variable, and the image is saved to the
response stream, then the response is ended. Remember that this portion of
code should operate only when the browser tries to render an image, and the
image’s URL is the name of this page, plus “?ImageID=Image1”. A normal
request for this page doesn’t have the ImageID information.

With the delivery code in place, it’s time to create an image. This example
starts by creating a blank image and placing the image into an ImageButton
control called btnImage.

After the image is created, code is added to draw lines from each point on
the image that the user clicks. The following code creates a blank image in the
Page’s PreRender method:

Private Sub Page_PreRender(_

ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles MyBase.PreRender

Dim bmp As New Bitmap(700, 350)

Dim bmpGraphics As Graphics

bmpGraphics = Graphics.FromImage(bmp)

bmpGraphics.Clear(Color.Yellow)

Session(“btnImage”) = bmp

btnImage.ImageUrl = Request.ServerVariables(“SCRIPT_NAME”) _

& “?ImageID=btnImage”

End Sub

This code creates an instance of the Bitmap class that represents a bitmap
that will be 700 pixels high by 350 pixels wide. After the bitmap is created, a
Graphics object that handles drawing in the bitmap must be obtained. The
Graphics object is used to clear the bitmap with the color yellow.

The bitmap must be saved to a Session variable, which allows the browser
to make a request to this page for the stored image. Finally, the ImageButton
control is assigned a URL for the image, which is the URL to this page, but the
URL includes the “?ImageID=btnImage” request.

Adding Drawing Code
In this section, code is added to the btnImage’s click event method. Instead of
drawing the image in this routine, the location of the click is simply added into
a points array called DrawPoints. DrawPoints is then saved to a SessionVari-
able called Session(“DrawPoints”). Notice the use of UBound, which retrieves
the upper boundary of the array. The array uses this number to redimension
the array, adding an extra element. This variable is retrieved during the Pre-
Render method, and is used to build the bitmap. The code is as follows:

Working with GDI+ and Images 465

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 465

Private Sub btnImage_Click(_

ByVal sender As System.Object, _

ByVal e As System.Web.UI.ImageClickEventArgs) _

Handles btnImage.Click

Dim DrawPoints() As Point

If Session(“DrawPoints”) Is Nothing Then

DrawPoints = New Point() {New Point(e.X, e.Y)}

Else

DrawPoints = CType(Session(“DrawPoints”), Point())

ReDim Preserve DrawPoints(UBound(DrawPoints) + 1)

DrawPoints(UBound(DrawPoints)) = New Point(e.X, e.Y)

End If

Session(“DrawPoints”) = DrawPoints

End Sub

The PreRender code needs to be modified to include drawing lines to con-
nect the points that were clicked. The first time that the user clicks, there is not
enough information to be able to draw a line, so a dot is placed where the first
click took place. Additional clicks cause lines to be added, drawing from point
to point. The modified PreRender code is as follows:

Private Sub Page_PreRender(_

ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles MyBase.PreRender

Dim bmp As New Bitmap(700, 350)

Dim bmpGraphics As Graphics

bmpGraphics = Graphics.FromImage(bmp)

bmpGraphics.Clear(Color.Yellow)

Dim DrawPoints() As Point

If Not Session(“DrawPoints”) Is Nothing Then

DrawPoints = CType(Session(“DrawPoints”), Point())

If DrawPoints.Length = 1 Then

bmpGraphics.DrawEllipse(New Pen(Color.Blue, 3), _

DrawPoints(0).X, DrawPoints(0).Y, 3, 3)

Else

bmpGraphics.DrawLines(New Pen(Color.Blue), DrawPoints)

End If

End If

Session(“btnImage”) = bmp

btnImage.ImageUrl = Request.ServerVariables(“SCRIPT_NAME”) _

& “?ImageID=btnImage”

End Sub

Figure 11.9 shows the browser output after clicking various places on the
btnImage control. Notice the use of the DrawEllipse method to draw a dot on
the screen. The Graphics’ draw methods typically require a pen or brush. The

466 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 466

DrawEllipse requires a pen, so a new blue pen is created. To make sure that the
dot is visible, the pen’s width is set to 3. The height and width of the ellipse are
also set to 3. If the array contains at least two points, the DrawLines method is
executed. This method draws a line from point to point, using the specified pen.

Some items that could be added are a DropDownList for the line color, a pen
width setting, and a button to clear the array and start over.

Fonts
The .NET Framework provides support for working with fonts. This support
carries over to ASP.NET. This section explores some of the font classes, and
contains sample code for creating bitmaps containing text created on the fly.

FontFamilies

FontFamilies define a group of typefaces that have a distinct design, but may
have variations, such as size, and FontStyles, such as bold and italic. A typical
FontFamily is Arial, and another one is Courier. The FontFamilies class has a
GetFamilies method, which returns an array of the FontFamily objects sup-
ported by a given Graphics context.

Figure 11.9 The browser output when creating lines by clicking the btnImage control.

Working with GDI+ and Images 467

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 467

Font Metrics

When working with fonts, the font measurements are relative to the baseline,
which is an imaginary line that all characters sit on. Characters such as g, q, j,
and y drop below the baseline. The distance to the bottom of these characters
is called the descent. Characters such as a, e, o, and u rise above the baseline to
an imaginary line called the ascent. Uppercase characters, such as the M, N, S,
and O rise higher to another imaginary line. The distance from the ascent to
the top of the uppercase characters is called the leading distance. Figure 11.10
shows these font metrics.

Fonts

Before you can draw any text to a bitmap, you must create an instance of the
Font class. The font is created from one of the FontFamilies and has a size and
style.

Creating a Text Bitmap on the Fly
This example shows how to create a text bitmap on the fly and send it to the
browser. This process is useful when a complex graphical menu has been cre-
ated, and you need to write text on an existing bitmap, or supply a new bitmap
with text.

Another common use for this feature occurs when a Web site allows a new
account to be created, and the Web administrator wants to ensure that an
account can’t be programmatically created. Imagine the problems that a
hacker could cause by creating a program that adds millions of new users to
someone’s Web application. A unique ID can be generated and placed on a
bitmap image, and the user would be prompted to read the ID and type it into
a form for verification that the account is being created by a person. The
bitmap could even have random lines through the image, just to make it more
difficult for the would-be hacker.

This page in this example contains several DropDownList boxes that will be
populated by enumerating colors and FontFamilies. Figure 11.11 shows the
Web page containing the controls. The DropDownList boxes and the TextBox
have AutoPostBack turned on, which causes the bitmap to regenerate each
time a change is made.

Figure 11.10 The font metrics.

baseline
height

leading

ascent

descent

468 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 468

Figure 11.11 The Web page in Design mode.

The Page’s Load event method is similar to the previous example, except
that it also includes code to populate the DropDownList boxes.

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

If Not Request(“ImageID”) Is Nothing Then

If Not Session(Request(“ImageID”)) Is Nothing Then

Dim b As Bitmap

b = CType(Session(Request(“ImageID”)), Bitmap)

Response.Clear()

Response.ContentType = “image/jpeg”

b.Save(Response.OutputStream, ImageFormat.Jpeg)

Response.End()

Return

End If

End If

If Not Page.IsPostBack Then

LoadColors(drpForeground)

LoadColors(drpBackground)

LoadFamily(drpFontFamily)

LoadFontStyles(drpFontStyle)

LoadFontSizes(drpFontSize)

‘Set defaults.

TextBox1.Text = “Type some text into the text box.”

Dim i As ListItem

i = drpForeground.Items.FindByText(“Red”)

drpForeground.SelectedIndex = drpForeground.Items.IndexOf(i)

i = drpBackground.Items.FindByText(“Silver”)

drpBackground.SelectedIndex = drpBackground.Items.IndexOf(i)

i = drpFontFamily.Items.FindByText(“Arial”)

drpFontFamily.SelectedIndex = drpFontFamily.Items.IndexOf(i)

i = drpFontStyle.Items.FindByText(“Bold”)

Working with GDI+ and Images 469

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 469

drpFontStyle.SelectedIndex = drpFontStyle.Items.IndexOf(i)

i = drpFontSize.Items.FindByText(“24”)

drpFontSize.SelectedIndex = drpFontSize.Items.IndexOf(i)

End If

End Sub

The first part of this code delivers the bitmap to the browser. The second
part of the code populates the DropDownList boxes and then sets a default
value for each of them. Setting the default value is done by executing the Find-
ByText method, which returns a ListItem object containing the default item.
After that, the IndexOf method executes to retrieve the index of the ListItem
and assigns it to the SelectedIndex of the DropDownList.

Enumerating the Colors

To enumerate the list of colors, you can use the System.Enum class to execute
the GetNames method. This procedure returns an array of strings, which you
can use to populate the DropDownList:

Public Sub LoadColors(ByVal ddl As DropDownList)

Dim n As String

For Each n In System.Enum.GetNames(GetType(KnownColor))

ddl.Items.Add(n)

Next

End Sub

Enumerating the FontFamilies

To enumerate the list of FontFamilies, you can create a temporary bitmap with
the Graphics class. The FontFamily has a static method called GetFamilies,
which requires a valid Graphics object. This method returns an array of the
FontFamilies available when you are working with Bitmap objects. You enu-
merate the array and add the FontFamilies to the DropDownList as follows:

Public Sub LoadFamily(ByVal ddl As DropDownList)

Dim fFamily As FontFamily

Dim b As New Bitmap(1, 1)

Dim g As Graphics = Graphics.FromImage(b)

Dim arFamily() As FontFamily = FontFamily.GetFamilies(g)

For Each fFamily In arFamily

ddl.Items.Add(fFamily.Name)

Next

End Sub

470 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 470

Enumerating the FontStyles

Enumerating the FontStyles is similar to enumerating the colors as previously
described. The System.Enum class can be used to get the names of the items in
an enumeration.

Public Sub LoadFontStyles(ByVal ddl As DropDownList)

Dim n As String

For Each n In System.Enum.GetNames(GetType(FontStyle))

ddl.Items.Add(n)

Next

End Sub

Loading the Font Sizes

You populate the font size DropDownList by adding the numbers 6 –100 to the
DropDownList, as follows:

Public Sub LoadFontSizes(ByVal ddl As DropDownList)

Dim X As Integer

For X = 6 To 100

ddl.Items.Add(X.ToString())

Next

End Sub

Rendering the Text

Rendering the text involves parsing the data in the DropDownList boxes and
then using a temporary bitmap to measure the size of the text, creating the
final bitmap, based on the size of the text, and finally drawing the text on the
bitmap.

Private Sub Page_PreRender(_

ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles MyBase.PreRender

‘Initialize

Dim imgBitmap As New Bitmap(1, 1)

Dim fStyle As FontStyle

fStyle = System.Enum.Parse(GetType(FontStyle), _

drpFontStyle.SelectedItem.Text)

Dim fSize As Single

fSize = Single.Parse(drpFontSize.SelectedItem.Text)

Dim strFont As Font

Working with GDI+ and Images 471

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 471

strFont = New Font(drpFontFamily.SelectedItem.Text, fSize, fStyle)

Dim str As String = TextBox1.Text

Dim cBackground As Color

cBackground = Color.FromName(drpBackground.SelectedItem.Text)

Dim cForeground As Color

cForeground = Color.FromName(drpForeground.SelectedItem.Text)

‘Get the size of the text string.

If str = “” Then str = “No text defined.”

Dim g As Graphics = Graphics.FromImage(imgBitmap)

Dim strSize As Size

strSize = g.MeasureString(str, strFont).ToSize()

‘Create the bitmap.

imgBitmap = New Bitmap(strSize.Width, strSize.Height)

g = Graphics.FromImage(imgBitmap)

g.Clear(cBackground)

g.DrawString(str, strFont, New SolidBrush(cForeground), 0, 0)

Session(“imgBitmap”) = imgBitmap

img.ImageUrl = Request.ServerVariables(“SCRIPT_NAME”) & _

“?ImageID=imgBitmap”

End Sub

This code places the drawn bitmap into the imgBitmap Session variable,
which is available when the browser attempts to request the bitmap from this
page. Figure 11.12 shows the browser output with settings changed.

Figure 11.12 The browser output with setting changes.

472 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 472

Lab 11.1: Working with File and
Directory Objects

In the last chapter’s lab, you created a Web page that allowed users to
upload files to the server. You are concerned that someone will try to pro-
grammatically upload thousands of files to the server. To solve this prob-
lem, you have decided to implement a validation image scheme, where a
GUID is generated and placed into a bitmap, and the user must type the
GUID into a TextBox. Upon validation, the Upload controls will be dis-
played. After a file has been uploaded, the GUID is cleared to force a user
to type the GUID to upload a new file.

Hiding Existing Controls and Adding New Controls
In this section, you add a new page with the File Field control.

1. Start this lab by opening the OrderEntrySolution from Lab 10.1.

2. Right-click the OrderEntrySolution in the Solution Explorer, and
click Check Out. This checks out the complete solution.

3. Open the Web Form page called DocumentUpload.aspx that exists
in the Customer project.

4. To simplify the enabling and disabling of many controls, the Web
page has been changed to FlowLayout, and two HTML Grid panels
must be added to the Web page. One will be called pnlValidate, and
the other will be called pnlUpload. Be sure to right-click each of
these controls, and then click Run As A Server Control.

5. Add a Button called btnValidate, a TextBox called txtValidate, and
an Image called Img to the pnlValidate panel. Also add a Label con-
trol with instructions. Figure 11.13 Shows the Visual Studio .NET
designer screen.

6. Add Imports System.Drawing.Imaging to the top of the code-
behind page.

7. In the code-behind page, add code to the Page_Load event method
that will deliver a bitmap, if the Request object contains an ImageID
field. Also, add code to check for Not IsPostBack, txtValidate having
an empty string, or Session(“Validate”) being Nothing. If any of
these is true, a call is made to a new method called SetupValidate.
The added code should look like the following:
If Not Request(“ImageID”) Is Nothing Then

If Not Session(Request(“ImageID”)) Is Nothing Then

Dim b As Bitmap

b = CType(Session(Request(“ImageID”)), Bitmap)

Working with GDI+ and Images 473

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 473

Figure 11.13 The Visual Studio .NET Designer screen with the image upload page, and
the controls that are required.

Response.Clear()

Response.ContentType = “image/jpeg”

b.Save(Response.OutputStream, ImageFormat.Jpeg)

Response.End()

Return

End If

End If

If (Not IsPostBack) _

Or (txtValidate.Text = “”) _

Or (Session(“Validate”) Is Nothing) Then

SetupValidate()

End If

8. Add a new method called ServerValidate. The method hides the
pnlUpload and shows the pnlValidate. The method contains code to
create a globally unique ID (GUID), convert it to a string, and assign
the first eight characters to a string variable called guidValidate.
Add code to clear the txtValidate TextBox control.

9. In the ServerValidate code, add code to create a temporary bitmap
called imgBitmap, and use this bitmap to measure the size of guid-
Validate, using the Impact, 24-point font.

10. After the size has been calculated, create the bitmap and store it in
a Session variable called imgBitmap. Set the imageURL of the Img
control to request imageID=imgBitmap. Your code for the Setup-
Validate should look like the following:

474 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 474

Public Sub SetupValidate()

pnlUpload.Visible = False

pnlValidate.Visible = True

Dim guidValidate As String

guidValidate = Guid.NewGuid().ToString.Substring(0, 8)

Session(“Validate”) = guidValidate

txtValidate.Text = “”

‘Initialize

Dim imgBitmap As New Bitmap(1, 1)

Dim strFont As Font

strFont = New Font(“Impact”, 24, FontStyle.Regular)

‘Get the size of the text string.

Dim g As Graphics = Graphics.FromImage(imgBitmap)

Dim strSize As Size

strSize = g.MeasureString(guidValidate, strFont).ToSize()

‘Create the bitmap.

imgBitmap = New Bitmap(strSize.Width, strSize.Height)

g = Graphics.FromImage(imgBitmap)

g.Clear(Color.Silver)

g.DrawString(guidValidate, strFont, _

New SolidBrush(Color.Blue), _

0, 0)

Session(“imgBitmap”) = imgBitmap

Img.ImageUrl = Request.ServerVariables(“SCRIPT_NAME”) & _

“?ImageID=imgBitmap”

End Sub

11. Add code to the btnValidate’s click event method. This code verifies
that the GUID that was entered is the same as the GUID that was
saved to the Session variable. If they are equal, pnlUpload is dis-
played and pnlValidate is hidden. Your code should look like the
following:
Private Sub btnValidate_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnValidate.Click

Dim guidValidate As String

guidValidate = Session(“Validate”)

If (String.Compare(txtValidate.Text, _

guidValidate, True) = 0) Then

pnlUpload.Visible = True

pnlValidate.Visible = False

Else

SetupValidate()

End If

End Sub

12. At the end of the btnUpload click event method, add a call to the
SetupValidate method to force the user to type in a new validation
code for each file that is uploaded.

Working with GDI+ and Images 475

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 475

Test File Uploading
The File Field control can be tested by setting DocumentUpload.aspx as
the start page and running the application.

1. Right-click the Customer project in the Solution Explorer. Click Set
As StartUp Project.

2. Right-click the DocumentUpload.aspx page. Click Set As Start Page.

3. Run the application. The browser should prompt you to enter the
validation code, as shown in Figure 11.14.

4. Upload some text and picture files.

5. After stopping the program, check the folder to verify that the files
were saved properly.

Figure 11.14 The validation screen. After entering the validation code, the upload panel
will be displayed.

Summary

■■ When the browser sees an image tag, the browser knows that the con-
tent isn’t included in the Web page. The browser must get the image
that is at the URL of the image source.

■■ The pen is an object that is used to draw lines and curves.

■■ A brush is used to fill regions.

■■ The Graphics class is the class that provides all the methods for draw-
ing on a display device. The Graphics object is related to the handle
of a device context (HDC) that GDI used in the past, except the GDI+
Graphics object encapsulate this low-level functionality.

■■ GDI+ allows images to be drawn on the fly.

476 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 476

Review Questions

1. What are two ways of displaying a thumbnail image?

2. If a bitmap is stored in a database as a Windows Paintbrush (.bmp) file, how can it be
retrieved and sent to a browser that only supports .gif and .jpg files?

3. What’s the difference between the Point and the PointF classes?

4. What do the letters ARGB mean?

5. What is the Graphics class used for?

6. How can a bitmap be created that is the same size as a string of text that is to be writ-
ten using Arial Black, 36-point font?

Working with GDI+ and Images 477

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 477

Answers to Review Questions

1. Use the GetThumbNail method, or use the constructor of the Bitmap class.

2. Use the Save method of the Bitmap class to save to the Response.OutputStream as a
Imaging.ImageFormat.Jpeg image type.

3. The Point class uses integers, whereas the PointF class uses floats.

4. Alpha, Red, Green, Blue.

5. The Graphics class contains a handle to the device context and provides methods for
drawing.

6. Use the MeasureString method of the Graphics class.

478 Chapter 11

m 430234 Ch11.qxd 7/1/03 9:04 AM Page 478

479

One of the challenges involved with Web development is the sharing of data
amongst many Web pages to make a collection of Web pages into a seamless
Web application. Sharing data means sharing state. For example, on the cus-
tomer page, an order is selected, which causes a new page to be displayed. The
new page still knows who the customer is, and also knows which order is to be
displayed. This is the sharing of state.

Being able to treat a group of Web pages like an application also involves
being able to access application- and session-level events. There may be objects
that need to be initialized when the application starts, or when a session starts.

Even from a security perspective, it makes sense to log on to an application,
rather than logging on to every page. Security is covered in detail in the next
chapter, but the need for security and defining the scope of a login are primary
factors in justifying the need to treat a collection of Web pages as a Web appli-
cation.

It seems as though it should not be a big deal to share state. The Windows
application on a user’s desktop can share state seamlessly as many Windows
forms are opened with an application. The problem is that there is a finite
amount of resources that are available on a computer. Where the single-user
machine needs to be concerned with only the currently logged on person, the

ASP.NET Applications

C H A P T E R

12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 479

Web server may have thousands of users logged on. If the server is holding
state data for thousands of users, this severely affects the performance and
scalability of the server. From the Web server’s perspective, if the Web server
could deliver a page to the user and simply close the connection and release all
resources, the Web server would use only a small amount of resources. From
the developer’s perspective, if the Web server could simply remember all of
the global variables on every page, it would take the developer less time to cre-
ate a Web application.

This chapter explores several aspects of ASP.NET application programming.
The first section covers the global.asax file and the HttpApplication class.
Next, the chapter explores HTTP handlers and modules. After that, state man-
agement within an ASP.NET application is explored in detail. This chapter also
covers several other items that come in handy when connecting pages
together.

Classroom Q & A
Q: On my last project, we built a shopping cart application and used

session variables to share data between Web pages, because ses-
sion variables are so easy to use. We deployed the application on
a Web farm, and found that the application did not work because
the Web servers didn’t know about each other’s sessions. This
turned into a major rewrite of the application. Does ASP.NET do
anything to solve this problem?

A: Yes. Lots of developers had the same problem, especially since
session variables are so easy to use. ASP.NET corrects the problem
that you experienced, by providing a session server or SQL Server
to manage session state. We explore this is more detail in this
chapter.

Q: Is there a way to store data during a request? Our company likes
to use Server.Transfer, but there doesn’t seem to be a way of
retrieving the data that was posted to the original page.

A: There sure is. You can expose data from the original page by using
public fields or properties. Also, ASP.NET provides a collection
called Context.Items, which is scoped to the page request.

Q: Is there a way to cache data that is normally retrieved from the
database and very rarely updated?

A: Absolutely. You can retrieve the data from the database and store
a DataTable or DataSet in the Cache. This improves performance
significantly.

480 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 480

ASP.NET Applications

An ASP.NET application is a collection of pages that are grouped together
under a common virtual directory structure. This means that all of the Web
pages that reside in a single virtual directory are part of the same Web appli-
cation. Global variables are shared among these pages.

Chapter 2, “Solutions, Projects, and the Visual Studio .NET IDE,” explained
how to create a virtual directory. When a new Visual Studio .NET Web appli-
cation is begun, a virtual directory is created for the group of pages in the
Visual Studio .NET Web application.

The Web application does not begin immediately when the Web server
starts. Instead, it begins when the first person requests a code page from the
site. After the application starts, a session begins for that person. The Applica-
tion continues to run until the application is directly shut down via IIS or until
the server is shut down.

A virtual directory that contains ASP and ASP.NET pages does not share the
same application scope, because ASP and ASP.NET run in a different context.
This can be a problem when migrating from ASP to ASP.NET.

The Global.asax File
The Global.asax file is an optional file into which the developer may place
application- and session-level event handler code. The Global.asax file is
sometimes called the application file.

The Global.asax file must be located in the root of the Web Application. The
Global.asax file can coexist with a Global.asa file, since ASP and ASP.NET are
very much isolated.

The Global.asax file is cached in memory, but is dependent on the time-
stamp of the file. If a change is made to the Gobal.asax file, the Web application
shuts down, and the next person that requests a Web page causes the Web
application to restart.

In Visual Studio .NET, the Global.asax file also contains a code-behind page.
The code-behind page contains several methods that can be used in an
ASP.NET application. Traditional ASP programmers recognize the Applica-
tion_Start and Application_End methods, as well as the Session_Start and Ses-
sion_End methods. The following sections explain how these methods operate.

Application_Start

The Application_Start method is invoked only once, when the first request is
made for a page that contains server-side code. This could be used to initialize
variables or load global information from a data store.

ASP.NET Applications 481

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 481

Application_End

The Application_End method executes once, when the Web is being shut
down. This can be used to log the fact that the application is ending and to
clean up any shared resources.

Session_Start

The Session_Start method executes when a user starts a new session at the Web
site. A session is started when the user requests a page that contains server-
side code. With Internet Explorer, if the user clicks File, New, Window, a new
browser window opens, but this window is in the same ASP.NET session. Any
new browser windows that are spawned from a window automatically join
the existing window’s session.

Session_End

The Session_End method executes when the user’s session is terminated. This
typically happens when the session times out. The default timeout is 20 min-
utes, and this is set in Internet Information Server. The timeout can also be
overridden from within code by setting the Session.Timeout to the number of
minutes that is desired.

The HttpApplication Class
The Global.asax.vb code-behind page contains a class called Global, which
inherits from the HttpApplication class. During the lifetime of a Web applica-
tion, there could be many HttpApplication instances, because ASP.NET allo-
cates a pool of these instances when the Web application starts. ASP.NET
assigns an HttpApplication instance to each Web page request that is received.
An HttpApplication instance can only handle one request and is responsible
for managing the request from start to finish.

The HttpApplication class contains an Init method and a Disposed method.
The Init and Dispose methods execute for each instance of the HttpApplication,
so they are very different from the Application_Start and Application_End
event methods that are available in the Global.asax.vb code-behind page. These
methods can be overridden in the Global.asax.vb code-behind file by providing
the following code:

Public Overrides Sub Init()

‘Cool code here...

End Sub

Public Overrides Sub Disposed()

‘Cool code here...

End Sub

482 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 482

During the lifetime of a request, the HttpApplication raises the following
events. These events are presented in the order that they are raised.

BeginRequest. This event is raised as the first event when an ASP.NET
request arrives at the server.

AuthenticateRequest. This event is raised when the security module has
established that the identity of the current user is valid. The user’s cre-
dentials have been validated just prior to this event. More details are
covered in Chapter 13, “Site Security.”

AuthorizeRequest. This event is raised when the security module has
verified that a user is authorized to access the resources. More details are
covered in Chapter 13, “Site Security.”

ResolveRequestCache. This event is raised when ASP.NET has com-
pleted the authorization. This informs the caching modules to serve the
request from the cache, thus bypassing the execution of the handler. This
improves the performance of the Web site, and this event can be used to
judge if the contents are used from the cache or not.

AcquireRequestState. This event is raised when ASP.NET acquires the
current state, such as the session state, that is associated with the current
request.

PreRequestHandlerExecute. This event is raised just before ASP.NET
begins executing a handler such as a page or a Web service. The session
state is available in this event method.

PreSendRequestHeaders. This event is raised just before ASP.NET sends
HTTP Headers to the client.

PreSendRequestContent. This event is raised just before ASP.NET sends
content to the client.

Page Processing – Possible Error. Page processing isn’t an event. This is
where the normal page processing by the ASP.NET handler takes place.
If an error occurs, an Error event is raised.

PostRequestHandlerExecute. This event is raised when the ASP.NET
handler finishes execution.

ReleaseRequestState. This event is raised after ASP.NET finishes execut-
ing all request handlers. This event causes state modules to save the cur-
rent state data.

UpdateRequestCache. This event is raised when ASP.NET finishes exe-
cuting a handler in order to let caching modules store responses that are
used to serve subsequent requests from the cache.

EndRequest. This event is raised as the last event when ASP.NET
responds to a request.

ASP.NET Applications 483

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 483

The HttpContext Class
The HttpContext class is a wrapper class that provides a simple object model
of the actual request and response. The HttpContext class contains most of the
properties that a developer would typically need to access the request and
response as follows:

ApplicationInstance. The HttpApplication instance that is processing the
current request.

Handler. The Handler that is processing the request.

Request. The HTTP request message from the browser.

Response. The HTTP response message to the browser.

Cache. Application scoped cache state.

Application. Application scoped, cross-request state data.

Session. Session scoped, cross-request state data.

Items. Request scoped state data.

Server. Contains many utility functions.

User. The current user, based on authentication.

HttpContext is available on the processing thread by using the static prop-
erty called HttpContext.Current.

Pipeline Processing of the Request
When a user requests a page from a Web server, Internet Information Server
(IIS) receives the request, and ASPNET_ISAPI.DLL receives the request from
the IIS ISAPI Extension Manager. ASPNET_ISAPI.DLL passes the request,
through a named pipe, to the ASP.NET Worker Process, which is called
ASPNET_WP.EXE. This process is diagrammed in Figure 12.1.

Figure 12.1 ASPNET_ISAPI.DLL is responsible for forwarding a request to ASPNET_WP.EXE,
which provides the HttpRuntime Pipeline.

HTTP Request
ISAPI

Extension
Manager

ASPNET_ISAPI.DLL
ISAPI extension

for ASP.NET

INETINFO.EXE
Internet Information Server (IIS)

ASP.NET
Http Pipeline

ASPNET_WP.EXE
ASP.NET Worker Process

*.ashx
*.aspx
*.asmx
*.soap

Named
Pipe

484 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 484

The ASP.NET Worker Process processes the request by using HttpRuntime,
which is the entry point to the HttpPipeline. HttpRuntime uses HttpWorker-
Request, which is the low-level request, to create an HttpContext object, as
shown in Figure 12.2.

HttpRuntime retrieves an HttpApplication instance from HttpApplication-
Factory. HttpApplicationFactory is responsible for maintaining the pool of
HttpApplication instances for the current virtual directory.

HttpApplication processes the request and response by using zero-to-many
modules and a single handler.

The modules are used to hook into the request in a prehandler and
posthandler fashion. The module can intercept and modify the request and
response.

HttpRuntime retrieves an instance of the handler from HttpHandlerFactory.
HttpHandlerFactory is responsible for maintaining a pool of handlers. The
handler performs the actual processing of the request and generates the
response code.

Figure 12.2 The HttpPipeline showing the HttpRuntime entry point, which creates the
HttpContext. The HttpContext is available through the entire pipeline.

HttpApplication

Application Instance

HttpContext

Handler

Request

Response

Cache

Application

Session

Items

Server

User

Module1

Module n

HandlerFactory

Handler

HttpApplicationFactory

HttpRuntime

ASP.NET Applications 485

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 485

The HTTP Handler

The HTTP handler is responsible for processing the request and generating the
response. Although most developers can create many Web sites without ever
creating a handler, the key benefit of developing a handler is its reusability.
The handler can be snapped into other Web sites rather easily.

Built-in HTTP Handlers
Many Web sites are set up to allow actions against some files, but not other
files. For example, it’s usually not desirable to allow someone to download the
Web.config file, which contains the settings for the Web site, possibly includ-
ing database connection information and so on.

ASP.NET includes the following handlers that can be used to eliminate the
ability to download certain files, based on their extension.

■■ HttpForbiddenHandler

■■ HttpMethodNotAllowedHandler

■■ HttpNotFoundHandler

■■ HttpNotImplementedHandler

Creating an HTTP Handler
Handlers can be created very easily. In this section, a new handler is created to
respond to any request for a file with the .abc extension.

To create a handler, a new class library project (.dll project) must be created
in Visual Studio .NET. The new project must have a reference to the Sys-
tem.Web.dll file.

An HTTP handler class can be created by creating a class that implements
the IHttpHandler interface. The IHttpHandler interface exposes a method
called ProcessRequest. This method receives an HttpContext that can be used
to access the request and response. The method must be implemented in the
handler class.

The IHttpHandler interface also exposes a read-only property called
IsReusable. This property must be implemented to return true if the class is
poolable, or false if not.

The following code shows a simple implementation of the IHttpHandler
interface:

Imports System.Web

Public Class HandlerTestClass

Implements IHttpHandler

Public Overridable Sub ProcessRequest(_

486 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 486

ByVal context As HttpContext) _

Implements IHttpHandler.ProcessRequest

With context

.Response.Write(“<h1>This is a handler test.</h1>
”)

.Response.Write(“<h2>Requested file: “)

.Response.Write(.Request.ServerVariables(“PATH_INFO”))

.Response.Write(“</h2>
”)

End With

End Sub

Public Overridable ReadOnly Property IsReusable() _

As Boolean _

Implements IHttpHandler.IsReusable

Get

Return True

End Get

End Property

End Class

The class definition includes the Implement IhttpHandler, and the method
and property to implement the appropriate IHttpHandler members. Since
ProcessRequest receives a valid HttpContext, the request and response are
available. This example is being used to display the path and filename that
were requested. An interesting note is that the file does not need to exist,
because this handler is doing all the work.

The IsReusable property simply returns true, since this class is not using or
holding any resources that would require it to return false.

This project can be compiled, and the .dll can be used in a Web application.

Installing the HTTP Handler
Installing the HTTP Handler involves setting a reference to the Handler’s .dll,
adding an httpHandlers configuration in the Web.config file, and adding an
Application Mapping to IIS.

Adding the reference to the Handler’s .dll file can be done by right-clicking
the References folder in the project, then clicking Add Reference. Browse to the
folder containing the .dll file, and select it.

To add the httpHandlers configuration to the Web.config file, the Web.con-
fig file is opened, and the httpHandlers section is added into the
<system.web> XML element as follows:

<configuration>

<system.web>

<httpHandlers>

<add verb=”*” path=”*.abc”

type=”HandlerTest.HandlerTestClass, HandlerTest” />

</httpHandlers>

</system.web>

</configuration>

ASP.NET Applications 487

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 487

Figure 12.3 The Internet Information Server Web application settings screen.

This handler is being set up to handle any file with an .abc extension. The
verb can be changed to handle GET, POST, HEAD, TRACE, or any combina-
tion of verbs. The path can have an explicit filename, or it can use wildcard
characters. The type attribute of the add element must be the fully qualified
path to the handler class. The first item in the type is the namespace.name of
the class. The second item is the friendly name of the assembly, which is the
name of the assembly without the extension.

To add the Application Mapping to IIS, the Internet Service Manager must
be opened, and then the properties of the Web application need to be selected
(see Figure 12.3).

The execute permissions of the Web application should be set to Scripts. In
the Configuration section, the Mappings tab (see Figure 12.4) shows all of the
existing mappings of file extensions to executables.

Figure 12.4 The existing application mappings are shown. An additional mapping needs
to be added for the .abc extension.

488 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 488

Figure 12.5 The application mapping is added to IIS.

Clicking the Add button allows a new application mapping to be added (see
Figure 12.5). The executable is set to the following:

C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\aspnet_isapi.dll

The extension is set to .abc so that any request for a file with an .abc exten-
sion is forwarded to the aspnet_isapi.dll filter. aspnet_isapi.net locates the
handler definition in the Web.config file and executes the ProcessRequest
method.

In IIS 5.1 on Windows XP, a bug exists whereby the OK button on the
Add/Edit Application Extension Mapping dialog stays disabled even after
the executable and extension for the mapping have been selected. The
workaround for this bug is to click on the executable text box after using
the Bowse button. This fully expands the path and enables the OK button
so the mapping can be saved.

The HTTP Module

HTTP modules extend the middle of the HTTP pipeline, and allow the request
and response messages to be examined and modified as they pass between the
browser and the HTTP handler. This HTTP module is another entity that most
developers never need to create, but a key benefit of developing a module is its
reusability. The module, like the handler, can be snapped into other Web sites
rather easily.

HTTP modules are notified of the request and response messages’ progress
through events.

Creating an HTTP Module
In this section, a new module is created to respond to all requests within the
Web site.

ASP.NET Applications 489

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 489

To create a module, a new class library project (.dll project) must be created
in Visual Studio .NET. The new project must have a reference to the Sys-
tem.Web.dll file.

An HTTP module class can be created by creating a class that implements
the IHttpModule interface. The IHttpModule interface exposes two methods
called Init and Dispose. This Init method is used to add event handlers, which
can be thought of as telling the module to listen for certain events to take place.
The events that are available are the HttpApplication events that have been
identified earlier in this chapter.

Imports System.Web

Public Class ModuleTestClass

Implements IHttpModule

Public Sub Init(ByVal httpApp As HttpApplication) _

Implements IHttpModule.Init

AddHandler httpApp.BeginRequest, AddressOf Me.OnBeginRequest

AddHandler httpApp.EndRequest, AddressOf Me.OnEndRequest

End Sub

Public Sub Dispose() Implements IHttpModule.Dispose

End Sub

Public Sub OnBeginRequest(ByVal o As Object, ByVal e As EventArgs)

Dim httpApp As HttpApplication = CType(o, HttpApplication)

Dim ctx As HttpContext = HttpContext.Current

With ctx

.Response.Write(“<h1>ModuleTest Begin Request</h1>
”)

End With

End Sub

Public Sub OnEndRequest(ByVal o As Object, ByVal e As EventArgs)

Dim httpApp As HttpApplication = CType(o, HttpApplication)

Dim ctx As HttpContext = HttpContext.Current

With ctx

.Response.Write(“<h1>ModuleTest End Request</h1>
”)

End With

End Sub

End Class

The code for this module is set up to listen for the BeginRequest and
EndRequest events, and output a small message. The httpApp is retrieved
from the object parameter, primarily to show how this can be done. The Http-
Context is available from the HttpContext.Current property, and is used in
order to write data back to the browser.

Installing the HTTP Module
Installing the HTTP Module involves setting a reference to the Module’s .dll
and adding an httpModules configuration in the Web.config file.

490 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 490

Figure 12.6 The browser output when requesting an .abc page.

Adding the reference to the Handler’s .dll file can be done by right-clicking
the References folder in the project, then clicking Add Reference. Browse to the
folder containing the .dll file, and select it.

The Web.config file is opened, and the httpModules section is added into the
<system.web> XML element as follows:

<configuration>

<system.web>

<httpModules>

<add name=”ModuleTestClass”

type=”HandlerTest.ModuleTestClass, HandlerTest” />

</httpModules >

</system.web>

</configuration>

In this example, the HTTP module was created in the same project (Han-
dlerTest) as the HTTP handler that was previously described. Figure 12.6
shows the output when testing the HTTP module by requesting an .abc page.

Note that this module works with every request to the Web site, not just the
request for the Web page that is shown.

Maintaining State

There are several ways of maintaining state in a Web application. Which
method to use depends on the data that is being shared and the scope of the
sharing. This section explores some of the methods.

ASP.NET Applications 491

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 491

Application State Data
Application variables were available with traditional ASP and are still avail-
able using ASP.NET. The HttpContext exposes the Application property,
which is an instance of the HttpApplicationState class. The HttpApplication-
State exposes a dictionary of key-value pairs. Only one instance of the HttpAp-
plication State is created for a Web application.

Probably the most common method of accessing the HttpApplicationState
is through the Application property of the Page. This allows the user to simply
type the following:

Application(“Test”)=”This is a test.”

This syntax is the same as that used in previous versions of ASP. The impact
of using global variables such as these should be considered before using
Application variables. These variables have an application scope, which
means that these variables can be accessed from any thread, handler, module,
or page by any user. This can be a problem if users are reading and changing
data simultaneously.

Application variables are not destroyed until the application ends or until
the code replaces or deletes the variable. It’s not a good idea to assign large,
seldom-used datasets to Application variables. Caching this data may be a bet-
ter solution.

When accessing Application variables, the HttpApplicationState class pro-
vides the Lock and Unlock methods to ensure synchronized access to the data.
Although locks can be used to protect the integrity of global resources, locks
have a negative impact on the performance and scalability of an application. In
general, if an Application variable is to be used, it should be locked for the least
amount of time that is possible. If Unlock is not explicitly called, ASP.NET auto-
matically removes the lock when a request is completed, when the request times
out, or if an unhandled error occurs that causes the request processing to fail.

Application state is not shared across servers in a Web farm, where a Web
application is hosted by many Web servers. Application state is also not shared
across a Web garden, where a Web application is hosted by many processors
on a multiple-processor machine. An example of using an Application variable
is as follows:

Application.Lock()

Application(“ActiveSessions”) = _

CType(Application(“ActiveSessions “), Integer) + 1

Application.UnLock()

Notice that when the value is retrieved from an Application variable, the
value needs to be cast to the proper data type using the CType function.

492 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 492

Session State Data
Session variables were also available with traditional ASP and are still
available using ASP.NET. Session variables store data that needs to be shared
across requests to the server. This data might be a user’s shopping cart, the ID
of the current user, or even the user’s preferences. The HttpContext exposes
the Session property, which is an instance of the HttpSessionState class. The
HttpSessionState exposes a dictionary of key-value pairs. There is an instance
of the HttpSessionState for each user who has an active session within the Web
application.

A common method of accessing the HttpSessionState is through the Session
property of the Page. This allows the user to simply type the following:

Session(“Test”)=”This is a test.”

This syntax is the same as was used in previous versions of ASP. Retrieving
the session variable is a bit different though. The session variable always
returns a data type of object, so the following code can be used to retrieve the
data that was stored in the previous example.

Dim str as string

str = Ctype(Session(“Test”),String)

A session has a 120-bit SessionID assigned, which contains characters that
can be placed into a URL, if necessary. The SessionID also has uniqueness to
ensure that two sessions do not collide. To prevent malicious attacks, the Ses-
sionID is generated with a degree of randomness. This keeps a would-be
hacker from retrieving a SessionID and simply adding or subtracting one to
get someone else’s SessionID.

The SessionID is typically placed on the user’s machine in the form of a
cookie. It is also possible to configure an ASP.NET Web application to place the
SessionID in the URL, which works with browsers that don’t support cookies.

Session variables have always been a compelling choice because of their ease
of use. The problem is that the previous version of ASP did not support sessions
across a Web farm or Web garden. As a result, many developers have suffered
the consequences of choosing to use session variables when a single-server Web
application required additional servers to accommodate the user load.

With ASP.NET, the session infrastructure has been changed significantly.
The developer can start with maintaining session data in memory, and can
simply change the configuration as needed to accommodate the demands of
the Web site.

The configuration for session management is stored in the Web.config file
within the Web application. The following section is the default configuration
for session management.

ASP.NET Applications 493

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 493

<sessionState

mode=”InProc”

stateConnectionString=”tcpip=127.0.0.1:42424”

sqlConnectionString=”data source=127.0.0.1;user id=sa;password=”

cookieless=”false”

timeout=”20”

/>

The mode attribute can be set to either InProc, StateServer, SQLServer, or
none. The InProc setting is the same as traditional session state management,
where the session data is stored in the same process as the Web application and
does not support Web farms and gardens. With this mode, if the Web service
needs to be reset (iisreset), all session data is destroyed. The number one rea-
son to use this option is performance.

The StateServer option provides compatibility with Web farms and gardens
by using a common server to manage session information for all servers that
host the Web application. This can be done by starting the ASP.NET State
Service on a machine and pointing all machines to this machine. To start the
service, use either of the following commands from the command prompt:

net start aspnet_state

net start “asp.net state service”

The State Service was installed as part of the .NET Framework SDK. If this
service is used, the service should also be configured to start up automatically
when the server is started. This can be done through Control Panel, Services.

The Web.config file needs to be changed for the StateServer option to oper-
ate. The mode needs to be changed to StateServer, the stateConnectionString
needs to be configured to be the same for all machines that share session state
as follows:

<sessionState

mode=”StateServer”

stateConnectionString=”tcpip=MainServer:42424”

sqlConnectionString=”data source=127.0.0.1;user id=sa;password=”

cookieless=”false”

timeout=”20”

/>

The StateServer option is compatible with Web farms and gardens, but is
also a good choice for single server installations, where it may be necessary to
reset IIS and it’s important not to lose session state data. Be aware that the ses-
sion data is still being stored in memory, but not in the Web application’s
process.

The SQLServer option is very similar to the StateServer option, except the ses-
sion data is sent to a SQL Server. This option is compatible with Web farms and
gardens, but is not as fast as the other options. The mode is set to SQLServer, and

494 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 494

the sqlConnectionString must be set to a machine that has SQL Server installed.
The following is a sample of the Web.config settings:

<sessionState

mode=”SQLServer”

stateConnectionString=”tcpip=127.0.0.1:42424”

sqlConnectionString=”data source=MainServer;user id=sa;password=”

cookieless=”false”

timeout=”20”

/>

In order to use the SQLServer option, the SQL Server must be set up by run-
ning a SQL script called InstallSqlState.sql, which is in the following location:

%SystemRoot%\Microsoft.NET\Framework\v1.0.3705

The SQL script can be run from the SQL Server Query Analyzer or from the
osql.exe command line tool. This script creates a new database with several
stored procedures, and a couple tables in tempdb, which is a high-performance
database that is not persistant.

Another option that is available is the cookieless option. By setting cookie-
less to true, the SessionID is automatically embedded into the URL as follows:

http://localhost/ch12Web/(41udol45kjgvrlugwgjnkf55)/WebForm1.aspx

The use of this option requires that relative links be used throughout. Care
must be used to avoid losing session data due to using explicit paths.

Session variables are not destroyed until the session ends or until the code
replaces or deletes the variable, or until the Session.Abandon method has been
executed in the code. Because each user has an isolated session, each user may
have a copy of a session variable that contains a different value. For example,
each user may have a session variable called UserName, which contains the
current user’s name. It’s also not a good idea to assign large, seldom-used
datasets to session variables, because there could be thousands of copies of
this data on the server, depending on the quantity of active sessions that the
server currently has. Caching is still the better solution.

Request State Data
Request variables store data that needs to be shared between pages and classes
during a single request to the server. This data might be a user’s selected item
to be added to the shopping cart, or the ID of the current user. HttpContext
exposes the Items property, which is a Dictionary Object, containing key-value
pairs that are available during a request. There is an instance of the Items prop-
erty for each request to the server. As the request is being processed through
the HTTP runtime pipeline, Context.Items is available and shareable.

ASP.NET Applications 495

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 495

A common method of accessing the Items property is through the Context
property of the Page. This allows the user to simply type the following:

Context.Items(“Test”)=”This is a test.”

The Items property always returns a data type of object, so the following
code can be used to retrieve the data that was stored in the previous example.

Dim str as string

str = Ctype(Context.Items(“Test”),String)

Cache
There are many cases where it’s desirable to share data globally, but if the data
changes, there needs to be a method of updating the global data. In addition,
if the system needs more memory, it may be desirable to allow the system to
reclaim the resources that are being used by seldom-used global data. Caching
is the answer to these problems.

The cache has an application scope, like application variables. Although
concurrency is still an issue, the cache has built-in locking. Items that are
cached can be expired, which means that a check always needs to be done to
verify that the item is still cached, prior to using the item.

Cache Dependency

An item in the Cache can be expired by setting a dependency on the timestamp
of a file. For example, an XML file on a Web site may contain the settings for
the Web site’s menu system, as shown in Figure 12.7. The contents of this file
are shared among all site users. Instead of loading the file everytime someone
hits the site, the file can be cached, with a dependency set to the XML file.

The XML file is called WebMenu.xml and contains the following data:

<?xml version=”1.0” encoding=”utf-8” ?>

<mainmenu>

<menuitem displayname=”Home” url=”default.aspx” />

<menuitem displayname=”About” url=”about.aspx” />

</mainmenu>

In this example, the HTML contains a DataList to display menu items with
links to the selected page.

<form id=”Form1” method=”post” runat=”server”>

<asp:DataList id=”DataList1”

runat=”server”

RepeatDirection=”Horizontal”>

<ItemTemplate>

496 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 496

Figure 12.7 The DataList is populated from an XML file containing the settings.

<a href=’<%#Container.DataItem(“url”)%>’>

<%#Container.DataItem(“displayname”)%>

</ItemTemplate>

</asp:DataList>

</form>

The code to display the menu is in the Page_Load method, but the real work
is done in the MenuSettings property as follows:

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

DataList1.DataSource = MenuSettings

DataList1.DataMember = “menuitem”

DataBind()

End Sub

Public ReadOnly Property MenuSettings() As DataSet

Get

Dim ds As DataSet

If Cache(“MenuSettings”) Is Nothing Then

‘Load the DataSet.

ds = New DataSet()

ds.ReadXml(Server.MapPath(“WebMenu.xml”))

‘Set up file dependency

Dim cDepend As Caching.CacheDependency

cDepend = New Caching.CacheDependency(_

Server.MapPath(“WebMenu.xml”))

‘Insert to cache

ASP.NET Applications 497

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 497

Cache.Insert(“MenuSettings”, ds, cDepend)

Else

ds = CType(Cache(“MenuSettings”), DataSet)

End If

Return ds

End Get

End Property

The MenuSettings are exposed as a property, but it is dependent on the Web-
Menu.xml file. Any change to the file causes the cache to be invalidated, which
causes the file to be reread the next time the property is read. Figure 12.8 shows
the browser after a menu item has been added to the file.

Cache dependencies can also be set up based on other cache keys. For exam-
ple, if a Cache object called NextMenu is dependent on the MenuSettings
Cache object, a dependency can be set up as follows:

‘Insert to cache (from previous example)

Cache.Insert(“MenuSettings”, ds, cDepend)

‘Add dependent menu (added dependency)

Dim obj As New Object()

Dim oDepend As Caching.CacheDependency

oDepend = New Caching.CacheDependency(_

Nothing, New String() {“MenuSettings”})

Cache.Insert(“NextMenu”, obj, oDepend)

Notice that the CacheDependency class can be based on a file, an array of
files, or an array of cache keys, or any combination of these. In this example, a
file dependency was not desirable, because it is more desirable to simply allow
the MenuSettings to control its own dependencies independently.

Figure 12.8 The browser output after a menu item has been added to the file.

498 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 498

Cache Timeout

An item in the cache can be expired by setting an absolute expiration date, a
sliding date, or a priority. The absolute expiration date allows the expiration to
take place at a specified date and time. The sliding expiration allows a time
span to be specified from the last time that the object was accessed.

Cache.Insert(“MenuSettings”, ds, cDepend, _

DateTime.MaxValue, _

New TimeSpan(0, 2, 0))

In this example, a dependency still exists on the file, but a sliding window of
2 minutes has also been added to have the cache automatically expire after 2
minutes of not accessing the menu from the cache. If the absolute expiration is
not required, DateTime.MaxValue is supplied.

Static Variables
In addition to Application variables and caching, static variables can be cre-
ated which essentially have an application scope. A static variable is created
within a class, and has the following syntax:

Public Shared ds As DataSet

The use of the Shared keyword identifies ds as being a static variable. Static
variables can be accessed without creating an instance of the class that the vari-
able was defined in. If ds was in a class called Settings, ds could be accessed as
follows:

Settings.ds = new DataSet()

Another method of creating static variables is to add a module file to the
project. A module automatically exposes all variables as shared, without
requiring the Shared keyword. In addition, access to the variable doesn’t
require the module name unless there is a potential name conflict.

Web Configuration File

The Web configuration file, called Web.config, contains many of the Web site
settings that can be changed without requiring a recompiling of the Web appli-
cation. This file is read and cached when the Web application starts. The
cached file has a dependency on the File timestamp, which force the file to be
reread after the file has been changed.

ASP.NET Applications 499

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 499

Figure 12.9 The Web configuration file hierarchy.

The Web configuration settings are organized in a hierarchical fashion, as
shown in Figure 12.9. The most global setting file is the machine.config file.
The settings in the most local folder typically override the parent and global
settings, but this can be different, based on the actual configuration setting that
is being accessed. Some settings are only allowed in specific locations. For
example, a subdirectory of the Web site might contain security information,
but it cannot contain handler and module configuration settings.

This chapter explores some of the Web.config file settings. Other Web con-
figuration settings are covered in other areas of this book.

Error Handling

The global.asax.vb code-behind page contains an Application_Error event
method, which is called when any unhandled Exception occurs. This is can be
used to log any errors that have occurred and possibly transfer a common
error page as follows:

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)

Dim evlog As New EventLog(“Application”)

evlog.Source = “Chapter12”

Dim message As String

message = String.Format(_

“Exception:{1}{0}Message:{0}{2}{0}{0}Stack Trace:{0}{3}”, _

vbCrLf, Server.GetLastError().GetType(), _

Server.GetLastError().Message, _

Server.GetLastError().StackTrace)

evlog.WriteEntry(message, EventLogEntryType.Error)

evlog.Close()

End Sub

Error handling can also be done at the page level using the following routine
in the page itself:

Global Settings
%SystemRoot%\Microsoft.NET\Framework\version\Config\machine.config

Root Web Site
C:\inetpub\wwwroot\Web.config

http://www.mySite.com

Web Site
D:\Development\HRSystem\HRSystemSolution\Employee\Web.config

http:\\www.mySite.com/Employee

Web Site Folder
D:\Development\HRSystem\HRSystemSolution\Employee\Evals\Web.config

http://www.mySite.com/Employee/Evals

500 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 500

Private Sub Page_Error(_

ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Error

‘Page error handling here

End Sub

The Web.config file contains settings for configuring the custom error han-
dling using the customErrors XML tag. This contains options for setting a
default redirect page, the ability to turn the handling on or off or make the
error redirect only operate from remote machines, and the ability to set up a
different error page for each HTTP error. The default error configuration is as
follows:

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<system.web>

<!-- CUSTOM ERROR MESSAGES

Set customErrors mode=”On” or “RemoteOnly” to

enable custom error messages, “Off” to disable.

Add <error> tags for each of the errors you want to handle.

-->

<customErrors mode=”RemoteOnly” />

</system.web>

</configuration>

The default configuration is configured to redirect to custom error pages,
but only if the user is accessing the Web site from a remote computer. No cus-
tom errors are configured, so any error that takes place causes the default
ASP.NET error page to be displayed, as shown in Figure 12.10.

The mode attribute can be set to On, Off, or Remote Only. This means that it
is very easy to turn off the custom error pages while debugging the code, and
turn them back on when in production. Better yet, leaving the setting at Remote-
Only means that the developer can work on the local Web server without see-
ing the custom errors, but the remote users see the custom errors.

The customErrors tag also has a defaultRedirect attribute. This attribute can
be set to a URL to assign a default error page to the Web application. The fol-
lowing XML snippet shows how to redirect all errors to a default error page:

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<system.web>

<!-- CUSTOM ERROR MESSAGES

Set customErrors mode=”On” or “RemoteOnly” to

enable custom error messages, “Off” to disable.

Add <error> tags for each of the errors you want to handle.

-->

<customErrors defaultRedirect=”error.aspx”

ASP.NET Applications 501

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 501

mode=”RemoteOnly” />

</system.web>

</configuration>

There may be a need to cause some errors to display specific pages as well
as having a default redirect location. This can be done by embedding custom
error information into the customErrors XML tag, as shown in the following
code sample:

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<system.web>

<!-- CUSTOM ERROR MESSAGES

Set customErrors mode=”On” or “RemoteOnly” to

enable custom error messages, “Off” to disable.

Add <error> tags for each of the errors you want to handle.

-->

<customErrors defaultRedirect=”error.aspx” mode=”On” >

<error statusCode=”404”

redirect=”NotFound.aspx”/>

<error statusCode=”500”

redirect=”InternalError.aspx”/>

</customErrors>

</system.web>

</configuration>

In this example, a File Not Found (404) or an Internal Server Error (500) dis-
plays custom error pages, as shown in Figure 12.11, and any other error dis-
plays the error.aspx page.

Figure 12.10 The default error ASP.NET error page.

502 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 502

Figure 12.11 The custom Web page for a File Not Found (404) error.

Page Navigation

ASP.NET requires a page to post back to itself. How can control be transferred
to a different page? This section offers several solutions, along with the bene-
fits and drawbacks of each.

In the following examples, the user is presented with a list of orders. The
user selects an order and clicks the GetDetails button. A control called
ctlOrderID, is assumed to hold the OrderID of the order in which the user
wishes to view details.

HyperLink and HyperLink Control
The HyperLink control allows page navigations through the HyperLink’s
NavigateURL property. The NavigateURL property can be set from within the
code-behind page, and it may contain a constructed URL. The following code
sample shows how to program the Page_Load method of the code-behind
page. This sample assumes that the Web form page contains a HyperLink con-
trol called HyperLink1.

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here

Dim OrderID as Integer

ASP.NET Applications 503

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 503

‘Assign OrderID to a value obtained from the database

HyperLink1.NavigateUrl = _

“OrderDetails.aspx?OrderID=” & OrderID

HyperLink1.Target = “_blank”

End Sub

This code builds and sets the NavigateURL, typically based on a database
query result. The Hyperlink also has a Target property, which is the type
HTML target attribute. When set to “_blank,” a new browser is opened to con-
tain the OrderDetails page.

The advantages of the Hyperlink control include the following:

■■ This method can be used to call ASP pages as well as ASPX pages.

■■ This method allows a new browser child window to be opened to hold
the results.

The disadvantages to it include the following:

■■ This method does not post any data. This means that all data entered on
the Order page can be lost.

■■ The URL is limited in size. The URL should be limited to 1,024 bytes in
order to accommodate all browsers.

■■ Although this method can open a new browser window, the child win-
dow is not easily accessible from the parent window, so it is difficult to
close the child window when the parent window is closed.

Window.Open
Window.Open is a client-side script command. This can be used when it is
desirable to open the OrderDetails in a second window. Using this approach
requires the use of a standard HTML tag to execute the client-side script. The
following is a sample implementation:

<%@ Page Language=”vb” Codebehind=”Order.aspx.vb”

Inherits=”ch3.Orders”%>

<HTML>

<HEAD>

<script language=”javascript”>

<!--

var w=null;

function btnClick()

{

var URL;

URL = “OrderDetails.aspx?OrderID=” +

document.all[“OrderID”].value;

504 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 504

w=window.open(URL);

}

function closewindows()

{ //was the window opened?

if(w != null)

{ //if so, was it closed?

if(!w.closed)

{ //close it

w.close();

}

}

}

//-->

</script>

</HEAD>

<body onunload=”return closewindows();”>

<form id=”Form1” method=”post” runat=”server”>

<asp:textbox id=”OrderID”

runat=”server”>

</asp:textbox>

<input type=”button” id=”GetOrder”

value=”GetOrder”

onclick=”return btnClick();” />

</form>

</body>

</HTML>

If the OrderID is 123, the btnClick method constructs a URL of OrderDe-
tails.aspx?OrderID=123, and then the window.open function is used to open a
new browser window, using the URL that was created.

The sample also shows how window.open returns a reference to the win-
dow that was opened. In the body tag, onunload is programmed to execute
closewindows, which uses the reference to the OrderDetails to close the win-
dow when this window is closed.

The OrderDetails.aspx.vb code-behind page can extract the OrderID from
the QueryString with the following code:

Private Sub Page_Load(ByVal sender As System.Object, ByVal _

e As System.EventArgs) Handles MyBase.Load

Dim OrderID As String = Request.QueryString(“OrderID”)

‘Look up order details based on this order

End Sub

The advantages to using the window.open function are as follows:

■■ This method can be used to call ASP pages as well as ASPX pages.

■■ This method allows a new browser child window to be opened to hold
the results, and the child can be autoclosed if the parent window is
closed.

ASP.NET Applications 505

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 505

The disadvantages include the following:

■■ This method, as shown, does not post any data, but some creative
client-side programming could accomplish this. This means that all
data entered on the Order page can be lost.

■■ The URL is limited in size. The URL should be limited to 1,024 bytes in
order to accommodate all browsers.

Response.Redirect
In the server-side event-handling code, a Response.Redirect statement can be
issued to get to the new page. Clicking on the GetDetails button causes the
page to post back to the server. The GetDetails_Click event handler contains
code to redirect to the OrderDetails page as shown.

Private Sub GetDetails_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Response.Redirect(“OrderDetails.aspx?OrderID=” & _

HttpUtility.UrlEncode(ctlOrderID.Text))

End Sub

If the OrderID is 123, then the GetDetails_Click event constructs a URL of
OrderDetails.aspx?OrderID=123 and issues a redirect back to the browser
with the newly constructed URL. The browser then requests the new URL.
HttpUtility.UrlEncode is a helper method that converts characters, such as @ %
. / ? : \ and so on, to a form that can be placed within the URL.

The OrderDetails.aspx.vb code-behind page can extract the OrderID from
the QueryString with the following code:

Private Sub Page_Load(ByVal sender As System.Object, ByVal _

e As System.EventArgs) Handles MyBase.Load

Dim OrderID As String = Request.QueryString(“OrderID”)

‘Look up order details based on this order.

End Sub

The advantages to using a Response.Redirect statement include the following:

■■ This method can be used to call ASP pages as well as ASPX pages.

■■ The redirect can be to a different Web server.

The disadvantages are as follows:

■■ Response.Redirect sends a command back to the browser, essentially
saying “go here instead.” The browser then places a request for the new
URL. This results in an extra round trip between the server and browser.

■■ Response.Redirect does not include the posted data. This means that all
data entered on the Order page can be lost.

506 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 506

■■ The URL is limited in size. The URL should be limited to 1,024 bytes in
order to accommodate all browsers.

Server.Transfer
Instead of using Response.Redirect, Server.Transfer can be used. The GetDe-
tails_Click event handler contains code to transfer control to the OrderDetails
page as shown.

Private Sub GetDetails_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Server.Transfer(“OrderDetails.aspx?OrderID=” & _

HttpUtility.UrlEncode(ctlOrderID.Text))

End Sub

If the OrderID is 123, the GetDetails_Click event constructs a URL of
OrderDetails.aspx?OrderID=123 and issues a transfer to the Web server.

The OrderDetails.aspx.vb code-behind page can extract the OrderID from
the QueryString with the following code:

Private Sub Page_Load(ByVal sender As System.Object, ByVal _

e As System.EventArgs) Handles MyBase.Load

Dim OrderID As String = Request.QueryString(“OrderID”)

‘Look up order details based on this order

End Sub

One of the advantages of this method is that it can be used to call ASP pages
as well as ASPX pages. The disadvantages include the following:

■■ The transfer must be to a page on the same Web server.

■■ Although Server.Transfer can be used to transfer from one ASP page to
another ASP page, or one ASPX page to another ASPX page, it cannot
transfer from an ASPX page to an ASP page. This is because the ASP page
attempts to load into the ASP.NET application, which is not allowable.

■■ Server.Transfer does not include the posted data. This means that all
data entered on the Order page can be lost.

■■ The URL is limited in size. The URL should be limited to 1,024 bytes in
order to accommodate all browsers.

Object-Oriented Approach
All of the previous examples used the QueryString as a method of passing a
value to a different page. The size limitation of the QueryString poses a big
problem, especially if many values need to be passed to the new page.

ASP.NET Applications 507

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 507

With the object-oriented approach, Server.Transfer is used to navigate to the
new page, but there is no need to pass data using the QueryString because the
new page can get access to the original page via the HttpContext. The follow-
ing Web Form page contains a Button called btnGetOrder and a TextBox called
OrderID. Here is the code-behind page:

Public Class Order

Inherits System.Web.UI.Page

Public WithEvents OrderID As System.Web.UI.WebControls.TextBox

Protected WithEvents btnGetOrder As System.Web.UI.WebControls.Button

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here.

End Sub

Private Sub btnGetOrder_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnGetOrder.Click

Server.Transfer(“OrderDetails.aspx”)

End Sub

End Class

The code-behind page is performing a simple Server.Transfer. Notice that
the OrderID TextBox has been changed to Public. This allows access to the
OrderID from the OrderDetails page. The OrderDetails Web Form page con-
tains a label control called Label1. The following is the OrderDetails code-
behind page:

Public Class OrderDetails

Inherits System.Web.UI.Page

Protected WithEvents Label1 As System.Web.UI.WebControls.Label

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here.

Dim o As Order

o = CType(HttpContext.Current.Handler, Order)

Label1.Text = o.OrderID.Text

End Sub

End Class

The Page_Load method can get access to the original page through the Http-
Context.Current.Handler. The Handler is the page that was originally called,
and can be assigned to a variable, but must be cast to the Order class. (Casting
is covered in the next chapter.) Since the OrderID TextBox is public, it is avail-
able, and the Text property is assigned to Label1’s Text property.

This method of page navigation should always be considered first, due to its
ability to get access to all of data from the original page. One of the advantages
to using an object-oriented approach is that it allows all data from the original

508 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 508

Order page to be available to the OrderDetails page. This means that all posted
data is available. The disadvantages include the following:

■■ The transfer must be to a page on the same Web server.

■■ This method can only transfer to an ASPX page.

■■ This method would require some client-side code in order to open a
new child browser window.

Panels
This method does not perform page navigation; instead, it provides an illusion
of page navigation. Panel navigation can be used when many settings need to
be entered in a wizardlike fashion. A single page can be arranged with a
sequence of panel controls. The panel control is a container for other controls.
If the visible property is false, the panel and its contained controls are not dis-
played at the browser. In fact, if the user looks at the source code, there is no
apparent sign of the panel and its controls!

Using panels effectively involves setting the page’s pageLayout property to
FlowLayout. When FlowLayout is selected, hidden panels do not take up
space on the form. This allows the visible panel to essentially float to the top of
the form.

Figure 12.12 shows an example of sequenced panels on a WebForm. This
pageLayout property is set to FlowLayout, and the panels are HTML Grid-
LayoutPanels. After the GridLayoutPanels are placed on the WebForm, right-
click on the panel, and click Run As Server Control.

Figure 12.12 The sequenced panel layout is created on a single Web page.

ASP.NET Applications 509

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 509

The following is the HTML code for the page shown in Figure 12.12.

<%@ Page Language=”vb” AutoEventWireup=”false”

Codebehind=”WebForm1.aspx.vb” Inherits=”ch12Web.WebForm1” %>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML>

<HEAD>

<title>WebForm1</title>

<meta name=”GENERATOR” content=

“Microsoft Visual Studio.NET 7.0”>

<meta name=”CODE_LANGUAGE” content=”Visual Basic 7.0”>

<meta name=”vs_defaultClientScript” content=”JavaScript”>

<meta name=”vs_targetSchema”

content=”http://schemas.microsoft.com/intellisense/ie5”>

</HEAD>

<body>

<form id=”Form1” method=”post” runat=”server”>

<DIV id=”DIV1” style=

“WIDTH: 389px; POSITION: relative; HEIGHT: 100px”

runat=”server” ms_positioning=”GridLayout”>

<asp:TextBox id=”txtStep1” style=

“Z-INDEX: 101; LEFT: 133px; POSITION: absolute; TOP: 27px”

runat=”server”></asp:TextBox>

<asp:Label id=”lblStep1” style=

“Z-INDEX: 102; LEFT: 7px; POSITION: absolute; TOP: 4px”

runat=”server” Width=”71px” Height=”25px”

Font-Size=”Large”>Step 1</asp:Label>

<asp:Button id=”btnNext1” style=

“Z-INDEX: 104; LEFT: 305px; POSITION: absolute; TOP: 62px”

runat=”server” Text=”Next”></asp:Button>

</DIV>

<DIV id=”DIV2” style=

“WIDTH: 389px; POSITION: relative; HEIGHT: 100px”

runat=”server” ms_positioning=”GridLayout”>

<asp:Label id=”lblStep2” style=

“Z-INDEX: 102; LEFT: 7px; POSITION: absolute; TOP: 4px”

runat=”server” Width=”71px” Height=”25px”

Font-Size=”Large”>Step 2</asp:Label>

<asp:Button id=”btnNext2” style=

“Z-INDEX: 103; LEFT: 304px; POSITION: absolute; TOP: 64px”

runat=”server” Text=”Next” Width=”40px”></asp:Button>

<asp:Button id=”btnPrev1” style=

“Z-INDEX: 104; LEFT: 248px; POSITION: absolute; TOP: 64px”

runat=”server” Text=”Prev”></asp:Button>

<asp:TextBox id=”txtStep2” style=

“Z-INDEX: 105; LEFT: 136px; POSITION: absolute; TOP: 26px”

runat=”server”></asp:TextBox>

</DIV>

<DIV id=”Div3” style=

“WIDTH: 389px; POSITION: relative; HEIGHT: 102px”

runat=”server” ms_positioning=”GridLayout”>

510 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 510

<asp:Label id=”lblStep3” style=

“Z-INDEX: 102; LEFT: 6px; POSITION: absolute; TOP: 4px”

runat=”server” Width=”71px” Height=”25px”

Font-Size=”Large”>Step 3</asp:Label>

<asp:Button id=”btnDone” style=

“Z-INDEX: 103; LEFT: 306px; POSITION: absolute; TOP: 62px”

runat=”server” Text=”Done”></asp:Button>

<asp:Button id=”btnPrev2” style=

“Z-INDEX: 104; LEFT: 252px; POSITION: absolute; TOP: 63px”

runat=”server” Text=”Prev”></asp:Button>

<asp:TextBox id=”txtStep3” style=

“Z-INDEX: 105; LEFT: 127px; POSITION: absolute; TOP: 20px”

runat=”server”></asp:TextBox>

</DIV>

<DIV id=”Div4” style=

“WIDTH: 389px; POSITION: relative; HEIGHT: 100px”

runat=”server” ms_positioning=”GridLayout”>

<asp:Label id=”lblDone” style=

“Z-INDEX: 101; LEFT: 130px; POSITION: absolute; TOP: 10px”

runat=”server” Width=”168px” Height=”75px”>Label</asp:Label>

<asp:Label id=”lblComplete” style=

“Z-INDEX: 102; LEFT: 6px; POSITION: absolute; TOP: 4px”

runat=”server” Width=”71px” Height=”25px”

Font-Size=”Large”>Complete!</asp:Label>

</DIV>

</form>

</body>

</HTML>

Each of the sections is composed of an HTML Panel control, which is simply
a DIV tag with a runat attribute set to server, and an attribute called ms_posi-
tioning, which is set to GridLayout. The code-behind page for this sample is as
follows:

Public Class WebForm1

Inherits System.Web.UI.Page

Protected WithEvents Div1 As _

System.Web.UI.HtmlControls.HtmlGenericControl

Protected WithEvents Div2 As _

System.Web.UI.HtmlControls.HtmlGenericControl

Protected WithEvents Div3 As _

System.Web.UI.HtmlControls.HtmlGenericControl

Protected WithEvents Div4 As _

System.Web.UI.HtmlControls.HtmlGenericControl

Protected WithEvents lblStep1 As _

System.Web.UI.WebControls.Label

Protected WithEvents lblStep2 As _

System.Web.UI.WebControls.Label

Protected WithEvents lblStep3 As _

System.Web.UI.WebControls.Label

ASP.NET Applications 511

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 511

Protected WithEvents lblDone As _

System.Web.UI.WebControls.Label

Protected WithEvents lblComplete As _

System.Web.UI.WebControls.Label

Protected WithEvents btnNext1 As _

System.Web.UI.WebControls.Button

Protected WithEvents btnNext2 As _

System.Web.UI.WebControls.Button

Protected WithEvents btnPrev1 As _

System.Web.UI.WebControls.Button

Protected WithEvents btnPrev2 As _

System.Web.UI.WebControls.Button

Protected WithEvents btnDone As _

System.Web.UI.WebControls.Button

Protected WithEvents txtStep1 As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtStep2 As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtStep3 As _

System.Web.UI.WebControls.TextBox

#Region “ Web Form Designer Generated Code “

‘This call is required by the Web Form Designer.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

End Sub

Private Sub Page_Init(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Init

‘CODEGEN: This method call is required by the Web Form Designer

‘Do not modify it using the code editor.

InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

If Not Page.IsPostBack Then

GoPage(1)

End If

End Sub

Private Sub GoPage(ByVal page As Integer)

Div1.Visible = IIf(page = 1, True, False)

Div2.Visible = IIf(page = 2, True, False)

Div3.Visible = IIf(page = 3, True, False)

Div4.Visible = IIf(page = 4, True, False)

End Sub

Private Sub btnNext1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnNext1.Click

GoPage(2)

End Sub

Private Sub btnPrev1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnPrev1.Click

512 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 512

GoPage(1)

End Sub

Private Sub btnNext2_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnNext2.Click

GoPage(3)

End Sub

Private Sub btnPrev2_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnPrev2.Click

GoPage(2)

End Sub

Private Sub btnDone_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnDone.Click

GoPage(4)

Dim lf As String = “
”

lblDone.Text = txtStep1.Text & lf & _

txtStep2.Text & lf & _

txtStep3.Text & lf

End Sub

End Class

The browser output for this page is shown in Figure 12.13. Notice how the
only visible panel is displayed at the top of the page. This is because invisible
panels don’t generate any HTML. The settings for the controls that are with
the panel are contained in ViewState so that the data is available, even when the
panel is invisible.

Figure 12.13 Using panels to present the illusion of switching between pages.

ASP.NET Applications 513

n 430234 Ch12.qxd 7/1/03 9:04 AM Page 513

The advantages of using Panel navigation include the following:

■■ Because all of the panels are on the same page, the form data remains
available.

■■ Although this example was done with server-side code, this method
could be done with client-side code as well.

The one disadvantage is that grouping many panels on a page can become
somewhat unmanageable.

Lab 12.1: Maintaining State

In this lab, you explore several methods of maintaining state in an
ASP.NET application while changing from one Web page to another. You
work with the CustomerList.aspx page, which currently displays a list of
customers in a DataGrid and contains a button to save a customer’s
orders to an XML file. The program is modified by adding a summary
information page. After saving, the page transfers the user to the sum-
mary information page. This page retrieves data from the Cus-
tomerList.aspx page and displays it.

Modify the Customer List Page
In this section, you modify the CustomerList.aspx code-behind page to
expose the data that is required in the InformationSummary page.

1. To start this lab, open the OrderEntrySystemSolution from Lab 11.1.

2. Right-click the OrderEntrySystemSolution in the Solution Explorer,
and click Check Out.

3. Open the CustomerList.aspx code behind page.

4. At the bottom of the dgCustomers_ItemCommand subprocedure,
add code to store the customer information from the DataGrid in the
following variables: CustomerID, CustomerName, and Contact-
Name. These variables are scoped to be available anywhere within
the request.

514 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:05 AM Page 514

5. Add code to transfer to the InformationSummary.aspx page. The
following code shows the finished subroutine:

Private Sub dgCustomers_ItemCommand(_

ByVal source As Object, _

ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _

Handles dgCustomers.ItemCommand

If e.CommandName = “Save” Then

Dim ds As DataSet = CType(Session(“Customers”),

DataSet)

Dim xml As XmlDataDocument

If Session(“CustomersXml”) Is Nothing Then

xml = New XmlDataDocument(

Session(“Customers”))

Session(“CustomersXml”) = xml

Else

xml = CType(_

Session(“CustomersXml”), XmlDataDocument)

End If

Dim path As String = Server.MapPath(“.”) & “\”

‘Get Customer Key

Dim CustomerKey As String

CustomerKey = dgCustomers.DataKeys(e.Item.ItemIndex)

path &= CustomerKey & “.xml”

‘Open the XmlWriter.

Dim xmlWriter As New XmlTextWriter(path, _

System.Text.Encoding.UTF8)

xmlWriter.WriteStartDocument()

Dim CustomerXml As XmlNode

Dim xPathQuery As String

xPathQuery = String.Format(_

“//Customers[@CustomerID=’{0}’]”, CustomerKey)

CustomerXml = xml.SelectSingleNode(xPathQuery)

CustomerXml.WriteTo(xmlWriter)

xmlWriter.Close()

Context.Items(“CustomerKey”) = CustomerKey

Context.Items(“CompanyName”) = e.Item.Cells(2).Text

Context.Items(“ContactName”) = e.Item.Cells(3).Text

Server.Transfer(“InformationSummary.aspx”)

End If

End Sub

ASP.NET Applications 515

n 430234 Ch12.qxd 7/1/03 9:05 AM Page 515

Create the Summary Information Form
In this section, you create a Web Form that displays summary information.

1. Right-click the Customer project. Click Add, click Add Web Form,
and name the new page InformationSummary.aspx.

2. Change the PageLayout properties to FlowLayout.

3. Add a title to the page. The title should be Information Summary.

4. Add a label control under the title.

5. In the code-behind page, add code to retrieve the CustomerID, Cus-
tomerName, and ContactName from the CustomerList.aspx page,
and display this data in the Label control. The following code shows
the finished Page_Load method:

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

Label1.Text = “Customer ID: “ & _

Context.Items(“CustomerKey”) & “
”

Label1.Text &= “Customer: “ & _

Context.Items(“CompanyName”) & “
”

Label1.Text &= “Contact: “ & _

Context.Items(“ContactName”) & “
”

End Sub

Test the Information Summary Page
To test the ability to store data while transferring the user to another
page, the CustomerList page must be set as the startup page, and the
project can be started. After that, a customer is selected, and the data
should be displayed on the InformationSummary page.

1. Right-click the CustomerList.aspx page in the Solution Explorer, and
click Set As Start Page.

2. Run the application. The results should appear as shown in Figure
12.14.

516 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:05 AM Page 516

Figure 12.14 The CustomerList.aspx page.

3. Click the Save button of one customer. This saves the customer’s
orders as XML, and performs a transfer to the InformationSum-
mary.aspx page, as shown in Figure 12.15.

4. Save the Solution, and check it back into Visual SourceSafe.

Figure 12.15 The browser output when passing data between pages by using the
Context.Items collection.

ASP.NET Applications 517

n 430234 Ch12.qxd 7/1/03 9:05 AM Page 517

Summary

■■ The Global.asax file is an optional file into which the developer may
place application- and session-level event handler code.

■■ The HttpContext class is a wrapper class that provides a simple object
model of the actual request and response.

■■ The HTTP handler is responsible for processing the request and gener-
ating the response.

■■ HTTP modules extend the middle of the HTTP pipeline and allow a
request and a response message to be examined and modified as they
pass between the browser and the HTTP handler.

■■ State management can be provided by the use of Application, Session,
Context.Items, Cache, or Shared (static) variables.

■■ Page navigation can be done by hyperlinks, Window.Open,
Response.Redirect, Server.Transfer, the OO Approach, or Panels.

518 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:05 AM Page 518

ASP.NET Applications 519

Review Questions

1. What are three methods of saving session state?

2. What is the scope of variables that are stored in the Context.Items collection?

3. What is a disadvantage to using the Response.Redirect method to navigate to a new
Web page?

4. What are three methods of storing data with an Application-wide scope?

5. How can page navigation occur at the server and still allow access to the original page
data?

n 430234 Ch12.qxd 7/1/03 9:05 AM Page 519

Answers to Review Questions

1. InProc, SQLServer, and StateServer.

2. These items are scoped to the request. This means that the Items are available when
using Server.Transfer.

3. The Response.Redirect method causes extra network traffic, because this method
sends a message back to the browser to tell the browser to request a different page.

4. Application variables, shared (static) variables, and cached variables.

5. The object-oriented approach uses Server.Transfer to navigate to another page, and
data can be exposed on the original page by creating public properties or public data
members.

520 Chapter 12

n 430234 Ch12.qxd 7/1/03 9:05 AM Page 520

521

There is a rewarding feeling when a Web site is created and put into produc-
tion on the Web. The site can be viewed from anywhere that has Internet
access. The fruit of everyone’s labor is finally realized and everyone is proud
of the work that is globally visible.

For hackers, a new target is born. A globally visible Web site is exposed to
the world of hackers. Some hackers want to penetrate site security just to see if
they can. Others are interested in stealing data and products. Still others are
interested in defacing or destroying a site.

There is never a good time to be hacked, but it always seems to happen
when there are a million other things going on. A hacker who destroys a site
can force a Web site administrator to scramble for the latest backup, which
hopefully was recent.

For a long time, many people figured their site would never be hacked
because there are many bigger targets on the Internet. And, for a long time this
was true. But hackers are now writing programs that start at IP address 0.0.0.0
and increment through 255.255.255.255, and look for opportunities to hack any
site that has a security hole. Hackers can enlist millions of computers into their
hacker army in order to perform attacks on larger targets.

Staying current with the latest security patches, running antivirus software,
and providing firewalls with logging software is a requirement for public Web

Site Security

C H A P T E R

13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 521

sites. There are also many things that can be done to control access to resources
on a Web site. Some parts of a Web site may be public, but other parts of a Web
site may require authorization to access private data. This section covers many
of these aspects in order to ensure that only authorized people have access to
private data.

Classroom Q & A
Q: Is there a way to display a custom login page instead of the ugly

gray box that is displayed when I set up security in Internet Infor-
mation Server?

A: Yes. ASP.NET provides Forms authentication which allows you to pro-
vide your own customized Web page for logging into the Web site.

Q: I want to use SSL on my Web site to encrypt credit card informa-
tion, but the SSL port is grayed out in Internet Information Server.
How can I get this to operate?

A: The SSL port is probably grayed out because you have not
installed a digital certificate for your site. SSL is an important part
of Web e-commerce, and this chapter covers SSL in great detail.

Q: Is there a way to confine code to being able to have access to a
certain folder, regardless of who is logged in?

A: Yes. The .NET Framework provides Code Access Security, which
allows you to assign permissions to the code, as opposed to
assigning permissions to the user.

Understanding Security Basics

Before diving too deeply into security, it is important to understand some fun-
damentals about security and the types of security that are available to protect
a Web site. Figure 13.1 shows the different areas where security is available.
When the browser communicates to the server, the communications can be
encrypted using Secure Sockets Layer (SSL).

When Internet Information Server (IIS) receives a request, IIS may require the
user to be authenticated first, by means of Standard, Windows, or Digest authen-
tication. If the user is requesting a file that is not handled by ASP.NET, then IIS
retrieves the file directly from the file system, but the user must be authorized to
receive the file by the file system. If the file is handled by ASP.NET, then ASP.NET
has the ability to provide its own authentication by using Windows, Forms, or
Passport authentication. After being authenticated, any code that is run must be
authorized by Code Access Security, and any files that are requested must be
authorized by the file system. This chapter covers these aspects of security.

522 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 522

Figure 13.1 Areas where security is available.

Authentication
Authentication is the process of obtaining identification credentials, such as
name and password, from a user and validating those credentials against an
authority, as shown in Figure 13.2. The credentials typically contain an identi-
fier and proof, which could be a username and password, an email address
and password, an email address and digital certificate, and so on.

Authenticating a user does not imply the granting of any permission to
access resources. This is done though authorization.

Figure 13.2 Authentication involves providing an identifier and proof.

Get Default.aspx Security
Authority

Web Client

Windows
Forms

Passport
Custom

Who are you? Provide proof.

user id=GlennJ password=hi2u2!

Ok, here is Default.aspx

Internet
Information

Server

ASP.NET
Applications

.NET
Framework

Web Clients

Anonymous
Standard
Windows
Digest

Forms
Passport
Windows
Certificates

Code Access
Security

Windows NT/2000
Operating System

Active Directory
File Permissions

SSL

Site Security 523

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 523

Figure 13.3 Authorization requires determining if a user should have a specific type of
access to a resource.

Authorization
Authorization is the process of determining whether a user should be granted
a specific type of access to a resource. The resource may be a file, a printer, a
database, the Registry, or any other controlled resource. The type of access
may be read, write, add, or delete, or it may be resource specific, such as print
(see Figure 13.3).

Authorization may be performed on a user basis, a role basis, or a combina-
tion of the two. Using roles can simplify the management of permissions. If a
role is created for managers, it is easy to assign write permissions to the man-
ager’s role, instead of assigning permissions separately to each manager.

Impersonation
Impersonation is the process of allowing applications to execute with the iden-
tity of the client on whose behalf they are operating. If ASP.NET is imperson-
ating a user when executing code, any authorization that is required is based
on permissions that have been granted to the user. This method can be used to
allow IIS to impersonate a user in order to retrieve a file, where NTFS file per-
missions dictate whether the user is authorized to retrieve the file.

Delegation
Delegation is impersonation across computers. Although impersonation
works fine within a machine, it fails when attempting to access resources
across machines. Delegation allows a user to be impersonated to another
machine to access remote resources.

GlennJ says: Select * from Orders Is GlennJ
Authorized to
Retrieve the

Orders?
Here are the Orders.

Web Client

524 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 524

Windows Security

Microsoft Windows provides a directory of users and user roles for all users
who are allowed to access a computer, domain, or enterprise.

Workgroup Environment
In a workgroup environment, each computer has its own directory of users
who need to access the computer (see Figure 13.4). If four users exist, and each
user needs access to all machines, then matching accounts must be created in
all machines. Roles or groups also can be created in each machine to simplify
the assignment of users to resources. For example, a group could be created
called Managers. The Managers group can be assigned to all resources to
which managers have access. When a manager is hired, the manager can be
simply placed into the Managers group. This is much quicker that authorizing
a user for each individual resource.

Figure 13.4 The workgroup environment. If any user maintenance is required it must be
done on all four machines.

Workgroup
Client

Directory Users
Administrator
Randy
Gary
Sue
Directory Groups
Users
Managers

Workgroup
Client

Directory Users
Administrator
Randy
Gary
Sue
Directory Groups
Users
Managers

Workgroup
Client

Directory Users
Administrator
Randy
Gary
Sue
Directory Groups
Users
Managers

Workgroup
Client

Directory Users
Administrator
Randy
Gary
Sue
Directory Groups
Users
Managers

Site Security 525

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 525

Figure 13.5 The Local Users and Groups snap-in. The user called RandyJohnson has been
selected, and the groups that he is a member of are displayed.

Depending on the operating system that is installed, adding users and
groups can be done by clicking Start, Control Panel, Administrative Tools,
Computer Management, Local Users and Groups, or by clicking Start, Control
Panel, User Accounts. Figure 13.5 shows the Local Users and Groups. The
Local Users and Groups program provides the ability to create new users, and
add users to groups. In the workgroup environment, account maintenance,
such as changing the password, is repeated on all machines.

Domain Environment
In a domain or enterprise environment, servers that act as domain controllers
contain a directory, called Active Directory, which contains the list of users
who have access to the domain or enterprise. Although workstation machines
still contain a directory, this directory should only contain groups, called local
groups, which are assigned to resources (see Figure 13.6).

Accounts that are created in Active Directory automatically replicate to
other Active Directory servers. Account maintenance, such as changing a pass-
word or deleting a user, only needs to be done at one location.

Adding users to Active Directory is done by using the Active Directory
Users and Computers tool. This tool allows new users to be added and even
allows objects, such as computers, to be partitioned into separate administra-
tive units, called organizational units. Any changes that are performed while
in Active Directory are propagated to other domain controllers automatically.

526 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 526

Figure 13.6 The domain environment containing Active Directory.

Active Directory is very extensible, and can store other information, such as
certificates, user preferences, printer location information, and email informa-
tion. Active Directory is intended to holds thousands of users.

NTFS File System
Windows provides NTFS, FAT, and FAT32 file systems. The FAT and FAT32 file
systems do not offer any security, and should not be used in a Web environ-
ment. FAT (File Allocation Table) and FAT32 are intended to be used when it is
necessary to upgrade or coexist with a Windows 95, 98, or Me operating system.

NTFS (NT File System) is much more stable than FAT and FAT32, because it
provides the following:

■■ A transacted file system that can perform an autorecovery if power is
abruptly lost.

■■ Disk quota management, which allows an administrator to limit the
amount of disk space that can be used by any user.

■■ Events that are triggered when a file is added, deleted, or modified on
the file system. This is great when it is necessary, and processes any
new files that are placed into the folder.

Domain
Workstation

Directory Groups
Users
Scanner Users

Domain
Workstation

Directory Groups
Users
File System Users

Domain
Workstation

Directory Groups
Users
Printer Users

Domain
Workstation

Domain
Controller

Directory Groups
Users
HR Users

Active Directory Users
Administrator
Randy
Gary
Sue
Active Directory Groups
Domain Users
Managers

Site Security 527

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 527

Most importantly, however, NTFS provides security. Permissions may be
assigned at the folder or file level. Each file and folder has a Discretionary
Access Control List (DACL) that contains an Access Control Entry (ACE) for
each user or group who is assigned permissions.

When permissions are assigned to a resource, the user receives the com-
bined permissions of all groups that the user is a member of, except when a
Deny ACE exists. Figure 13.7 shows an example of a file called SalesData.xml
with its corresponding DACL. Sue’s effective permission is Full Control, since
she receives the union of the permissions of all groups that she is a member of,
and her specific permissions. Glenn’s effective permission is Read and Exe-
cute. Although Glenn is a member of Managers, which should give Glenn
Write permission, Glenn has a Deny Write ACE. Regardless of granted per-
missions, the Deny Write always takes precedence.

In summary, any Web site that is exposed to the public should always be
hosted on an NTFS partitioned drive. This is the safest and most secure storage
method that the Windows operating system provides.

NTFS file security makes the final determination of whether a user can
access a file or not, based on the file’s DACL, regardless of settings in IIS
and ASP.NET.

Figure 13.7 The effective permission is the union of all granted permissions minus any
denied permissions.

Discretionary Access Control List (DACL)
Managers

Access
Control
Entries
(ACEs)

Glenn

Sue

Read and Execute, Write

Users Read and Execute

Sue Full Control, Member of Users

Glenn Deny Write, Member of Users, Managers

SalesData.xml

Effective
Permissions
Read and
Execute

Effective
Permissions
Full Control

528 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 528

Internet Information Server Security

Internet Information Server provides several security mechanisms that can be
implemented based on the needs of the Web site. Security can be applied at the
file, folder, Web site, or computer level. Security settings are typically applied
at the computer level, and all Web sites, folders, and files inherit the settings.
Settings can then be overridden as necessary at the Web site, folder, or file
level.

This section explores authentication methods, IP address and domain name
restrictions, and secure communications resources that are available in IIS, as
shown in Figure 13.8.

Authentication Methods
IIS authentication can be used to require users to provide a valid Windows
username and password in order to access the Web site, folder, or file. This sec-
tion covers the authentication options that are available.

Anonymous

Anonymous access is typically used when allowing users to access public
areas of a Web site without requiring users to enter a username and password.
This method of access uses an account called the IUSR_machinename (com-
monly referred to as the I-User account) to access resources such as files.

The IUSR account is created on the Web server when IIS is installed. This
account has limited permissions. The only Windows group that this account is
a member of is the Guests group.

Figure 13.8 The security options that are available in IIS.

Site Security 529

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 529

When attempting to access a resource, such as a file, IIS impersonates the
IUSR account and attempts to access the resource. If the access is successful,
the resource is available to the anonymous Web site user. If the access is not
successful, IIS attempts to use another access method, if other methods are
available.

When using ASP.NET, the IUSR account is not used. A new account is
created when ASP.NET is installed, called ASPNET. This is the default
account for ASP.NET anonymous access.

Basic

Basic authentication is the most common method of collecting a username and
password in order to authenticate them against a Windows user account. With
Basic authentication selected, the username and password are base64 encoded
and sent across the network. Base64 encoding provides a method of sending
special characters without interfering with the regular HTTP communications.

Base64 encoding is not encryption. Base64 encoders and decoders are read-
ily available in many languages. The .NET Framework’s Convert class con-
tains a FromBase64String method and a ToBase64String method that can easily
be used to read usernames and passwords that have been Base64 encoded.
Secure Sockets Layer (SSL) encrypted communications can be used with Basic
authentication in order to ensure that the username and password cannot be
intercepted.

Basic authentication with SSL is the most common method of
authentication on the Internet, because it operates on most of today’s
browsers and can pass through most of today’s firewalls.

Digest

Digest authentication provides authentication by sending an MD5 hash of the
user’s credentials across the network. This is a one-way hash, which is not
decipherable. When the hash is received, the hash is compared against the
hash of the credentials that the server has. If the hash codes are the same, the
user is authenticated.

Like Basic authentication, Digest authentication can pass through firewalls,
but the use of Digest authentication requires a browser that supports HTTP 1.1
protocol as defined in the RFC 2617 specification at www.w3c.org. This
requirement limits the use of Digest authentication to a small number of
browsers.

530 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 530

Digest authentication requires IIS to be installed in a Windows Active Direc-
tory Domain, and the user must also have a valid account in the domain.

In order to use Digest authentication, the user credentials must be stored as
clear text in Active Directory. There is another version of Digest authentication
called Advanced Digest, which is the same as Digest authentication, except
that the user credentials are stored in Active Directory as a hash, instead of
being stored as clear text.

Digest authentication is not a good choice for Internet sites, where there is
no control of the browser. This authentication method may be a good choice
for server-to-server communications in an intranet or extranet environment,
where the servers are in the same domain, and it is not necessary to pass
through firewalls.

Integrated Windows

Integrated Windows authentication, formerly known as NTLM and NT Chal-
lenge/Response, is a secure method of authentication. The user’s credentials
are hashed, and the hash is passed across the network.

Integrated Windows authentication is currently supported by Internet
Explorer. This authentication is not capable of passing through most of today’s
firewalls.

Integrated Windows authentication provides the ability to be transparently
authenticated, meaning that the currently logged-on user’s credentials are
used without requiring the user to reenter a username and password.

The use of Integrated Windows authentication is a bad choice for public
sites, but a great choice for an intranet site.

Certificate

Internet Information Server provides the ability to use server certificates and
client certificates. A server certificate is used for Server authentication, which
means that the server certificate proves that the server is the server it claims it
is. A server certificate must be installed on the server in order to enable Secure
Sockets Layer (SSL) encrypted communications. Secure Sockets Layer
encrypted communications should be used when private data is being trans-
ferred across the Internet.

Certificates can also be used to perform User authentication. This requires
each user to have a certificate. The user certificate is presented to the server in
order to prove that the user is who the user claims to be. The certificate is then
mapped to a Windows user account, which is used to access protected
resources. Internet Information Server also allows groups of client certificates
to be mapped to a single Windows user account. In this scenario, the certificate
provides the identity, while the Windows user account provides the autho-
rized access to resources.

Site Security 531

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 531

Certificates can pass through a firewall. Certificates must be obtained from
a mutually trusted certificate authority (CA), such as Entrust.net or
Verisign.com. A server certificate is required for any public Web site that
retrieves private data from a user. User certificates are optional for secure com-
munications.

IP Address and Domain Name Restrictions
One method of restricting access to a Web site is through the IP Address and
Domain Name Restrictions option. This option can be set to grant or deny
access to everyone, and then you can enter the exceptions. IP Address and
Domain Name Restrictions are best used in an intranet environment to deny
access to everyone except the people who are trying to access the site from any
IP address that is within the corporate intranet. This option is available only on
Windows Server products.

Secure Communications
Secure Sockets Layer (SSL) communications provide encrypted communica-
tions when private data is being sent across the network. A server certificate
must be obtained and installed in order to use Secure Sockets Layer communi-
cations. The server certificate contains information about the Web server and
company that is providing the Web site. The certificate also contains a public
key, which can be used by the client when encrypting messages to the server.

Server certificates must be issued by a mutually trusted Certificate Author-
ity (CA) in order to be successfully used for encrypted communications. The
Certificate Authority is responsible for verifying the server certificate.

Obtaining the server certificate from the certificate authority typically
requires providing information about the company. The amount of informa-
tion that is required depends on the certificate authority and the level of secu-
rity that is desired. The Certificate Authority reviews items, such as your
organization’s Dun & Bradstreet number and Articles of Incorporation. The
Certificate Authority may also complete a thorough background check to
ensure that the organization is what it claims to be and is not claiming a false
identity

The success of certificate authentication requires that the party receiving a
certificate trust the Certificate Authority who issued the certificate, and that
the Certificate Authority properly verified the owner of the certificate.

Providing a digital certificate helps to eliminate Web site spoofing. It is
rather easy to set up an illegitimate Web site that looks like someone else’s and
then capture unsuspecting customer’s credit information.

532 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 532

How SSL Works

When a user navigates to a URL that starts with https, negotiation for a session
key begins. The negotiation is done via the SSL handshake protocol. The client
starts by sending a hello message to the server. The server must respond with
a hello message.

The server’s hello message also contains its certificate. This certificate con-
tains its public key, which has been digitally signed by its Certificate Author-
ity’s private key (see Figure 13.9).

If the browser has the trusted Certificate Authority’s certificate installed, the
browser can use the Certificate Authority’s public key to validate the digital
signature that is on the server’s public key.

If the server’s public key is valid, the browser generates a session key,
encrypts the session key with the server’s public key, and transfers the
encrypted session key to the server.

The server can decrypt the session key with its private key and start an
encrypted communication session with the browser.

The default operation of some browsers, such as Internet Explorer, does
not check with the Certificate Authority to see if the certificate has been
revoked prior to the certificate’s normal expiration. On Internet Explorer,
this option can be enabled by clicking Tools, Internet Options, Advanced,
Check For Server Revocation.

Figure 13.9 When the browser navigates to a URL that starts with https, negotiation for a
session key starts.

Initiate Conversation - Can we talk?

Here is an encrypted session key.

Communication with session key

Hi - here's my certificate containing the
public key, signed by CA's private key.

Browser
Client

Web Site
Server

Validate
Digital

Certificate

Site Security 533

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 533

Client Certificates

Internet Information Server also provides the ability to require client certifi-
cates in order to prove that the client is who the client claims to be. Client cer-
tificates are typically used in an environment where a high degree of security
is required, and a method to distribute client certificates has been established.
The use of client certificates is not a requirement for providing e-commerce on
a public Web site.

Secure Sockets Layer (SSL) Setup

There are several steps involved in setting up Secure Sockets Layer communica-
tion. It’s easy to make mistakes anywhere during the process. Most Certificate
Authorities assist with changes that are required for a short time, and then
charge for changes that need to be made. This section goes through the steps that
are required to set up SSL, back up the certificate, and restore the certificate.

Using SSL on Computers that Host Multiple Web Sites

Windows supports the ability to host many Web sites. Each Web site must
have its own unique IP address, port, or host header. With the lack of available
IP addresses, most hosting companies use host headers to provide hosting ser-
vices for multiple domain names.

SSL does not work with host headers. In order to use SSL on a machine that
hosts multiple domain names, a unique IP address must be provided for each
Web site that uses SSL.

Create the Certificate Request

The Web Server Certificate wizard can be used to generate a certificate request
file. After starting the wizard, click Create a New Certificate. Next, click Pre-
pare The Request Now, But Send It Later.

The Web Server Certificate wizard must be run on the same machine that
processes the certificate when it is received from the Certificate Authority.
After the certificate has been received and processed in this machine, the
certificate may be exported to and imported by another machine.

The next screen is a prompt for a friendly name for the certificate and a bit
length. The friendly name is visible on the certificate, but can be any name that
is desired. The default bit length of 1,024 results in 128-bit encryption, which is
the recommended setting for U.S.-based Web sites. For international sites, 512
bit should be selected, which results in 40-bit encryption.

534 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 534

The Organization Information screen prompts for the organization name
and the organization unit. The organization unit is typically the name of a
branch office or department within the company.

The Site’s Common Name screen prompts for the common name. This is one
of the most important screens in the request process. The name that is entered
in this text box is the name that is required when an https request is made (see
Figure 13.10). For example, if www.ByRef.com is entered in this text box, then
https://www.ByRef.com must be the beginning part of the URL when
encrypted communication is required.

If the request is made to https://localhost/ch13Web/WebForm1.aspx, a
message box is displayed, indicating that the name on the certificate
(www.ByRef.com) does not match the name of the site (localhost). The com-
mon name is not case sensitive on Internet Information Server.

Many Web sites generate certificate error messaages because the
developer has used a common name such as www.ByRef.com, but a link
on the site points to a URL such as https://secure.ByRef.com. Since
www.ByRef.com does not match secure.ByRef.com, the error message box
is displayed.

The geographical information screen requests country/region, state/
province, and city/locality information. The country must be the two-character
country code. The state and city must not be abbreviated.

The certificate request filename screen prompts for a location for the certifi-
cate request. The file is an encrypted text file and contains the organization’s
public key, the name, locality, and the common name. The local certificate store
holds the complete certificate request, including the private key.

Figure 13.10 The common name must match the URL that is used when encrypted
communication is required.

Site Security 535

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 535

Submit the Certificate Request

The certificate request is also known as the Certificate Signing Request (CSR).
This certificate request is submitted to the Certificate Authority with the inten-
tion of receiving a digitally signed certificate, which was signed with the Cer-
tificate Authority’s private key. Depending on the level of security that is
required, this could take one week to several weeks. The delay is due to the
Certificate Authority’s performing a check to ensure that the certificate is
being issued to the correct entity.

Care should be taken to choose a Certificate Authority that has a trusted cer-
tificate installed by most browsers. Some Certificate Authorities are:

■■ www.entrust.net

■■ www.thawte.com

■■ www.baltimore.com

■■ www.verisign.com

The Certificate Authority prompts for the Certificate Signing Request. The
text file that was created from Internet Information Server can be opened, and
the contents are copied and pasted into the text box that is provided.

The Certificate Authority prompts for other information as well. After this
information is complete, there is a delay of several days before the signed cer-
tificate is received, usually via email.

Processing the Certificate

The certificate typically arrives from the Certificate Authority by email. If the
certificate is an attachment, it can simply be saved to disk. If the certificate is
embedded as encrypted text, it can be copied and pasted into a file with
Notepad. The file should have a .cer extension and should contain data that
looks like the following. Notice that the header and footer are included in the
file.

-----BEGIN CERTIFICATE-----

MQswCQYDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhdGEgU2VjdXJpdHksIEluYy4x

LjAsBgNVBAsTJVNlY3VyZSBTZXJ2ZXIgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkw

HhcNMDEwMzE2MDAwMDAwWhcNMDExMTE3MjM1OTU5WjCBuzELMAkGA1UEBhMCVVMx

DTALBgNVBAgTBE9oaW8xEjAQBgNVBAcUCUF2b24gTGFrZTEpMCcGA1UEChQgR0xF

Tk4gSk9ITlNPTiBURUNITklDQUwgVFJBSU5JTkcxEjAQBgNVBAsUCUNPUlBPUkFU

Z24sIEluYy4wAwIBARo9VmVyaVNpZ24ncyBDUFMgaW5jb3JwLiBieSByZWZlcmVu

Y2UgbGlhYi4gbHRkLiAoYyk5NyBWZXJpU2lnbjAdBgNVHSUEFjAUBggrBgEFBQcD

AQYIKwYBBQUHAwIwGQYKYIZIAYb4RQEGDwQLFgkxMDMzMTQ3OTAwDQYJKoZIhvcN

AQEFBQADfgCMjTCDYjvLb75QjSp3AsHoI0RF5X59SgW3+WKsmNnTC4LJr8yg4kIN

vTvdesOKoxfU2egMYauwScazA6kgsR1Y8XdUq+EQYoDgbJAn1Q==

-----END CERTIFICATE-----

The Web Server Certificate wizard must be run to process the certificate. The
first screen is a prompt to process the certificate request, or delete it.

536 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 536

The next screen prompts for the location of the .cer file. Simply browse to the
file, and click Next.

The next screen displays the certificate summary information. This informa-
tion should match the information that was originally submitted. When the
wizard has finished, the certificate is installed in the local computer’s certifi-
cate store and is attached to the Web site for which the certificate was
requested.

Backing Up and Exporting a Certificate

Backing up the certificate is extremely important in order to ensure recovery in
the event of a disaster. Also, if the certificate needs to be copied to additional
servers, this process is used to retrieve the certificate so it can be installed in
other Web farm computers.

The Certificate snap-in must be executed. This is a component of the
Microsoft Management Console (MMC). To execute, click Start, Run, MMC.exe
to start the Management Console. Next, click File, Add, Remove Snap-In, Add,
Certificates. The snap-in prompts for the desired certificate store to manage.
Click Computer Account. Next, click Local Computer.

After the snap-in is installed, open Certificates (Local Computer), Personal,
Certificates to reveal the certificate that was installed. Right-click the certifi-
cate, click All Tasks, Export, as shown in Figure 13.11.

The Certificate Export Wizard is started. Be sure to select the option to
export the private key. This option is required to be able to restore the key later.

The next screen prompts for the export file format. The default PKCS @12 is
acceptable, which creates a .pfx file that can be imported into any machine.

The next screen prompts for a password. A password should always be pro-
vided. When you import a password a prompt is displayed, and the text box
for the password on this screen cannot be left blank.

The next screen prompts for the filename. The file should have a .pfx exten-
sion. After the file is saved, the export is complete.

Figure 13.11 Export the certificate using the Certificate Snap-in in the Microsoft
Management Console.

Site Security 537

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 537

Restoring and Importing a Certificate

The Certificate Snap-In can be used to import or restore a certificate. For infor-
mation on executing the Certificate Snap-In, see the previous topic: Backing
Up and Exporting a Certificate. Open the snap-in and click Certificates (Local
Computer), Personal, Certificates. Right-click Certificates, and click All Tasks,
Import as shown in Figure 13.12.

The Certificate Import wizard starts and prompts for the location of the .pfx
file to be imported.

Next, the wizard prompts for the password that was assigned to the file.
Note that this screen contains a check box to indicate that the private key can
be exported. Ideally, the .pfx file should be placed in a secure location, and
should be the only way to get access to the private key. If this check box is
selected, the certificate with its private key can be exported from this machine.

The next screen prompts for the destination certificate store. The personal
certificate store should be selected. When the wizard has finished, the certifi-
cate is available to be attached to a Web site.

Attaching an Imported Certificate to a Web Site

When a certificate has been imported using the Certificate Import wizard, it is
placed into the local computer’s personal certificate store. The certificate can
then be bound to a Web site on the local computer.

When the Web Server Certificate wizard is started, the server certificate
screen provides the ability to assign an existing certificate. The certificate must
exist in the local computer’s personal certificate store. The wizard displays a
list of all certificates that are in the local computer’s personal certificate store.
A certificate must be selected, and it is bound to the current Web site.

Figure 13.12 The Certificate Snap-In is used to import certificates.

538 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 538

Figure 13.13 The Secure Communications window is used to require SSL communication.

Configuring IIS to Require SSL

After obtaining and processing a certificate, SSL communications may be used
on any page on the site by using https instead of http in the URL. The problem
is that http can also be used.

To require SSL to be used, edit the properties of the desired folders and files.
Select the security tab, and then click Edit in the secure communications sec-
tion of the security window. The Secure Communications window is dis-
played, as shown in Figure 13.13. This screen contains the settings to require
SSL, and also require client certificates, if necessary. If a file is configured to
require SSL and a user attempts to retrieve the file using http instead of https,
an HTTP 403.4 error is displayed, which states that access is forbidden and SSL
is required.

ASP.NET Security

ASP.NET provides an extensible framework for implementing security. Out of
the box, ASP.NET provides the ability to authenticate against Windows,
Forms, and Passport authorities. The developer can provide custom authenti-
cation as well. Before ASP.NET authentication is covered, it is important to
understand the overall security process that is involved.

Site Security 539

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 539

ASP.NET Request Processing Account
Figure 13.14 shows the process, from a high-level perspective, of delivering a
requested resource to the browser. When a request for a resource is received by
Internet Information Server, the normal checks are done to ensure that the
request came from an IP address and domain that are acceptable. Internet
Information Server also authenticates the user in accordance with its authenti-
cation settings. If the authentication is successful, the request is passed to
ASP.NET for processing.

ASP.NET uses the user’s account if impersonation is active or the IUSR
account if anonymous access is active. Identity impersonation is settable in the
machine.config file or in the Web.config file by using the identity XML tag.
Some samples of the proper use of the identity XML tag are as follows:

<!--

identity Attributes:

impersonate=”[true|false]” - Impersonate Windows User

userName=”Windows user account to impersonate” | empty string

implies impersonate the LOGON user specified by IIS

password=”password of above specified account” | empty string

-->

<identity impersonate=”false” />

<identity impersonate=”true” userName=”joe” password=”joepass” />

<identity impersonate=”true” userName=”” password=”” />

<identity impersonate=”true” />

Figure 13.14 The process of delivering a requested resource to the browser.

ASP.NET
Authentication

Internet Information
Server

Authentication

IP and Domain
Acceptable?

User
Authentication

Request Is Authorized - Respond to User

Perform
ASP.NET

Security Checks

Check Windows
DACL for
Resource

Permissions

Run Using
<processModel>

Account
(ASPNET)

Run as
User Account

or IUSR

Impersonation
Enabled?

Yes

No

540 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 540

The first example disables impersonation. The other examples enable
impersonation. When impersonation is enabled, it is possible to specify a user
name and password that is used by all users. If the name and password are not
specified as shown in the last two examples, the username of the current user
is used. This account is used to access the desired resource, and if authorized,
the resource is delivered to the browser.

ASP.NET uses the user’s account if impersonation is not active, and it uses
the account that has been configured in the <processModel> tag of the
machine.config file if anonymous access is enabled. The process model
account can be one of the following:

Machine. Run as a low-privilege user account named ASPNET.

System. Run as the LocalSystem account, which is a high-privilege
admin account on the local machine. Use of this account is not recom-
mended since a hacker might be able to get access to the operating sys-
tem using the process account. Using an account with low permissions
limits the exposure if a hacker is able to penetrate security.

Windows. Specify a regular Windows account to be used.

The password for Machine and System should be set to AutoGenerate. For
regular Windows accounts, the actual password is required.

If the account is authorized to access the resource, the resource is delivered
to the browser.

In many cases, the Internet Information Server settings don’t need to be
changed when using ASP.NET security, but these settings can be used in con-
junction with ASP.NET to further tighten the security of the Web site.

If ASP.NET is installed on a Windows machine that is configured as a
domain controller, it may be necessary to change the process model
account to System. Since this is typically not recommended, installing
ASP.NET on a domain controller is not recommended.

ASP.NET Authentication
In addition to the authentication that is available in Internet Information
Server, ASP.NET offers other methods of authenticating a Web site user. The
ASP.NET authentication methods offer more flexibility and can be tailored to
suit the needs of most customers.

Site Security 541

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 541

Default (IIS)

The Default authentication that is built into Internet Information Server is still
available, but access to resources is strictly limited to the username that is
being used to access the resource, and to the DACL that is associated with the
resource. The following settings can be included in the Web.config file to set
up the default authentication:

<configuration>

<system.web>

<authentication mode=”None” />

<identity impersonate=”true” />

</system.web>

</configuration>

Windows

With Windows authentication, Internet Information Server provides the initial
authentication via the authentication methods that are configured in Internet
Information Server. Resources then can be accessed using the authenticated
account. ASP.NET can use this account to verify authorized access to
resources. The following settings can be included in the Web.config file to set
up Windows authentication:

<configuration>

<system.web>

<authentication mode=”Windows” />

<identity impersonate=”true” />

</system.web>

</configuration>

Windows authentication can be a compelling choice for intranet applica-
tions, especially when the user accounts already exist in the domain and a
transparent login can be obtained for users who are already logged into the
domain.

Passport

Microsoft Passport authentication uses centralized authentication that is pro-
vided by Microsoft. Passport offers the ability to provide Single Sign On (SSO)
to multiple sites, and it plays an important role in Microsoft’s Web services
ventures. The following settings can be included in the Web.config file to set
up Passport authentication:

542 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 542

<configuration>

<system.web>

<authentication mode=”Passport” >

<passport redirectUrl=”internal|url” />

</authentication>

<identity impersonate=”false” />

</system.web>

</configuration>

Using Passport authentication requires paying a subscription fee to
Microsoft, and buying and installing special software from Microsoft. More
information can be retrieved from the www.microsoft.com/netservices/
passport Web site.

Forms

With Forms authentication, any unauthenticated requests are automatically
redirected to a Web Form page using a client-side redirect (Response.Redirect)
method. The user must provide the required credentials and submit the page
back for authentication.

If the site authenticates the user, a cookie is issued to the user, which indi-
cates the identity of the user and the authority that authenticated the user.
When the user requests any page on the site, the cookie is passed with the
request. The following settings can be included in the Web.config file to set up
Forms authentication:

<configuration>

<system.web>

<authentication mode=”Forms” >

<forms name=”cookie-name”

path=”cookie-path”

loginUrl=”url”

protection=”protection-mode”

timeout=”number-of-minutes” >

<credentials passwordFormat=”format” >

<user name=”name” password=”pwd” />

</credentials>

</forms>

</authentication>

<identity impersonate=”false” />

</system.web>

</configuration>

Forms authentication is probably the most compelling solution for most
public Web sites. Figure 13.15 shows the communication that takes place in
order to authenticate a user. When a user requests a protected resource from

Site Security 543

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 543

the Web server, the Web server checks to see if an authentication cookie has
been received with the request. If no authentication cookie has been received,
the Web server redirects the user to the login page that was defined using the
loginUrl attribute of the forms attribute. The redirect includes the return URL
in the response querystring, which is the page that was originally requested.
The browser transparently requests the login page, which is displayed on the
browser. After the user enters the appropriate credentials and submits the
login form, the user is authenticated. If the user is authenticated, the user is
redirected to the original page that was requested and an authentication
cookie is sent to the browser. The browser requests the original page and
passes the authentication cookie. The Web server validates the authentication
cookie and responds with the page that was originally selected.

The following is a sample of the settings that are placed in the Web.config
file to set up Forms authentication:

<configuration>

<system.web>

<authentication mode=”Forms” >

<forms name=”AuthTicket”

path=”/”

loginUrl=”login.aspx”

protection=”All”

timeout=”20” >

<credentials passwordFormat=”Clear” >

<user name=”Joe” password=”pwd1” />

<user name=”Mary” password=”pwd2” />

</credentials>

</forms>

</authentication>

<identity impersonate=”false” />

</system.web>

</configuration>

In this example, the name attribute is called AuthTicket, which is the name
of the authentication cookie. The path defines the scope of the cookie, which
typically is set to “/”. The loginUrl attribute is set to login.aspx, which is the
name of the login page that the user is redirected to for authentication.

In this example, the authentication cookie is both validated and encrypted.
The protection attribute may be set to one of the following settings:

All. The authentication cookie is encrypted and validated.

None. No protection.

Encryption. The authentication cookie is encrypted.

Validation. The authentication cookie is validated to ensure that it has
not been tampered with.

544 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 544

Figure 13.15 The communication that takes place in order to authenticate a user when
the user requests a protected resource from the Web server.

The timeout for inactivity is set to 20 minutes. Attempting to retrieve a
resource after 20 minutes of inactivity causes a redirect back to the login page.

The credentials section is optional. This section may be used to define users
who may be authenticated. Currently, this section contains two users. The
password format can be set Clear, SHA1, or MD5.

The credentials section can be useful in a development environment or on a
site that has few users. For larger sites, this section would be abandoned in
favor of a database for storing users.

Forms authentication requires the creation of a login page to collect the
user’s credentials and authenticate the user. This is usually preferred over dis-
playing the gray Windows login pop-up menu. A simple login form can be cre-
ated as shown in Figure 13.16. This form contains a text box for the user’s
name and password, a check box to prompt for persisting the credentials, a
login button, and a label to display messages. The password text box has its
TextMode property set to password to hide the password as it’s being entered.

By default, this form sends the user name and password by clear text. Secure
Sockets Layer encrypted communications should be used to send the login
credentials to the Web server.

Browser
Client

Web Site
Server

6. Authenticate
user

1. Request protected resource
GET mydoc.aspx

8. Request protected resource with authentication cookie
GET mydoc.aspx

3. Get login page - login.aspx?RETURNURL=/mydoc.aspx

5. POST login.aspx?RETURNURL=/mydoc.aspx

4. login.aspx

9. mydoc.asmx

7. Redirect to mydoc.aspx with authentication cookie

2. Redirect to login page
http://www.site.com/login.aspx?RETURNURL=/mydoc.aspx

Site Security 545

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 545

Figure 13.16 A simple login form for Forms authentication.

To authenticate the user, the following code can be placed into the login but-
ton’s click event method:

Imports System.Web.Security

Public Class login

Inherits System.Web.UI.Page

Protected WithEvents txtUserName As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtPassword As _

System.Web.UI.WebControls.TextBox

Protected WithEvents chkRemember As _

System.Web.UI.WebControls.CheckBox

Protected WithEvents btnLogin As System.Web.UI.WebControls.Button

Protected WithEvents lblMessage As System.Web.UI.WebControls.Label

Private Sub btnLogin_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnLogin.Click

If FormsAuthentication.Authenticate(_

txtUserName.Text, txtPassword.Text) Then

FormsAuthentication.RedirectFromLoginPage(_

txtUserName.Text, chkRemember.Checked)

Else

lblMessage.Text = “Authentication Failure.”

End If

End Sub

End Class

The FormsAuthentication.Authenticate method looks in the Web.config file
for the name and password of the user that is attempting to login. This method
returns true if the user is authenticated or false if not.

546 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 546

The FormsAuthentication.RedirectFromLoginPage method creates an en-
crypted cookie, adds it to the response headers, and redirects the user to the
page that was originally requested. The login normally generates a memory-
based session cookie that is valid for the time that is set in the Web.config file,
or until the browser is closed, whichever comes first. If chkRemember is true,
the cookie is persistant at the browser and the user is not required to log back
into the application. The FormsAuthentication class also provides separate
methods to individually perform the steps that the RedirectFromLoginPage
performs when more granular control is required.

Forms Authorization
The only way that a user is directed to the login page is when the user attempts
to access a resource that the user is not authorized to access. In many cases, this
is because the user is logged in anonymously, and the resource may only allow
access to authenticated users.

The default authorization for resources is that everyone has access. This is
set in the machine.config file, and if not overridden, this setting prevails. The
setting is as follows:

<configuration>

<system.web>

<authorization>

<!--

allow/deny Attributes:

users=”[*|?|name]”

* - All users

? - Anonymous users

[name] - Named user

roles=”[name]”

-->

<allow users=”*” />

</authorization>

</system.web>

</configuration>

This authorization tag is used to allow or deny access. This is accomplished
by nesting a combination of allow and deny tags into the authorization tag.
These tags may contain a comma-separated list of names. In addition, the use
of the asterisk denotes all users, and the use of the question mark denotes
anonymous users.

In addition to allowing and denying user access, the authorization tag also
allows roles to be allowed or denied. The Web.config file does not have provi-
sions for adding users to roles, but when using a database to store security

Site Security 547

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 547

information, roles can be added as well. The following example shows how
user and role access can be used:

<configuration>

<system.web>

<authorization>

<allow users=”Joe,Mary” roles=”Admins,Managers” />

<deny users=”*” />

</authorization>

</system.web>

</configuration>

In this example, Joe and Mary have access to the files in the folder that this
Web.config is in. In addition, members of the Admins and Managers role also
have access to the files. All other users are denied access.

The authorization tag may be placed in the machine.config, the Web site
root, each subweb, and each subdirectory. When authorization is required for
a resource, ASP.NET starts looking for a username match in the Web.config file
at the current directory, and continues to search up through the folder struc-
ture until a match is found, or until ASP.NET reaches the machine.config file.
As soon as a match is found with the username, the user receives the matched
permission, which either is allowed or denied. There is no further checking for
additional matches. Figure 13.17 shows the search path for a username match.

Figure 13.17 The search path for a username match. As soon as a match is found, the
search ends, and the user receives the permissions of the match.

Web.config at /customers/sales/reports

allow users="Mary,Joe"

deny users="*"

Web.config at /customers/sales

allow users="Mary"

Web.config at /customers

allow users="Joe"

deny users="*"

Web.config at / (root)

(no entries)

machine.config

allow users="*"

548 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 548

In the figure, Mary and Joe have permission for the files in /customers/
sales. Mary’s permission is quite apparent, since she is explicitly given permis-
sion in that directory. When Joe tries to access a resource in the /customers/
sales folder, ASP.NET looks in the /customers/sales folder for a match. There is
no match for Joe, so ASP.NET looks at the /customers folder and finds a match
for Joe. As soon as this match is found, the search stops and Joe has access.

If another user, named Peter, were trying to access a resource in the /cus-
tomers/sales folder, he would not have permission, because ASP.NET would
search until it found the first match to Peter, which is in the Web.config file in
the /customers folder. The match is on the deny users=”*” line. Because Peter
is a match to all users, Peter receives the matched permission, which is to deny
access. No further searching is done. When it is desirable to stop the searching
through the parent folders, one of two entries should be placed in the Web.con-
fig file: allow users=”*” or deny users=”*”.

Authorization is processed from the top to the bottom of each authorization
tag. The following examples are different. Here is the code for the first example:

<configuration>

<system.web>

<authorization>

<allow users=”Joe” />

<deny users=”*” />

</authorization>

</system.web>

</configuration>

Here is the code for the second example.

<configuration>

<system.web>

<authorization>

<deny users=”*” />

<allow users=”Joe” />

</authorization>

</system.web>

</configuration>

In the first example, Joe has access to the files in this folder. In the second
example, Joe does not have access to the files in the folder. This is because
every user matches on the deny users=”*” tag.

Sometimes it is desirable to set permissions at the file level, instead of at the
folder level. This can be done by using the following syntax inside the
Web.config file:

<configuration>

<location path=”File1.aspx”>

<system.web>

<authorization>

Site Security 549

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 549

<deny users=”?”/>

</authorization>

</system.web>

</location>

<location path=”File2.aspx”>

<system.web>

<authorization>

<deny users=”?”/>

</authorization>

</system.web>

</location>

</configuration>

In many situations, it is desirable to simply deny access to anonymous
users. This is done by using the question mark as follows:

<deny users=”?” />

Using this entry in the authorization tag immediately redirects all anony-
mous users to the login page.

Windows Authorization
Windows Authorization is very similar to Forms authorization. The only dif-
ference is the format of the user names and the ability to use Windows roles.
The following example allows the members of the Administrators role, the
Administrator, and User1 access to resources in the folder that contains this
Web.config file:

<configuration>

<system.web>

<authorization>

<allow roles=”BUILTIN\Administrators”

users=”MYDomain\Administrator, MyDomain\User1”/>

<deny users=”*” />

</authorization>

</system.web>

</configuration>

Notice that the built-in Windows groups have a different prefix from the
user-defined and domain groups. Also notice that the user must be identified
with the computer name or domain name prefix.

Identity and Principal
The .NET Framework defines a common model for working with user infor-
mation. This is through the use of the Identity and Principal classes. In the sim-
plest terms, the Identity class represents a user, while the Principal class

550 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 550

represents the user and the user’s roles. This section explores the use of these
classes from the ASP.NET perspective.

Identity

An Identity object represents an authenticated user, containing at minimum,
the name of the user and the authority that authenticated the user. The .NET
Framework contains the WindowsIdentity, FormsIdentity, GenericIdentity,
and the PassportIdentity classes. An Identity class must implement the IIden-
tity interface, which contains the read-only properties for AuthenticationType,
Name, and IsAuthenticated (see Figure 13.18). It is possible to create custom
Identity classes by simply implementing the IIdentity interface in the custom
class.

The following code example demonstrates how the Identity class can be
used in a Web page. It displays the Identity information for the currently
logged-in user.

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

Dim Message As String

Message = String.Format(“Hello {0}, Authenticated:{1} By:{2}”, _

User.Identity.Name, _

User.Identity.IsAuthenticated, _

User.Identity.AuthenticationType)

Response.Write(Message)

End Sub

Figure 13.18 The Identity classes that are in the .NET Framework. All Identity classes
implement the IIdentity interface.

IIdentity
AuthenticationType
Name
IsAuthenticated

AuthenticationType
Name
IsAuthenticated
Ticket

AuthenticationType
Name
IsAuthenticated
HasTicket
GetProfileObject()

AuthenticationType
Name
IsAuthenticated
IsGuest
IsSystem
Token
GetAnonymous()
GetCurrent()
Impersonate()

AuthenticationType
Name
IsAuthenticated

FormsIdentity GenericIdentity PassportIdentityWindowsIdentity

Site Security 551

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 551

The following message is displayed when using Forms authentication:

Hello Joe, Authenticated:True By:Forms

When using Windows authentication on Windows XP Professional, the
message appears as follows:

Hello GJ\GlennJohnson, Authenticated:True By:Negotiate

This computer is not a member of a Windows domain, so the computer
name (GJ) is placed in front of the username instead of the domain name.

Principal

A Principal object represents the security context that the code is running
under. This is done by encapsulating the user’s identity and the roles to which
the user belongs. Applications that use role-based security grant access to
resources based on the roles that are contained within a Principal object.

The .NET Framework contains the WindowsPrincipal and GenericPrincipal
classes. A Principal class must implement the IPrincipal interface, which con-
tains a property for the current user Identity, and an IsInRole method, which
can be used to determine whether the current user is in a particular role (see
Figure 13.19). It is possible to create custom Principal classes simply by imple-
menting the IPrincipal interface.

Figure 13.19 The Principal classes that are in the .NET Framework. All Principal classes
must implement the IPrincipal interface.

IPrincipal
Identity
IsInRole()

WindowsPrincipal
Identity
IsInRole()

GenericPrincipal
Identity
IsInRole()

552 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 552

In an ASP.NET application, an instance of the Principal object, called User, is
available. User is a property of the HttpContext and the Page class (the Web
Form). The following code example demonstrates the use of the Principal object:

Dim PMessage As String

PMessage = String.Format(“Administrator? {0} Developer? {1}
”, _

User.IsInRole(“BUILTIN\Administrators”), _

User.IsInRole(“GJ\VS Developers”))

Response.Write(PMessage)

The output of this code is as follows:

Administrator? True Developer? True

Another way to test for membership in one of the built-in roles is to use the
WindowsBuiltInRole enumeration. There are enumeration values for each of
the built-in Windows roles. The following code example produces the same
output as the previous example:

Dim PMessage As String

PMessage = String.Format(“Administrator? {0} Developer? {1}
”, _

User.IsInRole(WindowsBuiltInRole.Administrator), _

User.IsInRole(“GJ\VS Developers”))

Response.Write(PMessage)

Forms Authentication Example Using Database Access
This section explores the use of SQL Server to perform Forms authentication,
and includes the use of roles. This example focuses primarily on using SQL
Server data to authenticate the user and construct a Principal object containing
roles from SQL Server.

Database Setup

The SQL Server database is set up with three tables, Users, Roles, and Users-
Roles. The UsersRoles table is a junction table that creates a many-to-many
relationship between the Users and the Roles table. Figure 13.20 shows the
database schema. Each table contains a surrogate primary key, which is an
Identity (autonumber) field.

Site Security 553

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 553

Figure 13.20 The database schema for the Forms authentication example.

The database has been populated with sample data. Figure 13.21 shows the
data that has been added to the tables.

Although stored procedures should be created for all calls to SQL Server,
this sample passes SQL statements to SQL Server in the interest of brevity.

Figure 13.21 The database has been populated with sample data.

554 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 554

Figure 13.22 The default.aspx home page and the protected Data.aspx page.

The Project File and Folder Structure

The Web project is set up to allow access to any file that is in the root of the Web
site. A folder, Private, is created and is accessible only to authenticated users.
A single page, called Data.aspx, is placed into the Private folder, and it con-
tains a button called btnModify, which is available only to users in the Admins
role.

The root of the Web site contains a modified version of the login page that is
shown in Figure 13.16. The code-behind page is modified to access the data-
base. This folder also contains a home page called default.aspx which has a
hyperlink control with a link to the Data.aspx page, as shown in Figure 13.22.

Web.config Settings

The Web.config file in the Web site root must contain the directive to use Forms
authentication. The user credentials are not included since the users are in the
database. The Web.config file also contains authorization to allow access by all
users. The following XML code shows the settings that have been updated in
the Web.config file:

<authentication mode=”Forms”>

<forms name=”AuthTicket”

path=”/”

loginUrl=”login.aspx”

protection=”All”

timeout=”20” >

</forms>

Site Security 555

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 555

</authentication>

<identity impersonate=”false” />

<authorization>

<allow users=”*” />

</authorization>

An additional Web.config file is required in the Private folder to limit access
to resources in this directory. Since this Web.config file is in a subdirectory,
only the permissions should be included. The following XML code is con-
tained in the Web.config file:

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<system.web>

<authorization>

deny users=”?” />

</authorization>

</system.web>

</configuration>

Login Page Authentication

The btnLogin must be changed to perform a lookup in the database. This can
be done by creating a function called SqlValidateUser, which executes a com-
mand to get the count of rows that have the name and password that have
been typed into the login page. If the count is one, then the user is authenti-
cated. The following code contains the updated Login.aspx page. It queries the
database to authenticate the user and, if successful, queries the database for
the list of roles.

Imports System.Security.Principal

Imports System.Web.Security

Imports System.Data.SqlClient

Public Class login

Inherits System.Web.UI.Page

Protected WithEvents txtUserName As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtPassword As _

System.Web.UI.WebControls.TextBox

Protected WithEvents chkRemember As _

System.Web.UI.WebControls.CheckBox

Protected WithEvents btnLogin As System.Web.UI.WebControls.Button

Protected WithEvents lblMessage As System.Web.UI.WebControls.Label

Public Function SqlValidateUser(_

ByVal UserName As String, _

ByVal Password As String) As Boolean

Dim cn As New SqlConnection(_

“server=.;database=northwind;trusted_connection=true”)

556 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 556

Dim Sql As String

Sql = “Select count(*) from Users “

Sql &= “ where UserName=’{0}’ and UserPassword=’{1}’ “

Sql = String.Format(Sql, UserName, Password)

Dim cmd As New SqlCommand(Sql, cn)

Dim valid As Integer = 0

cn.Open()

valid = CType(cmd.ExecuteScalar(), Integer)

cn.Close()

Return (1 = valid)

End Function

Public Function GetRoles() As String

Dim cn As New SqlConnection(_

“server=.;database=northwind;trusted_connection=true”)

Dim Sql As String

Sql = “SELECT RoleName FROM Roles r “

Sql &= “ INNER JOIN UsersRoles ur “

Sql &= “ ON r.RoleID = ur.RoleID “

Sql &= “ INNER JOIN Users u “

Sql &= “ ON u.UserID = ur.UserID “

Sql &= “ WHERE u.UserName=’{0}’ “

Sql = String.Format(Sql, txtUserName.Text)

Dim cmd As New SqlCommand(Sql, cn)

Dim arRoles As New ArrayList()

cn.Open()

Dim dr As SqlDataReader = cmd.ExecuteReader()

While (dr.Read())

arRoles.Add(dr(“RoleName”).ToString())

End While

cn.Close()

Dim roles(arRoles.Count - 1) As String

arRoles.CopyTo(roles)

Return String.Join(“;”, roles)

End Function

Private Sub btnLogin_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnLogin.Click

If SqlValidateUser(txtUserName.Text, txtPassword.Text) Then

Dim tkt As FormsAuthenticationTicket

Dim cookieStr As String

Dim ck As HttpCookie

Dim roles as string = GetRoles()

tkt = New FormsAuthenticationTicket(1, _

txtUserName.Text, DateTime.Now(), _

DateTime.Now.AddMinutes(30), _

chkRemember.Checked, roles)

cookieStr = FormsAuthentication.Encrypt(tkt)

ck = New HttpCookie(_

FormsAuthentication.FormsCookieName(), _

cookieStr)

Site Security 557

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 557

If (chkRemember.Checked) Then

ck.Expires = tkt.Expiration

End If

Response.Cookies.Add(ck)

Dim strRedirect As String

strRedirect = Request(“ReturnURL”)

If strRedirect <> “” Then

Response.Redirect(strRedirect, True)

Else

strRedirect = “default.aspx”

Response.Redirect(strRedirect, True)

End If

Else

lblMessage.Text = “Authentication Failure.”

End If

End Sub

End Class

Notice that the SqlValidateUser call replaces the Forms Authentication
.Authenticate method, which was used to search the Web.config file for a valid
user. The SqlValidateUser method performs a lookup in SQL Server, returning
the count of records that have the same name and password. If the count is
one, the user is validated and the SqlValidateUser returns true.

If the user is valid, the code could simply perform a redirect to the original
page as done in previous examples. The problem is that the user’s roles need
to be retrieved and stored, so future SQL Server lookups are not required dur-
ing the login session. A session variable seems like a compelling choice, but the
roles need to be available in the Application_AuthenticateRequest event
method in the Global.asax.vb page. As it turns out, session variable are not yet
available when this method is called. The next best choice is to place the roles
into a cookie, but the roles must be encrypted to ensure that they can’t be read
and modified by the user. This requires the authentication ticket cookie to be
constructed manually, so the roles can be inserted into the encrypted cookie.

Before the authentication ticket cookie is created, the roles are retrieved by
calling the GetRoles method. This method queries SQL Server for the list of
roles for the current user. The roles are returned in the SqlDataReader. The
roles are moved to an ArrayList, then copied to a String array, and then the
array is joined into a string with the semicolon delimiter and returned.

The FormsAuthenticationTicket class can be used to create the encrypted
authentication cookie. The first argument of the constructor is the version
number. This is reserved for future use, and one is placed into that parameter.
The next argument is the username. The username is simply the name of the
user who is logging in. This also could be the primary key of the Users table, or
it could be some other value that uniquely identifies the user. Then next param-
eter is the date and time that the cookie was issued, and the next parameter is

558 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 558

the expiration date and time of the cookie. These parameters simply use Date-
Time.Now and DateTime.Now.AddMinutes(30) for values. The next parameter
specifies whether the cookie should be persistant, and is set to the value in the
check box. The last parameter allows user data to be added to the cookie. This
parameter is set to the roles.

After the FormsAuthenticationTicket has been created, it is encrypted, and a
new cookie is created based on the cookie name that is in the Web.config file.
The cookie is then placed into the Response’s cookies collection.

The last thing to do is check to see if there is a redirect page. If so, redirect to
the originally requested page. If not, always redirect to the default.aspx page.

Attaching the Roles to the Principal

The user’s roles need to be attached to the Principal object everytime a request
is made to the server. This has to be done as early as possible, in order to
ensure that the user has the permissions that are assigned to the roles.

The roles need to be read from the authentication ticket and then attached to
the Principal object in the Application_AuthenticateRequest method. The fol-
lowing code shows how this is accomplished:

Sub Application_AuthenticateRequest(_

ByVal sender As Object, ByVal e As EventArgs)

If (Not HttpContext.Current.User Is Nothing) Then

If (HttpContext.Current.User.Identity.IsAuthenticated) Then

If (TypeOf HttpContext.Current.User.Identity Is _

FormsIdentity) Then

Dim id As FormsIdentity = _

CType(HttpContext.Current.User.Identity, _

FormsIdentity)

Dim ticket As FormsAuthenticationTicket = _

id.Ticket

‘Get the stored user-data,

‘ in this case, our roles.

Dim userData As String = ticket.UserData

Dim roles As String() = userData.Split(“;”)

HttpContext.Current.User = _

New GenericPrincipal(id, roles)

End If

End If

End If

End Sub

When the userData is retrieved from the authentication ticket, it is a
semicolon-delimited string. This string is then split into an array of strings. A
new GenericPrincipal is created, using the ID from the original Principal object
and the roles that have been extracted form the userData.

Site Security 559

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 559

Declarative Security Authorization
Another method of authorizing users is declarative security. Declarative secu-
rity can be implemented by the use of attributes on methods and classes. From
a code management perspective, this might be a better choice than embedding
the User.IsInRole method in the code.

The PrincipalPermissionAttribute can be used to specify the permissions
that are required in order to execute the code. The following example requires
a user named Glenn, and Glenn must be in the Admins role.

<PrincipalPermissionAttribute(SecurityAction.Demand, _

Name:=”Glenn”, Role:=”Admins”)> _

Private Sub btnModify_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnModify.Click

Response.Write(“Made it!”)

End Sub

The next example requires the user to be a member of the Admins role only.

<PrincipalPermission(SecurityAction.Demand, Role:=”Admins”)> _

Private Sub btnModify_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnModify.Click

Response.Write(“Made it!”)

End Sub

Attributes that end with Attribute can be abbreviated as shown in the previ-
ous example. Also, attributes are supposed to be defined directly in front of the
method in Visual Basic .NET, but in other .NET languages the attribute is
defined on the line before the method. Using the line continuation characters
(space, then underscore), allows placement on the line before while satisfying
the Visual Basic .NET syntactical requirements.

The next example requires the user be authenticated to execute the method.

<PrincipalPermission(SecurityAction.Demand, Authenticated := True)> _

Private Sub btnModify_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnModify.Click

Response.Write(“Made it!”)

End Sub

In the above examples, if the user does not have the required permissions,
an SecurityException is thrown. Any code that calls a method with a Princi-
palPermissionAttribute should wrap the call in a try/catch block.

560 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 560

Imperative Security
Imperative Security can be used to force a security check in a code block. This
can be done with the PrincipalPermission class. The PrincipalPermission class
can be created with a username and role. If the user is Joe, and the role is Man-
agers, only Joe in the Managers role has access to the code that follows. This
means that the user and role are ANDed together, not ORed. For other users, a
SecurityException is thrown.

The user or role may be omitted by passing Nothing as the parameter. This
forces a match on the valid parameter only. The following sample demon-
strates the use of the PrincipalPermission class to allow only Joe in the Man-
agers role access to the code.

Public Sub test()

Dim id1 As String = “Joe”

Dim role1 As String = “Managers”

Dim Perm1 As New PrincipalPermission(id1, role1)

Perm1.Demand()

Response.Write(“Made it!”)

End Sub

Instances of PrinciplePermission objects may be ANDed and ORed together.
This allows many users and roles to be defined, even at different scopes, and
they can be combined as needed to achieve the desired access level. The fol-
lowing example shows how two PrincipalPermission instances can be ORed
together using the Union method. It allows users in the Developers and Man-
agers role to access the following code:

Public Sub test()

Dim id1 As String = Nothing

Dim role1 As String = “Developers”

Dim Perm1 As New PrincipalPermission(id1, role1)

Dim id2 As String = Nothing

Dim role2 As String = “Managers”

Dim Perm2 As New PrincipalPermission(id2, role2)

Dim Perm3 as PrincipalPermission

Perm3 = Perm1.Union(Perm2)

Perm3.Demand()

Response.Write(“Made it!”)

End Sub

The next example shows how two PrincipalPermission instances can be
ANDed together by the Intersect method. The first part of the code creates
Perm3, which contains the Developers and Managers roles. The second part of
the code creates Perm6, which contains Admins and Managers. If Perm3 is
ANDed with Perm6, the result is Managers, since Managers is common to
Perm3 and Perm6. Only Managers may execute the code that follows:

Site Security 561

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 561

Public Sub test()

Dim id1 As String = Nothing

Dim role1 As String = “Developers”

Dim Perm1 As New PrincipalPermission(id1, role1)

Dim id2 As String = Nothing

Dim role2 As String = “Managers”

Dim Perm2 As New PrincipalPermission(id2, role2)

Dim Perm3 as PrincipalPermission

‘Developers and Managers

Perm3 = Perm1.Union(Perm2)

Dim id4 As String = Nothing

Dim role4 As String = “Admins”

Dim Perm4 As New PrincipalPermission(id1, role1)

Dim id5 As String = Nothing

Dim role5 As String = “Managers”

Dim Perm5 As New PrincipalPermission(id2, role2)

‘Admins and Managers

Perm6 = Perm4.Union(Perm5)

Dim Perm7 as PrincipalPermission

‘Just Managers

Perm7 = Perm3.Intersect(Perm6)

Perm7.Demand()

Response.Write(“Made it!”)

End Sub

Imperative Security versus Declarative Security
One of the primary differences between Imperative Security and Declarative
Security is that Declarative Security places its data into the metadata of the
assembly, while Imperative Security places its data into the IL code. Other ben-
efits of Declarative Security actions are as follows:

■■ Actions can be easily viewed without looking through the code.

■■ Actions are expressed on methods and take place at the beginning of
the method. This can help to ensure that code was not executed before
the security check had taken place.

■■ Declarative Security actions can also be placed at the class level. This
causes the security action to take place on every method, constructor,
and property.

Listed below are some benefits of Imperative Security.

■■ Security logic can be much more complex in code. Conditional bodies
of code can have different security actions.

■■ Imperative Security actions can be created dynamically. This allows
security action settings to be dynamically loaded from a database or
XML file.

562 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 562

Code Access Security Basics

One of the problems that has been associated with security in the past is that
security has always been based entirely on the user’s permissions. For exam-
ple, a person who is logged on as an administrator has full permission to exe-
cute virtually any code on the machine, while a person who is logged on as a
simple user has very limited permissions.

This really doesn’t sound like a problem, but it is. The problem becomes
apparent when a hacker finds a way to get the administrator to execute unsafe
code. The unsafe code runs with administrator permissions, doing damage to
everything in its path as it was programmed to do.

Code Access Security can help minimize the problem of users unintention-
ally executing unsafe code. Code Access Security can be used to limit the
resources that code has access to. This means that a hacker who finds a way to
get into the code can still be halted from doing damage because the code itself
only has limited access to resources. This is done by using permissions and
permission sets, by providing evidence of the code’s origin, and by applying
security policies. Evidence about an assembly is used to grant permissions,
based upon a security policy. When code needs to access a resource, a demand
is made for the appropriate permissions, and the .NET Framework security
system determines if the code is able to perform the desired operation.

Evidence
Evidence is the collection of information about an assembly and its origin. Evi-
dence includes the following:

Strong name. This consists of the assembly’s public key, friendly name,
and version.

Publisher. This is the Microsoft Authenticode signature.

Zone. This is the origination of the assembly, such as the local computer,
intranet, or Internet zone.

Location. This is the actual location of the assembly, which can be
expressed as a URL, Universal Naming Convention (UNC) path, or local
computer folder.

Cryptographic hash. This is the cryptographic hash of the assembly.

Some evidence is considered to be stronger that other types of evidence.
Security policies can be based on the strength of the evidence. For example,
strong names and Authenticode signatures are much stronger than the loca-
tion and zone information.

Site Security 563

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 563

Code Access Permissions
Code Access Permissions are the rights to access certain resources. There are
many types of Code Access Permission in the .NET Framework. Many of these
permissions are implemented within the .NET Framework to secure the sys-
tem resources. Table 13.1 contains a list of the Code Access Permissions that
are included in the .NET Framework.

Table 13.1 The Code Access Permissions Included in the .NET Framework

PERMISSION DESCRIPTION

DnsPermission Controls the ability to access DNS servers

EnvironmentPermission Controls access to the system and user
environment variables

EventLogPermission Controls access to the event logs

FileDialogPermission Controls access to file dialog boxes in the user
interface

FileIOPermission Controls access to files and folders on the file
system

IsolatedStorgeFilePermission Controls access to isolated storage

MessageQueuePermission Controls access to message queues

OleDbPermission Controls database access by the OLEDB data
access provider

PerformanceCounterPermission Controls access to performance counters

PrintingPermission Controls access to printers

ReflectionPermission Controls access to type metadata by reflection

RegistryPermission Controls access to the Registry

SecurityPermission Controls ability to execute code, assert
permissions, and call unmanaged code

ServiceControllerPermission Controls the ability to start or stop services

SocketPermission Controls the ability to connect to other
computers by means of sockets

SqlClientPermission Controls database access by the Microsoft SQL
Server data access provider

UIPermission Controls access to windows and other user
interface elements

WebPermission Controls the ability to connect to other
computers by means of HTTP

564 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 564

Working with Code Access Security
The .NET Framework grants a set of permissions to every assembly that is
loaded. These permissions are used to access resources and are permission sets.
The security policy looks at the assembly’s evidence and decides what per-
missions should be assigned to the assembly.

Code Groups

Code groups are used to define the permissions that an assembly should
receive. An assembly can be a member of many code groups. When a code
group is created, it is assigned a membership condition and a set of permis-
sions that its members should receive. For example, there is a code group
called Internet_Zone. Its membership condition is that the assembly be located
on the Internet. It has no permissions. There is another code group called
My_Computer_Zone. Its membership condition is that the assembly be
located on the current user’s machine. This code group has several permis-
sions assigned to it. The assembly receives the union of the permissions that
are assigned to every code group of which it is a member.

Security Policy Levels

Security policy levels are levels of security that may be applied for the Enter-
prise, the Local Computer, the User, and the Application Domain. Each of
these policy levels contains its own hierarchy of code groups. The Enterprise
policies can be set by the network administrator, and affect all managed code
in the domain. The Local Computer policies can be set by the local computer
administrator. The User policies can be set by the local user or local adminis-
trator. The Application Domain policies are optional and provide isolation,
unloading, and security boundaries that are used for managed code execution.

An assembly’s effective permissions are calculated by looping through each
policy level. Within each policy level, the assembly’s evidence is collected and
code group membership is evaluated. Permissions are assigned based on code
group membership. The assembly receives the union of the permissions, based
on code group membership. The resultant permissions are then intersected
with the permissions of the next policy, and so on (see Figure 13.23).

The effective security permissions that an assembly has can be different on
every machine. This means that the developer must be intimately involved
with the runtime security system, using Declarative and Imperative security
calls. The runtime already contains security calls for the system resources, to
ensure that the required permissions are assigned to the assembly.

Site Security 565

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 565

Figure 13.23 The calculation of an assembly’s effective permissions.

Requested Permissions

The developer needs to document all permissions that are required throughout
the assembly, request the desired permissions through Declarative and Imper-
ative security calls, and perform testing with the minimum security policy.

Declarative permissions may also be assigned at the assembly level, by plac-
ing the Declarative permission request inside the AssemblyInfo.vb file and
using the Assembly prefix in the attribute, before the desired permission
request. An example of an assembly permission request is as follows:

‘Imports statements required for the following permission

Imports System.Security

Imports System.Security.Permissions

Imports System.Diagnostics

‘The actual permission request.

<Assembly: EventLogPermission(SystemSecurityAction.RequestMinimum)>

This attribute requests EventLogPermission from the .NET security system.
If the permissions are not granted, the assembly does not load.

In addition to requesting individual permissions, the .NET Framework pro-
vides permission sets that can be used to request many permissions in one
attribute. Table 13.2 contains a list of the permission sets that are available in
the .NET Framework.

The assembly permission request types are RequestMinimum, RequestOp-
tional, and RequestRefuse. These types are evaluated when the assembly is
loaded.

Retrieve Evidence
from Assembly

Retrieve Evidence
from Assembly

My_Computer_Zone

Strong Name

Code Groups 3

Permissions

Permissions

Permissions

UNIONed
Permissions

Assign into
Code Groups

Intersect Policy Permissions

• Enterprise
• Machine
• User
• Application Domain

566 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 566

Table 13.2 The Permission Sets Available in the .NET Framework

PERMISSION SET DESCRIPTION

Nothing This set provides no permissions. Code cannot run
with this permission.

Execution This provides permission for code to run.

Internet This permission set allows code to execute and
create top-level windows and file dialog boxes.
This code can also make Internet connections to
the same site that the assembly came from, and
use Isolated Storage with a quota. All code from
Trusted zone receives this permission set.

LocalIntranet This permission set allows code to execute and
unrestricted creation of user interface elements.
This allows unrestricted use of isolated storage
with no quota. This also allows DNS usage, and
the reading of the USERNAME, the TEMP, and TMP
environment variables. This code can also make
Internet connections to the same site that the
assembly came from. This permission set also
allows files to be read that are in the same folder.
All code from the LocalIntranet zone receives this
permission set.

Everything This permission set contains all standard
permissions except the permission to skip
validation.

FullTrust This permission set provides full access to all
resources. All code from the LocalComputer zone
receives this permission set.

The RequestMinimum request is used to define the minimum permissions that
are required in order for the assembly to operate effectively. If these permissions
are not granted, the .NET runtime throws a policy exception and the assembly is
not loaded. If a request is not made for minimum permissions, the permissions
that are granted are the equivalent to a RequestMinimum of Nothing.

The RequestOptional request is used to define the permissions that the code
could use to run more efficiently, but the code still operates even if the permis-
sions are not granted. The assembly still is allowed to load and run, even when
these permissions are not granted. If a request is not made for optional per-
missions, the permissions that are granted are equivalent to a RequestOptional
of FullTrust. This is an important point, because your code ends up requesting,
and possibly receiving full permissions. It’s better to add code for a
RequestOptional of Nothing, which won’t give the assembly any extra per-
mission. This forces the assembly to run with the least permissions.

Site Security 567

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 567

The RequestRefuse permission is used to identify permissions that the assem-
bly is never to be granted, even if the security policy allows the permission to
be granted. If a request is not made for the RequestRefuse permission, the per-
missions that are granted are equivalent to a RequestRefuse of Nothing.

The permissions that are finally granted (FG) to the assembly are based on
the security policy permissions (SP) intersected with the permissions that were
requested by the assembly. The permissions that were requested are the union
of the RequestMinimum (M) and RequestOptional (O), minus the RequestRe-
fuse (R), as shown below.

FG = SP ∩ ((M ∪ O) - R)

Some other examples of assembly permission requests are as follows:

<Assembly: UIPermissionAttribute(_

SecurityAction.RequestMinimum, _

Window:=UIPermissionWindow.AllWindows, _

ClipBoard:=UIPermissionClipboard.NoClipboard)>

This example requests a minimum UIPermission for AllWindows and
NoClipboard.

<Assembly:PermissionSet(_

SecurityAction.RequestOptional, _

Unrestricted:=false)>

This code optionally requests no access. This means that this assembly does
not receive any permissions other that the permissions that were minimally
requested.

Exception Handling

Using security requires exception handling to be added to code in order to grace-
fully handle any potential security exception that may be thrown. Exception han-
dling can be done with try/catch blocks, as shown in the following code:

Imports System.Security

Imports System.IO

Dim fs As FileStream

Try

fs = New FileStream(“C:\myFile.txt”,FileMode.Create)

Catch xcp As SecurityException

‘ Display error message.

Response.Write(“Security Exception: “ & xcp.Message)

End Try

568 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 568

Security Policy Administration

The Microsoft .NET Framework Configuration (Mscorcfg.msc) tool can be
used to review and change the security policies. This tool is located under
Administrative Tools. Figure 13.24 shows the Microsoft .NET Framework Con-
figuration tool. This tool has a node called the Runtime Security Policy, which
contains a node for Enterprise, Machine, and User policy settings. Each of
these nodes has Code Groups, Permission Sets, and Policy Assemblies nodes.

Figure 13.24 shows the Machine node, and its subnodes, fully opened. The
Code Groups node has one top level code group, called All_Code. A glance at
the properties of this node reveals that the Membership Condition to this code
group is All Code. This means that all assemblies are a member of this group.
The permission set for this node is Nothing, which means that no permissions
are assigned at this level. Since there is a match at this level, the security sys-
tem searches for membership in subnodes as well.

Under the All Code node is a node for each of the zones, which represents
the location of the assembly that is to be evaluated. If the assembly is located
on the computer, the assembly is a member of the My_Computer_Zone. The
Permission Set for this node is Full Trust, which means that an assembly that
is located on the local computer has full trust.

Figure 13.24 The Microsoft .NET Framework Configuration tool.

Site Security 569

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 569

Under the My_Computer_Zone are two more nodes, Microsoft_Strong_
Name and ECMA_Strong_Name. Membership to these nodes is based on the
assembly having a specific public key. The permission set for these nodes is
Full Trust. These permissions are UNIONed with the permissions that the
assembly has already acquired. As it turns out, the My_Computer_Zone is
already assigned Full Trust, but if these permissions were reduced at this node,
Microsoft and ECMA strong-named assemblies would still receive Full Trust.

The permissions that are granted finally are not based simply on the
Machine node. These permissions must be INTERSECTed with the Enterprise
and User policy settings. As it turns out, the default settings for these groups
are Full Trust. This means that by default, the Machine node settings are the
permissions that are finally granted.

Testing Code Access Security

To test Code Access Security, a new code group, called Ch13Test, has been cre-
ated under the Machine’s All_Code/My_Computer_Zone node. This mem-
bership condition for this group is set to URL, and the URL is set to the
following location:

file://D:/AspDotNetBook/Book/ASPdotNet Security/Ch13Web/bin/TestAccess.dll

This is the location of a .dll file to which the Web site has a reference. On the
next screen, a new permission set is created, called ch13permission. The per-
mission set has Security added, with Enable Assembly Execution and Assert
any permission that has been granted selected. This permission set also has
FileIO added, with c:\xml read permissions added.

The TestAccess class has the following code:

Imports System.Data.SqlClient

Imports System.Security.Permissions

Imports System.Security

Public Class TestClass

Public Function GetData() As DataSet

Dim ds As New DataSet()

ds.ReadXml(“C:\xml\myfruit.xml”)

Return ds

End Function

End Class

570 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 570

A page on the Web site contains a Button and a DataGrid. The Button’s click
event method contains the following code to get the myfruit.xml file and dis-
play it in the grid.

Imports System.Data.SqlClient

Imports System.Security.Permissions

Public Class WebForm2

Inherits System.Web.UI.Page

Protected WithEvents btnGetData As _

System.Web.UI.WebControls.Button

Protected WithEvents DataGrid1 As _

System.Web.UI.WebControls.DataGrid

Public Sub GetData()

Dim c As New TestAccess.TestClass()

DataGrid1.DataSource = c.GetData()

DataBind()

End Sub

Private Sub btnGetData_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnGetData.Click

GetData()

End Sub

End Class

This code should be able to make a call to populate the grid, as shown in Fig-
ure 13.25. The myfruit.xml file was read into a DataSet, and the DataSet was
returned to the Web page, and bound to the grid.

If the myfruit.xml file is moved to c:\myfruit.xml, the code should not be
able to run, as shown in Figure 13.26. This throws a security exception, stating
that there is a FileIOPermission problem.

Figure 13.25 The TestAccess.dll file has access to the c:\xml folder.

Site Security 571

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 571

Figure 13.26 Trying to access a file in a location that permissions have not been assigned
for throws a security exception.

Lab 13.1: Adding Forms Authentication

In this lab, you add Forms authentication to the Customers Web site. You
create a simple list of users, which are placed in the Web.config file. After
Forms authentication is added, you test the application by trying to view
the CustomerList.aspx page, which is only available to users who are
logged into the Web site.

Adding the Login Page
In this section, you add a new Web page called login.aspx.

1. To start this lab, open the OrderEntrySystemSolution from Lab 12.1.

2. Right-click the OrderEntrySystemSolution in the Solution Explorer,
and click Check Out.

3. Add a new Web Form, called login.aspx, to the Customers site.

4. Add a TextBox for the username and another TextBox for the password.

5. Add a CheckBox that the user can select to have the application
remember the login credentials.

6. Add a logon Button and a Label for any message that is to be
displayed.

7. Your login page should look like the one that is shown in Figure 13.16.

572 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 572

8. Add the following code to authenticate the user and redirect the
user to the page that was originally requested.

Imports System.Web.Security

Public Class login

Inherits System.Web.UI.Page

Protected WithEvents txtUserName As

System.Web.UI.WebControls.TextBox

Protected WithEvents txtPassword As _

System.Web.UI.WebControls.TextBox

Protected WithEvents chkRemember As _

System.Web.UI.WebControls.CheckBox

Protected WithEvents btnLogin As _

System.Web.UI.WebControls.Button

Protected WithEvents lblMessage As _

System.Web.UI.WebControls.Label

Private Sub btnLogin_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles btnLogin.Click

If FormsAuthentication.Authenticate(_

txtUserName.Text, txtPassword.Text) Then

FormsAuthentication.RedirectFromLoginPage(_

txtUserName.Text, chkRemember.Checked)

Else

lblMessage.Text = “Authentication Failure.”

End If

End Sub

End Class

Modify the Web.config File
In this section, you make changes to the Web.config file to enable Forms
authentication and protect the CustomerList.aspx page from being
viewed by anonymous users.

1. Open the Web.config file.

2. Locate the <authentication mode=”Windows”> tag. Replace this tag
with a tag to enable Forms authentication. Within the forms tag, add
credentials for three users. Your code should look like the following:
<authentication mode=”Forms”>

<forms name=”AuthTicket” protection=”All”

loginUrl=”login.aspx” path=”/” timeout=”20”>

<credentials passwordFormat=”Clear” >

<user name=”John” password=”hi2u” />

<user name=”Mary” password=”hi2uAll” />

<user name=”Glenn” password=”hi2u2” />

</credentials>

</forms>

</authentication>

Site Security 573

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 573

3. Add code to authorize nonanonymous users to view the Cus-
tomerList.aspx page. Your code should look like the following. This
code should be located between the </system.web> and the </con-
figuration> tags that are at the bottom of the Web.config file.

<location path=”CustomerList.aspx”>

<system.web>

<authorization>

<deny users=”?”/>

</authorization>

</system.web>

</location>

Test the Login Page
To test the application’s ability to force a login if someone tries to access
the CustomerList.aspx page, the CustomerList page must be set as the
startup page, and the project can be started. The login.aspx page should
be displayed, instead of the CustomerList.aspx page. After logging in, the
CustomerList.aspx page should be displayed.

1. Right-click the CustomerList.aspx page in the Solution Explorer, and
click Set As Start Page.

2. Run the application. The login.aspx page should be displayed.

3. Log in with one of the accounts that you created. You should be
redirected to the CustomerList.aspx page.

4. Save the Solution and check it back into Visual SourceSafe.

574 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 574

Site Security 575

Summary

■■ Authentication is the process of obtaining identification credentials,
such as name and password, from a user and validating those creden-
tials against an authority.

■■ Authorization is the process of determining whether a user should be
granted a specific type of access to a resource.

■■ Impersonation is the process of allowing applications to execute with
the identity of the client on whose behalf they are operating.

■■ Delegation is impersonation across computers. Although imperson-
ation works fine within a machine, it fails when attempting to access
resources across machines.

■■ Secure Sockets Layer (SSL) communication provides encrypted commu-
nications when private data is being sent across the network.

■■ An Identity object represents an authenticated user containing, at
minimum, the name of the user and the authority that authenticated
the user.

■■ A Principal object represents the security context that the code is run-
ning under. This is done by encapsulating the user’s identity and the
roles to which the user belongs.

■■ Code Access Security can help minimize the problem of users uninten-
tionally executing unsafe code. Code Access Security can be used to
limit the resources to which code has access.

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 575

Review Questions

1. What are the three types of authentication that ASP.NET supports?

2. What is required in order to enable SSL communications?

3. When is the IUSR account used, and when is the ASPNET account used?

4. What does the <deny users=”?”/> tag mean?

5. What are the four security policy levels?

576 Chapter 13

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 576

Answers to Review Questions

1. Forms, Windows, and Passport.

2. A digital certificate.

3. The IUSR account is the anonymous account that is used when identity impersonation
is set to true. The ASPNET account is the anonymous account that is used when imper-
sonation is false.

4. Deny anonymous users.

5. Enterprise, Machine, User, and Optionally AppDomain.

Site Security 577

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 577

o 430234 Ch13.qxd 7/1/03 9:05 AM Page 578

579

One of the most common questions that a customer will ask is “How many
users will this Web site be able to handle?” and the most common answer is,
“It depends.” It depends on the equipment that is being used, the bandwidth
available to the Web site, the processor speed, the quantity of processors,
memory, disk access speed, the software, and many other factors.

Load testing can help you identify how many users the Web site can handle.
Load testing typically encompasses the areas of performance, scalability, and
stability. It’s important to address these areas in all phases of development to
ensure that there are no surprises when the system is being deployed. Even if
the system has undergone serious load testing prior to deployment, there is
always a chance that new bugs will surface, or that the hardware won’t per-
form as well as was expected.

In many cases, a small change to the code can have an enormous impact on
the performance of a Web site, so knowing the tools to use can help you iden-
tify potential problems much earlier. This chapter covers several performance
tools covered in detail. In addition, several tips and tricks will be explored in
detail.

The topics that are covered in this chapter are not meant to replace formal
load testing. Instead, the topics in this chapter are intended to help you think
about performance before formal load testing starts. To be more explicit, this

Performance Tuning and
Application Instrumentation

C H A P T E R

14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 579

chapter focuses on developer’s ability to optimize the software, although the
developer’s ability to identify potential hardware bottlenecks can play a key
role in determining the hardware that should be provided in the production
system.

Classroom Q & A
Q: Is there a way to see the debug messages when running my Web

application without using Visual Studio .NET?
A: Yes. The Window Platform SDK provides a program called

DbMon.exe that can be run on the Web server. This is a console
application that will display debug and trace messages. Debug
and trace are covered in detail in this chapter.

Q: Is there a way to load test a Web server that is running on Win-
dows XP Professional to see how many connections the server can
handle?

A: Well, that’s a loaded question. The answer is yes, but you don’t
need to perform a load test to find out. As it turns out, Windows
2000 Professional and Windows XP Professional have a 10-
connection limit. After the connection limit has been reached, the
Web server will refuse to process additional requests.

Q: Is there a way to create a Performance Monitor counter for my
Web application?

A: There sure is. The .NET Framework provides classes that simplify
the creation of Performance Monitor counters. This is covered in
detail in this chapter.

Load Testing

Load testing involves the creation of a testing environment that closely
matches the environment of the production system. Ideally, this environment
should match the production environment. The problem is that it is difficult to
extrapolate calculations from different equipment to predict the performance
of the production equipment. If new equipment is being supplied for the Web
site, the new equipment could be used in the load-testing phase to help predict
the quantity of users that the Web site can handle.

Formal load testing should be implemented to identify the quantity of users
that the Web site can handle, as well as to identify scalability issues.

580 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 580

Performance Tuning in a Development
Environment

Performance tuning is the process of running specific tests on isolated parts of
the software, making changes to the software, and rerunning the tests in an
effort to identify bottlenecks and increase the performance of the software.

Many types of performance tuning can be done in the development envi-
ronment, because many of the tests are relative tests. This means that each test
is meant to identify whether the performance increased or decreased with
each test. It would be difficult to perform Web farm performance tuning in a
development environment, because most development environments don’t
have Web farms. On the other hand, it’s easy to test the relative performance of
a Web page on the developer’s machine. The developer can test changes to the
Web page code to obtain the fastest relative performance of the Web page.

Performance tuning in a development environment is not meant to identify
the quantity of users that the Web site can handle, but successful performance
tuning in the development environment increases the quantity of users that
the Web site can handle.

Identifying Bottlenecks

Identifying bottlenecks is the process of interpreting load test data and inves-
tigating system performance in an effort to locate the slowest parts of the sys-
tem. Eliminating a bottleneck can result in substantial gains in performance to
the overall system.

Locating bottlenecks in a development environment can be difficult at best.
The problem is that a bottleneck in the development environment may not be
a bottleneck in the production environment. For example, a bottleneck may
exist when communicating to the SQL Server database. This may be due to the
type of hardware that the developers are using, the bandwidth that is avail-
able, or the quantity of users. Most of these bottlenecks will not exist in the
production environment. There may be different bottlenecks in the product
environment.

In every case, when a bottleneck is identified, it should be documented and
the software should be optimized to get the best possible performance. In
cases where tuning requires hardware modification or trade-offs, it’s better to
document and retest within the proper environment.

Proper load and performance testing requires the establishment of a
baseline, and revisiting the baseline after changes have been made. This
is the only way to identify whether a change to the system has had an
impact on performance.

Performance Tuning and Application Instrumentation 581

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 581

Performance and Instrumentation Tools

This section identifies some of the tools that are available within Visual Studio
.NET. The first part of this section covers some of the classes that are in the Sys-
tem.Diagnostics namespace, such as Debug and Trace. These tools are useful
when logging data that can be evaluated to identify potential bottlenecks.

Debug
The System.dll file contains the Debug class, which can be used to obtain infor-
mation when running an application that has been compiled using the debug
switch. The use of the Debug class requires the application to be compiled with
the /d:DEBUG=True switch. In Visual Studio .NET, this can be done by click-
ing the project in the Solution Explorer, and then clicking Build, Configuration
Manager, Debug. When the application is compiled for release, the debug code
is not included in the compiled application. By default, the debug information
is written to the Visual Studio .NET output window. This can be changed to
send the information to a stream with the use of trace listeners, as shown in
Figure 14.1.

Assert

Assert is used to test a condition, and if the condition evaluates to false, the
assertion message will be output. The following code is an example of using
debug.assert to check a counter and display a message in the Visual Studio
.NET output window.

Debug.Assert(Count <> 0, “Count=0 Error”, _

“Count must not be 0 because the Count will be used for division.”)

The output of this code shows up in the Visual Studio .NET output window,
and looks like the following:

---- DEBUG ASSERTION FAILED ----

---- Assert Short Message ----

Count=0 Error

---- Assert Long Message ----

Count must not be 0 because Count is the denominator in next function.

at WebForm1.Button1_Click(Object sender, EventArgs e)

D:\AspDotNetBook\Book\ASP.NET Performance

Tuning\Ch14Web\WebForm1.aspx.vb(31)

at Button.OnClick(EventArgs e)

at Button.System.Web.UI.IPostBackEventHandler.RaisePostBackEvent

(String eventArgument)

at Page.RaisePostBackEvent(IPostBackEventHandler sourceControl,

582 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 582

String eventArgument)

at Page.RaisePostBackEvent(NameValueCollection postData)

at Page.ProcessRequestMain()

at Page.ProcessRequest()

at Page.ProcessRequest(HttpContext context)

at CallHandlerExecutionStep.Execute()

at HttpApplication.ExecuteStep(IExecutionStep step,

Boolean& completedSynchronously)

at HttpApplication.ResumeSteps(Exception error)

at HttpApplication.System.Web.IHttpAsyncHandler.BeginProcessRequest(

HttpContext context, AsyncCallback cb, Object extraData)

at HttpRuntime.ProcessRequestInternal(HttpWorkerRequest wr)

at HttpRuntime.ProcessRequest(HttpWorkerRequest wr)

at ISAPIRuntime.ProcessRequest(IntPtr ecb, Int32 iWRType)

This code performs the test expression when the value of Count is 0. The
assertion message is displayed with the call stack to help you understand how
the software got to this point in the code.

Write, WriteLine

These methods output debug information. The Write method does not append
a new line to the end of the information, whereas the WriteLine method does
append a new line to the end of the information. The following is an example
of the WriteLine method:

Debug.WriteLine(“End of button click event”)

Figure 14.1 The Debug and Trace output may be directed to many locations by using any
combination of TraceListener classes.

Output Window

DefaultTraceListener

Text File

Text File

TextWriterTraceListener

File Stream

Application Log

EventLogTraceListener

Custom Log

Listeners
Collection

Debug.Write
or

Trace.Write

Performance Tuning and Application Instrumentation 583

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 583

WriteIf, WriteLineIf

These methods conditionally output debug information. These methods have
a Boolean expression parameter and a message parameter. The following is an
example of the WriteLineIf method:

Debug.WriteLineIf(x=0,”x is set to zero”)

Fail

This Fail method outputs debug information and is typically used inside
exception catch blocks. The Fail event is essentially an Assert method that
always evaluates to false. Like Assert, this method has a message parameter
and a detail message parameter. The following is an example of the Fail
method:

Debug.Fail(“Count=0 Error”, _

“Count must not be 0 because the Count will be used for division.”)

Trace
The System.dll file contains the Trace class, which can be used to obtain infor-
mation while the system is running. At times, such as when working with a
multitier or multithreaded application, using the debugger to retrieve data
doesn’t work. This is where tracing can provide troubleshooting data. You
enable tracing by adding the /d:TRACE=True switch when compiling the
code. By default, the trace switch is enabled in Visual Studio .NET, which
means that trace code is compiled into the debug and release builds of appli-
cations, which produces instrumented builds. Instrumentation provides the
ability to monitor the health of an application running in real time. Tracing
helps isolate problems without disturbing a running application. All the meth-
ods of the Debug class are included in the trace.

Two Trace classes exist: System.Diagnostics.Trace and System.Web.UI.Page
.Trace. The System.Diagnostics.Trace class is covered here, and System.Web
.UI.Trace is covered later in this chapter. To ensure that the correct Trace class
is used, you can specify the full path to System.Diagnostics.Trace, or create an
alias at the top of the Web page as follows:

Imports DiagTrace = System.Diagnostics.Trace

With the alias of DiagTrace, it is easy to call Trace or DiagTrace to get to
either of the Trace classes. The alias is used in the examples that follow.

584 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 584

Switches
Switches can be used in an application to control the Debug and Trace output
from the application’s configuration file. Two concrete switch classes inherit
from the abstract (MustInherit) Switch class: BooleanSwitch and TraceSwitch.

BooleanSwitch

You can set the BooleanSwitch to 1 or 0 in the Web.config file, as shown in the
following example:

<configuration>

<system.diagnostics>

<switches>

<add name=”myBoolSwitch” value=”0” />

<add name=”myOtherBoolSwitch” value=”1” />

</switches>

</system.diagnostics>

</configuration>

To use these switches in the program, you can create instances of the
BooleanSwitch and use them in any conditional statement, such as
Debug.WriteIf, Trace.WriteLineIf, or a simple If statement. The following sam-
ple shows how the BooleanSwitch class can be used:

Imports DiagTrace = System.Diagnostics.Trace

Public Class WebForm1

Inherits System.Web.UI.Page

Shared myBool As New BooleanSwitch(_

“myBoolSwitch”, “This is a boolean switch”)

Shared myOtherBool As New BooleanSwitch(_

“myOtherBoolSwitch”, “This is a Boolean switch”)

Private Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Debug.WriteLineIf(_

myBool.Enabled, “myBoolSwitch is on”)

Debug.WriteLineIf(_

myOtherBool.Enabled, “myOtherBoolSwitch is on”)

DiagTrace.WriteLineIf(_

Not myBool.Enabled, “myBoolSwitch is off”)

DiagTrace.WriteLineIf(_

Not myOtherBool.Enabled, “myOtherBoolSwitch is off”)

End Sub

End Class

Performance Tuning and Application Instrumentation 585

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 585

The output is as follows:

myOtherBoolSwitch is on

myBoolSwitch is off

When the first switch is checked, the Switch class reads all switch settings
from the Web.config file. The settings are stored in a private HashTable inside
the Switch class. When any other switch is checked, the value is retrieved from
the Switch class’s internal HashTable.

For optimum performance, Switch instances should be configured as
static (shared) variables. The switches in previous code example,
myBoolSwitch and myOtherBoolSwitch, are examples of the proper
configuration.

TraceSwitch

The TraceSwitch is similar to the BooleanSwitch, except TraceSwitch is multi-
valued. The values that the TraceSwitch can handle are included in the
TraceLevel enumeration as shown in Table 14.1.
You set the TraceSwitch in the Web.config file as follows:

<configuration>

<system.diagnostics>

<switches>

<add name=”myTraceSwitch” value=”4” />

</switches>

</system.diagnostics>

</configuration>

Table 14.1 TraceLevel Values

TRACELEVEL VALUE

Off 0

Error 1

Warning 2

Info 3

Verbose 4

586 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 586

When the TraceSwitch is set to 4, all the levels will be output. If the switch is
set to 3, levels 1 through 3 will output, and so on. The following code example
uses the TraceSwitch:

Imports DiagTrace = System.Diagnostics.Trace

Public Class WebForm1

Inherits System.Web.UI.Page

Shared myTrace As New TraceSwitch(_

“myTraceSwitch”, “This is a Trace switch”)

Private Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Debug.WriteLineIf(_

myTrace.TraceVerbose, “This is the Verbose Trace = 4”)

Debug.WriteLineIf(_

myTrace.TraceInfo, “This is the Info Trace = 3”)

DiagTrace.WriteLineIf(_

myTrace.TraceWarning, “This is the Warning Trace = 2”)

DiagTrace.WriteLineIf(_

myTrace.TraceError, “This is the Error Trace = 1”)

End Sub

End Class

The output of the code when the trace setting is set to 4 is as follows:

This is the Verbose Trace = 4

This is the Info Trace = 3

This is the Warning Trace = 2

This is the Error Trace = 1

If the value of the trace setting is changed in the Web.config file, the Switch
class rereads the Web.config file and uses the new settings.

Debug Monitor Utility
The Debug Monitor Utility (DbMon.exe) is a tool that displays the messages
that have been written to the OutputDebugString function in the Kernel32
API. This tool can display Trace and Debug messages that have been written
using the DefaultTraceListener. The Debug Monitor Utility is provided with
the Windows Platform SDK. Figure 14.2 shows the Trace output when running
the previous Trace example code. The benefit of this tool is that a program that
contains many trace messages can be run outside of Visual Studio .NET and
the Debug Monitor Utility will listen for the trace messages and display them.
This does not require a recompilation of the program, and the program works
normally as the messages are displayed.

Performance Tuning and Application Instrumentation 587

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 587

Figure 14.2 The Debug Monitor Utility displays Trace and Debug output.

This tool works when the Web application is run outside the Visual Studio
.NET debugger. The Visual Studio .NET debugger contains its own output
window that displays the DefaultTraceListener output.

TraceListener
You can use TraceListener to direct Debug or Trace output to an alternate loca-
tion, such as a stream, file, or an event log. Debug and Trace have a Listeners
collection, which enables you to add many Listeners. The TraceListener class is
a base class for the DefaultTraceListener, TextWriterTraceListener, and the
EventLogTraceListener. Debug and Trace automatically receive an instance of
the DefaultTraceListener.

DefaultTraceListener

The DefaultTraceListener sends its output to the output window, but also has
a LogFileName property that you can use to direct the output to a file.

The following code directs the Debug output to a file. Note that the out-
put still goes to the output window, and both outputs contain stack trace
information.

Dim defListener As DefaultTraceListener

defListener = CType(Debug.Listeners(0), DefaultTraceListener)

defListener.LogFileName = “c:\defautListener.txt”

Debug.Assert(Count <> 0, “Count=0 Error”, _

“Count must not be 0 because the Count will be the denominator” & _

“ in the next function.”)

588 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 588

TextWriterTraceListener

It may not be desirable to see the stack trace information, which is generated
by the DefaultTraceListener. The following code creates a TextWriterTraceLis-
tener, which is used to output Debug information to a text file and does not
generate stack trace information to the file.

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the application is started

Dim fname As String = “C:\debug.txt”

Dim fs As New FileStream(fname, FileMode.OpenOrCreate, _

FileAccess.Write)

Dim tr As New TextWriterTraceListener(fs, “file”)

Debug.Listeners.Add(tr)

Debug.AutoFlush=true

End Sub

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the application ends

Dim tr As TraceListener

tr = Debug.Listeners(“file”)

tr.Close()

Debug.Listeners.Remove(“file”)

End Sub

This code opens a file when the Web application starts and closes the file
when the Web application ends. Notice that AutoFlush is set to true to ensure
that data is not held in the buffer for a long period.

EventLogTraceListener

Use the EventLogTraceListener to output Debug and Trace information to an
event log. The following example creates an instance of the EventLog class and
then an instance of the EventLogTraceListener with the EventLog instance.

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the application is started

Dim elog As New EventLog(“Application”)

elog.Source = “Ch14Web”

Dim el As New EventLogTraceListener(elog)

el.Name = “eventLog”

Debug.Listeners.Add(el)

End Sub

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the application ends

Performance Tuning and Application Instrumentation 589

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 589

Dim el As TraceListener

el = Debug.Listeners(“eventLog”)

el.Close()

Debug.Listeners.Remove(el)

End Sub

The Application_Start event method creates the EventLogTraceListener and
adds it to the Debug.Listeners collection. The Application_End event method
removes the EventLogTraceListener. Figure 14.3 shows the event in the Appli-
cation event log.

When a new source is being defined, the EventLogTraceListener code
shown in this section attempts to create the event log source on the fly.
This requires the write permissions in the Registry that the default
ASPNET account does not have. If the event log source already exists, no
additional permissions are required for the ASPNET account. To correct
the problem, temporarily turn on impersonation in the Web.config file by
adding the following tag after the authentication tag:

<identity impersonate=”true” userName=”admin” password=”pwd”/>

Figure 14.3 The Application event log showing events that have been written to the log
using the EventLogTraceListener.

590 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 590

Web Trace
The previous sections covered the System.Diagnostics.Trace class, but the Sys-
tem.Web.UI.Page class has a Trace property, which is an instance of the Trace-
Context class. This class provides a simple solution to Web page
instrumentation by building an HTML representation of the Trace output
information.

With ASP, the developer used Response.Write statements to display various
bits of information to help with debugging a Web page. With Trace, the debug-
ging information can be easily turned on or off. The Trace output displays the
Trace messages that have been added to the code and displays information
about the Web page, such as the QueryString, the form data, header informa-
tion, and the time that was required to build the page.

Trace provides you with the ability to perform page- or application-level
tracing. Page-level tracing is configured at the Web page; whereas application-
level tracing is configured in the Web.config file.

Trace information is written by using the Trace.Write and Trace.Warn meth-
ods. Trace.Warn displays its message using red font.

Page-Level Trace

You turn on page-level tracing at the Web page by placing the following code
at the top of the HTML page:

<%@ Page Trace=”true” TraceMode=”SortByCategory” %>

After tracing is turned on at the page, the trace output is appended to the
Web page output. If the PageLayout is set to FlowLayout, the trace output
appears at the bottom of the Web page. If the PageLayout is set to GridLayout,
the trace output is displayed as a background to the page. The following sam-
ple code produces the output shown in Figure 14.4:

Public Class WebForm2

Inherits System.Web.UI.Page

Protected WithEvents Button1 As System.Web.UI.WebControls.Button

Private Sub btnLogin_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnLogin.Click

Trace.Write(“Button1”, “This is the start of Button1_Click”)

Trace.Warn(“Button1”, “In the middle of Button1_Click”)

Trace.Write(“Button1”, “This is the end of Button1_Click”)

End Sub

End Class

Performance Tuning and Application Instrumentation 591

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 591

Figure 14.4 The Trace output when using the Trace.Write and Trace.Warn methods.

In addition to turning on tracing at the top of the Web page, you can also
turn it on with the IsEnabled property. This turns on the Trace, starting at the
current code location. The following code enables tracing:

Trace.IsEnabled = True

You can also use the IsEnabled property to verify that tracing is turned on.

Application-Level Trace

Tracing at the Web application level allows one setting to be changed to enable
or disable tracing across the complete Web site. Tracing is controlled at the
Web application level by changing the settings in the Web.config file. This
Web.config file contains a setting for a trace that looks like the following:

<trace enabled=”false”

requestLimit=”10”

pageOutput=”false”

traceMode=”SortByTime”

localOnly=”true” />

If the enabled attribute is changed to true, all Web pages on the site will have
tracing enabled; but notice that the pageOutput attribute is set to false.

592 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 592

Although tracing is enabled, the results are held in memory instead of being
appended to the bottom of each page. This is a nice feature, because the trace
results can be cleanly viewed and printed. To view the result after navigating
around the Web site, request the trace.axd page. There is no file called
trace.axd; but there is an HttpHandler that listens for a request for trace.axd,
and the handler generates the Web page on the fly, as shown in Figure 14.5.

The requestLimit attribute defaults to 10, but you can change it as required.
When the request limit is reached, the server stops recoding trace messages. If
the clear current trace link is clicked (see Figure 14.5), all trace data is erased and
the server starts recording trace data again. Also, if any change is made to the
Web.config file, the Web application restarts, and the trace information is
erased.

Set the localOnly attribute to true to be at the Web server to view the trace data.
This helps to ensure that users or customers don’t see the trace information.

The traceMode attribute can be set to SortByTime or SortByCategory, which
is the default.

Using Trace in Components

When working with components, Web tracing can still be used to output data
to the Web trace page. This feature allows all trace information to be displayed
on a single page. Web tracing can be extended into .dll libraries by adding a
reference to the System.Web.dll assembly, and adding Imports System.Web to
the top of the code page. The following is an example of a simple component
containing a class with a buildString method:

Figure 14.5 The main menu screen is displayed when a request is made for trace.axd.

Performance Tuning and Application Instrumentation 593

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 593

‘Be sure to set a reference to System.Web.dll.

Imports System.Web

Public Class AbcClass

Public Function BuildString()

Dim x As Integer = 0

Dim s As String = “”

Dim webTrace As TraceContext

webTrace = HttpContext.Current.Trace

webTrace.Warn(“AbcClass”, “Starting contruction of string”)

For x = 1 To 5000

s = s & “The current value of x=” & x.ToString() & “,”

Next

webTrace.Warn(“AbcClass”, “Ended contruction of string”)

Return s

End Function

End Class

The buildString method gets access to the trace of the current HttpContext,
which is assigned to a variable called webTrace. Use the Write and Warn meth-
ods of the webTrace variable to output trace data.

In the following example, a Web page, which has a single button, is created.
When the button is clicked, an instance of the AbcClass is created and the
BuildString method is executed.

Imports Ch14Component

Public Class WebForm3

Inherits System.Web.UI.Page

Protected WithEvents Button1 As System.Web.UI.WebControls.Button

Private Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Dim a As New AbcClass()

Response.Write(a.BuildString())

End Sub

End Class

The trace results are shown in Figure 14.6. The most important metric to
focus on is the warning that was output when the construction of the string
ended. Figure 14.6 shows the warning, which states that it took 25.360157 sec-
onds to execute this method.

Performance Monitor
You can use Windows Performance Monitor to look at many aspects of Win-
dows and the .NET Framework. Performance Monitor can be used to monitor
system resources, such as memory usage, processor utilization, disk access,
and network bandwidth. In addition, the .NET Framework provides many
counters, and many applications, such as SQL Server and Internet Information
Server, provide counters.

594 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 594

Figure 14.6 The trace results reveal the warning that was generated when the string
construction ended. The warning states that it took 25.360157 seconds to build the string.

Performance Monitor is available under the Administrative Tools. Perfor-
mance Monitor is an ActiveX control called the System Monitor Utility that can
be added to the Microsoft Management Console. Performance Monitor sup-
ports graphical logging to the screen, as well as logging to a file. It is also pos-
sible to create Performance Monitor alerts, which you can use to execute a
program when a counter reaches a user-settable level. You can also monitor
performance counters on remote machines, which makes this a compelling
resource to use when attempting to instrument a multitier Web farm.

Performance Monitor displays symptoms, such as abnormally high proces-
sor usage, or excessive disk IO, but it takes a keen person to identify the root
cause of these symptoms. To see a more complete picture of the system, moni-
toring should always include processor, memory, disk, and network counters.
For example, at times when monitoring processor utilization, and disk IO,
these counters may have excessively high metrics. You might deduce that a
faster hard drive is required, but if you monitor memory, you might see that
the system is low on RAM, which is causing excessive page swapping. The
better solution in this case is to add more RAM.

A Web page containing a Button control, Label control, and the following
code has been added to a Web project and was run with the Performance Mon-
itor watching % Processor Time, Available Megabytes of RAM, % Disk Time,
and Network Byte Total per Second:

Public Class WebForm5

Inherits System.Web.UI.Page

Protected WithEvents Button1 As System.Web.UI.WebControls.Button

Protected WithEvents Label1 As System.Web.UI.WebControls.Label

Performance Tuning and Application Instrumentation 595

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 595

Private Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Label1.Text = BuildString()

End Sub

Public Function BuildString()

Dim x As Integer = 0

Dim s As String = “”

For x = 1 To 5000

s = s & “abcdefghijklmnopqrstuvwxyz”

s = s & “ The value of x=” & x.ToString()

s = s & “
”

Next

Return s

End Function

End Class

The button was clicked and there was a lengthy delay before the page fin-
ished its processing. The Performance Monitor output is shown in Figure 14.7.
The highlight (Ctrl+H) feature is being used to identify the % Processor Usage.
As soon as the button was clicked, the % Processor Usage went to 100%, and
stayed there until the page was done being processed. The other counters
hardly moved, except for the % Disk Time, which jumped for a brief moment
toward the end of processing. So where is the bottleneck? Based on the coun-
ters that are being monitored, increasing the processor speed or finding a way
to reduce the processor requirements would probably deliver the most gain in
overall performance. For now, the focus is on the tools, but solving this prob-
lem is covered later in the performance-tuning part of this chapter.

Figure 14.7 The performance counters show that processor usage spikes when the button
on the Web page is clicked.

596 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 596

Performance Counters

You add counters in the Performance Monitor window by clicking the icon
that looks like a plus sign. The Add Counters window opens, enabling you to
select the computer, performance object, performance counter, and instance of
the counter.

In addition to adding counters, you can create new counters in Visual Stu-
dio .NET, which allows the presentation of more specific information to Per-
formance Monitor. To create new counters for monitoring the StringLength
and the LoopCount, add the following code to the Global.asax.vb class:

Imports System.Web

Imports System.Web.SessionState

Imports System.Diagnostics

Imports System.IO

Public Class Global

Inherits System.Web.HttpApplication

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the application is started

Dim catName As String = “MyPerformanceObject”

If (Not PerformanceCounterCategory.Exists(catName)) Then

Dim myCounterData As New _

CounterCreationDataCollection()

Dim ccd As New CounterCreationData()

ccd.CounterName = “StringLength”

ccd.CounterType = _

PerformanceCounterType.NumberOfItems64

ccd.CounterHelp = _

“Displays character count in the string”

myCounterData.Add(ccd)

ccd = New CounterCreationData()

ccd.CounterName = “LoopValue”

ccd.CounterType = _

PerformanceCounterType.NumberOfItems64

ccd.CounterHelp = _

“Displays the value of the loop counter”

myCounterData.Add(ccd)

PerformanceCounterCategory.Create(catName, _

“This Is the Category Help.”, myCounterData)

End If

End Sub

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the session is started

Dim pcStringLength As New PerformanceCounter(_

“MyPerformanceObject”, _

“StringLength”, _

Session.SessionID.ToString(), False)

Session(“pcStringLength”) = pcStringLength

Dim pcLoopVaue As New PerformanceCounter(_

“MyPerformanceObject”, _

Performance Tuning and Application Instrumentation 597

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 597

“LoopValue”, _

Session.SessionID.ToString(), False)

Session(“pcLoopVaue”) = pcLoopVaue

End Sub

Sub Application_BeginRequest(_

ByVal sender As Object, ByVal e As EventArgs)

‘ Fires at the beginning of each request

End Sub

Sub Application_AuthenticateRequest(_

ByVal sender As Object, ByVal e As EventArgs)

‘ Fires upon attempting to authenticate the use

End Sub

Sub Application_Error(_

ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when an error occurs

End Sub

Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the session ends

End Sub

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)

‘ Fires when the application ends

End Sub

End Class

A performance counter requires a category and a counter name. The follow-
ing code checks to see whether the category exists, and if it doesn’t, the cate-
gory and counters are created.

When a new Performance Monitor category and counters are not defined,
the code in this section attempts to create the category and counters on
the fly. This requires permissions that the default ASPNET account does
not have. If the category and counters already exist, no additional
permissions are required for the ASPNET account. To correct the problem,
temporarily turn on impersonation in the Web.config file by adding the
following tag after the authentication tag:

<identity impersonate=”true” userName=”admin” password=”pwd”/>.

Session_Start creates a new instance of both counters and stores the
instances in Session variables. The instance names are assigned to the current
SessionID, which you can view in the browser by navigating to the Web page
to start a session, and then typing the following into the Internet Explorer
address bar:

javascript:alert(document.cookie);

598 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 598

This line displays a message box containing all the current cookies for the
current site, which includes the SessionID.

The BuildString function has also been updated to include the new counters
as shown in the following code:

Public Function BuildString()

Dim x As Integer = 0

Dim s As String = “”

Dim pcStringLength As PerformanceCounter

Dim pcLoopValue As PerformanceCounter

pcStringLength = CType(Session(“pcStringLength”), _

PerformanceCounter)

pcLoopValue = CType(Session(“pcLoopVaue”), _

PerformanceCounter)

For x = 1 To 3000

s = s & “abcdefghijklmnopqrstuvwxyz”

s = s & “ The value of x=” & x.ToString()

s = s & “
”

‘Update the counters.

pcStringLength.RawValue = s.Length

pcLoopValue.RawValue = x

Next

‘Clear the counters.

pcStringLength.RawValue = 0

pcLoopValue.RawValue = 0

Return s

End Function

This BuildString function assigns the Session variables to local variables.
Each time the loop is run, the counters are updated. When the loop is done, the
counters are reset to zero.

The Web application needs to be run at least once to create the new category
and counter. To add a counter, press Ctrl+I or click the plus button. Figure 14.8
shows the addition of the new counters to the Performance Monitor window.
The local computer is selected, and then the Performance object is set to the
new category called MyPerformanceObject, which reveals the new counters
and the session instances that are available.

Figure 14.9 shows Performance Monitor with the counters added. Each
counter has scale, color, line width, and line style properties you can set. The
LoopValue has a dotted line style with a scale of .01, whereas the StringLength
has a thicker line style with a scale of .0001. When the button is clicked to exe-
cute the BuildString method, the processor usage immediately rises to 100 per-
cent. The custom counters initially rise quickly, and then rate of rise slows
down. This suggests that as the loop counter increases, it takes more time to
process the loop.

Performance Tuning and Application Instrumentation 599

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 599

Figure 14.8 The addition of the new custom counters requires the selection of a
SessionID.

Application Center Test
Application Center Test (ACT) is a software tool included with Visual Studio
.NET that can help you gather data and make capacity decisions about a Web
application. With the ACT, you can create tests that simulate many users hit-
ting the Web site simultaneously. The results of the tests are recorded so you
can review them to identify a site’s stability, speed, scalability, and responsive-
ness issues.

Figure 14.9 The Performance Monitor displays the new custom counters, overlayed with
the existing system counters.

600 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 600

An ACT project can be created that identifies many tests. Each test can be
created by letting ACT record the browser navigation. Alternatively, an empty
test can be created, and the test code can be manually written. Writing the test
code provides full control of the test. A single test can be run many times, and
the results are recorded each time.

Getting started with Application Center Test is as easy as creating a new test
from the Action menu, clicking New Test, the scripting language, and the Start
Recoding button. Internet Explorer starts, and Application Center Test will
record all Web navigation within the browser window. An appropriate test
would be navigating to the desired site and clicking through the links on the
site in the same fashion as a typical user. When finished, the browser window
can be closed, and the Stop Recording button can be clicked to stop and record
the test. Finally, the wizard prompts you for a test name, and saves the test.

Before a test is run, you need to set the test properties by right-clicking the
test and clicking Properties, as shown in Figure 14.10. The test properties win-
dow allows you to set the quantity of simultaneous browser connections and
the run duration. The Users tab allows the selection of users, which can be
handy when authentication is required for the site. The Counters tab allows
Performance Monitor counters to be queried while the test is progressing. The
counter information is stored with the recorded test data.

Figure 14.10 The test properties window with the browser connections set to 3 and the
duration set to 3 minutes.

Performance Tuning and Application Instrumentation 601

p 430234 Ch14.qxd 7/1/03 9:05 AM Page 601

The test being run in Figure 14.10 is against the same Web page, with its but-
ton and Label controls, that was just created in the Performance Monitor sec-
tion of this chapter. When the button is clicked, a call is made to a superslow
function called BuildString. When the test was recoded, the Web page was
navigated to and then the Button was clicked. ACT repeats this test for the
duration that is specified. The test properties have been set to three browser
connections, and a 3-minute run duration. The results of the test are shown in
Figure 14.11.

The test results show that there were only 12 total requests to the Web page
in 3 minutes with three browser connections. The low number is due to the
time that is required to execute the BuildString function.

The BuildString function is performing a rather simple loop that exists in
many Web pages. Based on the tracing and performance counters that have
been covered in this chapter, it’s obvious that the BuildString function is the
bottleneck. The next section, Performance Tips, examines this bottleneck in
detail and provides alternatives to dramatically increase the performance of
this Web page.

The test can be copied, so changes can be made to the properties or the test
code and the test can be rerun. The previous test was copied, and the browser
connections set to 6, and then copied again with the browser connections set to
9, and then copied again with the browser connections set to 12. The test was
run again for each of the new tests.

After the desired tests are run, click the Results node to reveal all the
recoded test data. The reports can be displayed with overlapping data from
each test by clicking the Results node, and then clicking the check box of each
report that is to be displayed. See Figure 14.12.

Figure 14.11 The test results with three browser connection for 3 minutes.

602 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 602

Performance Tuning and Application Instrumentation 603

Figure 14.12 The results of the four test runs, where the browser connection settings were
the only change (3, 6, 9, and 12 connections).

At first glance, it may look like the Web server responds well to more con-
nections. The graph shows the quantity of requests per second, and the 12-
connection test has many more requests than the other test. Unfortunately, this
is not the complete story. You must take errors into account. As more connec-
tions were used, the error count increased dramatically. The bottom of the
report shows the real result. See Figure 14.13.

Figure 14.13 The bottom of the report shows the quantity of errors and successful
requests.

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 603

Notice that only two response code types were received. The first one was
response code 403, which is “The server understood the request, but is refus-
ing to fulfill it.” The second one is response code 200, which is “The request
completed successfully.”

The quantity of successful responses is almost the same across all tests.
Although the six-browser connection test had the highest quantity of success-
ful responses, it still had three socket errors, which means that the only test
without errors was the three-connection test.

There are two primary reasons why there were so many errors. First the
processor was so busy handling each request that it failed to respond to new
requests. The other problem relates to the operating system that is being run
for these tests. On Window 2000 and Windows XP Professional, only 10 con-
nections are allowed into the Web server. After that, additional requests are
rejected. The problem is compounded by the fact that Internet Information
Server implements keep-alives, which are usually desirable for better perfor-
mance, but with connection limits, they hurt performance. Keep-alives are
connections that stay open after the browser requests a Web page, because
there is a good chance that the browser will request another page from the Web
site. If a connection is left open, it takes away from the 10-connection limit on
Windows Professional. The net result is that ACT makes requests that are
immediately rejected by Internet Information Server, thereby generating a
quick HTTP error, so ACT keeps trying until a connection finally opens.

When using Windows 2000 Professional or Windows XP Professional for
load testing with ACT, turn off HTTP keep-alives in Internet Information
Server, and keep the simultaneous browser connections under five to
ensure the most accurate results without receiving errors.

Performance Tips

Now that several performance and instrumentation tools have been covered,
it’s time to look at performance tips and tricks. This section is certainly not all-
encompassing, but the tips and techniques defined here could help identify
other potential bottlenecks.

String Concatenation
In the .NET Framework, the string data type is immutable. This means that
when a value is assigned to a string, it cannot be changed. This seems like a
rather bazaar statement, since developers always use code such as the following:

604 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 604

Dim s as string

s = “This is a test. “

s = s & “More data here”

This may look like s is being changed, but it is not. The last line of code
is creating a new string that contains the concatenation of s, and “More
data here” and the new string is being assigned to s. The old string is being
abandoned in memory, and garbage collection will reclaim this memory (see
Figure 14.14).

One way to increase performance is to avoid concatenation. The following
code is faster, because movement of data in memory is reduced. The Build-
String function that has been used in the previous ACT and Performance Mon-
itor tests uses concatenation three times within the loop. The use of Web Trace
can identify the time that it takes to run this loop. The revised BuildString
method is as follows:

Public Function BuildString()

Dim x As Integer = 0

Dim s As String = “”

Dim pcStringLength As PerformanceCounter

Dim pcLoopValue As PerformanceCounter

pcStringLength = CType(Session(“pcStringLength”), _

PerformanceCounter)

pcLoopValue = CType(Session(“pcLoopVaue”), _

PerformanceCounter)

Trace.Warn(“BuildString”, “Start of loop”)

For x = 1 To 3000

s = s & “abcdefghijklmnopqrstuvwxyz”

s = s & “ The value of x=” & x.ToString()

s = s & “
”

‘Update the counters.

pcStringLength.RawValue = s.Length

pcLoopValue.RawValue = x

Next

Trace.Warn(“BuildString”, “End of loop”)

‘Clear the counters.

pcStringLength.RawValue = 0

pcLoopValue.RawValue = 0

Return s

End Function

When the test was run three times, the loop run times were 23.907289,
30.436777, and 30.360770. In the following code, the BuildString is modified to
concatenate only once within the loop:

Performance Tuning and Application Instrumentation 605

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 605

Figure 14.14 Because strings are immutable, string concatenation involves the creation of
a new string containing the old string plus the new string. This means that string data must
be copied to the new memory address.

Public Function BuildString()

Dim x As Integer = 0

Dim s As String = “”

Dim pcStringLength As PerformanceCounter

Dim pcLoopValue As PerformanceCounter

pcStringLength = CType(Session(“pcStringLength”), _

PerformanceCounter)

pcLoopValue = CType(Session(“pcLoopVaue”), _

PerformanceCounter)

Trace.Warn(“BuildString”, “Start of loop”)

For x = 1 To 3000

s &= “abcdefghijklmnopqrstuvwxyz The value of x=” & x.ToString()& “
”

‘Update the counters.

pcStringLength.RawValue = s.Length

pcLoopValue.RawValue = x

Next

Trace.Warn(“BuildString”, “End of loop”)

‘Clear the counters.

pcStringLength.RawValue = 0

pcLoopValue.RawValue = 0

Return s

End Function

When the test was run three times, the loop run times were 8.758217,
10.050231, and 10.023658. By performing one third of the concatenations, the
time to run the loop was reduced to approximately one third of the original time.

Data is copied to
new memory address

Dim s as string
s = "This is a test"
s = s & "More data here" T

S =

123

h

124

i

125

s

126
127

i

128

s

129
130

a

131
132

t

133

e

134

s

135

t

136
137

T
S =

234

h

235

i

236

s

237
238

i

239

s

240
241

a

242
243

t

244

e

245

s

246

t

247
248

M

249

o

250

r

251

e

252
253

d

254

a

255
256

a

257
258

ht
259

e
260

r
261

e

262

606 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 606

StringBuilder
The previous example demonstrated how performance can be increased by
reducing the concatenations of strings. The problem is that the code is still per-
forming concatenation 3,000 times while the loop is running.

The StringBuilder class addresses the issue of string concatenation. The
StringBuilder is a memory buffer that can dynamically grow, without requir-
ing the data to be moved. When working with large strings, this can increase
performance dramatically. Concatenation is accomplished by using the
Append method of the StringBuilder. When modifications are complete, the
StringBuilder can be converted to a string by using the ToString method as
shown in the following example:

Public Function BuildString()

Dim x As Integer = 0

Dim s As New System.Text.StringBuilder()

Dim pcStringLength As PerformanceCounter

Dim pcLoopValue As PerformanceCounter

pcStringLength = CType(Session(“pcStringLength”), _

PerformanceCounter)

pcLoopValue = CType(Session(“pcLoopVaue”), _

PerformanceCounter)

Trace.Warn(“BuildString”, “Start of loop”)

For x = 1 To 3000

s.Append(“abcdefghijklmnopqrstuvwxyz The value of x=”)

s.Append(x.ToString())

s.Append(“
”)

‘Update the counters.

pcStringLength.RawValue = s.Length

pcLoopValue.RawValue = x

Next

Trace.Warn(“BuildString”, “End of loop”)

‘Clear the counters

pcStringLength.RawValue = 0

pcLoopValue.RawValue = 0

Return s.ToString()

End Function

The StringBuilder class is in the System.Text namespace. Inside the loop, the
Append method can be run many times, because it is simply adding data to
the end of the existing data. When this code was run three times, the resulting
times to execute the loop were 0.014790, 0.046475, and 0.021009, which repre-
sents a major improvement in performance. Comparing the fastest execution

Performance Tuning and Application Instrumentation 607

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 607

before the change was made (8.758217) to the slowest speed with the change
(0.046475), the speed has increased by over 180 times.

After this change, it’s time to run ACT to see what kind of performance can
be obtained on the tests that were defined. The original test was run with three
browser connections, because that was the only test that did not generate
errors. The result of the new test also had no errors. Figure 14.15 shows the dif-
ference between the two tests.

Comparing the graph of the original test against the new test shows a sub-
stantial difference in performance. Neither of these tests generated errors.
What was once an extremely slow site now responds significantly better. The
original test delivered a mere 12 responses, whereas the latest test delivered
2,204 responses. This is over 180 times the original test.

Caching
Caching data can result in substantial performance gains. In situations where
many users would normally make calls to the database for data that rarely
changes, caching the data on the Web server can completely bypass the call to
the database server.

The cache has a global scope and includes the necessary locking mechanism
to allow items to be added and read from the cache by many users. Caching
specifics are covered in more detail in Chapter 12, “ASP.NET Applications.”
This section explores some of the performance gains derived from caching.

Figure 14.15 The original three-browser connection test overlaid with a new three-
browser connection test.

608 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 608

Page Caching

Page caching is probably the easiest caching method to implement. This is a
compelling choice for many Web applications. To enable Web page caching,
the following information must be added to the HTML at the top of the
Web page:

<%@ OutputCache Duration=”60” VaryByParam=”customerId;pageNumber” %>

This setting caches the page output for 60 seconds, after which, the cache is
invalidated, and the next request for the page results in execution of the code
that is on the page.

The VaryByParam setting can be set to none, *, valid querystring, or form
parameter names, separated by a semicolon. If VaryByParam is set to none,
only one copy of the page is cached. If VaryByParam is set to *, there will be a
cached copy of the page for each combination of parameters that changes
when the page is retrieved. If the parameter is set to customerId;pageNumber,
there will be a cached copy of the page for each customerId and pageNumber
combination.

Figure 14.16 shows the ACT output after running the same test that was
used with the StringBuilder, but the page was cached using the following
statement in the Web page HTML:

<%@ OutputCache Duration=”60” VaryByParam=”*” %>

Figure 14.16 The Application Center Test report when implementing caching.

Performance Tuning and Application Instrumentation 609

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 609

Caching improved performance significantly over the last test where the
StringBuilder was implemented. This required only a single line of code and
resulted in a substantial gain.

The test was done using three browser connections, and no errors were
reported when running the test. Notice that the request count went from 12 to
2,204 to 15,837. This represents an increase of over seven times the previous
test. It’s worth noting that if the code were not changed to use the String-
Builder, the change would have been from 12 requests to 15,837 requests. This
would represent an increase of over 1,300 times.

Object Caching

In the previous example, caching was implemented with a single line of code.
In some cases, this type of caching is wasteful. For example, if a large amount
of data is being sent to the browser and that same data is being sent to the
browser from a different page, multiple copies of the same data could be held
by the Web server. Often, part of the Web page needs to be dynamic, whereas
another part of the page is cached.

Object caching involves writing the code to cache objects rather than the
entire page. The Cache object is used to add items into the cache. The follow-
ing code shows how the BuildString method’s result can be cached:

Public Function BuildString()

Dim retString As String

If Cache(“BuildString”) Is Nothing Then

Dim x As Integer = 0

Dim s As New System.Text.StringBuilder()

Dim pcStringLength As PerformanceCounter

Dim pcLoopValue As PerformanceCounter

pcStringLength = CType(Session(“pcStringLength”), _

PerformanceCounter)

pcLoopValue = CType(Session(“pcLoopVaue”), _

PerformanceCounter)

Trace.Warn(“BuildString”, “Start of loop”)

For x = 1 To 3000

s.Append(“abcdefghijklmnopqrstuvwxyz The value of x=”)

s.Append(x.ToString())

s.Append(“
”)

‘Update the counters.

pcStringLength.RawValue = s.Length

pcLoopValue.RawValue = x

Next

Trace.Warn(“BuildString”, “End of loop”)

‘Clear the counters.

pcStringLength.RawValue = 0

pcLoopValue.RawValue = 0

610 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 610

retString = s.ToString()

Cache(“BuildString”) = retString

Else

retString = CType(Cache(“BuildString”), String)

End If

Return retString

End Function

The OutputCache directive was removed from the HTML and the test
was run again. Figure 14.17 shows the output of the test, overlaid with the pre-
vious test.

Test number 4 represents the object-caching test, which did not perform as
well as the page cache test (test 3). The benefit is that other parts of the page are
still dynamic. Figure 14.18 shows the metrics of the test. The page cache test
(test 3) was over seven times faster than the StringBuilder test (test 2), but this
test (test 4) is only about five times faster than the StringBuilder test.

Graphics Caching

When working with images, be sure to deliver the image to the browser using
the same size that the browser uses to display the image. If a page is display-
ing thumbnail images that are 75 x 75 pixels, don’t send the image to the
browser at 1,200 x 1,200 pixels, because doing so uses all available network
bandwidth. Images should be cached where possible, especially when the
image is being loaded from a database.

Figure 14.17 The output of the object-caching test, overlaid with previous tests.

Performance Tuning and Application Instrumentation 611

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 611

Figure 14.18 The metrics of the object-caching test show a decrease in performance over
page caching, but parts of the page can still be dynamic.

ViewState
ViewState should be monitored, and a test should be run to determine whether
it is better to store information in the ViewState or in the Session, Application,
or Cache state. If a control is read-only, ViewState may not be necessary for the
control.

ViewState is turned on at the page level by default, but you can turn it off
when it’s not required. Also, ViewState should be reviewed on a per control
basis to determine the control’s impact on performance.

Use a combination of Web Trace and ACT to determine what the impact of
ViewState is for the current Web application. Performance will vary between
Web pages.

Database Performance
In many situations, database performance can become the bottleneck of a Web
application. SQL Server is a fast product, but you still need to be aware of
items that can impact SQL Server performance.

612 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 612

Stored Procedures

Whenever possible, use stored procedures for making calls to the database.
When a stored procedure is created, it is checked for syntax errors, compiled,
and saved to disk. When SQL commands are sent to SQL Server from a Web
application, SQL Server must check the SQL statement for syntax errors and
compile the SQL before the SQL command can be executed.

When a call is made to the stored procedure, the first time it runs, it may be
slower than sending a SQL statement directly to SQL Server, because the stored
procedure must load into memory from the disk. After the stored procedure is
in memory, the stored procedure will outperform ad hoc SQL statements.

Indexes

When creating SQL Server tables and relationships, be sure to designate a pri-
mary key for each table. Although the primary key can be an existing field or
fields that identify uniqueness for a row, a surrogate primary key should be
considered. A surrogate primary key exists solely to be a row identifier, which
is a field that is added to the table and is usually an autonumber (also known
as an identity) field. It’s faster for SQL Server to maintain an index on a single
numeric column than to maintain composite indexes. When a primary key is
identified, a unique index is created for the key.

When a relationship is created between two tables, the relationship is usu-
ally between the primary key of one table and a foreign key of another table.
Although the creation of a primary key automatically creates an index for the
primary key, the creation of a foreign key does not create an index automati-
cally. Big performance gains can be realized by adding indexes for all foreign
key fields.

Calculated Fields

If a stored procedure or view is constantly performing mathematical opera-
tions on certain fields, a calculated field can be created that performs the math
operation once prior to executing the stored procedure. This addition can lead
to large gains when complex formulas are involved, such as trigonometry
functions performed on the columns.

Performance Tuning and Application Instrumentation 613

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 613

Lab 14.1: Using Application Center Test

In this lab, you explore the performance increase that can be obtained by
using page caching. An Application Center Test will be used as the pri-
mary tool to record performance changes as caching is implemented.

Establishing Baseline Performance Data
In this section, you add a new Web page called login.aspx:

1. To start this lab, open the OrderEntrySystemSolution from Lab 13.1.

2. Right-click the OrderEntrySystemSolution in the Solution Explorer,
and click Check Out.

3. Set Customer as the startup project.

4. Set the CustomerList.aspx page as the startup page.

5. Right-click the CustomerList.aspx page, and click View In Browser
to ensure that the Web application has been started. Notice that you
are redirected to the login page. Enter a name and password, and
click the Login button to redirect the page to the CustomerList.aspx
page. Close the browser.

6. Open Application Center Test by clicking Start, All Programs,
Microsoft Visual Studio .NET, Visual Studio .NET Enterprise Fea-
tures, Microsoft Application Center Test.

7. Click File, New Project to create a new project. When prompted for the
project name, type Customer. Your screen should look like Figure 14.19.

8. Create a new test by clicking Actions, New Test to start the New Test
Wizard. Click Record a New Test. Select VBScript as the language.
Click Start Recording to start recording a test.

9. When the browser window is displayed, enter the following URL:

http://localhost/Customer/CustomerList.aspx

10. This code redirects the page to the login.aspx page. Type a valid
name and password, and click the Login button to redirect the page
to the CustomerList.aspx page.

11. Click the browser’s Refresh button to retrieve another copy of the
CustomerList.aspx page.

12. Close the browser, and click the Stop Recording button.

13. On the next screen, type CustomerListTest for the test name.

14. After recoding the test, open the Tests node in Application Center
Test. The CustomerListTest should be available; click CustomerListTest.

614 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 614

The upper-right window contains a message stating that notes can
be entered. Enter the following note:

Baseline CustomerList Test with 3 Browser Connections for 3

Minutes.

Figure 14.19 The Application Center Test screen after creating a new project called
Customer.

15. Right-click the CustomerListTest, and click Properties. Set the
Browser Connections to 3 and the Duration to 3 minutes.

16. Right-click the CustomerListTest, and click Start Test.

17. After the test is completed, add the following line to the HTML of
the CustomerList.aspx page:

<%@ OutputCache Duration=”600” VaryByParam=”*” %>

18. Right-click the CustomerListTest, and click Copy. Rename the copy
CustomerListCacheTest. In the upper-right pane, add the following
note:

CustomerList Cache Test with 3 Browser Connections for 3 Minutes.

19. Right-click the CustomerListCacheTest, and click Start Test. Figure
14.20 shows the baseline test overlaid with the cache test. Actual
numbers will vary, but there should be a significant difference in
performance between the two tests.

20. Scroll to the bottom of the report. Figure 14.21 shows the metrics of the
test. There were no errors in either test. Your metrics will vary, but there
should be a substantial difference between the two tests. Notice that
there were two different response codes: The 200 is a success, and the

Performance Tuning and Application Instrumentation 615

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 615

302 represents the redirect to the login page as well as the redirect back
to the CustomerList.aspx page upon successful login. There were a
total of 1,581 requests by the baseline test and a total of 20,222 requests
by the cache test, which represents speed increase of over 12 times.

Figure 14.20 The baseline and the cached CustomerList.aspx page results.

21. Save your changes, and check the final solution back into Visual
SourceSafe.

Figure 14.21 The metrics of the baseline and cached CustomerList.aspx page.

616 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 616

Summary

■■ Performance tuning is the process of running specific tests on isolated
parts of the software, making changes to the software, and rerunning
the tests to identify bottlenecks and increase the software’s performance.

■■ Identifying bottlenecks is the process of interpreting load test data and
investigating system performance to locate the slowest parts of the sys-
tem. Eliminating a bottleneck can result in substantial gains in perfor-
mance for the overall system.

■■ The System.dll file contains the Debug class, which can be used to
obtain information when running an application that was compiled
using the debug switch.

■■ The System.dll file contains the Trace class, which can be used to obtain
information while the system is running, especially in a multitier or
multithreaded application.

■■ Trace provides the ability to perform page- or application-level tracing.
Page-level tracing is configured at the Web page, whereas application-
level tracing is configured in the Web.config file.

■■ Performance Monitor can be used to monitor system resources, such as
memory usage, processor utilization, disk access, and network band-
width. In addition, the .NET Framework provides many counters, and
many applications, such as SQL Server and Internet Information Server,
provide counters.

■■ Strings are immutable in the .NET Framework. Concatenation of large
strings should be avoided due to the resources that are required to
move this data.

■■ The StringBuilder class can be used when string concatenation is
required, because the StringBuilder class contains an Append method,
which does not require excessive resources.

■■ Caching can increase Web performance substantially. For pages that are
relatively static, page caching can be used. For pages that can’t be
cached, object caching can be implemented.

Performance Tuning and Application Instrumentation 617

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 617

Review Questions

1. What must be established prior to load testing and performance tuning?

2. To receive verbose trace messages, what value should a TraceSwitch be set to?

3. What utility can be run outside of the Visual Studio .NET environment to display
Debug and Trace messages that are written to the default listener?

4. When using Web application tracing with pageOutput set to false, what must be
requested in order to view the trace information?

5. What is the best method of creating a string when the string is being constructed of
a series of loops?

6. What Visual Studio .NET tool can be used to simulate many users hitting a Web
site simultaneously?

7. When working with Windows XP Professional, what is the maximum quantity of
connections that are allowed on the Web server?

618 Chapter 14

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 618

Answers to Review Questions

1. A baseline for comparison as changes are made.

2. Set the value to 4 for verbose messages.

3. The Debug Monitor (DbMon.exe) utility can be run. This utility is included in the
Windows Platform SDK.

4. A request for trace.axd must be made.

5. Use the StringBuilder class.

6. Application Center Test (ACT).

7. Windows XP Professional has a 10 connection limit.

Performance Tuning and Application Instrumentation 619

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 619

p 430234 Ch14.qxd 7/1/03 9:06 AM Page 620

621

Building reusable components is something developers have done in the past
and found beneficial in several ways. First, reusable components have reduced
the amount of code developers have had to write, particularly when building
large applications. Second, reusable components have encapsulated function-
ality that developers could reuse in other applications. Third, being compiled
code, reusable components have had a performance edge over interpreted
scripts.

Today, it’s not necessary to build components to get a performance edge;
scripted languages are equally fast. The other reasons for building reusable
components are still valid, however, and there are some new benefits, such as
cross-language inheritance.

One of the problems that have plagued components is versioning. With
COM, versioning was done by providing new interfaces, and each interface
was considered to be an immutable contract. The problem was that enforce-
ment of the versioning was done by the developer. With .NET components, the
runtime enforces versioning. Providing a different version of a component
automatically breaks the code until the code is recompiled with the new
assembly, or until the application code is redirected to the new component.

This chapter covers the methods of creating components, or reusable assem-
blies, by first creating a component and using it. After that, this chapter discusses

Building and Versioning .NET
Components

C H A P T E R

15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 621

versioning of assemblies, and the differences between private and shared
assemblies. Much time is spent also on exploring strong names and binding
policies. This chapter finishes by looking at cross-language inheritance.

Classroom Q & A
Q: Where are the Registry entries for .NET components? I am afraid

of registering a new component and overwriting this setting by
registering an older version of the .NET component.

A: There are no Registry entries for .NET components. This eliminates
the problem that was affectionately known as DLL Hell in the past.

Q: If I have many copies of a .NET component on my machine, is
there a way to find out which copy is actually being used?

A: Yes. There is a tool called the Fusion Log Viewer that can tell you
which component is being used by a program.

Q: Is there a way to set a lookup path to my components so I don’t
have to keep placing them into the Global Assembly Cache when
I am working on them?

A: Yes. You can use the DEVPATH environment variable. We look at
this in detail in this chapter.

Building Reusable Components

Chapter 4, “The .NET Framework and Visual Basic .NET Object Program-
ming,” covered many of the aspects of object-oriented programming, includ-
ing inheritance. Creating components allows much of the coding logic to be
encapsulated, which can simplify the task of creating many user interfaces,
from cell phone to Windows. In this section, a component example is pre-
sented that is used throughout the chapter.

Creating the Class Library Project
To build a reusable component, a Visual Studio .NET Class Library project
must be created. This project compiles to a .dll file. To use the .dll file, a refer-
ence must be made to the .dll file from the Web application.

When the Class Library project is created, it includes an empty class file. The
code in Listing 15.1 is included in the class file to provide easy access to the
back end SQL Server.

622 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 622

Imports System.Data.SqlClient

Public Class Db

Public Shared Function ExecuteScaler(_

ByVal cn As SqlConnection, _

ByVal cmdText As String) As Long

Return ExecuteScaler(_

cn, CommandType.Text, cmdText, Nothing)

End Function

Public Shared Function ExecuteScaler(_

ByVal cn As SqlConnection, _

ByVal cmdType As CommandType, _

ByVal cmdText As String) As Long

Return ExecuteScaler(_

cn, cmdType, cmdText, Nothing)

End Function

Public Shared Function ExecuteScaler(_

ByVal cn As SqlConnection, _

ByVal cmdType As CommandType, _

ByVal cmdText As String, _

ByVal ParamArray prm() As SqlParameter) As Long

Dim cmd As New SqlCommand(cmdText, cn)

cmd.CommandType = cmdType

AddParameters(cmd, prm)

cn.Open()

Dim retVal As Long

retVal = CType(cmd.ExecuteScalar(), Long)

cn.Close()

Return retVal

End Function

Public Shared Function ExecuteDataSet(_

ByVal cn As SqlConnection, _

ByVal cmdText As String) As DataSet

Return ExecuteDataSet(_

cn, CommandType.Text, cmdText, Nothing)

End Function

Public Shared Function ExecuteDataSet(_

ByVal cn As SqlConnection, _

ByVal cmdType As CommandType, _

ByVal cmdText As String) As DataSet

Return ExecuteDataSet(_

cn, cmdType, cmdText, Nothing)

End Function

Public Shared Function ExecuteDataSet(_

ByVal cn As SqlConnection, _

ByVal cmdType As CommandType, _

ByVal cmdText As String, _

ByVal ParamArray prm() As SqlParameter) As DataSet

Dim cmd As New SqlCommand(cmdText, cn)

Listing 15.1 Data component code. This code contains common methods that encapsulate
access to the database. This code is used throughout this chapter. (continued)

Building and Versioning .NET Components 623

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 623

cmd.CommandType = cmdType

AddParameters(cmd, prm)

Dim ds As New DataSet()

Dim da As New SqlDataAdapter(cmd)

da.Fill(ds)

Return ds

End Function

Private Shared Sub AddParameters(_

ByVal cmd As SqlCommand, _

ByVal prm() As SqlParameter)

If prm Is Nothing Then

Return

End If

Dim p As SqlParameter

For Each p In prm

cmd.Parameters.Add(p)

Next

End Sub

End Class

Listing 15.1 (continued)

The methods that have been defined in Listing 15.1 are shared (static),
which means that it is not necessary to create an instance of the Db class first.
The method can be called by using simply the name of the class as follows:

x = Db.ExecuteScaler(cn, “Select count(*) from customers”)

The Db class contains a method called ExecuteScaler that is overloaded so it
can be called with a connection and SQL, or with additional arguments. The
ExecuteScaler method returns the first column of the first row from the result
set of the query. This method is typically used to retrieve a numeric value, so
the return type is cast to a Long, using the CType function.

The ExecuteDataSet method contains the same overloads as the Exe-
cuteScaler method. This method returns a DataSet that could contain many
tables if the SQL command contained many select statements.

The AddParameters method is a private helper method that is used to enu-
merate a parameter array and add each parameter to the command’s parame-
ters collection.

After this code is added to the project, the project must be built. Building the
project creates a .dll file, which is an assembly. The assembly can be revealed
by clicking Show All Files in the Solution Explorer.

624 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 624

Using the Component
Using and reusing a component can save lots of development time. In this sec-
tion, a new Web project is created that uses the DataComponent assembly. For
the purposes of these examples, a second copy of Visual Studio .NET is
opened, and a new Web site is created.

Setting a Reference to the Component

Using the component requires telling Visual Studio .NET that the external
assembly is to be used with a project. This is done by setting a reference. The
reference is added to the Web project by right-clicking the References node in
the Solution Explorer and clicking Add Reference.

The Add Reference dialog box has three tabs; .NET, COM, and Projects. If
the component was written with Visual Studio .NET, the .NET tab could be
used to Browse to the desired folder. Selecting the .dll file using this method
does not cause the assembly to be rebuilt when the current project is built.

The COM tab is used to set references to COM components. If a reference is
set to a COM component, Visual Studio .NET creates a COM Callable Wrapper
class, that can be used to access the COM component.

The Project tab is used to set a reference to a project instead of an assembly.
Setting a reference to a project tells Visual Studio .NET that the project must be
built prior to building the current project. This essentially sets up the build
order for the solution. The only projects that are visible in this tab are the pro-
jects that are in the current solution. This means that the DataComponent proj-
ect must be loaded in the current solution to be able to select it. Setting a
reference to the project is generally considered to the best selection, because
building the solution builds all of the projects in the correct order.

In this example, a reference is set to the DataComponent.dll assembly
instead of the project. This allows the projects to be out of sync for the testing
purposes.

Calling the Component

In the new Web project, the following code has been added to the Web page to
test the ExecuteScaler functionality.

Imports DataComponent

Imports System.Data.SqlClient

Public Class WebForm1

Inherits System.Web.UI.Page

Private Sub Page_Load(_

Building and Versioning .NET Components 625

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 625

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Dim cn As New SqlConnection(_

“server=.;database=northwind;trusted_connection=true”)

Dim x As Long

x = Db.ExecuteScaler(_

cn, “Select count(*) from customers”)

Response.Write(“Count of Customers=” & x.ToString())

End Sub

End Class

When the application is run, a Web page is displayed that contains the count
of the customers in the customers table.

To test the ExecuteDataSet functionality, a Datagrid is added to the Web
page, and it displays the contents of the DataSet that is returned from the Exe-
cuteDataSet method. The page now contains the following code:

Imports DataComponent

Imports System.Data.SqlClient

Public Class WebForm1

Inherits System.Web.UI.Page

Protected WithEvents DataGrid1 As

System.Web.UI.WebControls.DataGrid

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

Dim cn As New SqlConnection(_

“server=.;database=northwind;trusted_connection=true”)

Dim x As Long

x = Db.ExecuteScaler(_

cn, “Select count(*) from customers”)

Response.Write(“Count of Customers=” & x.ToString())

Dim SQL As String

SQL = “Select “ _

& “ CustomerID, CompanyName, ContactName, ContactTitle “ _

& “ from customers “ _

& “ where CompanyName like ‘A%’”

DataGrid1.DataSource = Db.ExecuteDataSet(cn, SQL)

DataBind()

End Sub

End Class

The browser output is shown in Figure 15.1. The advantage of using the
DataComponent is that the developer did not need to be concerned about
the specifics of accessing the database, and this saved several lines of code
in the Web project. This component, which is compiled into an assembly, is
available for use in many applications.

626 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 626

Figure 15.1 The DataComponent simplifies access to the data store.

Locating the Component at Run Time

Some questions that may come to mind are, How is the reference to the project
or assembly stored in the Web application? Does the .dll file need to be in the
same folder as it currently is in when the Web application is deployed? What
Registry entries are required on the production Web server in order to get the
Web application to locate the DataComponent?

The .NET common language runtime needs to locate and bind to the assem-
bly at run time. The process or set of steps and logic involved in locating the
assembly is called probing. Probing is discussed in more detail a little later in
this chapter.

Figure 15.2 Setting a reference to an external assembly automatically creates a copy of
the assembly to the bin folder of the Web application.

Building and Versioning .NET Components 627

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 627

Currently, the common language runtime is located in the DataComponent
by searching in the same directory as the Web application’s assembly, which is
the bin folder of the Web application. There’s no mistake in that statement;
when the reference was set to the DataComponent project, a copy of the
assembly was made to the Web application’s bin folder, as shown in Figure
15.2. The copy was only made if the DataComponent was built prior to setting
the reference to the project. If the assembly doesn’t exist, it is copied when the
solution is built.

Assembly Versioning

When an assembly is built, its current version is stored in the manifest meta-
data of the assembly. The version can be set by using an assembly attribute
called AssemblyVersion. By default, this attribute is located in the Assembly-
Info.vb file of each project. The default value for this attribute is as follows:

<Assembly: AssemblyVersion(“1.0.*”)>

The assembly version is made up of four numbers, as shown in Figure 15.3.
The first two numbers indicate the major and minor version of the assembly. A
change to the major or minor version number usually indicates that the assem-
bly contains new functionality, either by adding or changing properties,
method, or events. By default, assemblies that have different major and minor
version numbers are not considered to be compatible.

The third number of the version represents the revision of the assembly. The
revision number is usually updated when applying service packs. No assump-
tion of compatibility can be made between different revision numbers.

Figure 15.3 The versioning of an assembly.

Major
3

Minor
0

Revision
24

Build
1109

Incompatible May Be
Compatible

(Service Packs)

<Assembly: AssemblyVersion("1.0.*")>

• Assembly version is automatically updated
Revision = days since 1/1/2000
Build = seconds since midnight divided by 2

• To fix the version, manually type it:
<Assembly: AssemblyVersion("3.0.24.1109")>

Always
Compatible

(QFEs)

628 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 628

The fourth number of the version represents the build of the assembly.
Assemblies that have the same major, minor, and revision numbers, but have
a different build number are considered to be compatible. An assembly with a
different build number is usually deployed to correct software bugs through
Quick Fix Engineering (QFE) builds.

When using the asterisk to provide autonumbering of the assembly, the
third number contains the number of days since January 1, 2000, and the
fourth number contains the number of seconds since midnight, divided by
two. Depending on the current daylight savings setting, this number may start
at midnight or 1:00 A.M.

The System.Version class can be used to obtain the version of an assembly.
The following code has been added to the DataComponent to allow retrieval
of the version of the assembly:

‘Add Imports System.Reflection to top of this code file.

Public Shared ReadOnly Property Version() As Version

Get

Dim a As [Assembly] = [Assembly].GetExecutingAssembly()

Dim aName As AssemblyName = a.GetName()

Return aName.Version

End Get

End Property

This code requires the Imports System.Reflection directive at the top of the
code file because the System.Reflection namespace contains the Assembly
class and the AssemblyName class. The Assembly class is enclosed within
brackets because Assembly is also a keyword. The Assembly class has several
shared methods for obtaining a reference to an assembly. In this case, GetExe-
cutingAssembly method returns a reference to the DataComponent assembly.

The Version class contains properties called Major, Minor, Revision, and
Build. The ToString method provides the version as a string. Also, the opera-
tors =, <>, <, >, >=, <= are overloaded to allow comparison of version
instances. Visual Basic .NET does not support operator overloading, but meth-
ods exist that Visual Basic .NET can use to perform comparisons as shown in
Figure 15.4. These methods are static methods, and can be called as follows:

If Version.op_equality(myVersion,yourVersion) then

Response.Write(“The versions are equal”)

End If

Building and Versioning .NET Components 629

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 629

Figure 15.4 The Object Browser, displaying the Version class and its methods. Notice the
Assembly and AssemblyName classes in the System.Reflection namespace.

The Web page has been updated to display this version of the assembly. This
comes in handy in some of the later examples. The following line of code has
been added to the Page_Load event method:

Response.Write(Db.Version.ToString() & “
”)

Private Assemblies

Private assemblies are assemblies that are used solely by the Web application
with which it has been deployed. Private assemblies are required to be located
in the main folder as the Web application (bin), or a subdirectory of the Web
application. In the example of the Web site that is using the DataComponent,
setting the reference to the DataComponent copied the DataComponent
assembly to the bin folder of the Web site.

Deployment of Web applications that use private assemblies is simply a
matter of copying the files to the new location, and creating a Web share, as
was done in Chapter 2, “Solutions, Projects, and the Visual Studio .NET IDE.”
The common language runtime probes for the DataComponent in the bin
folder of the Web application.

By default, there is no runtime version control on private assemblies. This
means that different versions of the assembly simply can be copied into the bin
folder of the Web site. Assuming that the assemblies are compatible, the
ASP.NET starts using the new assembly.

630 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 630

Private assemblies are considered to be the deployment model of choice
by some people. Be careful, because although it is simple to deploy
assemblies by simply copying the files to the destination, this could
become unmanageable as an assembly is used with many applications.
Shared Assemblies are covered in this chapter, which is a more
manageable choice.

When working with private assemblies, the common language runtime
looks for the assembly in the same folder as the Web application, which is the
bin folder. The common language runtime starts by looking for the assembly
by its friendly name plus the .dll extension. If the file is not found, the common
language runtime attempts to locate the assembly by using its friendly name
plus the .exe extension.

Figure 15.5 The probing sequence that the common language runtime uses when
locating a private assembly that has no strong name.

In dir with
same name as

assembly?

In application
directory?

No

In private path
dir(s)?

In privatePath
defined?

Checked for
EXE?

Yes

Yes

Yes

In AspNet
temp file cache?

No

Bind

TypeLoadException

Probe
for assembly

No

No

No

Yes

Yes

No - Repeat tests, look for .exe file

Look for .dll file first

Building and Versioning .NET Components 631

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 631

If the assembly is not found in the bin folder, the common language runtime
checks for the existence of a folder that has the same name as the assembly’s
friendly name. If the folder exists, the common language runtime attempts to
locate the assembly in that folder.

It may be desirable to place all of the referenced assemblies in a common
subdirectory. This can be done by placing a probing privatePath directive into
the Web.config file as follows:

<configuration>

<runtime>

<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>

<probing privatePath=”bin\salesDll;bin\customerDll” />

</assemblyBinding>

</runtime>

</configuration>

This code sets a lookup path to the bin\salesDll and bin\customerDll fold-
ers. If the assembly is not found in the bin folder, the common language run-
time looks in the privatePaths that are defined. Figure 15.5 shows the probing
sequence that the common language runtime uses when attempting to locate a
private assembly that has no strong name. Probing for assemblies is covered in
more detail later in this chapter.

Side-by-Side Versioning

Copying over the assembly in one Web application does not affect private
assemblies for other Web sites. This means that version 2.0.0.0 of the Data-
Component assembly can be running in one Web site, and version 3.0.0.0 of the
DataComponent assembly can be running in a different Web site on the same
computer.

Side-by-side versioning was impossible when using traditional COM com-
ponents, because the Registry contained the location information for a COM
component, and there was only one setting for any given COM component.
With the .NET Framework, no Registry entries need to be made for the com-
mon language runtime to locate an assembly. This eliminates the problem that
COM components had, whereby an older version of a .dll file was installed on
a system and caused the newer programs that used a newer version of the .dll
file to break. This was commonly referred to as DLL Hell.

632 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 632

Strong-Named Assemblies

Being able to copy over an assembly that is being referenced may be a benefit,
but can also be problem. The reason that this is allowable is because the assem-
bly is private, and private assemblies do not need to have a strong name.

A strong name is a unique name that is assigned to an assembly, which
would force the version to be the version that was compiled with the applica-
tion, unless the version is explicitly overridden.

A strong name consists of the assembly’s friendly name, which is the name
of the assembly without the file extension (.dll), version number, culture infor-
mation, plus a public key and a digital signature. Visual Studio .NET can
assign strong names to an assembly when the assembly is compiled. Two
assemblies with the same strong name are considered to be identical.

Strong names guarantee name uniqueness by using a public and private key
pair. Only the entity that holds the private key can create an assembly with the
same strong name. This means that the private and public keys provide a
method of identifying the entity that created the assembly.

Strong names are used to maintain the version lineage of an assembly. A
strong name ensures that nobody can produce a different version of an assem-
bly if they don’t have the private key. Users can be certain that a version of a
strong-named assembly comes from the original publisher.

Strong names provide an integrity check that guarantees that the contents of
the assembly have not been tampered with since the assembly was compiled.

Be careful, a strong name does not guarantee that a publisher is who it says
it is. The strong name only states that the publisher is the same as in the previ-
ous versions. To be sure that the publisher is who it says it is, the assembly
should contain a digital signature and digital certificate.

When you reference a strong-named assembly, versioning enforcement is
provided as well as naming protection. Also, strong-named assemblies can ref-
erence only other strong-named assemblies.

Creating a Strong-Named Assembly
Creating a strong-named assembly requires a public and private key pair.
The key pair can be generated by using the strong-name utility (sn.exe). The
strong-name utility is a console application that can be run by starting the
Visual Studio .NET command prompt and executing the following command:

Sn.exe –k c:\myKey.snk

Building and Versioning .NET Components 633

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 633

This creates a key pair, stored in the myKey.snk file. This file contains both
the private and public key, and should be stored and protected. This program
should only be run once to create the key pair. Every strong-named assembly
should use the same key pair. Keep in mind that the key pair is used to iden-
tify the publisher, and the key is required to maintain the version lineage on
the assemblies.

After the key pair is obtained, there are two things that need to be done in
the component project: assign a fixed version number and assign the key file
to the assembly. The AssemblyInfo.vb file contains the AssemblyVersion
attribute, which simply can be edited. By default, the AssemblyKeyFile
attribute is not included in the AssemblyInfo.vb file, but this can be added.
The following changes have been made to the DataComponent project’s
AssemblyInfo.vb file:

Imports System.Reflection

Imports System.Runtime.InteropServices

‘ General information about an assembly is controlled

‘ through the following set of attributes. Change these

‘ attribute values to modify the information

‘ associated with an assembly.

‘ Review the values of the assembly attributes.

<Assembly: AssemblyTitle(“Data Component”)>

<Assembly: AssemblyDescription(“Provides easy access to SQL Server”)>

<Assembly: AssemblyCompany(“MyCompany”)>

<Assembly: AssemblyProduct(“DataComponent”)>

<Assembly: AssemblyCopyright(“Copyright (c) 2001-2010”)>

<Assembly: AssemblyTrademark(“Trademark Here”)>

<Assembly: CLSCompliant(True)>

‘ The following GUID is for the ID of the typelib if this

‘ project is exposed to COM.

<Assembly: Guid(“921E7039-7D26-40A2-9A51-FA105B6D717F”)>

‘ Version information for an assembly consists of the

‘ following four values:

‘ Major Version

‘ Minor Version

‘ Build Number

‘ Revision

‘ You can specify all the values or you can default the

‘ Build and Revision Numbers

‘ by using the ‘*’ as shown below:

<Assembly: AssemblyVersion(“2.0.0.0”)>

<Assembly: AssemblyKeyFile(“c:\myKey.snk”)>

The significant changes are the last two lines. These changes automatically
create this assembly as a strong-named assembly. The strong name, or full
name, of the compiled assembly is as follows:

634 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 634

DataComponent, Version=2.0.0.0, _

Culture=neutral, PublicKeyToken=4fa8f612df7c8110

The strong name consists of the friendly name, the version, the culture
(which should always be set to neutral for the main assembly file), and the
public-key token. The public-key token represents an abbreviated version of
the public key.

In Chapter 13, “Site Security,” code access security was covered. One of the
important considerations when using code access security is the strength of
the evidence. Different permissions may be provided based on a public-key
token. For example, Microsoft has granted itself full permissions, based on
their public key. There may be situations in which it is important to grant a cer-
tain company’s code more permissions than those that are normally granted.
This can be easily done at the company level if the company only has a single
public key. Figure 15.6 shows how a code group can be added for
MyCompany, based on a public key. All code that is published by MyCompany
has the permissions that are assigned to the code group.

When the DataComponent assembly is compiled, the assembly’s manifest
can be viewed with ILDASM.exe and contains the public key, as shown in Fig-
ure 15.7. Also notice that the version has been updated to reflect the fixed set-
ting of version 2.0.0.0.

Figure 15.6 The code group is added for MyCompany based on the public-key evidence.

Building and Versioning .NET Components 635

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 635

Figure 15.7 The public key is included in the manifest of a strong-named assembly.

Using Strong-Named Assemblies
When an assembly is referenced in an application, a record of the referenced
assembly is included in the application assembly’s manifest. If the assembly
does not contain a string name, the manifest records the friendly name and
version of the referenced assembly. The following is an example of the mani-
fest data for the DataComponent when the DataComponent does not have a
strong name.

.assembly extern DataComponent

{

ver 1:0:1073:39385

}

Although the version is recorded, the version is not used to enforce version-
ing because this is not a strong-named assembly.

When a strong-named assembly is referenced in an application, the record
of the assembly contains the friendly name, the public-key token, and the ver-
sion. The presence of the public-key token indicates that this is a strong-named
assembly, and the version number is enforced.

.assembly extern DataComponent

{

.publickeytoken = (4F A8 F6 12 DF 7C 81 10) // O....|..

.ver 2:0:0:0

}

The Web application has been compiled with version 2.0.0.0 of the Data-
Component. If the DataComponent has been updated to version 2.0.0.1 and
the new version is copied to the bin folder of the Web application (copying
over private assembly version 2.0.0.0 of DataComponent), an error message is
displayed in the browser, as shown in Figure 15.8.

636 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 636

Figure 15.8 Copying a new version of a private strong-named assembly over the old
version generates an error, because the Web application is enforcing versioning.

Fusion Log Viewer (FusLogVw.exe)
Although Figure 15.8 displays a message stating that the DataComponent
assembly has a problem, it’s not too clear as to the actual problem. To see more
information, the .NET Framework SDK contains a tool called the Fusion Log
Viewer (FusLogVw.exe). This tool can be used to get more detailed informa-
tion about the error.

To use FusLogVw.exe with ASP.NET, the processModel account must be set
to System. The processModel account setting is located in the machine.config
file. After changing this setting, either reboot the machine, or execute iisreset
from the command prompt.

The Fusion Log Viewer utility also can be tweaked to display all bindings
instead of the failures. This can be a handy learning tool, and also can be used
when an assembly is actually loading, but it’s not the assembly that should
have loaded. To view all assembly bindings, add the following key into the
Registry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fusion\ForceLog=dword:1

The Fusion Log Viewer displays an entry in its window indicating the appli-
cation, the assembly, and the date. Double-click the application to display the
following information when version 2.0.0.0 is overwritten with version 2.0.0.1
of the DataComponent:

Building and Versioning .NET Components 637

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 637

*** Assembly Binder Log Entry (12/9/2002 @ 11:59:38 PM) ***

The operation failed.

Bind result: hr = 0x80131040. No description available.

Assembly manager loaded from:

C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\fusion.dll

Running under executable

C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\aspnet_wp.exe

--- A detailed error log follows.

=== Pre-bind state information ===

LOG: DisplayName = DataComponent, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=4fa8f612df7c8110

(Fully-specified)

LOG: Appbase = file:///D:/AspDotNetBook/Book/Building and Versioning

.NET Components/Ch15Web

LOG: DEVPATH = C:\DevAssemblie

LOG: Initial PrivatePath = bin

LOG: Dynamic Base =

C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\Temporary ASP.NET

Files\ch15web\0baf2047

LOG: Cache Base = C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\Temporary

ASP.NET Files\ch15web\0baf2047

LOG: AppName = 5feb88b4

Calling assembly : Ch15Web, Version=1.0.1073.42703, Culture=neutral,

PublicKeyToken=null.

===

LOG: Processing DEVPATH.

LOG: Unable to find assembly in DEVPATH location:

C:\DevAssemblie\DataComponent.DLL.

LOG: Unable to find assembly in DEVPATH location:

C:\DevAssemblie\DataComponent.EXE.

LOG: Unable to find assembly in DEVPATH.

LOG: Publisher policy file is not found.

LOG: No redirect found in host configuration file

(C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\aspnet.config).

LOG: Using machine configuration file from

C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705\config\machine.config.

LOG: Post-policy reference: DataComponent, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=4fa8f612df7c8110

LOG: Cache Lookup was unsuccessful.

LOG: Attempting download of new URL

file:///C:/WINDOWS/Microsoft.NET/Framework/v1.0.3705/Temporary ASP.NET

Files/ch15web/0baf2047/5feb88b4/DataComponent.DLL.

LOG: Attempting download of new URL

file:///C:/WINDOWS/Microsoft.NET/Framework/v1.0.3705/Temporary ASP.NET

Files/ch15web/0baf2047/5feb88b4/DataComponent/DataComponent.DLL.

638 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 638

LOG: Attempting download of new URL

file:///D:/AspDotNetBook/Book/Building and Versioning .NET

Components/Ch15Web/bin/DataComponent.DLL.

LOG: Assembly download was successful. Attempting setup of file:

D:\AspDotNetBook\Book\Building and Versioning .NET

Components\Ch15Web\bin\DataComponent.DLL

LOG: Entering download cache setup phase.

WRN: Comparing the assembly name resulted in the mismatch:

Revision Number

ERR: The assembly reference did not match the assembly definition found.

ERR: Setup failed with hr = 0x80131040.

ERR: Failed to complete setup of assembly (hr = 0x80131040).

Probing terminated.

The pre-bind state information displays the assembly that the Web applica-
tion requires. The last lines of this log entry shows that DataComponent.dll
was found, but the Revision Number did not match.

The Fusion Log Viewer should be used to assist with any errors when an
application is failing to locate a referenced assembly.

Shared Assemblies

Shared assemblies are assemblies that are located in a common repository,
called the Global Assembly Cache (GAC). Shared assemblies can be used by
any application on the computer. Installing assemblies into the Global Assem-
bly Cache provides the ability to keep a single copy of each version of an
assembly on the machine, in a common location. This simplifies assembly
management and minimizes the quantity of assembly copies that are located
on the machine.

By default, the Global Assembly Cache is located in the %SystemRoot%\
Assembly folder. For example, on most Windows 2000 computers, this is
the C:\Winnt\Assembly folder, while on Windows XP computers this is the
C:\Windows\Assembly folder.

Installing an assembly into the Global Assembly Cache requires the assem-
bly to have a strong name. The assembly can be dragged and dropped into the
Global Assembly Cache folder. Figure 15.9 shows the Global Assembly Cache
after dragging and dropping version 2.0.0.0 and version 2.0.0.1 of the Data-
Component into it.

The accompanying sidebar, How Does the Assembly Folder Hold Multiple Copies
of Files That Have the Same Filename? explains how the Global Assembly Cache
can maintain multiple copies of files that have the same name.

Building and Versioning .NET Components 639

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 639

Figure 15.9 The Global Assembly Cache after dragging and dropping version 2.0.0.0 and
version 2.0.0.1 of the DataComponent into it.

The .NET Framework also includes a program called the GacUtil.exe, which
could be used to install and uninstall assemblies with a batch file. The GacUtil
program can be run from the Visual Studio .NET Command Prompt, and this
utility has options for adding, deleting, and list assemblies that are in the
Global Assembly Cache.

When working with shared assemblies in a development environment, it may
be more desirable to set a lookup path to the location of the component project’s
output, rather than continuously moving the component into the Global Assem-
bly Cache. This can be done by assigning a lookup path to the DEVPATH system
environment variable. For example, if the component project is in the c:\
myComponent folder, the DEVPATH could be set to C:\myComponent\Bin\ to
indicate the location of the myComponent.dll assembly.

After the DEVPATH environment variable is set, the following entry needs
to be added to the machine.config file:

<configuration>

<runtime>

<developmentMode developerInstallation=”true”>

</runtime>

</configuration>

Note that this setting must be in the machine.config file. This setting does
not work in the Web.config. Also, be sure to add the backslash to the end
of the path.

640 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 640

Building and Versioning .NET Components 641

♦ How Does the Assembly Folder Hold Multiple
Copies of Files That Have the Same Filename?

When a file such as DataComponent.dll exists in a folder and a new version of this file is
copied into the folder, the new copy overwrites the old copy. So how can this folder behave
differently?

Although the Global Assembly Cache appears as a single folder, it is really a folder struc-
ture. A COM component called shfusion.dll is responsible for presenting the pretty output
that is shown in Figure 15.9. To reveal the folder structure that is hidden by shfusion.dll,
simply unregister the shfusion.dll component. This can be done by starting the Visual Stu-
dio .NET Command Prompt, which is located in the Visual Studio .NET Tools menu. At the
prompt, the following information can be typed:

Regsvr32 –u shfusion.dll

After the shfusion.dll file is unregistered, opening the Assembly folder reveals two tem-
porary folders and a folder called GAC and another folder called NativeImage1_version.

The NativeImages folder contains .NET components that have been precompiled using
the ngen.exe utility. If a .NET assembly has been precompiled with ngen.exe, it is not JIT
compiled when it is run.

The GAC folder contains the .NET components that are shared on the machine. Compo-
nents that are in the GAC folder must have strong names. Navigating further into the folder
structure of the GAC, there is actually a folder for each assembly name. Inside the Data-
Component folder, there is a folder called 2.0.0.0__4fa8f612df7c8110 and another folder
called 2.0.0.1__4fa8f612df7c8110 (see Figure 15.10). These folders contain the actual ver-
sions of the DataComponent that were dragged and dropped into the assembly folder.

Figure 15.10 The two DataComponent.dll files are actually in two different folders.

continued

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 641

The DEVPATH environment variable only works with strong-named
assemblies. This setting is ignored for assemblies without strong names.

Assembly-Binding Policies

Although strong-named assemblies provide enforcement of versioning
between the Web application and the referenced assembly, there are many
cases where it is desirable to copy a new version of an assembly to the Web
server, without being forced to recompile the Web application.

Performing a version redirect is a function of assembly policies. The four
primary types of assembly polices are application, publisher, ASPNET, and
administrator.

Changes that are made to the application policy are unique to the Web appli-
cation. Changes that are made to the publisher policy are global to the
machine. Changes that are made to ASPNET policy apply to all Web sites on
the machine. Changes to the administrator policy override all other policies
and are global to the machine.

Each policy is applied in a specific order as shown in Figure 15.11. The
Application policy is stored in the Web.config file. This policy is evaluated
first. If the application required version 2.0.0.0 of the DataComponent assem-
bly, the application binding could be redirected to a different version, such as
version 2.0.0.1 of the assembly. The application policy also has the ability to
skip over evaluation of the publisher policy by using the optional publisher-
Policy attribute.

642 Chapter 15

♦ How Does the Assembly Folder Hold Multiple
Copies of Files That Have the Same Filename?
(continued)

In reality, the shfusion.dll file displays a flattened version of this folder hierarchy, which is
how files with the same filename can be dropped into the GAC without the files overwrit-
ing each other.

After viewing the folder structure, the shfusion.dll must be registered as follows:

regsvr32 shfusion.dll

Use this command to reregister the shfusion.dll component any time that the folder lay-
out is visible in the assembly folder.

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 642

The following XML code performs a redirect from version 2.0.0.0 to version
2.0.0.1 and directs the runtime to skip the publisher policy:

<configuration>

<runtime>

<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>

<dependentAssembly>

<assemblyIdentity name=”DataComponent”

publicKeyToken=”4FA8F612DF7C8110” culture=””/>

<bindingRedirect oldVersion=”2.0.0.0”

newVersion=”2.0.0.1”/>

<publisherPolicy apply=”no” />

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

The oldVersion also supports ranges. For example, the oldVersion could
have been specified as “1.0.0.0-2.0.0.0”. Each number of the version can be
between 0 and 65535, so “1.0.0.0-1.65535.65535.65535” is a valid method of
specifying any major version 1 of the component.

The assembly-binding redirect does not have to go from a lower to higher
version number. It is possible to redirect from any version to any version.

Figure 15.11 The assembly-binding policy order.

Application - Give me
DataComponent version 2.0.0.0

Application Policy
Web.config

Ask for 2.0.0.0? Deliver 2.0.0.1

Publisher Policy
policy.2.0.DataComponent.dll
Ask for 2.0.0.1? Deliver 2.0.0.2

ASPNET Policy
ASPNET.config

Ask for 2.0.0.2? Deliver 2.0.0.3

Administrator Policy
Machine.config

Ask for 2.0.0.3? Deliver 2.0.0.4

Optionally Skip Publisher
<publisherPolicy apply="no" />

Building and Versioning .NET Components 643

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 643

Notice that the strong name is composed of the friendly name of the assem-
bly, the public-key token, the culture, and the version. What happens if two
vendors supply an assembly with the same name, a different version, and the
same culture? If the public-key token is different, the two assemblies, even
though they have the same filename, have different version lineages. One does
not interfere with the other.

What happens if a company loses their key pair and simply creates a new
key pair for the next release of their program? When this program is installed,
the program appears to have been written by a different company. There is no
way to create a binding policy to redirect from one version with key A to a dif-
ferent version with key B because this is like trying to perform a redirect from
company A to company B. This means that every effort should be taken to pro-
tect the key pair from being lost or stolen.

Microsoft .NET Framework Configuration Tool
The Microsoft .NET Framework Configuration Tool is an administration tool
that can be used to configure the application (Web.config) and administrator
(machine.config) policies. This tool can be executed from the Administrative
Tools menu.

The application policy for a Web application can be edited by right-clicking
Applications, clicking Add, and then navigating to the Web.config file, as
shown in Figure 15.12.

Figure 15.12 Add the Web.config file to the list of applications.

644 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 644

Figure 15.13 The Binding Policy tab is used to redirect the binding to a different version.

After the Web application is added, a configured assembly can be added to
set the binding policy for the assembly. The assembly can be selected from the
Global Assembly Cache, and the settings can be entered as shown in Figure
15.13. The General tab also allows the Publisher Policy to be overridden, while
the Codebases tab allows the entry of a download location. The changes are
saved to the Web.config file.

The Microsoft .NET Framework Configuration Tool also allows global
changes on the machine by configuring an assembly at the computer level. The
changes that are made at this level are saved to the machine.config file.

Publisher Policies
Creating publisher policies requires more work than the other policies. The
vendor or publisher can specify that a new version of an assembly should be
used. Publisher policies are compiled to .dll files and placed into the Global
Assembly Cache. By default, the publisher policy overrides the application
policy but this can be also overridden.

Creating a publisher policy requires an XML file with the binding redirect
information. An example of the XML file is as follows:

<configuration>

<runtime>

<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>

<dependentAssembly>

<assemblyIdentity name=”DataComponent”

publicKeyToken=”4FA8F612DF7C8110” culture=””/>

<bindingRedirect oldVersion=”2.0.0.1”

newVersion=”2.0.0.2”/>

Building and Versioning .NET Components 645

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 645

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

This file can be saved with any name, but for this example, the file is saved
as PubDataComponent.config.

Next, the Assembly Linker (AL.exe) must be used to package this file into a
.dll file. The command to package the PubDataComponent is as follows:

AL.exe /link:PubDataConponent.config

/out:policy.2.0.DataComponent.dll

/keyfile:c:\myKey.snk

/version:1.0.0.0

In this example, the link switch is the name of the binding policy file source
XML file. The out switch is the name of the output file, which has a special syn-
tax. The filename must start with the word policy, followed by the major and
minor version of the source assembly that is redirected. The keyfile switch is the
name of the key file that should be used for all assemblies, including this one.
The version is the version of this assembly.

The version switch is the version of the publisher policy. If multiple
versions of the publisher file exist, the highest version number is
automatically used.

After the policy.2.0.DataComponent.dll file is created, it must be installed
into the Global Assembly Cache. This can be done by dragging and dropping
the file into the Global Assembly Cache, or by using the gacutil.exe tool.

Probing for Assemblies

When an assembly needs to be located, there is a series of checks to locate the
assembly. The process of locating an assembly is called probing.

The first thing that the class loader checks is that the DEVPATH environ-
ment variable exists, and that the assembly exists at the location that is pointed
to in the DEVPATH, as shown in Figure 15.14.

Next, the assembly is checked to see if it has a strong name. If the assembly
does not have a strong name, the class loader searches for a .dll file that has the
same name as the assembly’s friendly name plus the .dll extension. First, the
ASP.NET’s temporary file cache is checked. Next, the application’s bin folder
is searched for the .dll file.

646 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 646

Figure 15.14 The runtime probes many locations for an assembly.

Probing continues to check for the .dll in the bin\myComponent folder. If it
is not found, probing checks the Web.config to see if a privatePath has been
configured. If so, each of the paths that are configured in the privatePath vari-
able is searched.

If the .dll file has not been found, probing starts over, but this time the search
is for an .exe file. If the .exe file is not found, a TypeLoadException occurs.

If the assembly has a strong name, the assembly policies are applied. After
the policies are applied, the class loader looks for the assembly in the Global
Assembly Cache.

If the assembly is not is the Global Assembly Cache, the class loader checks
to see if a publisher codebase or application codebase exists. If neither exists,
probing continues in the application directory, and follows the same path as it
would for an assembly without a strong name.

Cross-Language Inheritance

A new benefit of .NET components is that they support cross-language inher-
itance. For example, a component that has been written in C# can be used as a
base class for a new Visual Basic .NET component. This allows a developer to

In AspNet
temp file cache?

In application
directory as .dll?

Is privatePath
defined?

Is private path
dir(s) as .dll?

Checked for EXE?

In dir with
same name as

assembly as .dll?

Strong name?

Apply policies

Is DEVPATH Set?

In Global
assembly cache?

Is Admin
codeBase defined?

Is Publisher
codeBase defined?

Is app codeBase
defined?

Yes

YesYes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No
NoNo

No

No

No

No

No - Look for .dll file first

No - Look for .dll file first

No - Repeat tests, look for .exe file

No

Probe
for assembly

TypeLoadException

Bind

Building and Versioning .NET Components 647

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 647

use any .NET language to accomplish a task and then expose this code so any
.NET language can derive a new class to use and extend the code.

The following C# component is an example of how Visual Basic .NET can use
and extend a component that has been written in a different .NET language:

using System;

using System.Web;

using System.Web.Mail;

namespace csMessaging

{

public class csEmail

{

private string server;

public string Server

{

get

{

return SmtpMail.SmtpServer;

}

set

{

server = value;

}

}

public virtual void Send(

string from,

string to,

string subject,

string messageText)

{

SmtpMail.SmtpServer=server;

SmtpMail.Send(from,to,subject,messageText);

}

}

}

This component has a single method called Send, which is called with its call-
ing parameters, and a property called Sever. This component is compiled to an
assembly called csMessaging.dll, which can be used by any .NET language.

A new Visual Basic .NET Class Library project called vbMessaging has been
created. Although the C# component could be instantiated and used in the
Visual Basic .NET application, there is a requirement to add functionality,
where the From, To, Subject, and Message could be entered as properties, and
the Send method could be executed. This functionality also required the ability
to be able to execute the Send method again, but with a different message, and
the message would use the stored properties to get the From, To, and Subject.

In the vbMessaging project, a reference is set to the csMessaging project. A
new class, called vbEmail, is added into the vbMessaging component, and it
inherits from csEmail.

648 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 648

Public Class vbEmail

Inherits csMessaging.csEmail

Private _sendFrom As String

Private _subject As String

Private _message As String

Private _sendTo As String

Public Property SendFrom() As String

Get

Return _sendFrom

End Get

Set(ByVal Value As String)

_sendFrom = Value

End Set

End Property

Public Property SendTo() As String

Get

Return _sendTo

End Get

Set(ByVal Value As String)

_sendTo = Value

End Set

End Property

Public Property Subject() As String

Get

Return _subject

End Get

Set(ByVal Value As String)

_subject = Value

End Set

End Property

Public Property Message() As String

Get

Return _message

End Get

Set(ByVal Value As String)

_message = Value

End Set

End Property

Public Overloads Sub Send()

Send(_sendFrom, _sendTo, _subject, _message)

End Sub

Public Overloads Sub Send(ByVal message As String)

_message = message

Send(_sendFrom, _sendTo, _subject, _message)

End Sub

Public Overloads Sub Send(_

ByVal subject As String, _

ByVal message As String)

_subject = subject

_message = message

Send(_sendFrom, _sendTo, _subject, _message)

Building and Versioning .NET Components 649

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 649

End Sub

Public Overloads Sub Send(_

ByVal sendTo As String, _

ByVal subject As String, _

ByVal message As String)

_sendTo = sendTo

_subject = subject

_message = message

Send(_sendFrom, _sendTo, _subject, _message)

End Sub

Public Overloads Overrides Sub Send(_

ByVal sendTo As String, _

ByVal sendFrom As String, _

ByVal subject As String, _

ByVal message As String)

_sendTo = sendTo

_sendFrom = sendFrom

_subject = subject

_message = message

MyBase.Send(_sendFrom, _sendTo, _subject, _message)

End Sub

Public Sub SendMessageTo(ByVal sendTo As String)

_sendTo = sendTo

Send(_sendFrom, _sendTo, _subject, _message)

End Sub

End Class

The SendMessageTo method also was added to allow the same message to
be sent to a different recipient.

Figure 15.17 The Feedback page that uses the vbMessaging component to send email to
the Webmaster.

650 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 650

Both projects were given a version number of 1.0.0.0 and a strong name, and
installed into the Global Assembly Cache. It’s important to note that any assem-
bly that has a strong name must reference assemblies that have a strong name.

The accompanying sidebar, Getting Assemblies to Show in the .NET Tab,
explains how to add entries to the Registry, which exposes the assemblies on
the .NET tab when adding assembly references to a project.

A new Web project is created that displays a feedback form to the user.
When the user submits the feedback form, the message is sent to two recipi-
ents. The feedback page contains TextBoxes for the Name, Subject, and Mes-
sage, as shown in Figure 15.17.

Building and Versioning .NET Components 651

♦ Getting Assemblies to Show in the .NET Tab

Although it’s easy to browse for the .dll file when adding a reference to an assembly,
assemblies that are frequently used could be placed in the .NET tab of Visual Studio .NET’s
Add Reference dialog box. This is done by adding a Registry entry, which tells Visual Studio
.NET to display the assemblies that are in a given folder.

To make the vbMessaging and the csMessaging components visible in the .NET tab, the
following Registry entries are added:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\

AssemblyFolders\csMessaging]

@=”D:\\AspDotNetBook\\Book\\

Building and Versioning .NET Components\\csMessaging\\bin\\Debug”

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\

AssemblyFolders\vbMessaging]

@=”D:\\AspDotNetBook\\Book\\

Building and Versioning .NET Components\\vbMessaging\\bin”

If these lines are typed into Notepad and saved with a .reg extension, the .reg file can be
executed to add the proper keys. Figure 15.15 shows the added Registry keys.

Figure 15.15 The Registry keys to add to display the components in the .NET tab of the
Add Reference dialog box.

continued

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 651

The code in the button’s click event method simply creates an instance of the
vbEmail, and send the feedback to the Webmaster. After that, the message is
also sent to the Web administrator. The code is as follows:

Private Sub Button1_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Dim email As New vbMessaging.vbEmail()

email.Server = “localhost”

email.SendFrom = txtName.Text

email.SendTo = “WebMaster@GJTT.com”

email.Subject = txtSubject.Text

email.Message = txtMessage.Text

email.Send()

email.SendMessageTo(“WebAdministrator@GJTT.com”)

Response.Write(“Message Sent
”)

End Sub

To use this code, SMTP mail must be installed. Also, this may generate a
message stating the following:

652 Chapter 15

♦ Getting Assemblies to Show in the .NET
Tab (continued)

Adding these Registry keys is not required to use the components. In the Add Reference
dialog box, the developer could simply browse to the components. This procedure is used
only if it is desirable to display the components in the .NET tab, as shown in Figure 15.16.

Figure 15.16 The Add Reference dialog box contains the new components.

Visual Studio .NET must be restarted in order to see the components.

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 652

The server rejected one or more recipient addresses.

The server response was: 550 5.7.1 Unable to relay for ...

This can be corrected by editing the relay properties of the SMTP server,
which is accessible from the Internet Information Server tool. The relay prop-
erty should be set to allow address 127.0.0.1 (localhost) to relay. Do not grant
this access to everyone, because many hackers exploit this.

Lab 15.1: Creating a Visual Basic .NET Data
Component

In this lab, you create a Visual Basic .NET component that can be reused
in many applications. This component is installed into the Global Assem-
bly Cache, and configured to be available from the .NET tab of the Add
Reference dialog box.

Adding the DataComponent Project
In this section, you add a new Visual Basic .NET Class Library project to
the existing solution. This project compiles to a .dll file.

1. To start this lab, open the OrderEntrySystemSolution from Lab 14.1.
Right-click the OrderEntrySystemSolution in the Solution Explorer,
and click Check Out.

2. Right-click on the OrderEntrySystemSolution, and click Add, New
Project. For the project name, type DataComponent. Be sure to ver-
ify that the project is located under the OrderEntrySystemSolution
folder.

3. Rename Class1.vb to Db.vb, and open the class file. Rename Class1
to Db.

4. Add the Imports System.Data.SqlClient statement to the top of the
code.

5. In the Db class, add a method called ExecuteDataSet. This method
requires parameters for the connection, command type, and com-
mand text, and an array of command parameters. The return type is
a DataSet.

6. In the body of the ExecuteDataSet function, add code to create a
new SqlCommand. Assign the connection, command type, and the
command text to the command.

7. Execute a call to a method that hasn’t been defined yet, called
AddParameters. This method requires the command and the param-
eter array as arguments.

Building and Versioning .NET Components 653

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 653

8. In the ExecuteDataSet method, create a new DataSet and Sql-
DataAdapter. Fill the dataset and return the dataset. The completed
code should look like the following:
Public Shared Function ExecuteDataSet(_

ByVal cn As SqlConnection, _

ByVal cmdType As CommandType, _

ByVal cmdText As String, _

ByVal ParamArray prm() As SqlParameter) As DataSet

Dim cmd As New SqlCommand(cmdText, cn)

cmd.CommandType = cmdType

AddParameters(cmd, prm)

Dim ds As New DataSet()

Dim da As New SqlDataAdapter(cmd)

da.Fill(ds)

Return ds

End Function

9. Add a new method called AddParameter, that requires parameters
for the command and array of parameters. This method does not
return a value.

10. In the AddParameter method, add code to test the parameter array
to see if it is Nothing, and return if so. Add a loop that adds each
parameter in the array to the command object’s collection of para-
meters. The code should look like the following:
Private Shared Sub AddParameters(_

ByVal cmd As SqlCommand, _

ByVal prm() As SqlParameter)

If prm Is Nothing Then

Return

End If

Dim p As SqlParameter

For Each p In prm

cmd.Parameters.Add(p)

Next

End Sub

11. Add overload to the ExecuteDataSet method that requires only a
connection and the command text. Rather than rewrite the code, this
method should call the method that has already been written. The
code should like the following:
Public Shared Function ExecuteDataSet(_

ByVal cn As SqlConnection, _

ByVal cmdText As String) As DataSet

Return ExecuteDataSet(_

cn, CommandType.Text, cmdText, Nothing)

End Function

12. Build the project and save your work.

654 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 654

Testing the DataComponent
Before adding DataComponent to the Global Assembly Cache, the
assembly is tested by rewriting the ProductList.aspx page. After the Data-
Component is working, you add it to the Global Assembly Cache, and
add the Registry entry to expose the DataComponent in the .NET tab of
the add references.

1. Right-click the Inventory project in the Solution Explorer, and click
Set As Startup Project.

2. Right-click the ProductList.aspx page, and click Set As Start Page.

3. Right-click the References node in the Inventory project, and click
Add Reference. Add a reference to the DataComponent project.

4. Open the ProductList.aspx.vb code-behind page. Add the Imports
System.Data.SqlData directive to the top of the page.

5. Notice that the BindProducts method has an if statement that checks
to see whether the session variable called Products exists. If the ses-
sion variable does not exist, an ArrayList is populated and assigned
to the session variable.

6. Comment the code that is inside the if statement.

7. Inside the if statement, add code to create a DataSet called Products,
and assign it to the session variable called Products. The data is
retrieved from the Products table of the Northwind database. Be
sure to use the new DataComponent. Your BindProducts method
should look like the following:
Public Sub BindProducts()

If Session(“Products”) Is Nothing Then

‘Dim Products As New ArrayList()

‘Products.Add(New Beverage(1, “Milk”))

‘Products.Add(New Beverage(2, “Juice”))

‘Products.Add(New Beverage(3, “Cola”))

‘Products.Add(New Confection(4, “Ice Cream”))

‘Products.Add(New Confection(5, “Cake”))

‘Products.Add(New Confection(6, “Candy”))

‘Dim b As BaseProduct

‘For Each b In Products

‘ b.UnitPrice = 100

‘ b.UnitsInStock = Rnd() * 10

‘Next

Dim cn As New SqlConnection(_

“server=.;database=northwind;” _

& “trusted_connection=true”)

Dim sql As String

Building and Versioning .NET Components 655

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 655

Dim Products As DataSet

sql = _ “Select ProductName, UnitsInStock, UnitPrice “ _

& “ from Products”

Products = DataComponent.Db.ExecuteDataSet(cn, sql)

Session(“Products”) = Products

End If

ProductGrid.DataSource = Session(“Products”)

DataBind()

End Sub

8. Run the Web application. The ProductList page should be displayed
shown in Figure 15.18.

Figure 15.18 The revised ProductList.aspx page.

Adding the DataComponent to the Global Assembly Cache
In this section, you assign a strong name to the DataComponent and
assign 1.0.0.0 to the version. After that, you install the assembly into the
Global Assembly Cache.

1. Open the Visual Studio .NET Command Prompt.

2. Create a key pair file for use when strong-naming assemblies. The
command should be as follows:

sn -k c:\Development\StrongName.snk

3. The key is checked into Visual SourceSafe, but since this key is used
for all projects, it should be stored at the C:\Development folder,
and then should be manually placed into Visual SourceSafe.

656 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 656

4. Open Visual SourceSafe. Click the Development folder. Click File,
Add Files. This displays the Add File dialog box. Click the Strong-
Name.snk file, and click Add (see Figure 15.19).

Figure 15.19 Add the StongName.snk file to the Visual SourceSafe.

Adding the StrongName.snk to Visual SourceSafe may not be a good idea
in an untrustworthy environment. It is possible to extract the public key to
a file and check the public key into Visual SourceSafe while locking the
private and public key pair file in a safe place. For more information on
this topic, see Delay Signing an Assembly in the Visual Studio .NET Help.

5. Close Visual SourceSafe. Close the Visual Studio .NET Command
Prompt.

6. Open the AssemblyInfo.vb file that is in the DataComponent
project.

7. Change the AssemblyVersion to 1.0.0.0.

8. Add another line of code to assign the strong name to the assembly.
The code should look like the following:
<Assembly: AssemblyVersion(“1.0.0.0”)>

<Assembly: AssemblyKeyFile(“C:\Development\StrongName.snk”)>

9. Save your changes and build the project.

10. Open Windows Explorer. Navigate to the folder that contains the
DataComponent.dll file. It looks like the following:

C:\DEVELOPMENT\ORDERENTRYSYSTEM\OrderEntrySystemSolution\DataComp

onent\bin

11. Open another copy of Windows Explorer. Navigate to the assembly
folder. On Windows 2000, this is C:\Winnt\Assembly, and on Win-
dows XP or .NET, this is C:\Windows\Assembly.

Building and Versioning .NET Components 657

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 657

12. Drag the DataComponent.dll file, and drop it into the assembly
folder. The DataComponent should be displayed along with its ver-
sion and public-key token.

Adding the Assembly to the .NET Tab of the Add Reference Dialog
In this section, you add a key to the Registry, which displays the Data-
Component.dll in the .NET tab of the Add Reference dialog box.

1. Open the Registry editor program by clicking Start, Run, type
Regedit.exe, and click Ok.

2. Open the following key:

HKEY_LOCAL_MACHINE\

SOFTWARE\

Microsoft\

.NETFramework\

AssemblyFolders\

3. Notice that there are already some keys at this location.

4. Right-click on AssemblyFolders and click New, Key. The new key
name is insignificatant, so name the key DataComponent.

5. In the detail window, double-click the (Default) value. In the dialog
box, set the value to the following:

C:\DEVELOPMENT

\ORDERENTRYSYSTEM

\OrderEntrySystemSolution

\DataComponent

\bin

6. Close the Registry Editor. Close Visual Studio .NET.

7. Reopen Visual Studio .NET. In the Inventory project, delete the
existing reference to the DataComponent project.

8. Add a reference to the DataComponent. It should be available on
the .NET tab, as shown in Figure 15.20.

9. Build the project and test.

10. Save your changes and check the final solution back into Visual
SourceSafe.

658 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 658

Figure 15.20 Setting a reference to the DataComponent. Notice that it is available in the
.NET tab.

Summary

■■ To build a reusable component, a Visual Studio .NET Class Library
project must be created.

■■ Using the component requires telling Visual Studio .NET that the exter-
nal assembly is to be used with a project.

■■ The process of locating the assembly is called probing. Probing is the set
of steps and logic involved in locating the assembly.

■■ A strong name is a unique name that is assigned to an assembly, which
dictates that the version is the version that was compiled with the
application, unless the version is explicitly overridden.

■■ A strong name consists of the assembly’s friendly name, which is the
name of the assembly without the file extension (.dll), version number,
and culture information, plus a public key and a digital signature.

■■ Performing a version redirect is a function of assembly policies. The
four primary types of assembly polices are application, publisher, ASP-
NET, and administrator policies.

■■ A new benefit of .NET components is that they support cross-language
inheritance.

Building and Versioning .NET Components 659

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 659

Review Questions

1. What are the four binding policy types that are available in ASP.NET?

2. Assemblies that do not have a strong name are still version checked. True or false?

3. What tool can be used to see the attempted assembly bindings when the runtime can-
not find an assembly?

4. What can be done to allow an assembly to be downloaded from the Internet on
demand?

660 Chapter 15

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 660

Answers to Review Questions

1. Application, publisher, ASPNET, and administrator policies.

2. False.

3. The Fusion Log Viewer (FusLogVw.exe).

4. Set the codeBase property to the URL of the assembly.

Building and Versioning .NET Components 661

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 661

q 430234 Ch15.qxd 7/1/03 9:06 AM Page 662

663

Visual Studio .NET components were covered in the last chapter, as were the
benefits of building and using reusable components. Reusable components
really shine when you use Web services. Web services are components that are
accessible across a network. This opens a new world of reusability and can be
used to distribute application logic across many machines, thus delivering bet-
ter performance on large systems.

A Web service (also known as an XML Web service) is a programmable
entity that provides a particular element of functionality, such as application
logic, and is accessible to any number of potentially disparate systems using
Internet standards such as XML and HTTP. Web services require XML and
other Internet standards to create an infrastructure that supports interoper-
ability among many applications.

Existing technologies, such as CORBA (Common Object Request Broker
Architecture) and DCOM (Distributed Component Object Model) were
attempts to reuse components across the network, but these technologies have
problems, such as the inability to penetrate firewalls and the lack of cross-
platform support. Because communication between companies is easier than
ever using open industry standard protocols such as HTTP and SOAP, if it’s
not necessary for a technique to be platform independent and there is no need
to penetrate a firewall, remoting (the replacement for DCOM) can be used.

Creating Web Services

C H A P T E R

16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 663

Remoting provides better runtime performance, but does not offer cross-
platform, open standards implementation.

Web services are loosely coupled. When a client makes a call to the Web ser-
vice, the Web service processes the call, returns a result, and closes the connec-
tion. Web services may even extend their interface by adding new methods
and properties. This won’t affect existing clients as long as the existing meth-
ods and properties have not been changed.

One of the best features of Visual Studio .NET is its ability to work with Web
services in a seamless way. This chapter explores Web services from the Visual
Studio .NET perspective, by looking at some of the Web service basics and
then consuming an existing Web service. The balance of the chapter focuses on
creating a Web service.

Classroom Q & A
Q: My office uses a firewall that requires a name and password to

surf the Web. Is there a way for my internal programs to use Web
services through this type of firewall?

A: Yes. The Web service has a Proxy property that can be set to an
instance of the Webproxy class. The WebProxy class has a property
called Credentials that can have an instance of NetworkCredential
assigned to it. Keep in mind that this allows the Web service to
authenticate with the proxy, but you may still need to use the tra-
ditional methods of authentication at the destination Web server.

Q: Is there a way to charge for Web service use?
A: Sure. All the logging and tracing methods that have been covered

to date can be used.

Q: Some of the Web services that I hit take a long time to execute. I
know that they need to perform a substantial amount of work, but
I am currently executing calls to three different long-running Web
services. Is there a way to execute all three calls at the same time?

A: Absolutely. Web service methods can be executed asynchronously.
The key to executing Web service methods is not the call to the
method, but deciding when and how to end the method. This
chapter covers asynchronous Web service access in detail.

The Role of Web Services

A Web server is to a user as a Web service is to a Web application. A user
browses to a Web server, looking for information. The Web server content

664 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 664

provides an interactive experience to the user, but ultimately provides data to
the user. The Web service provides data to the Web application, but the Web
application is interested in specific data, so there is no need to provide an inter-
active experience to the Web application. Although a Web browser could com-
municate to a Web service, usually the application communicates to the Web
service.

This section examines some ways that Web services are implemented with
today’s applications.

Business Scenarios
It is important to understand the benefits that a Web service can provide. In its
simplest form, a Web service can provide a single function to a client, such as
the calculation of sales tax in an e-commerce application. Because dealing with
issues such as changes to tax codes can be time-consuming and costly to a
company, such tasks may be best left to a company that focuses on these issues
and is responsive to changes. Ideally, companies that wish to get sales tax cal-
culations could send an XML message across the Internet to a tax calculation
Web service, and the Web service could respond with an XML message that
contains the amount of sales tax to charge.

Web services can be used in a departmental fashion in the corporate
intranet. Different departments may expose data via a Web service, and com-
plete applications may be built by simply gluing the Web service pieces
together.

A Web service can also act as a node in a workflow application. Products
such as Microsoft BizTalk Server provide much of the glue that enables long-
running transactions across many computers, and Web services can provide a
seamless connection to BizTalk Server.

Show Me the Money
One way to ensure the success of Web services is to make sure that they can be
used to make money. If a company can find a way to make money with a tech-
nology, then the technology can succeed.

Money can be made with Web services by charging subscriber fees or pay
per use fees. It’s easy to log the usage by customer and charge a periodic fee
based on the usage of the Web service.

Web Service Basics

Web services provide a method for one application to communicate with
another application, leveraging existing technologies and protocols. On the
Windows platform, Internet Information Server (IIS) can be used to host a Web

Creating Web Services 665

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 665

service, and the authentication, encryption (SSL), and load-balancing tech-
nologies that are built into Internet Information Server can be used with Web
services.

A typical Web application might use Web services to acquire data from
another source that can be consumed by the Web application, as shown in Fig-
ure 16.1. Note that Web services are not just for Web applications. Windows
and Console applications can also consume Web services.

Several steps are involved in creating and consuming a Web service. The fol-
lowing steps help identify the big picture and are covered in detail in this
chapter (see Figure 16.2).

1. Build the Web service by creating a Visual Studio .NET Web service
project.

2. Advertise the Web service in a UDDI (Universal Description Discovery
Integration) directory.

3. Locate a Web service by querying the UDDI directory.

4. Get the Web service description in the form of a Web service Descrip-
tion Language (WSDL, pronounced as wiz-dill) document.

5. Build a proxy at the client by using the WSDL document data.

6. Call the Web service using the SOAP protocol over HTTP.

7. Process the returned data from the Web service using SOAP over HTTP.

Figure 16.1 Web applications may call internal and external Web services. Windows and
Console applications may also call Web services.

Browser Web Server

HTML

Console and
Windows

Applications

Internal
Web Service

SOAP

SOAP

Remote
Web Service

SOAP

666 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 666

Figure 16.2 The primary steps involved in creating and consuming a Web service.

Simple Object Access Protocol (SOAP)
Simple Object Access Protocol (SOAP) is the protocol used to transfer data to
and from the Web service. SOAP is XML based, and at the time of its inception,
SOAP leveraged the XML specifications. SOAP is itself a W3C specification.

The SOAP protocol consists of three parts. First is the envelope, which
defines what is in a message and how to process it. Second is a set of encoding
rules for expressing instances of data types that are defined in an application.
Third is the remote procedure call (RPC) representation and its RPC responses.

Although SOAP can be used in combination with a variety of other proto-
cols, only HTTP is used in relation to SOAP and Web services.

SOAP Message

The following code shows an example of a SOAP message that is posted to a
Web service to retrieve the latest trade price of a stock:

<soap:Envelope

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:m=”Some-URI”>

4. Retrieve the WSDL Document

Web Service
Consumer
Application

Web Service
Provider

UDDI
Directory Service

3. Locate the Web Service

1. Create the Web Service

2. Advertise the Web Service

5. Build proxy and client application

6. Call Web Service method

7. Send result to client

Creating Web Services 667

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 667

<soap:Body>

<m:GetLastTradePrice>

<symbol>MSFT</symbol>

</m:GetLastTradePrice>

</soap:Body>

</soap:Envelope>

The SOAP envelope is the top-level element and includes attributes for the
SOAP envelope namespace and the encoding style. Inside the envelope is the
SOAP body, which carries the message payload. The namespace that is
defined inside the body (“Some-URI”) is the namespace of the Web service
provider.

When the Web service receives the SOAP envelope, it executes the GetLast-
TradePrice method, using MSFT as a parameter.

The following code is an example of the SOAP message response to the con-
sumer:

<soap:Envelope

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<soap:Body>

<m:GetLastTradePriceResponse xmlns:m=”Some-URI”>

<Price>52.5</Price>

</m:GetLastTradePriceResponse>

</soap:Body>

</soap:Envelope>

The returned SOAP message resembles the message that was sent, but has
the results in the message payload. It’s important to note that there is nothing
in either message that ties SOAP to HTTP, although when SOAP is used with
Web services, HTTP is the protocol used.

SOAP Header

The SOAP header provides a mechanism for extending a message without
prior knowledge between the communicating parties. SOAP headers are typi-
cally used for authentication and transaction management. The Header ele-
ment must be the first immediate child element of the SOAP Envelope XML
element. An example of a SOAP Header follows:

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:m=”SomeWebServiceURI”>

<soap:Header

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<m:MyHeader>

<Username>MyUsername</Username>

668 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 668

<Password>MyPassword</Password>

</m:MyHeader>

</soap:Header>

<soap:Body>

<m:GetLastTradePriceResponse>

<Price>52.5</Price>

</m:GetLastTradePriceResponse>

</soap:Body>

</soap:Envelope>

SOAP Fault

The SOAP Fault element is used to transport error and status information
within a SOAP message. If the SOAP Fault element is present, it must be a
body entry and may not appear more than once within the Body element. The
SOAP Fault element defines four child elements, as shown in Table 16.1.

The following code shows a SOAP fault message that might be generated
when an attempt is made to get the stock price of an invalid symbol. (For more
information on the SOAP protocol, access www.w3.org/TR/SOAP/.)

Table 16.1 Fault Child Elements Describing the Fault

FAULT ELEMENT DESCRIPTION

faultcode Used by the Web service consumer to identify the
fault. This element must be present within the SOAP
Fault element. SOAP defines a small set of SOAP
fault codes that covers the basic SOAP faults.

faultstring Provides a human-readable explanation of the fault.
Faultstring must be present within the SOAP Fault
element and must provide information explaining
the nature of the fault.

faultactor Provides information about what caused the fault
within the message path. It indicates the source of
the fault. The value of the faultactor element is a
URI that identifies the source. Applications that are
not the ultimate destination of the SOAP message
must include the faultactor element in the SOAP
Fault element.

detail Holds application-specific error information related
to the Body element. It is included if the contents of
the Body element could not be successfully
processed. The absence of the detail element within
the Fault element indicates that the fault is not
related to the processing of the Body element.

Creating Web Services 669

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 669

<soap:Envelope

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:m=”Some-URI”>

<soap:Body>

<soap:Fault>

<faultcode>soap:Server</faultcode>

<faultstring>Ticker Error</faultstring>

<detail>

<m:myfaultdetails>

<message>

The ticker was invalid.

</message>

<errorcode>

12345

</errorcode>

</m:myfaultdetails>

</detail>

</soap:Fault>

</soap:Body>

</soap:Envelope>

Web Service Description Language
Web Service Description Language (WSDL) is used to describe the Web ser-
vice’s interface. This is the metadata of the Web service component. In COM,
IDL was used to perform the same task. WSDL is a W3C specification.

The WSDL document uses XML to describe network services as a collection
of communication endpoints, or ports, which can exchange messages. The fol-
lowing example shows a WSDL document that has been generated by Visual
Studio .NET for a Web service called HiWorld, which has a class called Hi and
a method called SayHi.

<?xml version=”1.0” encoding=”utf-8”?>

<definitions

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:s=”http://www.w3.org/2001/XMLSchema”

xmlns:s0=”http://gjtt.com/”

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”

xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”

targetNamespace=”http://gjtt.com/”

xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<types>

<s:schema elementFormDefault=”qualified”

targetNamespace=”http://gjtt.com/”>

<s:element name=”SayHi”>

670 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 670

<s:complexType/>

</s:element>

<s:element name=”SayHiResponse”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0”

maxOccurs=”1”

name=”SayHiResult”

type=”s:string”/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”string”

nillable=”true”

type=”s:string”/>

</s:schema>

</types>

<message name=”SayHiSoapIn”>

<part name=”parameters” element=”s0:SayHi”/>

</message>

<message name=”SayHiSoapOut”>

<part name=”parameters” element=”s0:SayHiResponse”/>

</message>

<message name=”SayHiHttpGetIn”/>

<message name=”SayHiHttpGetOut”>

<part name=”Body” element=”s0:string”/>

</message>

<message name=”SayHiHttpPostIn”/>

<message name=”SayHiHttpPostOut”>

<part name=”Body” element=”s0:string”/>

</message>

<portType name=”HiSoap”>

<operation name=”SayHi”>

<input message=”s0:SayHiSoapIn”/>

<output message=”s0:SayHiSoapOut”/>

</operation>

</portType>

<portType name=”HiHttpGet”>

<operation name=”SayHi”>

<input message=”s0:SayHiHttpGetIn”/>

<output message=”s0:SayHiHttpGetOut”/>

</operation>

</portType>

<portType name=”HiHttpPost”>

<operation name=”SayHi”>

<input message=”s0:SayHiHttpPostIn”/>

<output message=”s0:SayHiHttpPostOut”/>

</operation>

</portType>

<binding name=”HiSoap” type=”s0:HiSoap”>

<soap:binding

Creating Web Services 671

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 671

transport=”http://schemas.xmlsoap.org/soap/http”

style=”document”/>

<operation name=”SayHi”>

<soap:operation soapAction=”http://gjtt.com/SayHi”

style=”document”/>

<input>

<soap:body use=”literal”/>

</input>

<output>

<soap:body use=”literal”/>

</output>

</operation>

</binding>

<binding name=”HiHttpGet” type=”s0:HiHttpGet”>

<http:binding verb=”GET”/>

<operation name=”SayHi”>

<http:operation location=”/SayHi”/>

<input>

<http:urlEncoded/>

</input>

<output>

<mime:mimeXml part=”Body”/>

</output>

</operation>

</binding>

<binding name=”HiHttpPost” type=”s0:HiHttpPost”>

<http:binding verb=”POST”/>

<operation name=”SayHi”>

<http:operation location=”/SayHi”/>

<input>

<mime:content

type=”application/x-www-form-urlencoded”/>

</input>

<output>

<mime:mimeXml part=”Body”/>

</output>

</operation>

</binding>

<service name=”Hi”>

<port name=”HiSoap” binding=”s0:HiSoap”>

<soap:address

location=”http://localhost/HiWorld/Hi.asmx”/>

</port>

<port name=”HiHttpGet” binding=”s0:HiHttpGet”>

<http:address

location=”http://localhost/HiWorld/Hi.asmx”/>

</port>

<port name=”HiHttpPost” binding=”s0:HiHttpPost”>

<http:address

location=”http://localhost/HiWorld/Hi.asmx”/>

672 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 672

</port>

</service>

</definitions>

Notice that the WSDL document uses XML Schema (XSD) syntax. The defin-
tions element is the root element. This element defines all namespaces that are
used in this document. The WSDL document uses the following elements in
the definition of network services:

Types. A list of data type definitions that will be used by the Web service.

Message. An abstract, typed definition of the data being communicated.

Operation. An abstract description of an action supported by the service.

Port Type. An abstract set of operations supported by one or more end-
points.

Binding. A concrete protocol and data format specification for a port.

Port. An endpoint defined as a combination of a binding and a network
address.

Service. A collection of related endpoints.

The WSDL document essentially describes all data types that will be used to
communicate to the Web service, and also describes the method of communi-
cation. For more information on Web service Description Language, visit
www.w3.org/TR/wsdl.

Universal Description Discovery Integration
The Universal Description, Discovery, and Integration (UDDI) project creates
a platform-independent, open framework for describing services, discovering
businesses, and integrating business services using the Internet. UDDI is not a
W3C standard, but is a cross-industry effort driven by all major platform and
software providers, marketplace operators, and e-business leaders. The central
location for most UDDI development, specifications, and forums can be found
at www.uddi.org.

The UDDI project builds on WorldWide Web Consortium (W3C) and Inter-
net Engineering Task Force (IETF) standards such as XML, HTTP, and Domain
Name System (DNS) protocols. Cross-platform programming features are
addressed through the use of Simple Object Access Protocol (SOAP). The UDDI
protocol enables businesses to find and transact with one another quickly,
easily, and dynamically using their preferred applications.

A growing number of UDDI sites exist on the Internet. Some UDDI sites that
may be of interest are:

Creating Web Services 673

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 673

IBM. http://uddi.ibm.com.

Microsoft. http://uddi.microsoft.com.

SAP. http://uddi.sap.com.

UDDI also can be implemented in an intranet environment, thus allowing
various departments to share Web services.

Discovery with Disco
Disco is a mechanism that allows the discovery of Web services that are avail-
able a server. Disco is not a W3C standard, but is a Microsoft-driven initiative
to enable the location of Web services on a computer. This differs from UDDI,
which enables the location of Web services on the Internet.

The Web service provider can create and make discovery information avail-
able to Web service consumer developers. This discovery information can be
statically or dynamically generated, and it will contain links to the WSDL doc-
ument for all the Web services hosted by the provider.

Static Discovery

Static discovery is used by creating a .disco file and placing it in the directory
that contains the Web service. Static discovery can be used when the URL of
the .disco file is known. A sample of a .disco file follows:

<?xml version=”1.0”?>

<discovery xmlns:xsi=”http://www.w3.org/2000/10/!XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema/”

xmlns=”http://schemas.xmlsoap.org/disco/”>

<discoveryRef ref=”/HiWorld/HiWorld.disco”/>

<contractRef

ref=”/HiWorld/Hi.asmx?wsdl”

docRef=”/HiWorld/Hi.asmx”

xmlns=”http://schemas.xmlsoap.org/disco/scl/”/>

</discovery>

This sample has two key elements; discoveryRef and contractRef. Discov-
eryRef contains a link to other .disco documents, which essentially creates a
chain of .disco files. ContractRef specifies the location of the Web service con-
tracts, which are the WSDL documents.

This .disco files is static. The server administrator must maintain these files
manually; thus, when additional Web services are added to the server, these
documents must be manually updated to expose the new Web service.

674 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 674

Dynamic Discovery

Dynamic discovery is used with Internet Information Server and ASP.NET to
provide discovery information, when only the name of the endpoint computer
is required. ASP.NET places a file called Default.vsdisco in the root Web site.
The following is a sample of the Default.vsdisco file:

<?xml version=”1.0” ?>

<dynamicDiscovery xmlns=”urn:schemas-dynamicdiscovery:disco.2000-03-17”>

<exclude path=”_vti_cnf” />

<exclude path=”_vti_pvt” />

<exclude path=”_vti_log” />

<exclude path=”_vti_script” />

<exclude path=”_vti_txt” />

</dynamicDiscovery>

ASP.NET answers discovery requests by enumerating the folder structure,
including virtual directories, of the Web site looking for WSDL documents and
.NET assemblies. The .vsdisco file contains the list of paths to exclude from the
search for Web services.

When an assembly is found, reflection is used to search through the assem-
bly’s metadata, looking for methods that have a WebMethod attribute. Reflec-
tion is a .NET technology that can be used to query an assembly’s metadata to
locate and instantiate data types, as well as invoke methods dynamically.
Reflection is used dynamically to build WSDL documents on the fly.

The use of static .disco files is supported with dynamic discovery by renam-
ing the .disco file to a .vsdisco file. (See the following sidebar for information
on enabling dynamic discovery.)

The Disco.exe Utility

The .NET Framework SDK provides a utility called Disco.exe that can be used
to locate the available Web services on a computer by using either .disco or
.vsdisco files. Figure 16.3 shows the output when executing a query to get the
static Default.disco file.

The output of the query for the static Default.disco file shows the location of
the Hi.asmx?Wsdl file, as well as the locations of all .disco files. This also
retrieved the files and stored them to disk, using the dir command. An addi-
tional file is created, called the results.discomap, which can be fed into the
WSDL.exe utility.

Creating Web Services 675

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 675

The Disco.exe utility can also be used to perform dynamic discovery on
ASP.NET computers. Figure 16.4 shows the output when querying the local-
host. Notice that this query does not require an actual filename.

The same information is extracted from the Web server, except that the
dynamic query finds both the static and dynamic entries.

Figure 16.3 Disco.exe utility is used to query the static Default.disco file.

676 Chapter 16

♦ Dynamic Discovery Does Not Work

For security reasons, dynamic discovery is turned off in Visual Studio .NET but may be
enabled by editing the machine.config file and adding the following line in the httpHandlers
section:

<add verb=”*” path=”*.vsdisco”

type=”System.Web.Services.Discovery.DiscoveryRequestHandler,

System.Web.Services,

Version=1.0.3300.0, Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a”

validate=”false”/>

This line is included in the machine.config file, but it is commented out, as part of the
default install of Visual Studio .NET.

The processModel account also must belong to the VS Developers group. Therefore, the
ASPNET account should be added to the VS Developers group to allow the enumeration of
the folders and virtual directories. After adding the account to VS Developers, execute iisre-
set (or reboot the computer) from the command prompt so that the change is recognized.

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 676

Figure 16.4 Disco.exe utility is used to perform a dynamic query.

Web Service Proxies
When communicating to the Web service, SOAP messages must be con-
structed and sent to the Web service. The resulting SOAP message then must
be parsed before it can be consumed by the application. This can be a very
time-consuming task. The job of a proxy class is to encapsulate this code into a
class that exposes the Web service data types and methods, but performs the
assembly and disassembly of the SOAP messages transparently.

Proxies are entities that act on behalf of other entities. With Web services,
proxies expose the same logical interface to a Web service consumer as a Web
service itself exposes. Thus, Visual Studio .NET developers are still able to use
strongly typed classes, and IntelliSense operates as though the Web service
were a local class.

Visual Studio .NET can create a Web service proxy by assigning a reference
to the WSDL document of the desired Web service. A tool called WSDL.exe can
be used to create the Web service proxy.

The WSDL.exe utility is used to generate a proxy class that can be included
in a Visual Studio .NET project. When using Visual Studio .NET, this tool is
rarely required, since adding a Web reference to a project automatically gener-
ates the proxy class. However, there are times when this tool must be used,
such as when a name and password are required to access a firewall. In this sit-
uation, the Visual Studio .NET graphical tools break, but the WSDL tool has
options for using a firewall (or proxy) username and password.

Creating Web Services 677

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 677

The WSDL.exe utility can be executed from the Visual Studio .NET com-
mand prompt. It is possible to retrieve the WSDL document from a Web ser-
vice and create a proxy class using WSDL /L:VB http://localhost/hiworld/
hi.asmx?WSDL.

The default language that WSDL uses is C#, but the language can be selected
with the /L switch. Use the /? switch to get a list of available options.

For each method exposed by the Web service, synchronous and
asynchronous methods are created. The synchronous methods use the
standard class name. To execute a method asynchronously, use the
methods having Begin and End prefixes.

Consuming a Web Service

When a developer drops a button control onto a Web page, she is using a con-
trol that was created by another party. A productive developer may use only
components that have been produced by third parties, and she may never
actually create a component herself. The same holds true for Web services. A
developer may never create a Web service, but still can be very productive by
using Web services that have been developed by third parties.

Here, we examine the steps of locating a Web service that converts text to an
image. The code to accomplish this is covered in Chapter 11, but this example
uses a Web service to accomplish the same function.

Create the Project
A Web service can be consumed by any project type—Console application,
Windows Application, Web Application, or another Web service. In this exam-
ple, a Web application is the Web service consumer.

Set a Web Reference
A Web Reference can be added to a project by right-clicking the References
node in the project and clicking Add Web Reference. This displays the Web
Service Directory list. Currently, the only directories are Microsoft’s UDDI
directory and the Microsoft Test UDDI Directory. Click the Microsoft UDDI
directory to display the search dialog box.

The search dialog box allows the developer to enter a service name, the
provider name, or use the drill-down categories. This service searches for a
text-to-image service, so we type Text into the service name field and click the
search button. The result is shown in Figure 16.5.

678 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 678

Figure 16.5 The search for text found a Web service that converts text to an image.

The interface definition is a hyperlink. Clicking it displays the Web service
interface information, as shown in Figure 16.6. On the right pane, clicking
View Contract reveals the WSDL document, which describes all the data types
exposed by this Web service. Clicking View Contract simply calls the Web ser-
vice page with “?wsdl.” Visual Studio .NET creates the WSDL document on
the fly.

Figure 16.6 The Web service interface information shows the methods that are available
for this service.

Creating Web Services 679

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 679

Each method may be tested without requiring the developer to create a test
project. Clicking the link for each method displays information about the
method. The Invoke button can be clicked to execute the method. Figure 16.7
shows the information for the RenderText method, which is the main method.
This method accepts various parameters and returns a URL to the image that
has been created. To see the image, the URL can be copied and pasted into the
address bar in Internet Explorer.

After entering the information into the test page and clicking the Invoke
button, a new page is displayed. This page will contain an XML response with
the image URL as follows:

<?xml version=”1.0” encoding=”utf-8” ?>

<string xmlns=”http://teachatechie.com/”>

http://teachatechie.com/GJTTVBWebServices/ImageURL.aspx?ImageID=

8b54d349be7343dc9561d53a3a7536ce

</string>

The URL that has been created is the same, except that the ImageID will be
different each time. If the image URL is copied and pasted into the Address bar
of Internet Explorer, the image will be displayed as shown in Figure 16.8.

When the user is satisfied with the Web service, the Add Reference button
may be clicked to add the Web reference to the current project.

Figure 16.7 The RenderText method with various settings; this renders the test to an
image and returns a URL to the image.

680 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 680

Figure 16.8 The image can be displayed by copying and pasting the image URL into
Internet Explorer’s Address.

When the Web reference is added, the reference will be displayed under
Web References in the Solution Explorer. The domain name and host name
will become the namespace of the Web service. In this case, the reference was
to http://teachatechie.com, so the namespace for the Web service is
com.teachatechie. If the reference were set to http://www.teachatechie.com,
then the namespace would be com.teachatechie.www.

After adding a Web reference, rename the Web reference to something
that is more generic than the vendor name by right-clicking the reference
and clicking Rename. If the reference is left as is, the vendor’s name will
show up in the code when you use the namespace. This allows the Web
service to be replaced with a different Web service without requiring the
code to be changed.

When the Web reference is added, Visual Studio .NET automatically loads
the Reference.map, the .wsdl file, and the .disco file from the Web Server, and
creates a proxy class that can be used to communicate to the Web service as
though the Web service were on the client machine. Figure 16.9 shows the new
files that have been automatically added to the project. In this case, the name-
space was changed to TextImaging.

Creating Web Services 681

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 681

Figure 16.9 The Solution Explorer contains additional files after adding the Web reference.
The namespace was renamed TextImaging.

Executing the Web Server Method
After the Web reference has been added and the namespace has been renamed,
the Web service is ready to be used. This Web service contains a method called
RenderText, which creates an image based on the parameters that are passed.
Additional methods can be used to retrieve a list of valid values for each of
the parameters. These are especially useful when populating DropDownList
controls.

In this example, a Web page is opened and the page layout is set to FlowLay-
out. An Image has been added to the top of the page to display a custom head-
ing, and the Image control is centered. The RenderText method can be easily
used by assigning the ImageURL property to a call to RenderText in the
Page_Load event method as follows:

Dim ti as TextImaging.TextToImage

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

ti = New TextImaging.TextToImage()

Image1.ImageUrl = ti.RenderText(“Regular”, _

“36”, “Impact”, “My Home Page”, “LightBlue”, “Blue”)

End Sub

The code to create an instance of the TextToImage class and execute the Ren-
derText method is actually quite simple. The browser output is shown in Fig-
ure 16.10. The call to RenderText returned a URL to the image, which was
assigned to the ImageURL property. Viewing the source HTML from the
browser reveals the result of the RenderText call.

682 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 682

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML>

<HEAD>

<title>WebForm1</title>

<meta name=”GENERATOR”

content=”Microsoft Visual Studio.NET 7.0”>

<meta name=”CODE_LANGUAGE” content=”Visual Basic 7.0”>

<meta name=”vs_defaultClientScript” content=”JavaScript”>

<meta name=”vs_targetSchema”

content=”http://schemas.microsoft.com/intellisense/ie5”>

</HEAD>

<body>

<form name=”Form1” method=”post”

action=”WebForm1.aspx” id=”Form1”>

<input type=”hidden” name=”__VIEWSTATE”

value=”dDw5OTg1NjA2Ozs+Hi6x4gaAuIZHihy9reVYgBFyY6E=” />

<P align=”center”>

<img id=”Image1”

src=”http://teachatechie.com/GJTTVBWebServices/ImageURL.aspx?ImageID=

9ef3e7522f0a48e7937e68b110953dc4” border=”0” />

</P>

<P align=”center”>Welcome to my home page.</P>

<P> </P>

</form>

</body>

</HTML>

Figure 16.10 The browser output, showing the custom heading created by calling the
RenderText method.

Creating Web Services 683

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 683

Notice that the Image control became an HTML img tag, and src contains
the URL to the image (View State was disabled on the Image control).

Adding More Web Service Functionality
In the next example, DropDownList controls are added to allow the user to
select a value for each of the parameters required by the RenderText method.
A call could be made to LoadColors, LoadFontStyles, LoadFontFamily, and
LoadFontSizes, but another method, called LoadSettings, returns a DataSet
that is populated with a table for each of the settings.

Figure 16.11 shows the modified page with DropDownList controls for each
of the settings and a Render button and added Image control.

The following code has been added to retrieve the settings and display a
new image into a second image control:

Public Class WebForm1

Inherits System.Web.UI.Page

Protected WithEvents drpFont As _

System.Web.UI.WebControls.DropDownList

Protected WithEvents drpSize As _

System.Web.UI.WebControls.DropDownList

Protected WithEvents drpStyle As _

System.Web.UI.WebControls.DropDownList

Protected WithEvents Image2 As System.Web.UI.WebControls.Image

Protected WithEvents drpForeground As _

System.Web.UI.WebControls.DropDownList

Protected WithEvents drpBackground As _

System.Web.UI.WebControls.DropDownList

Protected WithEvents txtText As System.Web.UI.WebControls.TextBox

Protected WithEvents btnRender As System.Web.UI.WebControls.Button

Protected WithEvents Image1 As System.Web.UI.WebControls.Image

Dim ti As TextImaging.TextToImage

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

ti = New TextImaging.TextToImage()

Image1.ImageUrl = ti.RenderText(“Regular”, _

“36”, “Impact”, “My Home Page”, “LightBlue”, “Blue”)

If Not Page.IsPostBack() Then

Dim ds As DataSet

If Cache(“FontSettings”) Is Nothing Then

ds = ti.LoadSettings()

Cache(“FontSettings”) = ds

Else

ds = CType(Cache(“FontSettings”), DataSet)

End If

drpFont.DataSource = ds

drpFont.DataMember = “FontFamily”

684 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 684

drpFont.DataTextField = “FontName”

drpStyle.DataSource = ds

drpStyle.DataMember = “FontStyles”

drpStyle.DataTextField = “StyleName”

drpSize.DataSource = ds

drpSize.DataMember = “FontSizes”

drpSize.DataTextField = “Size”

drpBackground.DataSource = ds

drpBackground.DataMember = “Colors”

drpBackground.DataTextField = “ColorName”

drpForeground.DataSource = ds

drpForeground.DataMember = “Colors”

drpForeground.DataTextField = “ColorName”

DataBind()

End If

End Sub

Private Sub btnRender_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnRender.Click

Image2.ImageUrl = ti.RenderText(_

drpStyle.SelectedItem.Text, _

drpSize.SelectedItem.Text, _

drpFont.SelectedItem.Text, _

txtText.Text, _

drpBackground.SelectedItem.Text, _

drpForeground.SelectedItem.Text)

End Sub

End Class

Figure 16.11 The revised Web page with added controls.

Creating Web Services 685

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 685

This code still displays the heading on the page, but also checks to see if the
page has been posted back. If this is the first visit to the page, the DropDown-
List controls must be populated. A call is made to the LoadSettings method
only if the DataSet is not in the cache. The balance of the Page_Load method is
dedicated to assigning the DataSet to the DropDownList controls.

The btnRender method simply calls the RenderText method using the set-
tings from the DropDownList controls. The returned URL is placed into the
second Image control’s ImageURL.

Additional Web Service Settings
The proxy class that has been created also contains settings that may need to
be modified. This section addresses some of the most common settings.

Credentials

The proxy class has a Credentials property that can be used when the Web ser-
vice requires authentication using Internet Information Server Basic or Win-
dows authentication. A new instance of the System.Net.NetworkCredential
class can be assigned to the Credentials property before the call is made to any
method, as shown:

‘Imports System.Net

ti = New TextImaging.TextToImage()

ti.Credentials = New NetworkCredential(“Glenn”, “password”)

URL

The URL property contains the location of the Web service. This can be
changed in the code if the Web service location changes.

ti.Url = “http://newServer.com/WebServices/TextToImage.asmx”

This is another reason to change the URL: Suppose that a power company
creates a Web service with a method called GetPowerData. This Web service is
installed on a computer at each power station. The Web client can use the same
proxy class to query each power station for the current power data by simply
creating a loop, where each time the loop executes, a different power station’s
URL is placed into the URL property, and the GetPowerData method is then
executed to collect that station’s data.

686 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 686

Proxy (Firewall)

The Proxy property allows proxy server information to be entered to get
through the firewall. Some proxy servers also require a name and password.
The following sample code shows how to connect through the proxy, and if
credentials are required, they are set as well:

‘Imports System.Net

ti.Proxy = New WebProxy(“proxy.mycompany.com”, 80)

ti.Proxy.Credentials = New NetworkCredential(“glennProxy”, “password”)

Timeout

Slow Web services may cause frequent failures due to timeout conditions.
The Timeout setting (in milliseconds) can be changed to tweak the maximum
allotted time for a Web method to execute. The default setting is 100,000
milliseconds.

Executing an Asynchronous Method
When a Web proxy is created, each method that is exposed as a Web method
has three associated methods in the Web proxy class. The three methods are a
method with the same name as the Web service’s method, the same method
name but with a Begin prefix, and the same method with an End prefix. For
example, the RenderText Web method has an associated RenderText, Begin-
RenderText, and EndRenderText method in its proxy class.

Execution of RenderText method performs a synchronous call to the Web
service’s RenderText method. Code processing pauses until the Web service
returns a result.

Execution of the BeginRenderText method performs an asynchronous call
to the Web service’s RenderText method. Code execution does not pause to
wait for the result. This allows additional work to be performed while the Web
service is performing its work. The EndRenderText method is called to retrieve
the return value of the Web service’s RenderText method.

The easiest part of asynchronous programming is executing the Begin
method. The most difficult part is knowing when and how to end the asyn-
chronous call. Two primary methods are used to end the asynchronous call:
the use of synchronization objects or the use of callback functions.

Asynchronous Execution Using a Synchronization Object

The use of a synchronization object is required when the normal code execution
must wait to ensure that a value has been returned before continuing. For

Creating Web Services 687

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 687

example, in the case of the RenderText method, the URL to the image is
required before the page can be rendered properly, so the code could be set up
to wait for a returned value at the last possible moment, which would be in the
PreRender method of the Web page. This allows the rest of the page processing
to be accomplished while the BeginRenderText Web method is being executed.

When calling the Begin method, the return value will be a WebClientAsync-
Result data type that implements the IAsyncResult interface. To get the origi-
nal return value from the Web method, the End method can be used.

The IAsyncResult contains the following members:

AsyncState. The object that was provided in the last parameter to the
Begin method call. This is useful for passing an object from the Begin to
the End method. This object is not required.

AsyncWaitHandle. This WaitHandle type can be used to wait for an
asynchronous operation to complete. The WaitAll, WaitAny, or WaitOne
methods of the WaitHandle may be executed to block the current thread
until this method has completed.

CompletedSynchronously. This value indicates whether the Begin call
completed synchronously or not.

IsCompleted. This value indicates whether the asynchronous method
has completed.

Abort. In addition to the members that IAsyncResult provides, the Web-
ClientAsyncResult also contains the Abort method. The return value
must cast as a WebClientAsyncResult using the CType command to exe-
cute this method. The Abort method cancels an asynchronous XML Web
service request.

The following code is an example of asynchronously executing the Render-
Text method:

Dim RenderResult As IAsyncResult

RenderResult = ti.BeginRenderText(_

“Regular”, “36”, “Impact”, “My Home Page”, “LightBlue”, “Blue”, _

Nothing, Nothing)

‘Do some work

.RenderResult.AsyncWaitHandle.WaitOne()

Image1.ImageUrl = ti.EndRenderText(RenderResult)

In this example, the BeginRenderText method requires the same parameters
as the RenderText method plus an additional parameter for a callback function
and another parameter for the AsynchState object. These added parameters
are not used with this approach, but are used in the following callback func-
tion approach.

After the BeginRenderText method has been executed, the code continues to
execute without waiting for the return value. Additional work can be done,

688 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 688

and when the additional work has been completed, the thread can be paused
to wait for the asynchronous method to complete by executing the WaitOne
method of the AsyncWaitHandle. Once the asynchronous method has com-
pleted, a call to the EndRenderText method retrieves the return value.

Asynchronous Execution Using a Callback Function

The use of the callback function is best suited for situations in which the exe-
cuting code never needs to pause to wait for a result, but some processing may
need to be executed upon return. For example, when printing a document,
there is no need to wait for the document to print before continuing the code
execution, but if the printing fails, a code in the callback can be used to notify
the user of the failure.

When calling the Begin method, two addition parameters must be included;
the callback and the AsyncState. In the previous example, these were set to
nothing. In this example, a callback function will be supplied to handle the
return value, and the AsyncState will be supplied to pass an object from the
Begin method to the End method. The AsyncState object can be any object
type, although it is usually the original object that called the Begin method.

The return value will be a WebClientAsyncResult data type that implements
the IAsyncResult interface, which, optionally, may be used. To get the original
return value from the Web method, the End method can be used. The End
method should be executed within the callback function.

The following code can be used to execute a Web method asynchronously
using a callback function to handle the returned value:

Dim ti As TextImaging.TextToImage

Public Sub RenderTextCallback(ByVal resAr As IAsyncResult)

Dim i As System.Web.UI.WebControls.Image = _

CType(resAr.AsyncState, System.Web.UI.WebControls.Image)

i.ImageUrl = ti.EndRenderText(resAr)

End Sub

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

ti = New TextImaging.TextToImage()

Dim callback As New AsyncCallback(AddressOf RenderTextCallback)

ti.BeginRenderText(_

“Regular”, “36”, “Impact”, _

“My Home Page”, “LightBlue”, “Blue”, _

callback, Image1)

End Sub

In this example, a method called RenderTextCallback has been created to
handle the assignment of the return value to the Image control’s ImageURL
property. The BeginRenderText method requires the same parameters as the

Creating Web Services 689

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 689

RenderText method plus an additional parameter for a callback function and
another parameter for the AsynchState object. The callback parameter is
assigned an instance of AsyncCallback, which is a reference to the Render-
TextCallback method. The AsynchState parameter can contain a reference to
any object and is used to pass an object from the Begin to the End method. In
this case, the Image1 control was passed to the End method, which allows the
End method to populate the ImageURL of Image1.

Building a Visual Studio .NET Web Service

The balance of this chapter is devoted to building a Web service and register-
ing the Web service with the Microsoft UDDI provider.

Create the Project
A Web service can be created by starting Visual Studio .NET and creating an
ASP.NET Web service Application, as shown in Figure 16.12. This example cre-
ates the Web service that was consumed in the previous session.

Create the TextToImage Class
A new class file, called TextToImage.asmx, has been added to the project. The
TextToImage class contains the following code at the top of the file:

Imports System.Web.Services

Imports System.Drawing

<WebService(Namespace:=”http://teachatechie.com/”, _

Description:=”<table border=’0’><tr><td>

<img src=’http://teachatechie.com/GJTTVBWebServices/images/logo.gif’

Figure 16.12 Create the Web service by selecting the ASP.NET Web service.

690 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:06 AM Page 690

border=’0’></td><td>

Glenn Johnson Technical Training

Text to Image Web Service.</td></tr><tr><td colspan=’2’>

Be sure to visit GJTT.com

for additional .NET support. If any questions, feel free to

email me.</td></tr></table>”)> _

Public Class TextToImage

Inherits System.Web.Services.WebService

In this code, the System.Drawing namespace is used. This also requires a
reference to the System.Drawing.dll file.

The attribute that is called WebService has been placed before the TextToIm-
age class. This attribute offers the ability to set the Web service namespace and
assign a description to the Web service. The namespace assignment is a
requirement for public Web services, but the Web service will still operate even
if the WebService attribute does not exist.

The Description property of the attribute displays on the Web page that is
automatically created when this .asmx page is displayed. Notice that the
description may contain HTML tags.

The following methods are helper methods for the RenderText method,
which performs the real work. Each method that contains a WebMethod
attribute will automatically be exposed as a Web method. This is the required
attribute to enable Web services:

<WebMethod(Description:=”Returns a DataSet containing all “ + _

“of the settings that can be used”)> _

Public Function LoadSettings() As DataSet

Dim ds As New DataSet(“TextSettings”)

‘Create the Color table.

ds.Tables.Add(MakeTable(“Colors”, “ColorName”, LoadColors()))

‘Create the Font Family table.

ds.Tables.Add(MakeTable(“FontFamily”, “FontName”, _

LoadFontFamily()))

‘Create the Font Styles table.

ds.Tables.Add(MakeTable(“FontStyles”, “StyleName”, _

LoadFontStyles()))

‘Create the Font Sizes table.

ds.Tables.Add(MakeTable(“FontSizes”, “Size”, LoadFontSizes()))

Return ds

End Function

Private Function MakeTable(ByVal TableName As String, _

ByVal ColumnName As String, _

ByVal StringArray As String()) As DataTable

Dim dt As New DataTable(TableName)

Dim dc As New DataColumn(ColumnName, GetType(String))

dt.Columns.Add(dc)

Dim stringValue As String

For Each stringValue In StringArray

Creating Web Services 691

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 691

Dim dr As DataRow = dt.NewRow()

dr.Item(0) = stringValue

dt.Rows.Add(dr)

Next

Return dt

End Function

<WebMethod(Description:= _

“Returns an string array of colors that can be used”)> _

Public Function LoadColors() As String()

Return System.Enum.GetNames(GetType(KnownColor))

End Function

<WebMethod(Description:= _

“Returns an string array of fonts that can be used”)> _

Public Function LoadFontFamily() As String()

Dim b As New Bitmap(1, 1)

Dim g As Graphics = Graphics.FromImage(b)

Dim a As New ArrayList()

Dim arFamily() As FontFamily = FontFamily.GetFamilies(g)

Dim x As Integer

Dim FontFamilyList(arFamily.Length - 1) As String

For x = 0 To arFamily.Length - 1

FontFamilyList(x) = arFamily(x).Name

Next

Return FontFamilyList

End Function

<WebMethod(Description:= _

“Returns an string array of font styles that can be used”)> _

Public Function LoadFontStyles() As String()

Return System.Enum.GetNames(GetType(FontStyle))

End Function

<WebMethod(Description:= _

“Returns an string array of font sizes that can be used”)> _

Public Function LoadFontSizes() As String()

Dim startSize As Integer = 6

Dim endSize As Integer = 100

Dim FontSizeList(endSize - startSize) As String

Dim X As Integer

For X = 0 To endSize - startSize

FontSizeList(X) = (startSize + X).ToString()

Next

Return FontSizeList

End Function

Each helper method is exposed as a Web method, which simplifies the task
of populating drop-down boxes with valid data. Most of these methods return
an array of strings, except the LoadSettings method. The LoadSettings method
will execute each of the other load methods and populate a dataset with this
information, which can be returned to the client as a single call. The MakeTable
method is a helper method for the LoadSettings method and does not need to
be exposed as a Web method.

692 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 692

The last Web method is the RenderText method. This method requires para-
meters for the font, background and foreground color, font size, font style, and
the text to render. In the following code, this method creates a bitmap and
returns a string containing the URL to the bitmap. This bitmap will be cached
for 10 minutes.

<WebMethod(Description:=”” + _

“This is the main function.
” + _

“This returns an string containing the URL of the “ + _

“image that has been rendered. The image URL is “ + _

“cached for 10 minutes.”)> _

Public Function RenderText(ByVal FontStyle As String, _

ByVal FontSize As String, _

ByVal FontFamily As String, _

ByVal ImageText As String, _

ByVal BackgroundColor As String, _

ByVal ForegroundColor As String) As String

Dim imgBitmap As New Bitmap(1, 1)

Dim fStyle As FontStyle

fStyle = System.Enum.Parse(GetType(FontStyle), FontStyle)

Dim fSize As Single

fSize = Single.Parse(FontSize)

Dim strFont As Font

strFont = New Font(FontFamily, fSize, fStyle)

Dim str As String = ImageText

Dim cBackground As Color

cBackground = Color.FromName(BackgroundColor)

Dim cForeground As Color

cForeground = Color.FromName(ForegroundColor)

‘Get the size of the text string.

If str = “” Then str = “No text defined.”

Dim g As Graphics = Graphics.FromImage(imgBitmap)

Dim strSize As Size

strSize = g.MeasureString(str, strFont).ToSize()

‘Create the bitmap.

imgBitmap = New Bitmap(strSize.Width, strSize.Height)

g = Graphics.FromImage(imgBitmap)

g.Clear(cBackground)

g.DrawString(str, strFont, New SolidBrush(cForeground), 0, 0)

Dim imgGuid As String

imgGuid = GUID.NewGuid().ToString()

imgGuid = imgGuid.Replace(“-”, “”)

Context.Cache.Insert(imgGuid, imgBitmap, Nothing, _

DateTime.Now.AddMinutes(10), Nothing)

Dim url As String

If Context.Request.ServerVariables(“https”) = “off” Then

url = “http://”

Else

url = “https://”

End If

Creating Web Services 693

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 693

url &= Context.Request.ServerVariables(“HTTP_HOST”)

url &= Context.Request.ApplicationPath()

url &= “/ImageURL.aspx”

Return url & “?ImageID=” & imgGuid

End Function

End Class

The RenderText method creates the image based on the parameters that
have been passed into the method. Chapter 11, “Working with GDI+ and
Images,” contains a more detailed explanation of the rendering process. Once
the bitmap has been created, a Globally Unique ID (GUID) is created to repre-
sent this image. The dashes were removed from the GUID since they only add
more length to the URL. The image is cached for 10 minutes. The last section of
this method creates the URL to the cached bitmap.

Creating the ImageURL Page
The previous code was responsible for creating an image from the parameters
supplied to the RenderText method. Because HTML image tags require a URL
to the image, the RenderText creates the URL. The URL points to the
ImageURL.aspx page, which expects to receive an ImageID GUID. This page
will extract the image from the cache and deliver it to the client.

Imports System.Drawing

Imports System.Drawing.Imaging

Public Class ImageURL

Inherits System.Web.UI.Page

Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

If Not Request(“ImageID”) Is Nothing Then

If Not Cache(Request(“ImageID”)) Is Nothing Then

Dim b As Bitmap

b = CType(Cache(Request(“ImageID”)), Bitmap)

Response.Clear()

Response.ContentType = “image/jpeg”

b.Save(Response.OutputStream, _

ImageFormat.Jpeg)

Response.End()

Return

End If

End If

End Sub

End Class

If the image is not in the cache, a Not Found image could be created. Also, an
image could be generated with any exception message as well. It’s important to

694 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 694

call Response.End after saving the image to the response stream, because this
command will end the page’s processing to ensure that none of the .aspx page
is mistakenly sent to the client.

Registering the Web Service with a UDDI Registry

Registering a Web service with a UDDI business registry (UBR) requires a bit
of work, but once the Web service is registered, users can locate and use the
Web service. This section covers the registration process at Microsoft’s UDDI
site. Before starting the registration process, the Web service should be created
and deployed on a server that is accessible from the Internet.

Visual Studio .NET makes it easy for developers to find Web services using
UDDI, and then add the Web service into a project through the Add Web Ref-
erence feature. For a Web service to be visible via this feature, the Web service
must be properly registered in the UDDI registry. The WSDL file must be reg-
istered as a tModel, and the Web service itself must be registered as a binding
that refers to your tModel.

To follow the best practice and correctly register a Web service using the
Microsoft Web interface at http://uddi.microsoft.com, a UDDI account must
be obtained at the http://uddi.microsoft.com/register.aspx site. After an
account has been registered, the following steps must be followed.

Create the Technology Model (tModel)
The term tModel is short for technology model. A tModel is typically used to pro-
vide technical information about a programmatic interface, such as a Web Ser-
vice Description Language (WSDL) file, which describes the conventions that
are supported by an interface.

Figure 16.13 shows the tModel screen, which contains several tabs. The
Details tab contains the tModel name and description.

The Identifiers tab contains a list of Identifiers, which are optional descrip-
tions intended to enhance the discovery of tModels and providers in Search.
The Categories tab contains categorization schemes, which are predefined sets
of categories that are represented in a hierarchical fashion. Searches for tMod-
els may be performed by drilling the hierarchy. Add one or more categories by
selecting from available schemes.

To ensure Web service visibility when using Visual Studio .NET to search for
a Web service, be sure the following category is added to the tModel:

Categorization Scheme: uddi-org:types.

Key Name: Specification for a Web service described in WSDL.

Key Value: wsdlSpec.

Creating Web Services 695

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 695

Figure 16.13 The tModel screen showing two tModels. The Details tab contains the
tModel name and description.

The Document Overview tab is an HTTP-accessible resource, such as a
WSDL file or specification document, that usually contains technical informa-
tion for implementing or interacting with an interface. For Visual Studio .NET
Web services, this should be the URL to the Web service. The following URL
points to a Visual Studio .NET Web service:

http://teachatechie.com/GJTTVBWebservices/TextToImage.asmx

This URL will be displayed as a hyperlink that the prospective user will
select to view the Web service information. This tab also includes the ability to
add Descriptions of the Web service, each in a different language. The descrip-
tion will be displayed with the URL to the Web service.

Add the Service Information
After the tModel has been defined, the service must be defined and bound to
the tModel. Figure 16.14 shows the services screen, which is available under
the provider’s node. Clicking the Add Service button displays the Details tab
window, which allows the service name to be entered in any languages. Ser-
vice descriptions may also be entered.

696 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 696

Figure 16.14 The Services tab. Services must be defined here and bound to the tModel.

The Bindings tab is used to bind, or connect, to a tModel. The Bindings sec-
tion has three tabs: Details, Bindings, and Categories.

The Details tab holds the name and description of the service. The Bindings
tab holds information that represents an access point for this service. A bind-
ing must be created to reference the tModel that has been created. The tModel
is referenced in the Instance Info tab of the Binding. Figure 16.15 shows the
link to the tModel. The Web service will not be found in a search from Visual
Studio .NET until the reference to the tModel has been set.

Figure 16.15 The reference from the service to the tModel must be set before the Web
service will be located in a Visual Studio .NET search.

Creating Web Services 697

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 697

Figure 16.16 The registration properties must be set up first.

Understanding the UDDI Menu Hierarchy
The UDDI menu hierarchy can be confusing, especially when it shows more
information than required. To help simplify this process, Figure 16.16, Figure
16.17, and Figure 16.18 show the menu hierarchy of the required elements.

Figure 16.17 Second, the tModel properties must be set up.

uuid:4d21fe73-c9d1-4b7b-a696-cdd30c44dde3
Name: Text To Image

tModel

Categorization Scheme: uddi-org:types
Key Name: Specification for a web service described in WSDL
Key Value: wsdlSpec

Instance Info - to a tModel

Categories

Overview Document

1

http://teachatechie.com/GJTTVBWebServices/TextToImage.asmx
Overview URL

Overview Descriptions
(per Language)

Description - en
This is a Text to Image Conversion

3

tModels

Provider
Provider Key: 58eaf9c1-31dd-4803-8c67-ffe440cba519
Name: Glenn Johnson Technical Training

Contacts

Providers

My UDDI

Services

Contact
Glenn Johnson

2
1

tModels

698 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 698

The registration items are set up first, as shown in Figure 16.16. (Descrip-
tions that contain the en label denote English.) This simply involves the cre-
ation of a provider and a contact.

A tModel must be set up next, as shown in Figure 16.17. This involves creat-
ing a tModel, assigning a name, a category, and an overview document. Be
sure to assign the category called uddi-org:types as shown. This will expose
the Web service to Visual Studio .NET users. The overview document must be
set to the .asmx file of the Web service.

The Service properties must be set up last, as shown in Figure 16.18. The ser-
vice requires a name to be assigned, a description for the service, and a bind-
ing to be created. The names and descriptions must exist in English, and
optionally may exist in other languages. Notice that the binding will reference
the tModel that was defined in Figure 16.16.

Figure 16.18 The Service properties must be set up last.

Service Key: 6ef14a96-7a65-41c7-8cf8-521f97acec3b
Service

Binding Key: 8c19ee3a-1e5e-4147-85bf-92df58d2e738
Binding

http://teachatechie.com/GJTTVBWebServices/TextToImage.asmx
Access Point

Names (per Language)
Name - en

Text To Image

2

3

Descriptions (per Language)
Description - en

This is a Text to Image Service

Descriptions (per Language)

Instance Info - to a tModel

Description - en
This is a Text to Image Service

Bindings

Services

Creating Web Services 699

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 699

Lab 16.1: Creating a Web Service

In this lab, you will create a Visual Basic .NET Web service that can be
used to return the orders that a customer has placed. This Web service
will use the DataComponent from Lab 15.1 to access SQL Server.

Add the Web Service File to the Orders Project
Although a new Web service can be created by creating a Web service
project, a Web service can be simply added to an existing Web applica-
tion. In this section, you will add a new Web service file to the existing
Order solution.

1. To start this lab, open the OrderEntrySystemSolution from Lab 15.1.
Right-click the OrderEntrySystemSolution in the Solution Explorer,
and click Check Out.

2. Right-click the Order project and click Add, Add Web service. For
the Web service name, type CustomersOrders.asmx.

3. In the Order project, assign a reference to the DataComponent
project.

4. Add the following Imports statement to the top of the Web service
file:
Imports System.Data.SqlClient

Imports DataComponent

5. Add a Web method called GetOrders, which will accept the Cus-
tomerID as a parameter.

6. Add code to the Web method to create a SQL Server connection.

7. Add code to replace any single quote characters in the CustomerID
with two single-quote characters.

8. Add code to create a SQL string containing the query.

9. Add code to execute the Db.ExecuteDataSet to return a DataSet to
the user. Your code should look like this:
Imports System.Web.Services

Imports System.Data.SqlClient

Imports DataComponent

<WebService(Namespace := “http://tempuri.org/”)> _

Public Class CustomersOrders

Inherits System.Web.Services.WebService

<WebMethod()> Public Function GetOrders(_

ByVal CustomerID As String) As DataSet

700 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 700

Dim cn As New SqlConnection(_

“server=.;database=northwind;trusted_connection=true”)

CustomerID = CustomerID.Replace(“‘“, “‘’”)

Dim Sql As String

Sql = String.Format(_

“Select * from Orders where CustomerID=’{0}’”,

CustomerID)

Return Db.ExecuteDataSet(cn, Sql)

End Function

End Class

10. Build the project and save your work.

Testing the Web Service
In this section, you will test the Web service to verify that it operates as
expected prior to implementing this service in your application.

1. Right-click the Order project in the Solution Explorer and click Set
As StartUp project.

2. Right-click the CustomersOrders.asmx page and click Set As
Start Page.

3. Run the Web Application. The Web service page should be dis-
played, as shown in Figure 16.19. Although the page appears to be
functioning, a message is displayed that states that the namespace
needs to be changed from tempura.org to a custom namespace.

Figure 16.19 The Web service page. This page is functioning but displays a message to
change the namespace from tempura.org to a custom namespace.

Creating Web Services 701

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 701

4. Click the GetOrders hyperlink. A test page will be displayed with a
TextBox that allows a CustomerID to be entered. Enter a Cus-
tomerID, such as ALFKI, and click Invoke.

5. A new browser window will open. This window contains an XML
document that represents a DataSet called NewDataSet, and contains
a DataTable called Table (see Figure 16.20).

Figure 16.20 When GetOrders is invoked, the Web service returns a DataSet that is
represented as XML.

6. Close the browser windows to end the Web service application.

Implementing the Web Service
In this section, you will implement the Web service in the Customers Web
application. The CustomerList.aspx page will be modified by adding an
Orders button for each customer. Clicking the Orders button will cause
the page to change to a new page that will display the orders belonging
to the customer. Note that this page already has code to retrieve the
orders and order details tables, but that code will be ignored for the pur-
pose of demonstrating the Web service implementation.

1. Right-click the Customer project, and click Set As StartUp Project.

2. Right-click the CustomerList.aspx page, and click Set As Start Page.

3. Open the CustomerList.aspx.vb code-behind page.

702 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 702

4. Add a public variable to the top of the CustomerList class that will
expose the current customer ID. The code should look like this:

Public CurrentCustomerID As String

5. Locate the dgCustomers_Init method. This method is currently used
to add the Save button. Add code after the first button’s code to add
another button to display the orders. Your code should look like
this:
colButton = New ButtonColumn()

With colButton

.ButtonType = ButtonColumnType.PushButton

.CommandName = “ViewOrders”

.ItemStyle.Width = New Unit(100, UnitType.Pixel)

.ItemStyle.HorizontalAlign = HorizontalAlign.Center

.HeaderStyle.HorizontalAlign = HorizontalAlign.Center

.HeaderText = “View
Orders”

.Text = “Orders”

End With

dgCustomers.Columns.Add(colButton)

6. When a DataGrid button is clicked, it executes the
dgCustomers_ItemCommand method. Add code to transfer to the
ShowOrders.aspx page after setting the CurrentCustomerID vari-
able. Your code should look like this:
If e.CommandName = “ViewOrders” Then

‘Get Customer Key

Dim CustomerKey As String

CurrentCustomerID = dgCustomers.DataKeys(e.Item.ItemIndex)

Server.Transfer(“ShowOrders.aspx”)

End If

7. Add a new Web Form to the Customer project, called
ShowOrders.aspx. This page will display the orders in a DataGrid.

8. Add a DataGrid to the Web page.

9. Add a Web Reference to the Customer project. This is done by right-
clicking the References node of the Customer project in the Solution
Explorer and clicking Add Web Reference. In the Address box, type
the following URL to the CustomersOrders.asmx page:

http://localhost/Order/CustomersOrders.asmx

10. When the Web service’s test page is displayed, click the Add Refer-
ence button. A new node will be displayed, called Web References,
and the Web service will be displayed as a localhost sub node.
Rename the localhost to OrderInfo. This will display a Visual
SourceSafe message stating that renaming a file will cause problems
with the change history of the file. Click the Continue button.

Creating Web Services 703

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 703

11. Add code into the page’s load event method to retrieve the current
customer ID and call the Web method. Your code should look like
the following:
Private Sub Page_Load(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here

Dim ws As New OrderInfo.CustomersOrders()

Dim custPage As CustomerList

custPage = CType(Context.Current.Handler, CustomerList)

Dim CurrentCustomerID As String

CurrentCustomerID = custPage.CurrentCustomerID

Dim ds As DataSet = ws.GetOrders(CurrentCustomerID)

DataGrid1.DataSource = ds

DataBind()

End Sub

12. Save your work.

13. Run the Web application. You may need to log into the Web site if
you did not click the Remember check box previously. The Cus-
tomerList.aspx page should be displayed, which contains an Orders
button for each customer.

14. Click the Orders button for one of the customers. This should cause
the ShowOrders.aspx page to be displayed, as shown in Figure 16.21.

Figure 16.21 The ShowOrders.aspx page made the call to the Web service and returned
a DataSet that only contained the orders for the current customer.

15. Save your changes and check the final solution back into Visual
SourceSafe.

704 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 704

Summary

■■ Web services provide a method for one application to communicate
with another application.

■■ Web services can be used in a departmental fashion in the corporate
intranet. Different departments may expose data via a Web service, and
complete applications may be built by simply gluing the Web service
pieces together.

■■ Simple Object Access Protocol (SOAP) is the protocol used to transfer
data to and from the Web service.

■■ Web Service Description Language (WSDL) is used to describe the Web
service’s interface.

■■ The Universal Description, Discovery, and Integration (UDDI) project
creates a platform-independent, open framework for describing ser-
vices, discovering businesses, and integrating business services using
the Internet.

■■ Disco is a mechanism that allows the discovery of the Web services
available to a server. Disco is not a W3C standard, but is a Microsoft-
driven initiative to enable the location of Web services on a computer.
This differs from UDDI, which enables the location of Web services on
the Internet.

■■ The proxy class is responsible for encapsulating Web service code into a
class that exposes the Web service data types and methods and transpar-
ently performs the assembly and disassembly of the SOAP messages.

■■ The term tModel is short for technology model. A tModel is typically
used to provide technical information about a programmatic interface,
such as a WSDL file that describes the conventions supported by an
interface.

Creating Web Services 705

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 705

Review Questions

1. What are two methods that create a Web service proxy class?

2. Name three methods of calling a Visual Studio .NET Web service.

3. How is an asynchronous method identifiable?

4. What technology can be used to advertise your Web service on the Web?

5. What technology can be used to locate a Web service on a user’s machine?

706 Chapter 16

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 706

Answers to Review Questions

1. Use the WSDL.exe utility or simply add a Web reference from Visual Studio .NET.

2. POST, GET, and SOAP Message.

3. By the Begin and End prefixes.

4. UDDI.

5. Discovery with disco or vsdisco files.

Creating Web Services 707

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 707

r 430234 Ch16.qxd 7/1/03 9:07 AM Page 708

709

Complex software systems usually involve many applications communicating
with each other and with databases. In the past, deploying large software sys-
tems required copying files to the destination location, because the COM com-
ponents required Registry entries to operate.

It’s not always possible to jump over to the .NET Framework, abandoning
the hundreds of COM components that have been developed over the past
several years. A phased approach can limit the risk involved.

Migrating to the .NET Framework usually means that a development team
must decide which COM components will be migrated to .NET and which
COM components will be used with COM interoperability. This comes with its
own set of challenges.

The first part of this chapter explores some methods for migrating from ASP
code to ASP.NET. Later, chapter examines early and late binding techniques
for using COM components. Finally, the chapter covers some methods for
deploying ASP.NET Web applications.

Deployment and Migration

C H A P T E R

17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 709

Classroom Q & A
Q: We currently have a Web application that was developed using

Visual InterDev 6, and it contains several COM components. After
making changes to a COM component and compiling it, we try to
copy the COM component over the existing component that is on
the production server, but we constantly get an Access Denied
message. We usually have to either restart the WWW service or
reboot the machine to be able to overwrite the file. Has anything
been done to correct this problem with ASP.NET?

A: Yes. ASP.NET caches .NET components into memory when they
are loaded. A new .NET component can be simply copied over the
existing .NET component. ASP.NET will detect the new component
and start using it without requiring a reboot or restart of Internet
Information Server.

Q: Can Include files still be used with ASP.NET?
A: Yes. ASP.NET still allows Include files, but they are not recom-

mended. You can achieve better performance, maintainability, and
design by deriving your Web pages from a custom base class for
your common routines.

Q: Can existing COM components be utilized with ASP.NET, and can
they be early bound?

A: Absolutely. In this chapter we explore some methods for using
COM components.

Migration

This section examines ASP to ASP.NET migration, Visual Basic to Visual Basic
.NET language differences, COM to .NET migration, and COM interoperability.

ASP and ASP.NET Coexistence
Situations may exist where the size or complexity of the Web site dictates that
an ASP.NET application run alongside the ASP application. Internet Informa-
tion Server knows how to direct a request for an .asp or .aspx file to the correct
processing engine, primarily because the ASP.NET file extensions are different
from the ASP file extensions.

Being able to run ASP and ASP.NET pages in the same Web site does not
mean that ASP and ASP.NET will share Application and Session variables.

710 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 710

These technologies reside in different processes and can coexist in a rather iso-
lated fashion. Making ASP data available to the ASP.NET application is typi-
cally done by passing data in the QueryString or posting form data from an
ASP page to an ASP.NET page.

In many cases, it may be desirable to make architectural changes to the
application to take advantage of the ASP.NET or Visual Basic .NET features.
This may require sections of an ASP Web application to be migrated to
ASP.NET, rather than moving a page at a time.

ASP to ASP.NET Changes
One of the original design goals for ASP.NET was to be completely backward
compatible. However, changes were needed to achieve the desired platform
improvements and be compatible with the .NET Framework. This section
examines these differences. The code block in Listing 17.1 will be used for sev-
eral of the migration examples in this section.

<%@ Language=VBScript %>

<HTML>

<HEAD>

<META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>

</HEAD>

<BODY>

<%

if request(“posted”)=”true” then

Dim lineCount

lineCount=1

printList “mycar”,lineCount

printList “mytruck”,lineCount

Response.Write(lineCount & “
”)

end if

sub printList(item,counter)

Dim r

set r = Response

r.Write(“<u>First list for “ & item & “</u>
”)

counter=counter + 1

r.Write(request(item) & “
”)

counter=counter + 1

r.Write(“<u>Next list for “ & item & “</u>
”)

counter=counter + 1

Dim x

for x=1 to request(item).Count

r.Write(request(item)(x) & “
”)

counter=counter + 1

next

end sub

Listing 17.1 Sample ASP code that needs to be migrated to ASP.NET. (continued)

Deployment and Migration 711

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 711

%>

<form name=”frm” action=”” method=”get”>

Cars

<INPUT type=”text” id=”text1” name=”mycar” value=”vw”>

<INPUT type=”text” id=”text2” name=”mycar” value=”audi”>

<INPUT type=”text” id=”text3” name=”mycar” value=”bmw”>

Trucks

<INPUT type=”text” id=”text4” name=”mytruck” value=”ford”>

<INPUT type=”submit” value=”Submit” id=submit1 name=submit1>

<INPUT type=”hidden” id=”text5” name=”posted” value=”true”>

</form>

<%for each i in Request(“mycar”)%>

Car: <%=i%>

<%Next%>

</BODY>

</HTML>

Listing 17.1 (continued)

The code in Listing 17.1 contains a form with several text boxes. Values were
placed into the text boxes to eliminate the need to retype the values every time
that page is run. One of the input tags is a hidden field. This field is used to
indicate that the form has been submitted to the server. A server-side script
block checks to see if the page has been submitted and if it has, processes the
submitted data. A call is made to the printList subroutine for the cars and
again for the trucks. After the calls are made, the total line count is output to
the page. The printList subroutine first prints the Requested item and then
enumerates the list to print it.

At the bottom of the ASP code, another set of server-side scripts is included
to print a formatted list of all the cars. This routine uses a for-next loop to
accomplish its work.

Figure 17.1 shows the browser output when this page is run in Visual Inter-
Dev. To see this page, the Submit button must be clicked. The total line count
is eleven.

This page can be included in a Visual Studio .NET by right-clicking the proj-
ect, clicking Add, Add Existing Item, then clicking Files of Type *.* and navi-
gate to the .asp page. After the page is added, rename it with an .aspx
extension. When the page is renamed, a message box is displayed that states,
“There is no class file in the project associated with the Web Form ‘Inter-
DevTest.aspx’. Create class file now?” The choice depends primarily on the
amount of changes that are going to be made to the page when it is migrated
to ASP.NET. In this case, the minimum amount of changes will be made, and
the only goal in these samples will be to get the code to work with ASP.NET.

712 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 712

Figure 17.1 The browser output when the code in Listing 17.1 is run.

Subprocedures Require Parentheses

The first error that is exposed when running this page in ASP.NET states
“Compiler Error Message: BC30800: Method arguments must be enclosed in
parentheses.” Visual Basic script does not require parentheses when making a
call to a subprocedure (see Figure 17.2); however, in Visual Studio .NET, the
parentheses are required. Correct this problem by using the Call keyword and
then using parentheses.

The revised and corrected code follows. This code can be used on the origi-
nal ASP page as well.

Call printList (“mycar”,lineCount)

Call printList (“mytruck”,lineCount)

Server-Side Script Blocks

The next error that is displayed when running this page states “Compiler
Error Message: BC30289: Statement cannot appear within a method body. End
of method assumed.” (See Figure 17.3.) The best way to identify the cause of
this error is by clicking the Show Complete Compilation Source link.

This link displays the source code generated to compile the aspx page. The
key problem is as follows:

Line 78: Private Sub __Render__control1(_

ByVal __output As System.Web.UI.HtmlTextWriter, _

ByVal parameterContainer As System.Web.UI.Control)

Line 79: __output.Write(“”&Microsoft.VisualBasic.ChrW(13)& _

Microsoft.VisualBasic.ChrW(10)& _

Deployment and Migration 713

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 713

Figure 17.2 The first error to surface occurs because Visual Basic script does not require
parentheses when making calls to a subprocedure.

“<HTML>”&Microsoft.VisualBasic.ChrW(13)& _

Microsoft.VisualBasic.ChrW(10)& _

“<HEAD>”&Microsoft.VisualBasic.ChrW(13)& _

Microsoft.VisualBasic.ChrW(10)& _

“<META NAME=””GENERATOR”” “& _

“Content=””Microsoft Visual Studio 6.0””>”& _

Microsoft.VisualBasic.ChrW(13)&Microsoft.VisualBasic.ChrW(10)& _

Line 80: “</HEAD>”&Microsoft.VisualBasic.ChrW(13)& _

Microsoft.VisualBasic.ChrW(10)& _

“<BODY>”&Microsoft.VisualBasic.ChrW(13)& _

Microsoft.VisualBasic.ChrW(10))

Line 81:

Line 82: #ExternalSource(_

“http://localhost/Ch17Web/querystringtest.aspx”,7)

Line 83:

Line 84: if request(“posted”)=”true” then

Line 85: Dim lineCount

Line 86: lineCount=1

Line 87: Call printList (“mycar”,lineCount)

Line 88: Call printList (“mytruck”,lineCount)

Line 89: Response.Write(lineCount & “
”)

Line 90: end if

Line 91:

Line 92: sub printList(item,counter)

Line 93: Dim r

‘And so on

714 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 714

Figure 17.3 This error is displayed when subfunctions are placed within <% %> tags.

In this code, the contents of the server-side script block are included inside
the Sub called __Render__control (line 78). Because the <% %> tags are now
called render blocks and are only intended to be used for inline rendering, the
compiler tried to embed the sub called printList (line 92) into the sub called
__Render__control. To correct this error, only use <% %> for the inline script
and place <script runat=”server” language=”VBScript”> </script> tags
around the subprocedure as follows:

<%

if request(“posted”)=”true” then

Dim lineCount

lineCount=1

call printList (“mycar”,lineCount)

call printList (“mytruck”,lineCount)

Response.Write(lineCount & “
”)

end if

%>

<script runat=”server” language=”VBScript”>

sub printList(item,counter)

Dim r

set r = Response

r.Write(“<u>First list for “ & item & “</u>
”)

counter=counter + 1

r.Write(request(item) & “
”)

counter=counter + 1

Deployment and Migration 715

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 715

r.Write(“<u>Next list for “ & item & “</u>
”)

counter=counter + 1

Dim x

for x=1 to request(item).Count

r.Write(request(item)(x) & “
”)

counter=counter + 1

next

end sub

</script>

Once again, this code change can be made in the original ASP page without
any problem. The Visual Basic .NET compiler will automatically treat the
VBScript language directive as a request to use Visual Basic .NET.

Set and Let

The next error that is displayed states “Compiler Error Message: BC30807:
‘Let’ and ‘Set’ assignment statements are no longer supported.” This error
relates to the use of the word Set to assign an object to a variable (see Figure
17.4). VBScript required the use of the word Set to identify whether an object is
to be assigned to a variable or a default value was being assigned to a object
currently referenced by the variable.

The solution to this error is to remove the word Set. Unfortunately, the word
Set is required in the ASP page, so this change can’t be proactively avoided.

Figure 17.4 This error is displayed when the word Set or Let is used in an .aspx page.

716 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 716

Request Object

The next error that is displayed states “Compiler Error Message: BC30456:
‘Count’ is not a member of ‘String’” (see Figure 17.5). This error relates to the
many changes that have been made to the Request object.

Before this error is fixed, it’s important to get a better grasp of the new
Response object. This object is a property of the System.Web.UI.Page class as
well as the HttpContext class, which means that it is available throughout the
request. The name of this property is Request, but its data type is
System.Web.HttpRequest.

When executing Request(“mycar”), the code that is actually executed is
Request.Item(“mycar”) because the HttpRequest has a DefaultMemberAt-
tribute that sets the default member to Item property. A look at the IL code
reveals that when using the Request(“mycar”) syntax, the code for Item prop-
erty (get_Item) checks the QueryString to see if a value called “mycar” exists.
If not, the code checks the Form to see if a form value called “mycar” was
posted. If the value hasn’t been found, the code checks cookies to see if there is
one called “mycar.” Finally, if the value has not been found, the code checks
the ServerVariables to see if a ServerVariable named “mycar” exists. If the
value is not found, a null value is returned. If the value is found, a string is
returned (see Figure 17.6).

Figure 17.5 An error is displayed because Request(item) returns a string instead of an
array.

Deployment and Migration 717

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 717

Figure 17.6 Using Request(“mycar”) syntax results in a search for the named variable.

The search for a named variable is especially useful when the data may be
posted or placed in the QueryString. Note that this syntax always returns a
string; thus, in the case of the three cars, a comma was placed between each
car. This can become a problem if the data is allowed to contain a comma.

Although using the Request(“mycar”) is great for locating a named variable
that is not an array, the better solution to working with a named array would
be to work directly with the QueryString, Form or Cookie objects.

The Request.QueryString and Request.Form object return a NameValueCol-
lection that is in the System.Collections.Specialized namespace. The NameVal-
ueCollection class has a GetValues method that can be used to retrieve an
array of strings. The .NET Array has a Length property instead of the Count
property, and the array is zero-based (instead of the one-based collection that
was used in ASP with VBScript). The following code shows the changes that
must be made to work with the submitted “mycar” array:

<%

if request(“posted”)=”true” then

Dim lineCount

lineCount=1

Call printList (“mycar”,lineCount)

Request("mycar")

Yes

Yes

Yes

Yes

No – return null string

Returned Value

QueryString("mycar")
Found?

Form("mycar")
Found?

Cookie("mycar")
Found?

ServerVariables("mycar")
Found?

No

No

No

718 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 718

Call printList (“mytruck”,lineCount)

Response.Write(lineCount & “
”)

end if

%>

<script runat=”server” language=”VBScript”>

sub printList(item,counter)

Dim r

r = Response

r.Write(“<u>First list for “ & item & “</u>
”)

counter=counter + 1

r.Write(request(item) & “
”)

counter=counter + 1

r.Write(“<u>Next list for “ & item & “</u>
”)

counter=counter + 1

Dim x

for x=0 to request.QueryString.GetValues(item).Length-1

r.Write(request.QueryString.GetValues(item)(x) & “
”)

counter=counter + 1

next

end sub

</script>

After making these changes and executing this page, another exception is
thrown. It states “Exception Details: System.NullReferenceException: Object
reference not set to an instance of an object” (see Figure 17.7).

Figure 17.7 This exception is thrown because GetValues(“mycar”) returned a null value.

Deployment and Migration 719

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 719

This exception is caused because the for-each loop returns an entry array under
ASP, but now returns a null if there are no values. The revised code follows:

<%

dim i

if not Request.QueryString.GetValues(“mycar”) is nothing then

for each i in Request.QueryString.GetValues(“mycar”)

%>

Car: <%=i%>

<%

Next

end if

%>

This code checks to see if the GetValues(“mycar”) returns anything prior to
attempting to loop through the list. The code finally executes but does not
quite operate the same as in the original ASP page.

Method Arguments

In the previous examples, the code from List 17.1 was modified as each excep-
tion was thrown. The code finally runs in ASP.NET, but because arguments are
passed by reference by default in ASP, the lineCount appears as 1 instead of 11
To correct this error, the printList method must be modified by adding the
ByRef keyword before the counter:

sub printList(item,ByRef counter)

The ASP.NET page now has the same output as the ASP version. Listing 17.2
shows the completed ASP.NET code.

<%@ Page Language=”VBScript”%>

<HTML>

<HEAD>

<META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>

</HEAD>

<BODY>

<%

if request(“posted”)=”true” then

Dim lineCount

lineCount=1

Call printList (“mycar”,lineCount)

Call printList (“mytruck”,lineCount)

Response.Write(lineCount & “
”)

end if

Listing 17.2 The revised code that works with ASP.NET

720 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 720

%>

<script runat=”server” language=”VBScript”>

sub printList(item,ByRef counter)

Dim r

r = Response

r.Write(“<u>First list for “ & item & “</u>
”)

counter=counter + 1

r.Write(request(item) & “
”)

counter=counter + 1

r.Write(“<u>Next list for “ & item & “</u>
”)

counter=counter + 1

Dim x

for x=0 to request.QueryString.GetValues(item).Length-1

r.Write(request.QueryString.GetValues(item)(x) & “
”)

counter=counter + 1

next

end sub

</script>

<form name=”frm” action=”” method=”get”>

Cars

<INPUT type=”text” id=”text1” name=”mycar” value=”vw”>

<INPUT type=”text” id=”text2” name=”mycar” value=”audi”>

<INPUT type=”text” id=”text3” name=”mycar” value=”bmw”>

Trucks

<INPUT type=”text” id=”text4” name=”mytruck” value=”ford”>

<INPUT type=”submit” value=”Submit” id=submit1 name=submit1>

<INPUT type=”hidden” id=”text5” name=”posted” value=”true”>

</form>

<%

dim i

if not Request.QueryString.GetValues(“mycar”) is nothing then

for each i in Request.QueryString.GetValues(“mycar”)%>

Car: <%=i%>

<%Next

end if%>

</BODY>

</HTML>

Listing 17.2 (continued)

Single Language per Page

In ASP.NET, only one server-side language can be used on a page, whereas
ASP allows multiple languages to be mixed on a page. The language directive
should be placed in a Page directive at the top of the ASP.NET page as follows:

<%@ Page Language=”VBScript”%>

Deployment and Migration 721

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 721

Visual Studio .NET tightens this constraint further by setting the limit to one
language per project.

Option Explicit

In ASP, the developer needed to add the Option Explicit directive to generate
an error if a variable is used before it is declared. Option Explicit is the default
setting for ASP.NET.

Variables and Strong Typing

Variants are no longer available in the .NET Framework. In situations where a
variable is defined without using a data type, the data type will be object. It’s
best to declare all variables with their actual data type; this keeps Visual Basic
.NET from providing implicit casts where needed.

Include Files

The use of Include files in ASP is popular and is one of the easiest ways to get
common code into many pages. Include files can still be used in ASP.NET, but
they must be converted to use the same server-side language as the .aspx page.
Many better ways exist to handle repetitive code in ASP.NET than using
Include files. Depending on the content of the Include file, one method may be
more appropriate than another.

One solution is to create new HttpModules that contain the same code as the
Include file. Another solution is to create a new HttpHandler that contains the
code from the Include files. Finally, one of the easiest solutions is to create a
base page, from which all Web pages inherit, and include the code in the base
page.

In this example, every page must contain a special footer that contains a
copyright message. The ASP page uses the following line just before the end of
the body of each page:

<!--#INCLUDE FILE=”footer.inc”-->

The footer.inc file contains code that changes the font size, writes the copy-
right message, and displays the current time:

<p>

<%

Response.Write “Copyright © 2002-2004 MyCompany “ & time()

%>

</p>

722 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 722

Two changes must be made to make this Include file work: the addition of
parentheses for the Write method and the changing of time to
DateTime.Now.ToShortTimeString():

<p>

<%

Response.Write(“Copyright © 2002-2004 MyCompany “ & _

DateTime.Now.ToShortTimeString())

%>

</p>

The code that executes inside the Include file must be the same language as
the .aspx page. Visual Basic .NET doesn’t know about the VBScript time
method, but changing to the DateTime.Now.ToShortTimeString method fixes
the problem.

A better solution might be to simply add a base class that all Web pages
inherit from. Create a class that inherits from System.Web.UI.Page and then
add the subprocedure to output the footer, as shown in the following code:

Public Class MyCommonBase

Inherits System.Web.UI.Page

Public Sub footer()

Response.Write(“<p>”)

Response.Write(“Copyright © 2002-2004 MyCompany “ & _

DateTime.Now.ToShortTimeString())

Response.Write(“</p>”)

End Sub

End Class

The revised ASP.NET page must inherit from the MyCommonBase page.
The following code contains the AspComTest page with the footer:

<%@ Page Language=”VBScript” AspCompat=”true”

Inherits=”Ch17Web.MyCommonBase”%>

<HTML>

<HEAD>

<META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>

</HEAD>

<BODY>

Saying hi:

<%

Dim h as new AspComTest.HiTest()

h.SayHi()

h=nothing

%>

<% footer() %>

</BODY>

</HTML>

Deployment and Migration 723

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 723

Two important changes to this code are the Inherits= “Ch17Web.MyCommon-
Base,” contained in the Page directive, and the <% footer() %> call at the bottom
of the code.

If this page already contained a code-behind page, it would be modified to
inherit from Ch17Web.MyCommonBase, instead of modifying the .aspx page.

Using this technique, common functions are compiled into the project .dll file
when the project is compiled. This is a much better object-oriented approach; the
developer has full use of IntelliSense, and the code is much easier to maintain.

Using COM Components
When migrating an ASP page that make calls to a COM component, the first
decision that must be made is whether to upgrade the COM component to a
.NET component or use the existing COM component. This section examines
the use of the component as is, but then examines the use of the migration wiz-
ard to upgrade the COM component to a Visual Studio .NET component.

Figure 17.8 shows a sample COM component that was created in Visual
Basic 6. This ActiveX.dll project has a reference set to the COM+ Services Type
Library and the Microsoft Active Server Pages Object Library. This component
contains a class called HiTest and a method called SayHi. The SayHi method
gains access to the ASP Request object by using the following statement:

Set res = GetObjectContext.Item(“Response”)

In this code line, a reference is obtained to the Response object, which allows
the COM component to write directly to the Response stream. This was a com-
mon method of bypassing the use of ASP scripting.

Figure 17.8 A sample COM component that writes directly to the response stream.

724 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 724

The following code is contained in an ASP page. This code creates an
instance of the COM component and calls the SayHi method.

<%@ Language=VBScript %>

<HTML>

<HEAD>

<META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>

</HEAD>

<BODY>

Saying hi:

<%

Dim h

set h= server.CreateObject(“AspComTest.HiTest”)

call h.SayHi()

set h=nothing

%>

</BODY>

</HTML>

If this code is migrated to ASP.NET, the word Set must be removed from
both locations.

AspCompat Switch

After the Set keyword is removed from the code, executing the page displays
an exception that states “Exception Details: System.Web.HttpException: The
component ‘AspComTest.HiTest’ cannot be created. Apartment threaded com-
ponents can only be created on pages with an <%@ Page aspcompat=true %>
page directive” (see Figure 17.9). This exception is thrown because ASP.NET
uses Multi-Threaded Apartments (MTA), also known as free-threaded apart-
ments. A call to a Visual Basic 6 component represents an attempt to make a
call to a component that uses Single-Threaded Apartments (STA).

The AspCompat switch is used to direct the ASP.NET page to operate on a
STA thread. The use of the AspCompat switch also allows COM 1.0+ compo-
nents to access the underlying unmanaged ASP objects, such as Request and
Response. The corrected code follows:

<%@ Page Language=”VBScript” AspCompat=”true”%>

<HTML>

<HEAD>

<META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>

</HEAD>

<BODY>

Saying hi:

<%

Dim h

h= Server.CreateObject(“AspComTest.HiTest”)

call h.SayHi()

h=nothing

Deployment and Migration 725

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 725

%>

</BODY>

</HTML>

Performance is degraded when the AspCompat switch is set to true, so this
switch should only be used where necessary.

Early Binding versus Late Binding

In the previous example, the ASP code was modified to work in ASP.NET. The
previous code used late binding in the same fashion as it did when the code
was in ASP.

Late binding uses the IDispatch interface to indirectly invoke a method at
run time. In the example, the ASP page is used solely as a means of connecting
the browser to the COM component via a single call. There won’t be a big per-
formance gain by changing to early binding because there is only one call to
the COM component. In situations where there are many late bound calls, a
substantial gain in performance can be achieved by switching to early binding.

The first step to early binding involves setting a reference to the COM compo-
nent. This is done the same as a .NET component is referenced, except the COM
component can be chosen from the COM tab in the Add References dialog box.

Figure 17.9 An error is caused when attempting to call a Single-Threaded Apartment (STA)
component using ASP.NET.

726 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 726

When a reference is added to a COM component, Visual Studio .NET creates
a proxy class called a Runtime Callable Wrapper (RCW), which is used to
allow Visual Basic .NET code to communicate with the COM component. The
Runtime Callable Wrapper is viewable in the Object Browser, and the .dll file
can be seen by clicking the Show All Files button in the Server Explorer and
then opening the bin folder, as shown in Figure 17.10.

After the reference is set and the proxy class created, the COM component
can be created and used like a .NET component. The revised code follows:

<%@ Page Language=”VBScript” AspCompat=”true”%>

<HTML>

<HEAD>

<META NAME=”GENERATOR” Content=”Microsoft Visual Studio 6.0”>

</HEAD>

<BODY>

Saying hi:

<%

Dim h as new AspComTest.HiTest()

h.SayHi()

h=nothing

%>

</BODY>

</HTML>

Figure 17.10 The object browser shows the Runtime Callable Wrapper, which is included
in the bin folder.

Deployment and Migration 727

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 727

Although an extra layer of code sits on top of the COM component, this gen-
erally operates faster than its late bound counterpart.

Deployment

Deploying an ASP Web application has its share of problems, usually involv-
ing registering COM components and copying over COM components that
were in use. When it comes time to deploy a Web site to a production environ-
ment, ASP.NET really shines. This section explores some methods for
ASP.NET Web application deployment.

XCopy Deployment
One of the best features of the .NET Framework is the ability to deploy an
application by copying the application’s folder structure from one location to
another. This is commonly called XCopy deployment because the XCopy com-
mand has command-line switches to copy files and folders. Thus, Windows
Explorer can also be used to drag an application folder structure from one
location and drop it onto another location.

ASP.NET differs a bit from the XCopy deployment that Microsoft touts, but
even deploying an ASP.NET Web application is substantially easier that tradi-
tional Web applications. The only additional task that must be done is to cre-
ate a virtual directory for the Web site, so that XCopy deployment can be
accomplished.

FTP Deployment

FTP deployment is closely related to XCopy deployment. In the past, it was
extremely difficult to deploy a Web site to a hosting provider if the site used
COM components that needed to be registered. With File Transfer Protocol
(FTP) deployment, all files and folders can be simply copied via FTP to the
hosting provider, and the ASP.NET components will operate. This requires
that the hosting provider have ASP.NET installed on its Web site.

What to Copy

When deploying to a production site, there is no need to copy all files. The source
code files (.vb files), the resource files (.resx files), and .webinfo files are not
required. The .aspx, .ascx, .asmx, .config, .dll, .asax, and .css files are required.

728 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 728

Copy Project Button

The Visual Studio .NET Solution Explorer contains a Copy Project button that
can be used to copy a project to a new location (see Figure 17.11). This button
can be used to copy the current Visual Studio .NET project to a new location
either by using Front Page Server Extensions or by using File Sharing. The
Copy Project option also has options to select the files to be copied.

Before using this option, the virtual directory should be created in the
desired location. If the virtual directory is not created, the files will be copied
to a new folder under the c:\inetpub\wwwroot folder. The destination system
also must have Internet Information Server installed.

Web Setup Project
Visual Studio .NET also provides the ability to create a Web setup project for
deployment. The setup project has options for selecting the files to be
deployed, adding Registry entries, selecting the deployment location, setting
custom deployments actions, and more.

To create a Web setup project, click File, Add Project, New Project. Click
Setup and Deployment Projects, Web Setup Project, and assign a name and
location to the project, as shown in Figure 17.12. In this example, the project
has been named WebDeploy. The project opens the File System Editor.

Figure 17.11 The Copy Project button in the Solution Explorer can be used to deploy the
current project to a new location.

Deployment and Migration 729

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 729

Figure 17.12 The Web setup project is added to the solution.

Next, the ProductName property of the project must be set to the default
name of the installed project. In this example, the name will be set to Ch17Web.
Notice that there are many project properties, such as the ability to remove
existing installations of the Web application and to restart the WWW service
after the installation has completed.

The Web setup project must be configured with a list of files to be included
in the setup. This is done by clicking Web Application Folder in the File Editor
window, and clicking Action, Add, Project Output. The Add Project Output
Group dialog box is displayed, as shown in Figure 17.13. Click Primary Out-
put and Content Files, and click OK to add the minimum required files.

Figure 17.13 The Primary Output and Content Files must be clicked in the Add Project
Output Group window.

730 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 730

The default virtual directory is set by clicking Web Application Folder and
setting the VirtualDirectory property. In this example, the default virtual direc-
tory is set to Ch17WebVirtual.

The setup project is built by right-clicking the project and clicking Build. This
collects all the required files and encapsulates them in the .msi installer file.

The installation is started by executing the setup.exe file, which launches the
setup wizard’s welcome screen with the product name. Clicking Next displays
the virtual directory and port setup screen. After these are set, click Next to
start the installation. When setup has completed, users will be able to browse
to the new site.

ASP.NET Registration Utility (aspnet_regiis.exe)
Situations may exist in which the ASP.NET Registration Utility must be run to
connect ASP.NET to an Internet Information Server Web site. In its simplest
form, this utility is run by executing the following command from the .NET
Command Prompt:

aspnet_regiis.exe –i

If Internet Information Server was installed on the machine after Visual Stu-
dio .NET was installed, this utility must be run. The typical symptom is that
the .aspx files are rendered as text files. Depending on the content of the page,
the page may be rendered in the browser as a blank page or as a page that dis-
plays the source content of the .aspx file. Use the /? option to see the addi-
tional options for installing ASP.NET on multiple Web sites.

Lab 17.1: Deploying the Customer Site

In this lab, you will add a Web setup project to the OrderEntrySystemSo-
lution. This will be used to deploy the Customer Web site to a new site
called Ch17Customer.

Add the Web Setup Project
The Web setup project will be added and configured to install in a default
virtual directory called Ch17Customer.

1. To start this lab, open the OrderEntrySystemSolution from Lab 16.1.
Right-click the OrderEntrySystemSolution in the Solution Explorer,
and click Check Out.

2. Click File, Add Project, New Project. Click Setup and Deployment
Projects, Web Setup Project to assign a project name of Customer-
Setup and location as follows:

C:\DEVELOPMENT\ORDERENTRYSYSTEM\OrderEntrySystemSolution

Deployment and Migration 731

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 731

3. The project will open with the File Editor window being displayed.
Change the ProductName property to Customer Setup.

4. Add the minimum files to the Web Setup project. This is done by
clicking Web Application Folder in the File Editor window, and then
clicking Action, Add, Project Output. The Add Project Output
Group dialog box will be displayed. Click Primary Output and Con-
tent Files. Click OK to add the minimum required files.

5. The default virtual directory must be set by clicking the Web Appli-
cation Folder and setting the VirtualDirectory property. Set the
default virtual directory to Ch17Customer.

6. Right-click the Web setup project, and click Build.

7. Save this Web project.

Testing the Web Setup Project
In this section, you will test the Web setup project by executing the
setup.exe application and verifying that the site can be visited when
complete.

1. Open Windows Explorer and navigate to the following folder:

C:\DEVELOPMENT\ORDERENTRYSYSTEM\OrderEntrySystemSolution\Customer

Setup\Debug

2. Execute the Setup.exe application. This starts the Web Setup wizard.

3. Click Next to go to the virtual directory and port number configura-
tion screen. The screen should look like Figure 17.14. Accept the
defaults; click Next, and Next again to start the installation.

4. When the setup is complete, click the Close button.

5. Using the Web browser, navigate to the following URL:

http://localhost/ch17Customer

6. The login screen should be displayed. Type in the username and
password, and click the Login button.

7. If the login was successful, the CustomerList.aspx page will be
displayed.

8. Save your changes, and check the final solution back into Visual
SourceSafe.

732 Chapter 17

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 732

Figure 17.14 The Select Installation Address screen.

Summary

■■ ASP and ASP.NET do not share Application and Session variables.
These technologies reside in different processes and can coexist in a
rather isolated fashion.

■■ In Visual Basic .NET, parentheses are required for subprocedure
parameters.

■■ In ASP.NET, the <% %> tags are now called render blocks and are only
intended to be used for inline rendering.

■■ Use the <script runat= “server” language= “VBScript”> </script> tags
when creating subprocedures.

■■ The use of Set and Let are no longer required and generate a compile
error when used.

■■ When processing single items, the Request object code does not need to
be changed. However, when multiple items are to be returned, the
existing code must be changed.

■■ Method arguments are now passed by value instead of by reference.

■■ Use the AspCompat switch to call STA threaded COM components
with ASP.NET.

■■ ASP.NET Web applications may be deployed by using XCopy, FTP, the
Copy Project option, or a Web Setup Project.

Deployment and Migration 733

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 733

734 Chapter 17

Review Questions

1. What must be done to the following line of code for it to work in ASP.NET?
Set res = Response

2. What must be done to the following line of code for it to operate in ASP.NET?
Response.Write “Hello World”

3. What must be done to the following lines of code for them to operate in ASP.NET?
<%

Sub Test(x)

Response.Write(x)

End Sub

%>

4. Before using XCopy to deploy a Web application, what must be done?

5. What deployment method may be used to automatically restart the WWW service
after the deployment has been completed?

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 734

Answers to Review Questions

1. Remove the word Set.

2. Add parentheses around “Hello World.”

3. The subprocedure must be enclosed in <script runat= “server”> tags.

4. The virtual directory must be created.

5. The Web setup project must be created.

Deployment and Migration 735

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 735

s 430234 Ch17.qxd 7/1/03 9:07 AM Page 736

737

This appendix provides you with information on the contents of the Web site
that accompanies this book. On this site, you will find information that will
help you with each of the book’s chapters.

This Web site contains:

■■ Streaming video presentations that introduce you to each chapter of the
book. These presentations are intended to provide late-breaking infor-
mation that can help you understand the content of the chapter.

■■ Sample code that is used throughout the book. The sample code is pre-
sented as files with a .txt extension, which will allow you to easily copy
and paste the code into your Visual Studio .NET project.

■■ The lab starter and lab solution for each chapter. The lab starter and
solution is presented as a folder structure that can be unzipped and
used as necessary.

■■ Bonus chapter.

To access the site, visit www.wiley.com/compbooks/60minutesaday.

About the 60 Minutes Web Site

A P P E N D I X

A

t 430234 Appx.qxd 7/1/03 9:07 AM Page 737

System Requirements

Make sure that your computer meets the minimum system requirements listed
in this section. If your computer doesn’t match up to most of these require-
ments, you may have a problem using the contents of the Knowledge Publisher
Studio.

■■ PC with a Pentium processor running at 266 Mhz or faster with
Windows NT4, Windows 2000, or Windows XP.

■■ At least 256 MB of total RAM installed on your computer; for best
performance, we recommend at least 512 MB.

■■ A high-speed internet connection of at least 100K is recommended for
viewing online video.

■■ Internet Explorer 6.0 or higher.

■■ Browser settings need to have Cookies enabled; Java must be enabled
(including JRE 1.2.2 or higher installed) for chat functionality and live
Webcast.

■■ Screen Resolution of 1024x768 pixels.

60 Minutes a Day Presentations

To enhance the learning experience and further replicate the classroom envi-
ronment, ASP.NET in 60 Minutes a Day is complemented by a multimedia
Web site which aggregates a streaming video and audio presentation. The
multimedia Web site includes an online presentation and introduction to each
chapter. The presentation, hosted by Glenn Johnson, includes a 10 to 15 minute
video segment for each chapter that helps to deliver the training experience to
your desktop and to convey advanced topics in a user-friendly manner.

Each video/audio segment introduces a chapter and details the important
concepts and details of that chapter. After viewing the online presentation, you
are prepped and prepared to read the chapter.

Upon reaching the companion site that contains the video content for this
book you will be asked to register using a valid email address and self-generated
password. This will allow you to bookmark video progress and manage notes,
email, and collaborative content as you progress through the chapters. All
video content is delivered “on demand,” meaning that you can initiate the
viewing of a video at any time of the day or night at your convenience.

Any video can be paused and replayed as many times as you wish. The nec-
essary controls and widgets used to control the delivery of the videos use strict
industry-standard symbols and behaviors, thus eliminating the necessity to

738 Appendix A

t 430234 Appx.qxd 7/1/03 9:07 AM Page 738

learn new techniques. If you would like to participate in a complete five-
minute online tutorial on how to use all features available inside the presenta-
tion panel, visit http://www.propoint.com/solutions/ and click on the DEMO
NOW link located on the left hand side of the Web page.

This video delivery system may be customized somewhat to enhance and
accommodate the subject matter within a particular book. In these cases, spe-
cial effort has been made to ensure that all information is readily available and
easy to understand. In the unlikely event that you should encounter a problem
with the content on the site, please do not hesitate to contact us at Wiley Prod-
uct Technical Support.

Code and Bonus Content

In addition to the presentations, you can download the sample code files
and view additional resources. You’ll also find the bonus chapter on Mobile
Computing.

Troubleshooting

If you have trouble with the Web site, please call the Wiley Product Technical
Support phone number: (800) 762-2974. Outside the United States, call 1 (317)
572-3994. You can also visit our Web site at www.wiley.com/techsupport.
Wiley Publishing, Inc. will provide technical support only for installation and
other general quality control items; for technical support on the applications
themselves, consult the program’s vendor or author.

About the 60 Minutes Web Site 739

t 430234 Appx.qxd 7/1/03 9:07 AM Page 739

t 430234 Appx.qxd 7/1/03 9:07 AM Page 740

741

Index

A
abstract classes, ListControl, 162–163
abstraction

abstract methods, 124–125
classes, 112

Access, database server and, 6–7
access modifiers, classes, 113–114
access/mutator methods, 116–117
AccessKey property, 148
ACE (Access Control Entry), 527
AcquireRequestState event, Http-

Application class, 483
ACT (Application Center Test),

600–604
lab, 614–616

action="vb.aspx" attribute, 73–74
Active directory, domain environment

and, 526–527
ActiveX, System Monitor Utility, 595
Add Reference dialog box, 625
AddAttribute method, 256
AddStyleAttribute method, 256
administration

policy administration, Code Access
Security, 569–570

VSS, 21–22
lab, 29–30

Windows 2000, 20–21
lab, 27–29

administrative permissions, malicious
code and, 10–11

ADO.NET
data access, 289
data classes, non-provider specific,

310–318
data objects

Connection, 293–300
DataAdapter, 308–310
DataReader, 305–308
provider-specific, 293–310

data store update, 330–332
database access, 3
DataGrid

code, 323–325
DataRow additions, 327–329
DataRow deletions, 330
DataRow edits, 325–327
paging data, 333
sorting data, 334–335

disconnected data, connected data
and, 290–291

u 430234 Index.qxd 7/1/03 9:07 AM Page 741

742 Index

ADO.NET (continued)
namespaces, 292
.NET Framework, integration, 344
Odbc data provider, 291
OleDb data provider, 291
Oracle data provider, 291–292
SQLServer.NET data provider, 291
tables

DataRow objects, 319–321
editing rows, 322–323
primary key, 318–319
row deletion, 321–322

XML and, 289
AlternatingItemTemplate, 194
anonymous access, IIS authentication,

529–530
application code, managed code, 100
application instrumentation, tools

ACT (Application Center Test),
600–604

Debug, 582–584
Debug Monitor, 587–588
Trace class, 584
TraceListener, 588–590
Web Trace, 591–594

Application-Level Trace, 592–593
Application property, HttpApplica-

tionState class, 492
Application_End method, 482
Application_Error event, 500
applications

caching and
cache dependency, 496–498
cache timeout, 498–499

error handling, 500–503
Global.asax file, 481

Application_End method, 482
Application_Start method, 481
Session_End method, 482
Session_Start method, 482

HTTP handlers
built-in, 486

creating, 486–487
installing, 487–489

HTTP module
creating, 489–490
installation, 490–491

HttpApplication class, 482–483
HttpContext class, 484
page navigation

HyperLink control, 503–504
objected-oriented approach,

507–509
panels, 509–514
Response.Redirect statement,

506–507
Server.Transfer statement, 507
Window.Open command, 504–506

state, data, 492
variables, static, 499
virtual directories, 481

Application_Start method, 481
EventLogTraceListener, 590

arguments
event handler procedures, 76
methods, 720–721

ArrayList collection, 132
ArrayLists, ViewState and, 71
ASP (Active Server Pages)

ASP.NET and
binding, early versus late, 726–727
changes, 711–724
COM components, 724–727
method arguments, 720–721
migration, 710–711
server-side script blocks, 713–716
subprocedures, 713

data types, 722
include files, 722–724
languages per page, 721–722
Let statements, 716
Option Explicit directive, 722
origination, 1
Request object, 717–720

u 430234 Index.qxd 7/1/03 9:07 AM Page 742

Index 743

Set statements, 716
variables, 722
versions, older, 2

asp:button Web server control, 67
AspCompat switch, 725–726
ASP.NET

ASP and
binding, early versus late, 726–727
COM components, 724–727
method arguments, 720–721
migration issues, 710–711, 711–724
server-side script blocks, 713–716
subprocedures, 713

authentication, 542–547
benefits, 2–3
compiled code and, 3
data types, 722
diagnostics, 3
include files, 722–724
language identifiers, 66
languages per page, 721–722
layout control, 2
Let statements, 716
.NET Framework and, 3
Option Explicit directive, 722
performance, 3
Request object, 717–720
security, 3
server tags, 68
session state, 3
Set statements, 716
single-file programming model, 65
structure, 2
two-page programming model, 65
variables, 722
Web services and, 3

ASP.NET XML Web control,
DataSets, 367

reading XML documents to, 368–369
writing XML documents from,

370–371
XmlDataDocument method, 371–372

aspnet_regiis.exe (ASP.NET Registra-
tion Utility), 731

asp:TextBox Web server control, text
box (HTML), 67

assemblies
binding, policies, 642–646
events, versioning and, 628
GacUtil.exe, 640
methods, versioning and, 628
.NET tab, 651–652
private assemblies, 630–632
probing for, 646–647
properties, versioning and, 628
shared assemblies, 639–642
strong-named, creating, 633–636
versioning, 628–630

QFE builds and, 629
versions, manifest metadata, 104
Visual Studio .NET projects, 100

BCL (base class library), 110–112
CLS (common language specifica-

tion), 109–110
common language runtime,

105–110
metadata, 104–105
MSIL, 102–104
multimodule, 101

AssemblyKeyFile attribute, 634
AssemblyVersion attribute, 634
asynchronous methods, Web services

callback functions, 689–690
synchronization objects, 687–689

attributes
action="vb.aspx," 73–74
AssemblyKeyFile, 634
AssemblyVersion, 634
Codebehind, 77
event="ProcName," 74–76
Inherits, 77
RPM, 112
Web server controls, 70

Attributes property, 148–149

u 430234 Index.qxd 7/1/03 9:07 AM Page 743

744 Index

AuthenticateRequest event, Http-
Application class, 483

authentication
ASP.NET, 541

Default authentication, 542
Forms authentication, 543–547
Passport authentication, 542–543
Windows authentication, 542

description, 523–524
forms

example using database access,
553–559

lab, 572–574
IIS, certificates, 531–532
IIS methods

anonymous access, 529–530
basic authentication, 530
digest authentication, 530–531
Integrated Windows authentica-

tion, 531
SQL Server, installation, 14–15
Windows Authentication, 15

authorization
declarative security, 560
forms, security, 547–550
imperative security, 561–562
security and, 524

AuthorizeRequest event, Http-
Application class, 483

AutoPostBack property, 74

B
BackColor property, 149–150
background-color, 150
backups, certificates, SSL, 537
BaseCompareValidator control, 169
BaseValidator class, validation control

inheritance, 168
basic authentication, IIS, 530
BCL (base class library), system data

types, 110–111
BeginRequest event, HttpApplication

class, 483

binary serialization, 422, 424–425
BinaryReader class, 407
BinaryWriter class, 407
binding. See data binding
BitArray collection, 132
Bitmap class, 446
bitmaps, text bitmaps, on the fly

creation, 468–472
BooleanSwitch, performance tuning

and, 585–586
BorderColor property, 149–150
BorderStyle property, 150–151
BorderWidth property, 151
bottlenecks, identification, 581
BoundColumn, DataGrid control, 222
browsers, image engine, 440–441
Brush class, 458
BufferedStream class, 404–405
buffers, MemoryStream class, 396–397
BufferSize parameter, FileStream

constructor, 389
BuildString function, Windows

Performance Monitor, 599
business uses of Web services, 665
Button control, Web Server controls,

156–158
ButtonColumn, DataGrid control, 222
Button1_Click subprocedure, 80

C
C#

ASP.NET and, 3
Hello World program, 4

C++, ASP.NET and, 3
CA (Certificate Authority), SSL and,

532
cache dependency, 496–498
caches

cache dependency, 496–498
cache timeout, 498–499
GAC (Global Assembly Cache),

639–642

u 430234 Index.qxd 7/1/03 9:07 AM Page 744

Index 745

caching, performance tuning and, 608
graphics caching, 611–612
object caching, 610–611
page caching, 609–610

calculated fields, databases, perfor-
mance tuning and, 613

callback functions and asynchronous
methods, Web services, 689–690

calling, components and, 625–627
Cancel button, validation and, 174
case sensitivity, C#, 4
categories, Windows Performance

Monitor, 598
certificates

attaching to Web site, SSL, 538–539
backups, SSL, 537
exporting, SSL, 537
IIS authentication, 531–532
importing, SSL, 538
requests, SSL, 534–536
restoration, SSL, 538

CheckBox control, 160–161
CheckBoxList control, 163–165
child controls, adding to Web server

controls, 259–263
class libraries

handlers, creating, 486–487
object-oriented classes, 3

Class Library project, reusable compo-
nents, 622–624

Class Loader
Core Execution Engine, 105–106
description, 100

Class Manager
Core Execution Engine, 105–106
definition, 100

Class View, Visual Studio .NET, 49
classes

abstraction, 112
Bitmap, 446
Brush, 458
constructors, 119–120

overloaded, 120

creation, 113
Debug

Assert method, 582–583
Fail method, 584
Write method, 583
WriteIf method, 584
WriteLine method, 583
WriteLineIf method, 584

definition, 97
Directory classes

Directory class, 416–418
DirectoryInfo, 418–420
DirectoryInfo class, 418–420

encapsulation
access/mutator methods, 116–117
properties, 117

events, 118–119
file classes

File class, 409–412
FileInfo, 412–414

Font, 468
FontFamilies, 467
FormsIdentity, 551
GenericIdentity, 551
GenericPrincipal, 552
Graphics, 458–463
HttpApplication, 482–483
HttpApplicationState, 492
HttpContext, 484
HttpSessionState, 493–495
Image, 443–445
inheritance, 98, 121–122
lab, 134–137
ListControl abstract class, 162–163
ListItem, properties, 163–164
Me keyword, 120
members, 98

fields, 114
methods, 114–115

abstract, 124–125
overriding, 122–123
shared, 120–121

MyBase keyword, 123

u 430234 Index.qxd 7/1/03 9:07 AM Page 745

746 Index

classes (continued)
New keyword, 98
Null Stream, 393–394
object-oriented, libraries, 3
objects, 98
overloaded methods, 115–116
PassportIdentity, 551
polymorphism, 125
PrincipalPermission, 561–562
reference types, 109
stream classes, 384–385

FileStream class, 387–393
MemoryStream, 394–395
Stream, 385–387

stream helper, StreamWriter class, 408
stream helper classes

BinaryReader, 407
BinaryWriter, 407
HttpWebRequest, 408–409
StreamReader, 408
TextReader, 407
TextWriter, 407

StringBuilder, 607–608
Trace, 584
user controls as, 244
variables, shared, 120–121
visibility modifiers, 113–114
WindowsIdentity, 551
WindowsPrincipal, 552
XML

XmlConvert, 348
XmlNodeReader, 348
XmlTextReader, 348
XmlTextWriter, 348–349
XmlValidatingReader, 349, 373–374
XPathDocument, 348
XPathNavigator, 348
XslTransform class, 349

client certificates, SSL, 533
client identifier, ID property, 143
client-side code

ASP.NET programming, 65
CustomValidator control, examples,

171–172
HTML code, mixing, 2

server controls and, 70
server-side code, mixing, 2

ClientID property,
System.Web.UI.Control class, 143

clients, VSS, installation, 19–20, 27
Close method, 301
CLS (common language specification),

109–110
code

interpreting, vs compiling, 2
Web Forms and, 64

Code Access Security
code groups, 565
evidence, 563
exception handling, 568
permissions, 564
policy administration, 569–570
requested permissions, 566–568
security policy levels, 565–566
testing, 570–572

Code Editor, Visual Studio .NET, 54
code groups, Code Access Security,

565
code libraries, referencing external,

132–133
Codebehind attribute, filenames in

code-behind pages, 77
code-behind page

ASP.NET programming, 65
Codebehind attribute, 77
controls, accessing, 78–80
.ddl files, 77
events, accessing, 78–80
Global.asax file, Visual Studio .NET,

481
image engine, 441
pageLayout property and, 86–87
structure and, 2
two-page models and, 76–80

collections
descriptions, 132
System.Collections namespace, 131

Color object, GDI+, 458
colors, GDI+ enumerations, 470

u 430234 Index.qxd 7/1/03 9:07 AM Page 746

Index 747

columns, DataGrid control
adding, 222–225
ordering, 226–227

COM components
ASP to ASP.NET migration, 724–725

AspCompat switch, 725–726
early binding and, 3

COM Marshaler, definition, 99
COM tab, Add Reference dialog

box, 625
Command mode, Comment

window, 52
Command object, ADO.NET, 300–302

ExecuteNonQuery method, 303
ExecuteReader method, 304–305
ExecuteScalar method, 303–304
ExecuteXmlReader method, 305
parameters, 302–303

Comment window, Visual Studio
.NET, 52–53

comments, ASP.NET server tags, 68
Common Files, IIS, 11
common language runtime

Core Execution Engine, 105–106
CTS (common type system), 107–109
namespaces, 106–107

CompareValidator control, 170
compiled code, ASP.NET benefits

and, 3
compiling code vs interpreting, 2
components

building, 621
calling, 625–627
creating, lab, 653–659
references to, setting, 625
reusable, Class Library project,

622–624
run time, locating during, 627–628
versioning, 621

composite controls, Web server con-
trols, 269–274

concatenation, strings, 604–607
configuration

IIS, 11
Web configuratin file, 499–500

Connection object, ADO.NET, 293
ConnectionString, 294–299
exception handling, 299–300
security, 293–294

constructors
BufferedStream, 404–405
CryptoStream, 400–401
FileStream, 387–389
MemoryStream, 394–395
NetworkStream, 397–398
New method, 119
overloaded, 120

control libraries
compiling, 250–251
creating, 250–251

controls. See also server controls
asp:button Web server control, 67
asp:TextBox Web server control, 67
code-behind page, accessing, 78–80
custom control builder

raising events, 264–266
Web server controls, 263–264

data bound
DataGrid, 219–231
DataList, 205–219
DropDownList, 196–197
events, 193
lab, 232–238
ListBox, 196–197
methods, 193
properties, 188–193
Repeater, 197–205

fields, mapping to, 193–196
File Field, 414–415
user controls

adding to pages, 243
as classes, 244
creating, 243
data access, 243–244
events, 245–247
lab, 278–284
loading dynamically, 247–248
positioning, 244–245

_VIEWSTATE, 67

u 430234 Index.qxd 7/1/03 9:07 AM Page 747

748 Index

controls. (continued)
Web server controls

adding methods, 258–259
child controls, adding, 259–263
composite controls, 269–274
control libraries, 250–251
creating, 251–252
custom control builder, 263–264
HTMLTextWriter class, 252–256
inheritance, 274–278
postback data, 266–269
ViewState and, 258

Controls property,
System.Web.UI.Control class,
143–144

ControlStyle property, 151–152
ControlStyleCreated property, 151–152
conversion, HTML server controls

and, 69
CORBA (Common Object Request

Broker Architecture), 663
Core Execution Engine, common lan-

guage runtime and, 105–106
counters, Windows Performance Mon-

itor and, 597–600
Credentials property, Web ser-

vices, 686
cross-language inheritance, 647–653
cryptographic hash, Code Access

Security, 563
CryptoStream class

constructor, 400–401
decryption example, 402–403

Crystal Decisions, Server Explorer, 50
CSS (Cascading Style Sheets), 149
CssClass property, 152
CTS (common type system)

cross-language integration, 107
data type classification, 108–109

CType function, 247
CType statement, 130
custom control builder

raising events, 264–266
Web server controls, 263–264

CustomValidator control
client-side code and, 170–172
server-side code and, 170–173

D
DACL (Discretionary Access Control

List), 527
data access, user controls and, 243–244
data binding

ASP, early versus late, 726–727
ASP.NET

early versus late, 726–727
server tags, 68

assembly policies, 642–646
controls

DataGrid, 219–231
DataList, 205–219
DropDownList, 196–197
lab, 232–238
ListBox, 196–197
mapping fields to, 193–196
Repeater control, 197–205

early binding, 3
Eval method, 196
overview, 186
repeated value

control events, 193
control methods, 193
control properties, 188–193

single value, 186–187
Web controls and, 185

data objects, provider-specific
(ADO.NET)

Command, 300–305
Connection, 293–300
DataReader, 305–308

data providers, ADO.NET, 291–292
data types

ASP, 722
ASP.NET, 722
objects, 109
reference types, 109
System namespace, 111
value types, 108

u 430234 Index.qxd 7/1/03 9:07 AM Page 748

Index 749

ViewState and, 71
Visual Basic .NET, .NET and, 111–112

DataAdapter object, ADO.NET,
308–310, 331–332

database server
Access and, 6–7
development environment and, 6–7
SQL Server and, 6–7

databases
forms authentication

database setup, 553–554
folders, 555
login page authentication, 556–559
project file, 555
roles, 559
Web.config file, 555–556

ImageGallery table, 449
images

retrieving, 451–456
uploading to, 448–451

indexes, keys, 613
performance tuning

calculated fields, 613
indexes, 613

performance tuning and, 612
stored procedures, 613

DataBind() method, 187
DataGrid control

code, 323–325
columns

adding, 222–225
ordering, 226–227

DataRow additions, 327–329
DataRow deletions, 330
DataRow edits, 325–327
item editing, 229–231
item selection, 228–229
paging data, 333
properties, 219–220
sorting data, 334–335
styles, 221–222

DataList control
item edits, 215–219
item selection, 212–215

properties, 205–207
styles, 207–208
templates, 207

DataMember property, repeated value
binding, 189

DataReader object, ADO.NET, 305–308
DataSet class, ADO.NET, 311–312
DataSets

ASP.NET XML Web control, 367
reading XML documents to,

368–369
writing XML documents from,

370–371
population, 367
XML, 344
XmlDataDocument method and,

371–372
DataSource property, repeated value

binding, 188–189
DataTable class, ADO.NET, 312–313

DataColumn objects, 313–314
enumerating, 314–315

DataTextField property, repeated
value binding, 189

DataTextFormatString property,
repeated value binding, 189–192

DataValueField property, repeated
value binding, 193

DataView class, ADO.NET, 315–318
date and time formatting characters77,

191
DCOM (Distributed Component

Object Model), 663
.ddl files, code-behind pages, 77
Debug class

Assert method, 582–583
Fail method, 584
Write method, 583
WriteIf method, 584
WriteLine method, 583
WriteLineIf method, 584

debug engine, description, 99
Debug Monitor, 587–588

u 430234 Index.qxd 7/1/03 9:07 AM Page 749

750 Index

debugger, SQL Server stored proce-
dures, 25–26

Debugger Users group, SQL Server,
15–16

debugging
QFE builds, 629
stored procedures, SQL Server, 16–18

Declarative permissions, 566
declarative security, 560, 562
deep copies, definition, 126
Default authentication, security, 542
DefaultTraceListener, 588
delegation, security and, 524
deployment

ASP.NET Registration utility
(aspnet_regiis.exe), 731

lab, 731–732
Web setup project, 729–730
XCopy

FTP deployment, 728
selecting files to copy, 728–729

development environment
bottlenecks, locating, 581
database server, 6–7
operating system, 6
performance tuning and, 581
setup, lab, 22–30
Windows, installation, 11

diagnostics, ASP.NET benefits and, 3
digest authentication, IIS, 530–531
directives

ASP.NET server tags, 68
@Register, 243

directories, virtual
applications, 481
creation, 35–38

Directory class, 416–418
Directory classes

Directory, 416–418
DirectoryInfo, 418–420

directory objects, lab, 431–434,
473–476

Disco
Disco.exe utility, 675–677
Web services and

dynamic discovery, 675
static discovery, 674

Dispose event, Web Form, 82
Dispose method, 301
dockable windows, Visual Studio

.NET, 46
Documentation, IIS, 11
documents, XML. See XML; XmlDocu-

ments
DOM (Document Object Model)

XML, 344–345
XmlDocuments

parsing, 351–352
searches, 353–356

domain environment, Windows secu-
rity, 526–527

domain names, restrictions, security
and, 532

dragging/dropping, user controls, 244
drawing code, GDI+, 465–467
drawing images on the fly, 463–465
DropDownList control, 166, 196–197
DTD (document type definition), vali-

dation and, 373
dynamic discovery, Disco and, 675
dynamic field mapping, 194
dynamically loading controls, user

controls, 247–248

E
earling binding, COM components

and, 3
EditCommandColumn, DataGrid con-

trol, 222
editing items, DataGrid control,

229–231
EditItemTemplate, 195
Enabled property, 152

u 430234 Index.qxd 7/1/03 9:07 AM Page 750

Index 751

EnableViewState property,
System.Web.UI.Control class, 144

encapsulation
access/mutator methods, 116–117
properties, 117

EndRequest event, HttpApplication
class, 483

enumerations
BorderStyle property enumeration

members, 150
colors, GDI+, 470
DataTable class (ADO.NET), 314–315
definition, 131
FontFamilies list, 470
FontStyles class, 471

Equals method, System.Object type,
109

error handling, 500–503
Eval method, data binding, 196
event handlers, procedure arguments,

76
Event Logs, Server Explorer, 50
EventArgs object, event handlers, 76
EventLogTraceListener, 589–590
event="ProcName" attribute, 74–76
events

Application_Error, 500
Button control, 157–158
code-behind page, accessing, 78–80
definition, 98
Dispose, 82
Init, 81
LinkButton control, 157–158
Load, 81
LoadPostData, 81
LoadViewState, 81
members and, 98
OnInit, 81
OnLoad, 81
OnPreRender, 81
PreRender, 81

programming, server controls, 70
RaisePostBackEvent, 81
RaisePostDataChangedEvent, 81
raising, Web server custom controls,

264–266
Render, 82
responses, 74–76
SaveViewState, 82
SendMessage, 248–250
server controls, 81
UnLoad, 82
user controls, 245–247

raising to page, 248–250
WithEvents keyword, 119

evidence, Code Access Security, 563
exception handling

ADO.NET, data objects, 299–300
Code Access Security, 568

Exception Manager, description, 99
ExecuteNonQuery method, 303
ExecuteReader method, 304–305
ExecuteScalar method

components, calling, 625–627
introduction, 303–304

ExecuteXmlReader method, 305
exporting certificates, SSL, 537
extensibility, Web Forms, 64
external code libraries, referencing,

132–133
external references, manifest meta-

data, 104

F
Fail method, 584
FAT (File Allocation Table), Web envi-

ronment and, 527
FAT32 file system, Web environment

and, 527
fields

declaring, 114
definition, 98
ImageGallery table, 449

u 430234 Index.qxd 7/1/03 9:07 AM Page 751

752 Index

fields (continued)
initialization, 114
mapping, to controls, 193–196
members and, 98
properties and, 98
structures and, 126
visibility modifiers and, 114

File class, 409–412
file classes

File, 409–412
File Field control, 414–415
FileInfo, 412–414

File Field control, 414–415
file objects, lab, 431–434, 473–476
FileAccess parameter, FileStream con-

structor, 388
FileInfo class, 412–414
FileMode parameter, FileStream con-

structor, 387–388
filenames, code-behind pages, Code-

behind attribute, 77
FilePath parameter, FileStream con-

structor, 387
files

access, 383
forms authentication, 555
renaming, 34
XML

transforming to XSL, 363–367
XmlTextReader class and, 362–363
XmlTextWriter class and, 359–361

FileShare parameter, FileStream con-
structor, 388–389

FileStream class
FileStream contructor, 387–389
opening files, 389–390
reading from, 390–391
writing from, 390–391
writing to files, 389–390

FileStream constructor, 387–389
filters, Visual Studio .NET help lab,

57–59

Finalize method, System.Object
type, 109

FindControl() method, repeated value
data binding, 193

floating windows, Visual Studio
.NET, 46

FlowLayout (Web Form pageLayout),
82, 83–87

folders
forms authentication, 555
GAC, 641–642
overview, 34–35
renaming, 34

Font class, 468
Font property, 152–153
FontFamilies class

description, 467
enumerations, 470

fonts, GDI+
Font class, 468
FontFamilies class, 467
metrics, 468
sizes, 471

footers, user controls and, 242
FooterTemplate, 194
ForeColor property, 149–150
formatting

date and time characters, 191
numeric value characters, 190
traditional picture clause, 192

forms
authentication

example using database access,
553–559

lab, 572–574
authorization, 547–550

Forms authentication, security,
543–547

FormsAuthentication.Authenticate
method, 546–547

FormsAuthentication.RedirectFrom-
LoginPage method, 547

u 430234 Index.qxd 7/1/03 9:07 AM Page 752

Index 753

FormsIdentity class, 551
Front Page Server Extensions, IIS, 11
functions

ASP.NET server tags, 68
CType, 247

Fusion Log Viewer (FusLogVw.exe),
637–639

G
GAC (Global Assembly Cache),

639–642
GacUtil.exe, assemblies and, 640
garbage collection

definition, 100
.NET Framework and, 3

GDI+
Brush class, 458
colors, enumerations, 470
drawing code, 465–467
fonts

Font class, 468
FontFamilies class, 467
metrics, 468
sizes, 471

Graphics class, 458–463
helper data types

Color object, 458
Point/PointF objects, 457
Rectangle/RectangleF objects, 457
Size/SizeF objects, 458

lab, 473–476
Pen object, 458
text bitmaps, on the fly creation,

468–472
text rendering, 471–472

general assembly information, mani-
fest metadata, 104

GenericIdentity class, 551
GenericPrincipal class, 552
GetElementById method, searching

XmlDocuments, 353–356

GetElementByTagName method,
searching XmlDocuments, 353–356

GetHashCode method, System.Object
type, 109

getters, definition, 116
Global.asax file

Application_End method, 482
Application_Start method, 481
Session_End method, 482
Session_Start method, 482

graphics caching, performance tuning
and, 611–612

Graphics class, 458–463
GridLayout (Web Form pageLayout),

82–87
groups, code groups, Code Access

Security, 565

HashTable collection, 132
HashTables, ViewState and, 71
headers, user controls and, 242
HeaderTemplate, 194
Height property, 153
Help, Visual Studio .NET, 55–56
helper data types (GDI+)

Color object, 458
Point/PointF objects, 457
Rectangle/RectangleF objects, 457
Size/SizeF objects, 458

hiding windows, Visual Studio .NET,
46

HTML (Hypertext Markup Language)
code, mixing, 2
server controls, 69
Submit buttons, 67
text boxes, asp:TextBox Web server

control, 67
HTMLTextWriter class

AddAttribute method, 256
AddStyleAttribute method, 256

u 430234 Index.qxd 7/1/03 9:07 AM Page 753

754 Index

HTMLTextWriter class (continued)
RenderBeginTag method, 255–256
RenderEndTag method, 255–256
Write method, 252
WriteAttribute method, 253–254
WriteBeginTag method, 253–254
WriteFullBeginTag method, 254
WriteLine method, 253
WriteLineNoTabs method, 253
WriteStyleAttribute method, 254–255

HTTP handlers
built-in, 486
creating, 486–487
installation, 487–489

HTTP module
creating, 489–490
installation, 490–491

HttpApplication class, 482–483
HttpApplicationState class, 492
HttpContext class, 484
HttpSessionState class, 493–495
HttpWebRequest class, 408–409
HyperLink control, 158–159, 503–504
HyperLinkColumn, DataGrid

control, 222

I
ID property

client identifier, 143
System.Web.UI.Control class,

144–145
Identity class, 550–552
IETF (Internet Engineering Task Force)

standards, 673
IHttpHandler interface, 486–487
IIS (Internet Information Server)

ASP introduction and, 1
configuration, 11
installation, lab, 23
security, authentication methods,

529–532
security and, 522

SSL configuration, 539
virtual directories and, 37–38
Web services and, 665–666

IIS Snap-In, 11
IL Disassembler, 102
IL (Intermediate Language)

C# sample, 6
interpreted script and, 3
Visual Basic .NET sample, 4

Image class, 443–445
Image control, 159–160
ImageButton control, 159–160
ImageGallery table, 449
images

databases
retrieving from, 451–456
uploading to, 448–451

drawing, on the fly, 463–465
drawing code, 465–467
image engine, 440

building, 441–443
code-behind page, 441

logging, 441
resizing, Bitmap class, 446–448
sizing, 441
storage, 441
tags, 440

ImageURL page, Web services,
694–695

Immediate mode, Comment window,
52

imperative security, 561–562
impersonation, security and, 524
INamingContainer, custom controls

and, 270
#INCLUDE directive, user controls

and, 242
include files

ASP, 722–724
ASP.NET, 722–724

indexes, databases, performance tun-
ing and, 613

u 430234 Index.qxd 7/1/03 9:07 AM Page 754

Index 755

inheritance
cross-language inheritance, 3,

647–653
definition, 98
UML and, 121
Web server controls, 274–278

Inherits attribute, Web Form page, 77
Init event, Web Form, 81
installation

HTTP handlers, 487–489
HTTP modules, 490–491
IIS, lab, 23
software

lab, 23
location, 9–10

SQL Server
authentication mode, 14–15
installation selection, 14
lab, 23–24, 24–25
location, 13
login, 15–16
service account, 13, 14

Visual Studio .NET, 18
lab, 26–27

VSS
client, 19–20
location, 9–10
server, 19, 27

Windows
development environment, 11
lab, 22

Integrated Security, 15
Integrated Windows authentication,

IIS, 531
interfaces

abstract class comparison, 127
IHttpHandler, 486–487
INamingContainer, 270
structures and, 126

interpreting code vs compiling, 2
intersection, permissions, 565
IP addresses, security and, 532

isolated storage, 420–422
IsPostBack method, 73
IsPostBack property, 72–73
ISS (Internet Information Server), VSS

and, 9–10
item selection

DataGrid control, 228–229
DataList control, 212–215

ItemTemplate, 194

J
JIT Compiler

Core Execution Engine, 105–106
description, 100

JScript, ASP and, 1

K
keys, indexes, databases, 613
keywords

Me, 120
MyBase, 123
New, 98
overloads, 120
Shared, 499
WithEvents, 119

L
Label control, Web Server controls,

155
labs

ACT (Application Center Test),
614–616

ASP.NET development environment
setup, 22–30

classes, 134–137
component creation, 653–659
data access with ADO.NET, 335–338
data bound Web controls, 232–238
deployment, 731–732
directory objects, 431–434, 473–476
file objects, 431–434, 473–476
forms authentication, adding,

572–574

u 430234 Index.qxd 7/1/03 9:07 AM Page 755

756 Index

labs (continued)
maintaining state, 514–517
user controls, 278–284
ViewState, 90–92
Web control validation, 174–180
Web Form page, 88–93
Web service creation, 700–704
XML data, 375–379

languages
identifiers, ASP.NET, 66
.NET-compliant, 3
per page, ASP to ASP.NET, 721–722

late binding, COM components and, 2
layout control, ASP.NET benefits

and, 2
Let statements, 716
libraries, referencing external code

libraries, 132–133
LinkButton control, Web Server con-

trols, 156–158
ListBox control, 71, 166, 196–197
ListControl abstract class, 162–163
ListItem class, properties, 163–164
Load event, Web Form, 81
load testing

ACT and, 600–604
bottlenecks and, 581
description, 579
overview, 580

LoadControl method, 247
loading controls, user controls,

dynamically, 247–248
LoadPostData event, Web Form, 81
LoadViewState event, Web Form, 81
location, Code Access Security, 563
login page, forms authentication and,

556–559

M
Machine process model, security, 541
Macro Explorer, Visual Studio .NET, 54
malicious code, permissions and,

10–11

managed code, 100
manifest metadata, 104–105
mapping

dynamic field mapping, 194
fields, to controls, 193–196
templated field mapping, 194–195

Me keyword, 120
measurements, GDI+ fonts, 468
members

definition, 98
enumeration, BorderStyle prop-

erty, 150
TextBox control properties, 155–156

memory usage, Windows Perfor-
mance Monitor and, 594–596

MemoryStream class
buffer access, 396–397
MemoryStream constructor, 394–395
opening, 395–396
writing to, 395–396

Message Queues, Server Explorer, 50
metadata, assemblies, 104–105
methods

abstract, 124–125
access/mutator, 116–117
AddAttribute, 256
AddStyleAttribute, 256
Application_End, 482
Application_Start, 481
arguments, 720–721
assembly versioning and, 628
Assert, 582–583
Bitmap class, 446–447
Close, 301
controls, repeated value data

binding, 193
DataBind(), 187
definition, 98
Directory class, 416–418
DirectoryInfo class, 419
Dispose, 301
Eval, data binding, 196
ExecuteNonQuery, 303

u 430234 Index.qxd 7/1/03 9:07 AM Page 756

Index 757

ExecuteReader, 304–305
ExecuteScalar, 303–304
ExecuteXmlReader, 305
Fail, 584
File class, 409–410
FileInfo class, 413
FormsAuthentication.Authenticate,

546–547
FormsAuthentication.RedirectFrom-

LoginPage, 547
GetElementById, 353–356
GetElementByTagName, 353–356
Graphics class, 460–463
Image class, 445
IsPostBack, 73
LoadControl, 247
members and, 98
New, 119
overloaded, 115–116
overriding, 122–123
Page.DataBind(), 187
Render, 251
RenderBeginTag, 255–256
RenderEndTag, 255–256
RenderText, 682–684
server controls, 81
Session_End, 482
Session_Start, 482
shared, 120–121
Stream class, 386–387
structures and, 126
System.Object type, 109
visibility modifiers, 114–115
Web server controls, adding to,

258–259
Write, 252
Write method, 583
WriteAttribute, 253–254
WriteBeginTag, 253–254
WriteFullBeginTag, 254
WriteIf, 584
WriteLine, 253

WriteLine method, 583
WriteLineIf, 584
WriteLineNoTabs, 253
WriteStyleAttribute, 254–255
XmlDataDocument, 346–347
XmlDocument, 346–347

Microsoft .NET Configuration Tool,
assembly binding and, 644–645

Microsoft Test UDDI directory, 678
Microsoft UDDI directory, 678
Microsoft.Data.ODBC namespace,

ADO.NET, 292
migration

ASP, ASP.NET and, 710–711
ASP to ASP.NET, changes, 711–724
server controls and, 70

MMC (Microsoft Management Con-
sole), certificate snap-in, 537

module definitions, manifest meta-
data, 104

modules, object-oriented program-
ming, 125

MSIL (Microsoft Intermediate Lan-
guage)

assemblies, 102–104
C# sample, 6
Visual Basic .NET sample, 4

MyBase keyword, 123

N
NagivateURL property, 503–504
namespaces

ADO.NET, 292
common language runtime, 106–107
System, 110–112
System.XML, 345

NamingContainer property, 145–146
Native Image Generator, image

files, 106
NavigateURL property, HyperLink

control, 158
.NET-compliant languages, ASP.NET

and, 3

u 430234 Index.qxd 7/1/03 9:07 AM Page 757

758 Index

.NET Framework
ASP.NET benefits and, 3
class libraries, object-oriented, 3
class loader, 100
class manager, 100
COM Marshaler, 99
cross-language inheritance, 3
debug engine, 99
Exception Manager, 99
garbage collector, 100
JIT compiler, 100
security engine, 99
thread support, 99
type checker, 100
Web Forms and, 64
XML and, 344

.NET Framework SDK, ASP and, 1

.NET tab, assemblies, 651–652
network bandwidth, Windows Perfor-

mance Monitor and, 594–596
NetworkStream class, NetworkStream

constructor, 397–398
New keyword, classes, 98
New method, constructors, 119
non-provider-specific data classes

(ADO.NET)
DataSet, 311–312
DataTable, 312–313

DataColumn objects, 313–314
enumerating, 314–315

DataView, 315–318
NTFS (NT File System)

Windows, security and, 527–528
Windows installation, 11

Null Stream class, 393–394
numeric values, formatting

characters, 190

O
Object Browser, Visual Studio .NET, 53
object caching, performance tuning

and, 610–611

object-oriented programming
classes

abstract methods, 124–125
abstraction, 112
constructors, 119–120
creation, 113
encapsulation, 116–117
events, 118–119
inheritance, 121–122
libraries, 3
Me keyword, 120
members, 114–116
MyBase keyword, 123
overloaded methods, 115–116
overriding methods, 122–123
polymorphism, 125
shared methods, 120–121
shared variables, 120–121
visibility modifiers, 113–114

DataGrid data, displaying, 224
modules, 125

objects
classes and, 97
data types, 109
definition, 98
serializable, ViewState and, 71
session objects, Web servers and, 2
XML

flowchart, 345
XmlDataDocument method,

346–347
XmlDocument method, 346–347

Odbc data provider (ADO.NET), 291
OleDb Data Provider (ADO.NET), 291
OnInit event, Web Form, 81
OnLoad event, Web Form, 81
OnPreRender event, Web Form, 81
opening files, FileStream class,

389–390
operating system, development envi-

ronment and, 6
Option Explicit directive, 722

u 430234 Index.qxd 7/1/03 9:07 AM Page 758

Index 759

Oracle data provider (ADO.NET),
291–292

OrderEntrySystem Solution lab, 42–45
Output window, Visual Studio

.NET, 51
OutputDebugString function, 587–588
overloaded constructors, 120
overloaded methods, 115–116
overloads keyword, 120
overriding methods, 122–123

P
page caching, performance tuning

and, 609–610
Page-Level Trace, 591–592
page navigation

HyperLink control, 503–504
Server.Transfer statement, 507
Window.Open command, 504–506

Page property, 146
Page.DataBind() method, 187
pageLayout property (Web Form)

FlowLayout, 82, 83–87
GridLayout, 82–87

pages, user controls
adding, 243
raising event to, 248–250

panels, navigation, 509–514
Parent property, 146
parsing, XmlDocuments

DOM and, 351–352
XPathNavigator class, 352–353

Passport authentication, security, 542
PassportIdentity class, 551
Pen object, GDI+, 458
performance

ASP.NET benefits and, 3
load testing, 579

Performance Counters, Server
Explorer, 50

performance tuning
caching, 608

graphics caching, 611–612
object caching, 610–611
page caching, 609–610

databases, 612
calculated fields, 613
indexes, 613
stored procedures, 613

development environment and, 581
relative tests, 581
StringBuilder class, 607–608
strings, concatenation, 604–607
switches

BooleanSwitch, 585–586
TraceSwitch, 586–587

tools
Debug, 582–584
Debug Monitor, 587–588
Trace class, 584
TraceListener, 588–590
Web Trace, 591–594

ViewState, monitoring, 612
Windows Performance Monitor,

introduction, 594–596
permissions

Code Access Permissions, 564
intersection, 565
malicious code and, 10–11
requested, Code Access Security,

566–568
union, 565

pipeline processing of requests,
484–485

Point/PointF objects, GDI+, 457
policy administration, Code Access

Security, 569–570
polymorphism, methods for, 125
positioning user controls, 244–245
postback data, Web server controls,

266–269

u 430234 Index.qxd 7/1/03 9:07 AM Page 759

760 Index

posting back, action="vb.aspx"
attribute, 73–74

PostRequestHandlerExecute event,
HttpApplication class, 483

PreRender event, Web Form, 81
PreRequestHandlerExecute event,

HttpApplication class, 483
PreSendRequestContent event,

HttpApplication class, 483
PreSendRequestHeaders event,

HttpApplication class, 483
primary key, table data (ADO.NET),

318–319
primary keys, database indexes, 613
primitive types, ViewState and, 71
PrincipalPermission class, 561–562
private assemblies, 630–632
probing for assemblies, 646–647
procedures. See also subprocedures

event handlers, arguments, 76
event="ProcName" attribute, 74–76
methods, 98
stored procedures, database perfor-

mance tuning, 613
processor, Windows Performance

Monitor and, 594–596
programming

models, 65
Web Forms, 64

project, definition, 34
Project tab, Add Reference dialog

box, 625
projects, Visual Studio.NET, 38–39
properties

AccessKey, 148
assembly versioning, 628
Attributes, 148–149
AutoPostBack, 74
BackColor, 149–150
BorderColor, 149–150
BorderStyle, 150–151
BorderWidth, 151

Button control, 156–158
CheckBox control, 161
CheckBoxList control, 164–165
ClientID (System.Web.UI.Control

class), 143
CompareValidator control, 170
Controls, System.Web.UI.Control

class, 143–144
ControlStyle, 151–152
ControlStyleCreated, 151–152
CssClass, 152
data binding controls, repeated

value, 188–193
DataGrid control, 219–220
DataList control, 205–207
definition, 98
Enabled, 152
EnableViewState property, 144
encapsulation, 117
Font, 152–153
ForeColor, 149–150
Graphics class, 459–460
Height, 153
HyperLink control, 158–159
ID, 144–145
Image class, 444
Image control, 159–160
ImageButton control, 159–160
IsPostBack, 72–73
LinkButton control, 156–158
ListBox control, 166
ListControl abstract class, 162–163
ListItem class, 163–164
members and, 98
NagivateURL, 503–504
NamingContainer, 145–146
NavigateURL, HyperLink control,

158
Page, 146
Parent, 146
RadioButton control, 161
RadioListButton control, 164–165

u 430234 Index.qxd 7/1/03 9:07 AM Page 760

Index 761

Site, 146
Stream class, 386–387
structures and, 126
Style, 154
TabIndex, 154
TemplateSourceDirectory, 147
TextBox control, 155–156
ToolTip, 155
UniqueID, 147
Visible, 147–148
Web server controls, adding, 256–257
Width, 153

provider-specific data objects
(ADO.NET)

Command object, 300–302
ExecuteNonQuery method, 303
ExecuteReader method, 304–305
ExecuteScalar method, 303–304
ExecuteXmlReader method, 305
parameters, 302–303

Connection, 293
ConnectionString, 294–299
exception handling, 299–300
security, 293–294

DataAdapter, 308–310
DataReader object, 305–308

proxies, Web services, 677–678
Proxy property, Web services, 687
publisher, Code Access Security, 563
publisher policies, assemblies, 645–646

Q
QFE (Quick Fix Engineering) builds,

629
QueryString, ASP data to ASP.NET,

711
Queue collection, 132

R
RadioButton control, 160–161
RadioButtonList control, 163–165
RaisePostBackEvent event, Web

Form, 81

RaisePostDataChangedEvent event,
Web Form, 81

RangeValidator control, 169–170
RDO (Remote Data Objects), 290
Rectangle/RectangleF objects,

GDI+, 457
RecurseNodes procedure, parsing

XmlDocuments, 351
reference types, 109
references to components, setting, 625
@Register directive, 243
RegularExpressionValidator con-

trol, 170
relative tests, performance tuning

and, 581
ReleaseRequestState event, Http-

Application class, 483
render blocks, 715
Render event, Web Form, 82
Render method, 251
RenderBeginTag method, 255–256
RenderEndTag method, 255–256
rendering

text, GDI+, 471–472
Web Forms, 63

RenderText method
executing, 682–684
parameters, 684–686
Web services, asynchronous methods,

687–689
repeated value data binding

control events, 193
control methods, 193
control properties

DataMember, 189
DataSource, 188–189
DataTextField, 189
DataValueField, 193

Repeater control, templates, 197–205
Request object, 717–720
request processing

ASP.NET account, 540–541
pipeline, 484–485

u 430234 Index.qxd 7/1/03 9:07 AM Page 761

762 Index

request state data, 495
RequiredFieldValidator control,

168–169
ResolveRequestCache event, HttpAp-

plication class, 483
Response.OutputStream, 405–406
Response.Redirect statement, 506–507
reusable components, Class Library

project, 622–624
RPM (Revolutions Per Minute), attrib-

utes, 112
runat="server" attribute, HTML server

controls, 69

S
SaveViewState event, Web Form, 82
scalability, load testing and, 580
security

ASP.NET
authentication, 541–547
benefits and, 3
specifics, 539

authentication, 523–524
authorization, 524

declarative security, 560
basics, 522
Code Access Security

code groups, 565
evidence, 563
exception handling, 568
policy administration, 569–570
requested permissions, 566–568
security policy levels, 565–566
testing, 570–572

declarative, 560
delegation, 524
domain name restrictions, 532
forms, authorization, 547–550
Identity class, 550–552
IIS authentication

anonymous access, 529–530
basic, 530
certificates, 531–532

digest, 530–531
Integrated Windows, 531

imperative security, 561–562
impersonation, 524
Integrated Security, 15
IP addresses, 532
overview, 521
permissions, malicious code and,

10–11
Principal class, 550
request processing account, 540–541
SSL communications, 532

client certificates, 533
overview, 533
setup, 533–539

Trusted Security, 15
Windows

domain environment, 526–527
NTFS, 527–528
workgroups, 525–526

Windows Authentication, 15
Windows Authorization, 550

security engine, description, 99
security policy levels, Code Access

Security, 565–566
SEH (Structured Exception

Handling), 99
SelectedItemTemplate, 195
Send method, cross-language inheri-

tance and, 648
sender as object argument, event

handlers, 76
SendMessage event, 248–250
SendMessageTo method, cross-

language inheritance and, 650
SeparatorTemplate, 195
serialization

binary, 424–425
definition, 383
introduction, 422–424
SOAP, 425–428

server controls. See also Web server
controls

u 430234 Index.qxd 7/1/03 9:07 AM Page 762

Index 763

ASP.NET server tags, 68
event programming, 70
events, 81
HTML, 69
methods, 81
overview, 68
recommendations, 70

Server Explorer, Visual Studio .NET,
50–51

server-side code
ASP.NET

comments, server tag, 68
programming, 65

client-side code, mixing, 2
CustomValidator control, examples,

172–173
HTML code, mixing, 2
script blocks, ASP to ASP.NET

migration, 713–716
server tags, ASP.NET, 68
servers, VSS, 9–10, 19, 27
Server.Transfer statement, 507
service account

lab, 23–24
SQL Server, 13

Services, Server Explorer, 50
session object, Web servers and, 2
Session property, HttpSessionState

class, 493–495
session state, ASP.NET benefits and, 3
session state data, 493–495
Session_End method, 482
Session_Start method, 482
Set statements, 716
shared assemblies, 639–642
Shared keyword, 499
sharing state, 479
side-by-side versioning, 632
single value data binding, 186–187
Site property, 146
Size/SizeF objects, GDI+, 458
sizing images

image engine and, 441
resizing, Bitmap class, 446–448

.sln files, 38–39
SMTP Service, IIS, 11
sn.exe (strong-name utility), 633
SOAP serialization, 422, 425–428
SOAP (Simple Object Access Proto-

col), Web services
headers, 668–669
messages, 667–668
proxies, 677–678
SOAP Fault element, 669–670

software, installation
IIS configuration, 11–12
lab, 23
location, 9–10

software requirements, Visual Stu-
dio .NET

Architect edition, 9
Developer edition, 9

Solution Explorer, Visual Studio .NET,
48–49

solution structure, component defini-
tions, 33–34

solutions
definition, 34
OrderEntrySystem Solution lab, 42–45
VSS, adding, 40–42

SortedList collection, 132
.sou files, 38–39
SQL Enterprise Manager, login

adding, 15–16
lab, 25

SQL Server
database server and, 6–7
installation, 12

authentication mode, 14–15
installation selection, 14
lab, 23, 24–25
location, 13
login, 15–16
service account, 13, 14
stored procedure debugging, 16–18

stored procedures
debugging, 16–18
verifying debugger operation, 25–26

u 430234 Index.qxd 7/1/03 9:07 AM Page 763

764 Index

SQLServer.NET data provider
(ADO.NET), 291

SSL (Secure Sockets Layer)
CA (Certificate Authority), 532
client certificates, 533
introduction, 522
overview, 533
setup

attaching certificates to Web site,
538–539

backing up certificates, 537
exporting certificates, 537
IIS configuration, 539
importing certificates, 538
multiple Web site hosting, 533
processing certificates, 536–537
requesting certificates, 534–563
restoring certificates, 538

Stack collection, 132
Start window, Visual Studio .NET, 47
state

application state data, 492
lab, 514–517
request state data, 495
session state data, 492–495
sharing, 479
Web Forms and, 64

static discovery, Disco and, 674
static variables, 499
storage, isolated, 420–422
stored procedures

databases, performance tuning, 613
SQL Server

debugging, 16–18
verifying debugger operation, 25–26

Stream class, 385–387
stream classes

BufferedStream, 403–405
CryptoStream, 400–401
FileStream, 387–389
introduction, 384–385
MemoryStream, 394–395

NetworkStream, 397–398
Null Stream, 393–394
Stream, 385–387

stream helper classes
BinaryReader, 407
BinaryWriter, 407
HttpWebRequest, 408–409
introduction, 406
StreamReader, 408
StreamWriter, 408
TextReader, 407
TextWriter, 407

Stream object, Response.Output-
Stream, 405–406

StreamReader class, 408
streams

definition, 383
Response.OutputStream, 405–406

StreamWriter class, 408
StringBuilder class, performance tun-

ing and, 607–608
strings

concatenation, 604–607
ViewState and, 71

strong name, Code Access Security,
563

strong-name utility, 633
strong-named assemblies

creating, 633–636
Fusion Log Viewer, 637–639
uses, 636–637

structures
fields, 126
interfaces, 126
methods, 126
properties, 126
System.ValueType, 126

Style property, 154
styles

CSS (Cascading Style Sheets), 149
DataGrid control, 221–222
DataList control, 207–208

u 430234 Index.qxd 7/1/03 9:07 AM Page 764

Index 765

stylesheets, XML file transforming
and, 363–367

Submit buttons (HTML), 67
subprocedures

ASP to ASP.NET migration, 713
Button1_Click, 80

subs, ASP.NET server tags, 68
switches, performance tuning

BooleanSwitch, 585–586
TraceSwitch, 586–587

synchronization objects, asynchronous
method execution, 687–689

system, definition, 33
System Monitor Utility, 595
System namespace, 110

data types, 111
System process model, security, 541
system resources, Windows Perfor-

mance Monitor and, 594–596
System.Collections namespace, collec-

tions, 131
System.Data namespace,

ADO.NET, 292
System.Data.Common namespace,

ADO.NET, 292
System.Data.OleDb namespace,

ADO.NET, 292
System.Data.OracleClient namespace,

ADO.NET, 292
System.Data.SqlClient namespace,

ADO.NET, 292
System.Data.SqlTypes namespace,

ADO.NET, 292
System.Data.Xml namespace,

ADO.NET, 292
System.Object type, methods, 109
System.ValueType, 126
System.Web.UI.Control class

ClientID property, 143
Controls property, 143–144
EnableViewState property, 144

ID property, 144–145
NamingContainer property, 145–146
Page property, 146
Parent property, 146
Site property, 146
TemplateSourceDirectory property,

147
UniqueID property, 147
Visible property, 147–148

System.Web.UI.Page class, code-
behind pages and, 77

System.Web.UI.WebControls.WebCon-
trol class

AccessKey property, 148
Attributes property, 148–149
BackColor property, 149–150
BorderColor property, 149–150
BorderStyle property, 150–151
BorderWidth property, 151
ControlStyle property, 151–152
ControlStyleCreated property,

151–152
CssClass property, 152
Enabled property, 152
Font property, 152–153
ForeColor property, 149–150
Height property, 153
Style property, 154
TabIndex property, 154
ToolTip property, 155
Width property, 153

System.Web.UI.WebControls.WebCon-
trol clss, Web Server controls, 141

System.XML namespace, 345

T
TabIndex property, 154
tables, ADO.NET

DataRow objects, 319–321
editing rows, 322–323
primary key, 318–319
row deletion, 321–322

u 430234 Index.qxd 7/1/03 9:07 AM Page 765

766 Index

TagPrefix attribute, user controls on
pages, 243

Task List, Visual Studio .NET, 51
TemplateColumn, DataGrid con-

trol, 222
templated field mapping, 194–195
templates

DataList control, 207
Repeater control, 197–205

TemplateSourceDirectory property, 147
testing

Assert method, 582–583
Code Access Security, 570–572
load testing, 580
relative tests, 581

text bitmaps, GDI+, on the fly cre-
ation, 468–472

text boxes (HTML), asp:TextBox Web
server control, 67

Text Editor, Visual Studio .NET, 54
text rendering, GDI+, 471–472
TextBox control, Web Server controls,

155–156
TextBoxes, AutoPostBack property, 74
TextReader class, 407
TextToImage class, Web services,

690–694
TextWriter class, 407
TextWriterTraceListener, 589
thread support, definition, 99
Timeout property, Web services, 687
timeouts, cache timeout, 498–499
tModel (technology model), Web ser-

vices and, 695–696
Toolbox, Visual Studio .NET, 49
ToolTip property, 155
ToString method, System.Object type,

109
Trace class, performance tuning and,

584
TraceListener

DefaultTraceListener, 588
EventLogTraceListener, 589–590

TextWriterTraceListener, 589
TraceSwitch, performance tuning and,

586–587
Trusted Security, 15
two-page programming model

code-behind pages, 76–80
Web Forms page, 76

type checker, description, 100
TypeConverter, ViewState and, 71
typeof-is statement, 130

U
UDDI (Universal Description Discov-

ery Integration)
Microsoft UDDI Directory, 678
Web services and, 666

menu hierarchy, 698–699
project, 673–674
registry, 695–699
service information, 695–696

Web sites, 673–674
UML (Unified Modeling Language),

121
union of permissions, 565
Unique ID property, 147
UnLoad event, Web Form, 82
UpdateRequestCache event, HttpAp-

plication class, 483
UploadImage field, 448–451
uploading

images to databases, 448–451
to Web server, File Field control,

414–415
URL property, Web services, 686
UseAsync parameter, FileStream con-

structor, 389
user controls

adding to pages, 243
as classes, 244
creating, 242–243
data access, 243–244
dragging and dropping, 244

u 430234 Index.qxd 7/1/03 9:07 AM Page 766

Index 767

events, 245–247
raising to page, 248–250

footers and, 242
headers and, 242
#INCLUDE directive and, 242
lab, 278–284
loading, dynamically, 247–248
positioning, 244–245

users, load testing and, 580

V
validation, XML documents, 373–374
validation controls (Web Server)

BaseCompareValidator, 169
BaseValidator class, 168
cancel buttons, 174
CompareValidator, 170
hierarchy, 167
RangeValidator, 169–170
RegularExpressionValidator, 170
RequiredFieldValidator, 168–169
ValidationSummary, 173–174

ValidationSummary control, 173–174
value types, 108
variables

ASP, 722
ASP.NET, 722
shared, 120–121
static, 499
value types, 108

VB.NET, ASP.NET and, 3
VBScript, ASP and, 1
version control, VSS, 7
versioning

assembly versioning, 628–630
components, 621
side-by-side versioning, 632

ViewState. See also _VIEWSTATE con-
trol

IsPostBack property, 72–73
lab, 90–92
ListBox example, 71

monitoring, performance tuning
and, 612

multiple entries, correcting, 72–73
System.Web.UI.Control and, 70
turning off, 73
Web server controls and, 258

_VIEWSTATE control, 67
virtual directories

applications, 481
creation, 35–38
IIS and, 37–38
Web Sharing, 35–37

visibility modifiers
classes, 113–114
methods, 114–115

Visible property, 147–148
Visual Basic .NET

data types, .NET data types and,
111–112

Hello World program, 3–4
language identifiers, 66
mapping, System namespace data

types, 111
object-oriented programming,

classes, 112–125
Visual C#, language identifiers, 66
Visual J#, language identifiers, 66
Visual JavaScript, language

identifiers, 66
Visual SourceSafe. See VSS (Visual

SourceSafe)
Visual Studio .NET

Enterprise Architect Edition
Contents, 8–9

Enterprise Developer Edition, 8
Global.asax file, 481
Help, 55–56
help, filters lab, 57–59
IDE, 45–59
installation, 18

lab, 26–27
Professional Edition, 7–8

u 430234 Index.qxd 7/1/03 9:07 AM Page 767

768 Index

Visual Studio .NET (continued)
projects, creation, 38–39
Server Explorer, 50–51
Solution Explorer, 48–49
VSS and, 7
Web Form pages, 78
windows

auto hide, 46
Class View, 49
Code Editor, 54
Comment window, 52–53
customizing, lab, 57–59
dockable, 46
floating, 46
hiding, 46
Macro Explorer, 54
Object Browser, 53
Output, 52
Start window, 47
Task List, 51
Text Editor, 54
Toolbox, 49

VSS (Visual SourceSafe)
administration, 21–22

lab, 29–30
client, installation, 19–20, 27
files, renaming, 34
installation, location, 9–10
introduction, 7
OrderEntrySystemSolution lab,

42–45
server, installation, 19, 27
solutions, adding, 40–42

W
W3C (World Wide Web Consortium),

343
UDDI Project and, 673

Web configuration file, 499–500
Web controls, binding and, 185
Web Form Designer Generated

Code, 80

Web Form page
class, converting to, 77
compiling, 77
controls, 81–82
Inherits attribute, 77
lab, 88–93
life cycle, 81–82
pageLayout property

FlowLayout, 82, 83–87
GridLayout, 82–87

Visual Studio .NET and, 78
Web Forms

code separation, 64
extensibility, 64
.NET Framework, 64
programming, 64
rendering, 63
state, 64

Web References
Web Service Directory list, 678
Web services, adding to, 678–682

Web server controls
Button control, 156–158
CheckBox control, 160–161
CheckBoxList control, 163–165
child controls, adding, 259–263
composite controls, 269–274
control library

compiling, 250–251
creating, 250–251

creating, 251–252
custom control builder, 263–264

raising events, 264–266
description, 70
DropDownList control, 166
File Field, 414–415
functionality, improvements, 141
HTMLTextWriter class

AddAttribute method, 256
AddStyleAttribute method, 256
RenderBeginTag method, 255–256
RenderEndTag method, 255–256

u 430234 Index.qxd 7/1/03 9:07 AM Page 768

Index 769

Write method, 252
WriteAttribute method, 253–254
WriteBeginTag method, 253–254
WriteFullBeginTag method, 254
WriteLine method, 253
WriteLineNoTabs method, 253
WriteStyleAttribute method,

254–255
HyperLink control, 158–159
Image control, 159–160
ImageButton control, 159–160
inheritance and, 274–278
lab, 174–180
Label control, 155
LinkButton control, 156–158
ListBox control, 166
ListControl abstract class, 162–163
methods, adding, 258–259
postback data, 266–269
properties, adding, 256–257
RadioButton control, 160–161
RadioButtonList control, 163–165
raising events, custom control

builder, 264–266
System.Web.UI.Control class, 142

ClientID property, 143
Controls property, 143–144
EnableViewState property, 144
ID property, 144–145
NamingContainer property,

145–146
Page property, 146
Parent property, 146
Site property, 146
TemplateSourceDirectory property,

147
UniqueID property, 147
Visible property, 147–148

System.Web.UI.WebControls.Web-
Control class

AccessKey property, 148
Attributes property, 148–149

BackColor property, 149–150
BorderColor property, 149–150
BorderStyle property, 150–151
BorderWidth property, 151
ControlStyle property, 151–152
ControlStyleCreated prpty, 151–152
CssClass property, 152
Enabled property, 152
Font property, 152–153
ForeColor property, 149–150
Height property, 153
Style property, 154
TabIndex property, 154
ToolTip property, 155
Width property, 153

TextBox control, 155–156
validation controls

BaseCompareValidator, 169
BaseValidator class, 168
Cancel buttons and, 174
CompareValidator control, 170
hierarchy, 167
RangeValidator, 169–170
RegularExpressionValidator, 170
RequiredFieldValidator, 168–169
ValidationSummary, 173–174

ViewState and, 258
Web servers

requests, pipeline, 484–485
session objects, 2

Web Service Directory list, Web Refer-
ences and, 678

Web services. See also XML Web ser-
vices

ASP.NET benefits and, 3
asynchronous methods

callback functions and, 689–690
synchronization object and,

687–689
building

ImageURL page, 694–695
project creation, 690
TextToImage class, 690–694

u 430234 Index.qxd 7/1/03 9:07 AM Page 769

770 Index

Web services. (continued)
business uses, 665
CORBA, 663
creating, lab, 700–704
Credentials property, 686
DCOM, 663
Disco and

dynamic discovery, 675
static discovery, 674

functionality, increasing, 684–686
IIS and, 665–666
methods, asynchronous, 687–690
money making uses, 665
overview, 663–664
project creation, 678
proxies, 677–678
Proxy property, 687
RenderText method, executing,

682–684
SOAP (Simple Object Access Protocol)

headers, 668–669
messages, 667–668
SOAP Fault element, 669–670

Timeout property, 687
tModel (technology model), 695–696
UDDI and, 666

menu hierarchy, 698–699
project, 673–674
registry, 695–699
service information, 695–696

URL property, 686
Web References, 678–682
WSDL, 670–673

Web setup project, deployment and,
729–730

Web Sharing, virtual directories and,
35–37

Web sites, UDDI, 673–674
Web Trace

Application-Level Trace, 592–593
components and, 593–594
Page-LevelTrace, 591–592

Web.config file, forms authentication,
555–556

WebService attribute, TextToImage
class, 691

Width property, 153
Win32 API, calls, Web Forms and, 64
Window.Open command, 504–506
Windows

installation
development environment, 11
lab, 22

security
domain environment, 526–527
NTFS, 527–528
workgroups, 525–526

windows, Visual Studio .NET, 46
auto hide, 46
Class View, 49
Code Editor, 54
Comment window, 52–54
customizing, lab, 57–59
floating, 46
hiding, 46
Macro Explorer, 54
Object Browser, 53
Output, 52
Server Explorer, 50–51
Solution Explorer, 48–49
Start, 47
Task List, 51
Text Editor, 54
Toolbox, 49

Windows 2000
administration, 20–21

lab, 27–29
development environment choice, 6

Windows 95 development environ-
ment choice, 6

Windows 98 development environ-
ment choice, 6

Windows Authentication, 15
Windows authentication, security, 542

u 430234 Index.qxd 7/1/03 9:07 AM Page 770

Index 771

Windows Authorization, 550
Windows ME, development environ-

ment choice and, 6
Windows .NET, development environ-

ment choice and, 6
Windows Performance Monitor

categories, 598
counters, 597–600
introduction, 594–596

Windows process model, security, 541
Windows XP, development environ-

ment choice and, 6
Windows XP Home, development

environment choice and, 6
WindowsIdentity class, 551
WindowsPrincipal class, 552
WithEvents keyword, 119
workgroups, security and, 525–526
World Wide Web service, IIS, 11
Write method

Debug class, 583
HTMLTextWriter class, 252

WriteAttribute method, 253–254
WriteBeginTag method, 253–254
WriteFullBeginTag method, 254
WriteIf method, 584
WriteLine method, 253

Debug class, 583
WriteLineIf method, 584
WriteLineNoTabs method, 253
WriteStyleAttribute method, 254–255
writing files

files, FileStream class, 389–390
XmlTextWriter class and, 359–361

WSDL (Web Service Description Lan-
guage), 670–673

WSDL.exe utility, execution, 678
WYSIWYG (What You See Is What

You Get), 64

X
XCopy deployment

FTP deployment, 728
selecting files to copy, 728–729

XDR (XML Schema Reduced), Xml-
ValidatingReader class and, 349

XML (eXtensible Markup Language).
See also XmlDocuments

ADO.NET and, 289
integration, 344

ASP.NET XML Web control,
DataSets, 367–371

classes
XmlConvert, 348
XmlNodeReader, 348
XmlTextReader, 348
XmlTextWriter, 348–349
XmlValidatingReader, 349, 373–374
XPathDocument, 348
XPathNavigator, 348
XslTransform, 349

DataSets, 344
documents

reading to DataSets, 368–369
validation, 373–374

DOM, 344–345
files

transforming, 363–367
XmlTextReader class and, 362–363
XmlTextWriter class and, 359–361

lab, 375–379
.NET Framework and, 344
objects

flowchart, 345
XmlDataDocument method,

346–347
XmlDocument method, 346–347

serialization, 422, 429–431
System.XML namespace, 345
W3C publication, 343
WSDL and, 670

u 430234 Index.qxd 7/1/03 9:07 AM Page 771

772 Index

XML Web services. See Web services
XmlConvert class, 348
XmlDataDocument method

DataSets and, 371–372
population, 367

description, 346–347
XmlDocument method, 346–347
XmlDocuments

new, 349–351
parsing

DOM and, 351–352
XPathNavigator class, 352–353

searching, DOM, 353–356
XmlNodeReader class, 348
XmlTextReader class

description, 348
reading files and, 362–363

XmlTextWriter class
description, 348–349
writing files and, 359–361

XmlValidatingReader class, 349,
373–374

XPathDocument class
description, 348
XPathNavigator class and, 357–359

XPathNavigator class
description, 348
parsing XmlDocuments, 352–353
XPathDocument class and, 357–359

XSD (Xml Schema Definition)
WSDL documents and, 673
XmlValidatingReader class and, 349

XslTransform class
description, 349
XML file transforming and, 363–367

Z
zone, Code Access Security, 563

u 430234 Index.qxd 7/1/03 9:07 AM Page 772

	ASP.NET in
 60 Minutes a Day
	ASP.NET in
 60 Minutes a Day
	Copyright
	A Note from the Consulting Editor
	Contents
	Acknowledgments
	About the Author

	Introduction
	Chapter 1 Introducing ASP.NET
	Problems with Older Versions of Active Server Pages
	The Benefits of ASP. NET
	What Language Should Be Used?
	Classroom Q & A

	Choosing the Appropriate Development Environment
	The Operating System
	The Database Server
	The Version Control Software
	The Visual Studio . NET Edition
	Visual Studio . NET Professional Edition
	Visual Studio . NET Enterprise Developer Edition
	Visual Studio . NET Enterprise Architect Edition Contents

	Software Selection Conclusions
	The Software Installation Location
	Developer Permission Assignments

	Setting up the Development Environment
	Installing Windows
	Configuring Internet Information Server
	Other Software
	Installing SQL Server 2000 Developer Edition
	Creating the SQL Server Service Account
	SQL Server Installation
	Adding a SQL Server Login for Your Use
	SQL Server Stored Procedure Debugging

	Installing Visual Studio . NET
	Installing Visual SourceSafe Server
	Installing Visual SourceSafe Client
	Windows 2000 Administration
	Visual SourceSafe Administration

	Lab 1.1: ASP. NET Development Environment Setup
	Summary

	Chapter 2 Solutions, Projects, and the Visual Studio .NET IDE
	Planning and Creating the Visual Studio . NET Solution Structure
	Classroom Q & A
	Folder Structure
	Virtual Directory Creation
	Virtual Directory via Web Sharing
	Virtual Directory via Internet Information Services (IIS)

	Visual Studio . NET Project Creation

	Adding the Solution to Visual SourceSafe
	Lab 2.1: Creating the OrderEntrySystem Solution
	The Visual Studio . NET Integrated
	Development Environment (IDE)
	Classroom Q & A
	The Visual Studio . NET Windows
	Start Window
	Solution Explorer
	Class View
	Toolbox
	The Server Explorer
	Task List
	Output Window
	Command Window
	Object Browser
	Macro Explorer
	Code or Text Editor

	Getting Help
	Visual Studio . NET Help
	Help on the Web

	Lab 2.2: Customizing Windows and Help Filters
	Summary

	Chapter 3 Exploring ASP.NET and Web Forms
	Web Forms
	Classroom Q & A

	Two ASP. NET Programming Models
	Simple ASP. NET Page
	Server Controls
	HTML Server Controls
	Web Server Controls
	Server Control Recommendations
	Server Control Event Programming

	ViewState
	Correcting Multiple Entries
	Use the IsPostBack Property
	Turn off ViewState

	Post Back
	Responding to Events
	Event Handler Procedure Arguments
	Code- Behind Page
	Accessing Controls and Events on the Code- Behind Page
	Web Form Designer Generated Code

	Life Cycle of a Web Form and Its Controls
	Page Layout
	FlowLayout
	GridLayout
	Selecting the Proper Layout

	Lab 3.1: Web Forms
	Summary

	Chapter 4 The .NET Framework and Visual Basic .NET
Object Programming
	Definitions
	Classroom Q & A

	The . NET Framework
	Assemblies
	Intermediate Language Disassembler
	Microsoft Intermediate Language
	Metadata

	Common Language Runtime
	Core Execution Engine
	Namespaces
	Common Type System
	Common Language Specification

	Base Class Library
	System Data Types
	System Data Type or Visual Basic . NET Data Type?

	Visual Basic . NET Object- Oriented Programming
	Classes
	Abstraction
	Class Creation
	Class Visibility Modifiers
	Working with Class Members
	Encapsulation
	Events
	What Is a Constructor?
	Me Keyword
	Shared Methods and Variables
	Inheritance
	Overriding Methods
	MyBase Keyword
	Abstract Methods and Classes
	Polymorphism

	Modules

	Structures
	Interfaces
	Enumerations
	Working with Collections
	Referencing External Code Libraries
	Lab 4.1: Working with Classes
	Summary

	Chapter 5 Working with Web Server Controls
	Classroom Q & A
	The Web Server Control Hierarchy
	System. Web. UI. Control
	ClientID
	Controls
	EnableViewState
	ID
	NamingContainer
	Page
	Parent
	Site
	TemplateSourceDirectory
	UniqueID
	Visible

	System. Web. UI. WebControls. WebControl
	AccessKey
	Attributes
	Cascading Style Sheets
	BackColor, BorderColor, and ForeColor
	BorderStyle
	BorderWidth
	ControlStyle and ControlStyleCreated
	CssClass
	Enabled
	Font
	Height, Width
	Style
	TabIndex
	ToolTip

	Label Control
	TextBox Control
	Button and LinkButton Control
	HyperLink Control
	Image and ImageButton Controls
	CheckBox and RadioButton Controls
	ListControl Abstract Class
	The RadioButtonList and CheckBoxList Controls
	DropDownList and ListBox Controls
	Validation Controls
	BaseValidator Class
	RequiredFieldValidator
	BaseCompareValidator
	CompareValidator
	RangeValidator
	RegularExpressionValidator
	CustomValidator
	Client- Side Validation Examples
	Server- Side Validation Examples

	ValidationSummary
	Using Cancel Buttons with Validation
	Lab 5.1: Validating Web Controls
	Test Server Validation

	Summary

	Chapter 6 Using Data-Bound Web Controls
	Questions Q & A
	Data- Binding Basics
	Single Value Data Binding
	Repeated Value Data Binding
	Repeated Binding Control Properties
	DataSource
	DataMember
	DataTextField
	DataTextFormatString
	DataValueField

	Repeated Binding Control Methods
	Repeated Binding Control Events
	Mapping Fields to the Control
	Dynamic Field Mapping
	Templated Field Mapping
	Using the Eval Method

	Data Bound Controls
	ListBox and DropDownList Control
	Repeater Control
	DataList Control
	DataGrid Control
	Object- Oriented Method to Display Hidden
	Data in a DataGrid

	Lab 6.1: Data Bound Web Controls
	Summary

	Chapter 7 Building User Controls and Custom Web Controls
	Classroom Q & A
	User Controls
	Creating a User Control
	Adding a User Control to a Page
	Accessing Data from the User Control
	Positioning User Controls
	User Control Events
	Dynamically Loading Controls
	Raising Events to the Page

	Web Server Controls
	Creating and Compiling a Control Library
	Creating a Simple Control
	The HTMLTextWriter
	Write
	WriteLine and WriteLineNoTabs
	WriteBeginTag and WriteAttribute
	WriteFullBeginTag
	WriteStyleAttribute
	RenderBeginTag and RenderEndTag
	AddAttribute and AddStyleAttribute

	Adding Properties to the Server Control
	Working with ViewState Data
	Adding Methods to the Server Control
	Adding Child Controls to the Server Control
	Adding the Custom Control Builder
	Raising Events
	Retrieving Postback Data
	Composite Controls
	Inheriting from Existing Controls

	Lab 7.1: User Control
	Summary

	Chapter 8 Data Access with ADO.NET
	Classroom Q & A
	Connected versus Disconnected Data
	ADO. NET Data Providers
	SQL Data Provider
	OleDb Data Provider
	Odbc Data Provider
	Oracle Data Provider

	ADO. NET Data Namespaces
	Primary Data Objects
	Provider- Specific Data Objects
	Connection
	Command
	Close versus Dispose
	DataReader
	DataAdapter

	Non- Provider- Specific Data Classes
	DataSet
	DataTable
	DataView

	Modifying Table Data
	Setting the Primary Key
	Adding DataRow Objects
	Deleting Rows
	Editing Rows

	Using the DataGrid to Modify Data
	Editing a DataRow with the DataGrid
	Adding a DataRow with the DataGrid
	Deleting a DataRow with the DataGrid

	Updating the Data Store
	Paging the DataGrid
	Sorting Data with the DataGrid
	Lab 8.1 Data Access
	Summary

	Chapter 9 Working with XML Data
	Classroom Q & A
	XML in the . NET Framework
	The XML Document Object Model
	XML Namespace
	XML Objects
	XmlDocument and XmlDataDocument
	XPathDocument
	XmlConvert
	XPathNavigator
	XmlNodeReader
	XmlTextReader
	XmlTextWriter
	XmlValidatingReader
	XslTransform

	Working with XML Documents
	Creating a New XmlDocument from Scratch
	Parsing XmlDocument Using the DOM
	Parsing XmlDocument Using the XPathNavigator
	Searching the XmlDocument Using the DOM
	Searching XPathDocument Using the XPathNavigator
	Writing a File Using the XmlTextWriter
	Reading a File Using the XmlTextReader
	XslTransform
	The ASP. NET XML Web Control
	DataSets and XML
	Reading an XML Document into the DataSet
	Writing an XML Document from the DataSet

	Using the XmlDataDocument with a DataSet

	Validating XML Documents
	XmlValidatingReader

	Lab 9.1: Working with XML Data
	Summary

	Chapter 10 Streams, File Access, and Serialization
	Classroom Q & A
	Stream Classes
	Stream
	FileStream
	FileStream Constructor
	FileStream Examples

	Null Stream
	MemoryStream
	MemoryStream Constructor
	MemoryStream Examples

	NetworkStream
	NetworkStream Constructor
	NetworkStream Example

	CryptoStream
	CryptoStream Constructor
	CryptoStream Encryption Example
	CryptoStream Decryption Example

	BufferedStream
	BufferedStream Constructor
	BufferedStream Example

	Response. OutputStream

	Stream Helper Classes
	BinaryWriter
	BinaryReader
	TextWriter and TextReader
	StreamWriter
	StreamReader
	HttpWebRequest

	File Classes
	File Class
	FileInfo Class
	File Uploading with the File Field Control

	Directory Classes
	Directory Class
	Get All File and Folder Entries
	Get Computer Drive List

	DirectoryInfo Class

	Isolated Storage
	Where Did the Isolated Storage File Go?

	Serialization
	Binary Serialization
	SOAP Serialization
	XML Serialization
	Final Notes on Serialization

	Lab 10.1: Working with File and Directory Objects
	Summary

	Chapter 11 Working with GDI+ and Images
	Classroom Q & A
	Understanding How the Browser Retrieves Images
	Building the Image Engine
	Image
	Bitmap
	Using the Bitmap Class to Resize an Image
	Uploading Images to a Database
	Retrieving Images from the Database
	Retrieving Existing Images from the
	Northwind Database

	GDI+
	GDI+ Helper Data Types
	Point/ PointF
	Rectangle/ RectangleF
	Size/ SizeF
	Color

	Pen
	Brush
	Graphics
	Drawing an Image on the Fly
	Adding Drawing Code
	Fonts
	FontFamilies
	Font Metrics
	Fonts

	Creating a Text Bitmap on the Fly
	Enumerating the Colors
	Enumerating the FontFamilies
	Enumerating the FontStyles
	Loading the Font Sizes
	Rendering the Text

	Lab 11.1: Working with File and Directory Objects
	Summary

	Chapter 12 ASP.NET Applications
	Classroom Q & A
	ASP. NET Applications
	The Global. asax File
	Application_ Start
	Application_ End
	Session_ Start
	Session_ End

	The HttpApplication Class
	The HttpContext Class
	Pipeline Processing of the Request

	The HTTP Handler
	Built- in HTTP Handlers
	Creating an HTTP Handler
	Installing the HTTP Handler

	The HTTP Module
	Creating an HTTP Module
	Installing the HTTP Module

	Maintaining State
	Application State Data
	Session State Data
	Request State Data
	Cache
	Cache Dependency
	Cache Timeout

	Static Variables

	Web Configuration File
	Error Handling
	Page Navigation
	HyperLink and HyperLink Control
	Window. Open
	Response. Redirect
	Server. Transfer
	Object- Oriented Approach
	Panels

	Lab 12.1: Maintaining State
	Summary

	Chapter 13 Site Security
	Classroom Q & A
	Understanding Security Basics
	Authentication
	Authorization
	Impersonation
	Delegation

	Windows Security
	Workgroup Environment
	Domain Environment
	NTFS File System

	Internet Information Server Security
	Authentication Methods
	Anonymous
	Basic
	Digest
	Integrated Windows
	Certificate

	IP Address and Domain Name Restrictions
	Secure Communications
	How SSL Works
	Client Certificates
	Secure Sockets Layer (SSL) Setup

	ASP. NET Security
	ASP. NET Request Processing Account
	ASP. NET Authentication
	Default (IIS)
	Windows
	Passport
	Forms

	Forms Authorization
	Windows Authorization
	Identity and Principal
	Identity
	Principal

	Forms Authentication Example Using Database Access
	Database Setup
	The Project File and Folder Structure
	Web. config Settings
	Login Page Authentication
	Attaching the Roles to the Principal

	Declarative Security Authorization
	Imperative Security
	Imperative Security versus Declarative Security

	Code Access Security Basics
	Evidence
	Code Access Permissions
	Working with Code Access Security
	Code Groups
	Security Policy Levels
	Requested Permissions
	Exception Handling
	Security Policy Administration
	Testing Code Access Security

	Lab 13.1: Adding Forms Authentication
	Summary

	Chapter 14 Performance Tuning and Application Instrumentation
	Classroom Q & A
	Load Testing
	Performance Tuning in a Development Environment
	Identifying Bottlenecks
	Performance and Instrumentation Tools
	Debug
	Assert
	Write, WriteLine
	WriteIf, WriteLineIf
	Fail

	Trace
	Switches
	BooleanSwitch
	TraceSwitch

	Debug Monitor Utility
	TraceListener
	DefaultTraceListener
	TextWriterTraceListener
	EventLogTraceListener

	Web Trace
	Page- Level Trace
	Application- Level Trace
	Using Trace in Components

	Performance Monitor
	Performance Counters

	Application Center Test

	Performance Tips
	String Concatenation
	StringBuilder
	Caching
	Page Caching
	Object Caching
	Graphics Caching

	ViewState
	Database Performance
	Stored Procedures
	Indexes
	Calculated Fields

	Lab 14.1: Using Application Center Test
	Summary

	Chapter 15 Building and Versioning .NET Components
	Classroom Q & A
	Building Reusable Components
	Creating the Class Library Project
	Using the Component
	Setting a Reference to the Component
	Calling the Component
	Locating the Component at Run Time

	Assembly Versioning
	Private Assemblies
	Side- by- Side Versioning
	Strong- Named Assemblies
	Creating a Strong- Named Assembly
	Using Strong- Named Assemblies
	Fusion Log Viewer (FusLogVw. exe)

	Shared Assemblies
	How Does the Assembly Folder Hold Multiple
	Copies of Files That Have the Same Filename?
	How Does the Assembly Folder Hold Multiple
	Copies of Files That Have the Same Filename?
	Assembly- Binding Policies
	Microsoft . NET Framework Configuration Tool
	Publisher Policies

	Probing for Assemblies
	Cross- Language Inheritance
	Getting Assemblies to Show in the . NET Tab
	Getting Assemblies to Show in the . NET
	Tab

	Lab 15.1: Creating a Visual Basic . NET Data Component
	Summary

	Chapter 16 Creating Web Services
	Classroom Q & A
	The Role of Web Services
	Business Scenarios
	Show Me the Money

	Web Service Basics
	Simple Object Access Protocol (SOAP)
	SOAP Message
	SOAP Header
	SOAP Fault

	Web Service Description Language
	Universal Description Discovery Integration
	Discovery with Disco
	Static Discovery
	Dynamic Discovery
	The Disco. exe Utility

	Dynamic Discovery Does Not Work
	Web Service Proxies

	Consuming a Web Service
	Create the Project
	Set a Web Reference
	Executing the Web Server Method
	Adding More Web Service Functionality
	Additional Web Service Settings
	Credentials
	URL
	Proxy (Firewall)
	Timeout

	Executing an Asynchronous Method
	Asynchronous Execution Using a Synchronization Object
	Asynchronous Execution Using a Callback Function

	Building a Visual Studio . NET Web Service
	Create the Project
	Create the TextToImage Class
	Creating the ImageURL Page

	Registering the Web Service with a UDDI Registry
	Create the Technology Model (tModel)
	Add the Service Information
	Understanding the UDDI Menu Hierarchy

	Lab 16.1: Creating a Web Service
	Summary

	Chapter 17 Deployment and Migration
	Classroom Q & A
	Migration
	ASP and ASP. NET Coexistence
	ASP to ASP. NET Changes
	Subprocedures Require Parentheses
	Server- Side Script Blocks
	Set and Let
	Request Object
	Method Arguments
	Single Language per Page
	Option Explicit
	Variables and Strong Typing
	Include Files

	Using COM Components
	AspCompat Switch
	Early Binding versus Late Binding

	Deployment
	XCopy Deployment
	FTP Deployment
	What to Copy
	Copy Project Button

	Web Setup Project
	ASP. NET Registration Utility (aspnet_ regiis. exe)

	Lab 17.1: Deploying the Customer Site
	Summary

	Appendix A About the 60 Minutes Web Site
	System Requirements
	60 Minutes a Day Presentations
	Code and Bonus Content
	Troubleshooting

	Index

