
v

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

M
T W

R
F S S

201 West 103rd Street
Indianapolis, Indiana 46290

Laura Lemay
Charles L. Perkins

Teach Yourself

JAVA
in 21 Days

030-4 FM 1/29/96, 8:10 PM5

Note:
Click anywhere on this page to jump to the Table of Contents.

i

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

W
R

F S

M T W R

About This Book
This book teaches you all about the Java language and how to use it to create
applets and applications. By the time you get through with this book, you’ll know
enough about Java to do just about anything, inside an applet or out.

Who Should Read This Book
This book is intended for people with at least some basic programming back-
ground, which includes people with years of programming experience or people
with only a small amount of experience. If you understand what variables, loops,
and functions are, you’ll be just fine for this book. The sorts of people who might
want to read this book include you, if

■■ You’re a real whiz at HTML, understand CGI programming (in perl,
AppleScript, Visual Basic, or some other popular CGI language) pretty
well, and want to move on to the next level in Web page design.

■■ You had some Basic or Pascal in school and you have a basic grasp of
what programming is, but you’ve heard Java is easy to learn, really
powerful, and very cool.

■■ You’ve programmed C and C++ for many years, you’ve heard this Java
thing is becoming really popular and you’re wondering what all the fuss
is all about.

■■ You’ve heard that Java is really good for Web-based applets, and you’re
curious about how good it is for creating more general applications.

What if you know programming, but you don’t know object-oriented program-
ming? Fear not. This book assumes no background in object-oriented design. If
you know object-oriented programming, in fact, the first couple of days will be
easy for you.

How This Book Is Structured
This book is intended to be read and absorbed over the course of three weeks.
During each week, you’ll read seven chapters that present concepts related to the
Java language and the creation of applets and applications.

030-4 FM 1/29/96, 8:10 PM1

Teach Yourself JAVA in 21 Days
M T W T F S S

21

ii

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

Conventions
Note: A Note box presents interesting pieces of information related to the surround-
ing discussion.

Technical Note: A Technical Note presents specific technical information related to
the surrounding discussion.

Tip: A Tip box offers advice or teaches an easier way to do something.

Caution: A Caution box alerts you to a possible problem and gives you advice to
avoid it.

Warning: A Warning box advises you about potential problems and helps you steer
clear of disaster.

New terms are introduced in New Term boxes, with the term in italics.

A type icon identifies some new HTML code that you can type in yourself.

An Output icon highlights what the same HTML code looks like when viewed by
either Netscape or Mosaic.

An analysis icon alerts you to the author’s line-by-line analysis.

!!

Analysis

Output

Type

NEW
TERM

☛

030-4 FM 1/29/96, 8:10 PM2

Teach Yourself JAVA in 21 Days
M T W T F S S

21

vi

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

To Eric, for all the usual reasons
(moral support, stupid questions, comfort in dark times).

 LL

 For RKJP, ARL, and NMH
the three most important people in my life.

 CLP

Copyright ©1996 by Sams.net
Publishing and its licensors
FIRST EDITION

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein. For
information, address Sams.net Publishing, 201 W. 103rd St., Indianapolis,
IN 46290.

International Standard Book Number: 1-57521-030-4

Library of Congress Catalog Card Number: 95-78866

99 98 97 96 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is
the year of the book’s printing; the rightmost single-digit, the number of
the book’s printing. For example, a printing code of 96-1 shows that the
first printing of the book occurred in 1996.

Composed in AGaramond and MCPdigital by Macmillan Computer
Publishing

Printed in the United States of America

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams.net Publishing
cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service
mark.

President, Sams Publishing: Richard K. Swadley
Publisher, Sams.net Publishing: George Bond

Publishing Manager: Mark Taber
Managing Editor: Cindy Morrow

Marketing Manager: John Pierce

Acquisitions Editor
Mark Taber

Development Editor
Fran Hatton

Software Development
Specialist

Merle Newlon

Production Editor
Nancy Albright

Technical Reviewer
Patrick Chan

Editorial Coordinator
Bill Whitmer

Technical Edit
Coordinator

Lynette Quinn

Formatter
Frank Sinclair

Editorial Assistant
Carol Ackerman

Cover Designer
Tim Amrhein

Book Designer
Alyssa Yesh

Production Team
Supervisor

Brad Chinn

Production
Michael Brumitt
Jason Hand
Cheryl Moore
Ayanna Lacey
Nancy Price
Bobbi Satterfield
Tim Taylor
Susan Van Ness
Mark Walchle
Todd Wente

Indexer
Tim Griffin

030-4 FM 1/29/96, 8:10 PM6

vii

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

M
T W

R
F S S

Overview
Introduction xxi

Week 1 at a Glance
Day 1 An Introduction to Java Programming 3

2 Object-Oriented Programming and Java 19
3 Java Basics 41
4 Working with Objects 61
5 Arrays, Conditionals, and Loops 79
6 Creating Classes and Applications in Java 95
7 More About Methods 111

Week 2 at a Glance
Day 8 Java Applet Basics 129

9 Graphics, Fonts, and Color 149
10 Simple Animation and Threads 173
11 More Animation, Images, and Sound 195
12 Managing Simple Events and Interactivity 217
13 User Interfaces with the Java Abstract Windowing Toolkit 237
14 Windows, Networking, and Other Tidbits 279

Week 3 at a Glance
Day 15 Modifiers 305

16 Packages and Interfaces 323
17 Exceptions 341
18 Multithreading 353
19 Streams 375
20 Native Methods and Libraries 403
21 Under the Hood 421

Appendixes
A Language Summary 473
B The Java Class Library 483
C How Java Differs from C and C++ 497
D How Java Differs from C and C++ 507

Index 511

030-4 FM 1/29/96, 8:11 PM7

ix

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

M
T W

R
F S S

Contents
Introduction xxi

Week 1 at a Glance 1

Day 1 An Introduction to Java Programming 3
What Is Java? .. 4
Java’s Past, Present, and Future ... 6
Why Learn Java? ... 7

Java Is Platform-Independent... 7
Java Is Object-Oriented ... 9
Java Is Easy to Learn .. 9

Getting Started with
Programming in Java .. 10

Getting the Software .. 10
Applets and Applications ... 11
Creating a Java Application .. 11
Creating a Java Applet ... 13

Summary .. 16
Q&A .. 16

Day 2 Object-Oriented Programming and Java 19
Thinking in Objects: An Analogy ... 20
Objects and Classes .. 21
Behavior and Attributes .. 23

Attributes ... 23
Behavior .. 24
Creating a Class ... 24

Inheritance, Interfaces, and Packages .. 28
Inheritance... 29
Creating a Class Hierarchy... 30
How Inheritance Works .. 32
Single and Multiple Inheritance ... 34
Interfaces and Packages .. 34

Creating a Subclass ... 35
Summary .. 38
Q&A .. 39

Day 3 Java Basics 41
Statements and Expressions .. 42
Variables and Data Types ... 43

Declaring Variables .. 43
Notes on Variable Names .. 44

030-4 FM 1/29/96, 8:11 PM9

Teach Yourself JAVA in 21 Days
M T W T F S S

21

x

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

Variable Types ... 45
Assigning Values to Variables ... 46

Comments .. 47
Literals .. 47

Number Literals ... 47
Boolean Literals ... 48
Character Literals ... 48
String Literals .. 49

Expressions and Operators .. 50
Arithmetic ... 50
More About Assignment .. 52
Incrementing and Decrementing ... 52
Comparisons .. 54
Logical Operators .. 55
Bitwise Operators .. 55
Operator Precedence .. 56

String Arithmetic .. 57
Summary .. 58
Q&A .. 60

Day 4 Working with Objects 61
Creating New Objects .. 62

Using new .. 63
What new Does ... 64
A Note on Memory Management .. 64

Accessing and Setting Class and Instance Variables 65
Getting Values ... 65
Changing Values .. 65
Class Variables ... 66

Calling Methods ... 67
Class Methods ... 69

References to Objects ... 70
Casting and Converting Objects and Primitive Types 71

 Casting Primitive Types .. 71
 Casting Objects .. 72
Converting Primitive Types

to Objects and Vice Versa ... 73
Odds and Ends ... 73

Comparing Objects ... 74
Copying Objects .. 75
Determining the Class of an Object ... 76

The Java Class Libraries .. 76
Summary .. 77
Q&A .. 78

030-4 FM 1/29/96, 8:11 PM10

xi

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

Day 5 Arrays, Conditionals, and Loops 79
Arrays ... 80

Declaring Array Variables .. 80
Creating Array Objects .. 81
Accessing Array Elements ... 81
Changing Array Elements .. 82
Multidimensional Arrays.. 83

Block Statements .. 83
if Conditionals .. 83

The Conditional Operator ... 84
switch Conditionals ... 85
for Loops .. 86
while and do Loops ... 88

while Loops .. 88
do...while Loops ... 89

Breaking Out of Loops ... 89
Labeled Loops .. 90

Summary .. 91
Q&A .. 92

Day 6 Creating Classes and Applications in Java 95
Defining Classes ... 96
Creating Instance and Class Variables ... 96

Defining Instance Variables ... 97
Constants ... 97
Class Variables ... 98

Creating Methods ... 99
Defining Methods ... 99
The this Keyword ... 101
Variable Scope and Method Definitions .. 101
Passing Arguments to Methods .. 102
Class Methods ... 104

Creating Java Applications .. 105
Java Applications and Command-Line Arguments 106

Passing Arguments to Java Programs .. 106
Handling Arguments in Your Java Program 106

Summary .. 108
Q&A .. 109

Day 7 More About Methods 111
Creating Methods with the Same Name, Different Arguments 112
Constructor Methods ... 115

Basic Constructors ... 116
Calling Another Constructor ... 117
Overloading Constructors .. 117

030-4 FM 1/29/96, 8:11 PM11

Teach Yourself JAVA in 21 Days
M T W T F S S

21

xii

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

Overriding Methods ... 119
Creating Methods that Override Existing Methods 119
Calling the Original Method ... 121
Overriding Constructors .. 122

Finalizer Methods ... 123
Summary .. 124
Q&A .. 124

Week 2 at a Glance 127

Day 8 Java Applet Basics 129
How Applets and Applications Are Different .. 130
Creating Applets ... 131

Major Applet Activities .. 132
A Simple Applet... 134

Including an Applet on a Web Page .. 136
The <APPLET> Tag.. 136
Testing the Result .. 137
Making Java Applets Available to the Web... 137

More About the <APPLET> Tag .. 138
ALIGN .. 138
HSPACE and VSPACE .. 140
CODE and CODEBASE .. 141

Passing Parameters to Applets ... 141
Summary .. 146
Q&A .. 147

Day 9 Graphics, Fonts, and Color 149
The Graphics Class ... 150

The Graphics Coordinate System .. 151
Drawing and Filling ... 151

Lines .. 152
Rectangles .. 152
Polygons .. 155
Ovals ... 156
Arc ... 157
A Simple Graphics Example... 161
Copying and Clearing .. 163

Text and Fonts ... 163
Creating Font Objects ... 163
Drawing Characters and Strings ... 164
Finding Out Information About a Font ... 166

Color .. 168
Using Color Objects .. 168
Testing and Setting the Current Colors ... 169
A Single Color Example ... 170

Summary .. 171
Q&A .. 171

030-4 FM 1/29/96, 8:11 PM12

xiii

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

Day 10 Simple Animation and Threads 173
Creating Animation in Java .. 174

Painting and Repainting .. 174
Starting and Stopping

an Applet’s Execution .. 175
Putting It Together .. 175

Threads: What They Are
and Why You Need Them ... 177

The Problem with the Digital Clock Applet 178
Writing Applets with Threads .. 179
Fixing The Digital Clock ... 180

Reducing Animation Flicker ... 182
Flicker and How to Avoid It .. 182
How to Override Update ... 183
Solution One: Don’t Clear the Screen ... 183
Solution Two: Redraw

Only What You Have To .. 186
Summary .. 192
Q&A .. 192

Day 11 More Animation, Images, and Sound 195
Retrieving and Using Images .. 196

Getting Images .. 196
Drawing Images ... 198
Modifying Images .. 201

Creating Animation Using Images .. 201
An Example: Neko... 201

Retrieving and Using Sounds .. 209
Sun’s Animator Applet ... 211
More About Flicker: Double-Buffering... 212

Creating Applets with Double-Buffering.. 212
An Example: Checkers Revisited .. 213

Summary .. 214
Q&A .. 215

Day 12 Managing Simple Events and Interactivity 217
Mouse Clicks .. 218

mouseDown and mouseUp... 219
An Example: Spots ... 220

Mouse Movements ... 223
mouseDrag and mouseMove ... 223
mouseEnter and mouseExit .. 223
An Example: Drawing Lines .. 224

Keyboard Events ... 228
The keyDown Method ... 228
Default Keys .. 229

030-4 FM 1/29/96, 8:11 PM13

Teach Yourself JAVA in 21 Days
M T W T F S S

21

xiv

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

An Example: Entering, Displaying, and Moving Characters 229
Testing for Modifier Keys .. 232

The AWT Event Handler ... 233
Summary .. 235
Q&A .. 235

Day 13 The Java Abstract Windowing Toolkit 237
An AWT Overview... 238
The Basic User Interface Components .. 240

Labels .. 241
Buttons .. 242
Checkboxes .. 243
Radio Buttons .. 244
Choice Menus ... 245
Text Fields ... 247

Panels and Layout ... 249
Layout Managers ... 249
Insets ... 254

Handling UI Actions and Events .. 255
Nesting Panels and Components .. 258

Nested Panels .. 258
Events and Nested Panels .. 258

More UI Components .. 259
Text Areas .. 259
Scrolling Lists .. 261
Scrollbars and Sliders ... 262
Canvases .. 265

More UI Events .. 265
A Complete Example:

RGB to HSB Converter ... 266
Create the Applet Layout ... 267
Create the Panel Layout ... 267
Define the Subpanels ... 269
Handle the Actions .. 272
Update the Result .. 272
The Complete Source Code ... 274

Summary .. 277
Q&A .. 277

Day 14 Windows, Networking, and Other Tidbits 279
Windows, Menus, and Dialog Boxes .. 280

Frames ... 280
Menus ... 282
Dialog Boxes .. 285
File Dialogs .. 287
Window Events ... 288
Using AWT Windows in Stand-Alone Applications 288

030-4 FM 1/29/96, 8:11 PM14

xv

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

Networking in Java ... 289
Creating Links Inside Applets .. 290
Opening Web Connections ... 292
openStream() .. 293
The URLconnection Class ... 296
Sockets ... 296

Other Applet Hints .. 297
The showStatus Method ... 297
Applet Information .. 298
Communicating Between Applets .. 298

Summary .. 299
Q&A .. 300

Week 3 at a Glance 303

Day 15 Modifiers 305
Method and Variable Access Control .. 307

The Four P’s of Protection ... 307
The Conventions for Instance Variable Access 312

Class Variables and Methods .. 314
The final Modifier .. 316

final Classes ... 316
final Variables .. 317
final Methods .. 317

abstract Methods and Classes .. 319
Summary .. 320
Q&A .. 320

Day 16 Packages and Interfaces 323
Packages ... 324

Programming in the Large ... 324
Programming in the Small ... 327
Hiding Classes ... 329

Interfaces .. 331
Programming in the Large ... 331
Programming in the Small ... 335

Summary .. 338
Q&A .. 339

Day 17 Exceptions 341
Programming in the Large .. 342
Programming in the Small .. 345
The Limitations Placed on the Programmer ... 348
The finally Clause ... 349
Summary .. 350
Q&A .. 351

030-4 FM 1/29/96, 8:11 PM15

Teach Yourself JAVA in 21 Days
M T W T F S S

21

xvi

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

Day 18 Multithreading 353
The Problem with Parallelism ... 354
Thinking Multithreaded ... 355

Points About Points ... 357
Protecting a Class Variable ... 360

Creating and Using Threads ... 361
The Runnable Interface .. 362
ThreadTester .. 363
NamedThreadTester ... 365

Knowing When a Thread has Stopped ... 366
Thread Scheduling ... 367

Preemptive Versus Nonpreemptive .. 367
Testing Your Scheduler .. 368

Summary .. 371
Q&A .. 372

Day 19 Streams 375
Input Streams ... 377

The abstract Class InputStream ... 377
ByteArrayInputStream ... 381
FileInputStream .. 382
FilterInputStream ... 383
PipedInputStream ... 389
SequenceInputStream .. 389
StringBufferInputStream ... 390

Output Streams .. 391
The abstract Class OutputStream .. 391
ByteArrayOutputStream .. 392
FileOutputStream ... 393
FilterOutputStream... 394
PipedOutputStream .. 399

Related Classes ... 399
Summary .. 399
Q&A .. 400

Day 20 Native Methods and Libraries 403
Disadvantages of native Methods .. 404
The Illusion of Required Efficiency .. 405

Built-In Optimizations .. 407
Simple Optimization Tricks... 407

Writing native Methods .. 408
The Example Class .. 409
Generating Header and Stub Files ... 410
Creating SimpleFileNative.c .. 414

030-4 FM 1/29/96, 8:11 PM16

xvii

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

A Native Library ... 417
Linking It All ... 418
Using Your Library .. 418

Summary .. 418
Q&A .. 419

Day 21 Under the Hood 421
The Big Picture .. 422

Why It’s a Powerful Vision .. 423
The Java Virtual Machine ... 423

An Overview .. 424
The Fundamental Parts .. 426
The Constant Pool .. 430
Limitations .. 430

Bytecodes in More Detail ... 431
The Bytecode Interpreter ... 431
The “Just-in-Time” Compiler .. 432
The java2c Translator .. 433
The Bytecodes Themselves .. 434
The _quick Bytecodes .. 450

The .class File Format ... 452
Method Signatures ... 454
The Garbage Collector ... 455

The Problem .. 455
The Solution .. 456
Java’s Parallel Garbage Collector .. 459

The Security Story .. 459
Why You Should Worry .. 459
Why You Might Not Have To .. 460
Java’s Security Model ... 460

Summary .. 470
Q&A .. 470

A Language Summary 473
Reserved Words .. 474
Comments .. 475
Literals .. 475
Variable Declaration ... 476
Variable Assignment ... 476
Operators ... 477
Objects ... 478
Arrays ... 478
Loops and Conditionals .. 478
Class Definitions .. 479
Method and Constructor Definitions ... 479
Packages, Interfaces, and Importing .. 480
Exceptions and Guarding ... 481

030-4 FM 1/29/96, 8:12 PM17

Teach Yourself JAVA in 21 Days
M T W T F S S

21

xviii

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

B Class Hierarchy Diagrams 483
About These Diagrams ... 495

C The Java Class Library 497
java.lang ... 498

Interfaces ... 498
Classes ... 498

java.util .. 499
Interfaces ... 499
Classes ... 499

java.io ... 500
Interfaces ... 500
Classes ... 500

java.net ... 501
Interfaces ... 501
Classes ... 502

java.awt .. 502
Interfaces ... 502
Classes ... 502

java.awt.image .. 504
Interfaces ... 504
Classes ... 504

java.awt.peer ... 505
java.applet ... 505

Interfaces ... 505
Classes ... 505

D How Java Differs from C and C++ 507
Pointers .. 508
Arrays ... 508
Strings .. 508
Memory Management .. 509
Data Types ... 509
Operators ... 509
Control Flow .. 510
Arguments .. 510
Other Differences ... 510

Index 511

030-4 FM 1/29/96, 8:12 PM18

xix

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

Acknowledgments
From Laura Lemay:

To Sun’s Java team, for all their hard work on Java the language and on the browser, and
particularly to Jim Graham, who demonstrated Java and HotJava to me on very short notice in
May and planted the idea for this book.

To everyone who bought my previous books, and liked them. Buy this one too.

From Charles L. Perkins:

To Patrick Naughton, who first showed me the power and the promise of OAK (Java) in early
1993.

To Mark Taber, who shepherded this lost sheep through his first book.

030-4 FM 1/29/96, 8:12 PM19

Teach Yourself JAVA in 21 Days
M T W T F S S

21

xx

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

About the Authors
Laura Lemay is a technical writer and a nerd. After spending six years writing software
documentation for various computer companies in Silicon Valley, she decided writing books
would be much more fun (but has still not yet made up her mind). In her spare time she collects
computers, e-mail addresses, interesting hair colors, and nonrunning motorcycles. She is also the
perpetrator of Teach Yourself Web Publishing with HTML in 14 Days.

You can reach her by e-mail at lemay@lne.com, or visit her home page at http://www.lne.com/
lemay/.

Charles L. Perkins is the founder of Virtual Rendezvous, a company building what it spent two
years designing: a software layer above Java that will foster socially focused, computer-mediated,
real-time filtered interactions between people’s personas in the virtual environments of the near
future. In previous lives, he has evangelized NeXTSTEP, Smalltalk, and UNIX, and has degrees
in both physics and computer science. Before attempting this book, he was an amateur
columnist and author. He’s done research in speech recognition, neural nets, gestural user
interfaces, computer graphics, and language theory, but had the most fun working at Thinking
Machines and Xerox PARC’s Smalltalk group. In his spare time, he reads textbooks for fun.

You can reach him via e-mail at virtual@rendezvous.com, or visit his Java page at http://
rendezvous.com/java.

030-4 FM 1/29/96, 8:12 PM20

xxi

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

Introduction
The World Wide Web, for much of its existence, has been a method for distributing passive
information to a widely distributed number of people. The Web has, indeed, been exceptionally
good for that purpose. With the addition of forms and image maps, Web pages began to become
interactive—but the interaction was often simply a new way to get at the same information. The
limitations of Web distribution were all too apparent once designers began to try to stretch the
boundaries of what the Web can do. Even other innovations, such as Netscape’s server push to
create dynamic animations, were merely clever tricks layered on top of a framework that wasn’t
built to support much other than static documents with images and text.

Enter Java, and the capability for Web pages of containing Java applets. Applets are small
programs that create animations, multimedia presentations, real-time (video) games, multi-user
networked games, and real interactivity—in fact, most anything a small program can do, Java
applets can. Downloaded over the net and executed inside a Web page by a browser that supports
Java, applets are an enormous step beyond standard Web design.

The disadvantage of Java is that to create Java applets right now, you need to write them in the
Java language. Java is a programming language, and as such, creating Java applets is more
difficult than creating a Web page or a form using HTML. Soon there will be tools and programs
that will make creating Java applets easier—they may be available by the time you read this. For
now, however, the only way to delve into Java is to learn the language and start playing with the
raw Java code. Even when the tools come out, you may want to do more with Java than the tools
can provide, and you’re back to learning the language.

That’s where Teach Yourself Java in 21 Days comes in. This book teaches you all about the Java
language and how to use it to create not only applets, but also applications, which are more
general Java programs that don’t need to run inside a Web browser. By the time you get through
with this book, you’ll know enough about Java to do just about anything, inside an applet or
out.

Who Should Read This Book
Teach Yourself Java in 21 Days is intended for people with at least some basic programming
background—which includes people with years of programming experience and people with
only a small amount of experience. If you understand what variables, loops, and functions are,
you’ll be just fine for this book. The sorts of people who might want to read this book include
you, if one or more of the following is true:

■■ You’re a real whiz at HTML, understand CGI programming (in perl, AppleScript,
Visual Basic, or some other popular CGI language) pretty well, and want to move
onto the next level in Web page design.

030-4 FM 1/29/96, 8:12 PM21

Teach Yourself JAVA in 21 Days
M T W T F S S

21

xxii

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

■■ You had some Basic or Pascal in school, you’ve got a basic grasp of what programming
is, but you’ve heard Java is easy to learn, really powerful, and very cool.

■■ You’ve programmed C and C++ for many years, you’ve heard this Java thing is
becoming really popular, and you’re wondering what all the fuss is all about.

■■ You’ve heard that Java is really good for Web-based applets, and you’re curious about
how good it is for creating more general applications.

What if you know programming, but you don’t know object-oriented programming? Fear not.
Teach Yourself Java in 21 Days assumes no background in object-oriented design. If you know
object-oriented programming, the first couple of days will be easy for you.

What if you’re a rank beginner? This book might move a little fast for you. Java is a good language
to start with, though, and if you take it slow and work through all the examples, you may still
be able to pick up Java and start creating your own applets.

How This Book Is Organized
Teach Yourself Java in 21 Days describes Java primarily in its current state—what’s known as the
beta API (Application Programming Interface). This is the version of Java that Netscape and
other browsers, such as Spyglass’s Mosaic, support. A previous version of Java, the alpha API,
was significantly different from the version described in this book, and the two versions are not
compatible with each other. There are other books that describe only the alpha API, and there
may still be programs and browsers out there that can only run using alpha Java programs.

Teach Yourself Java in 21 Days uses primarily Java beta because that is the version that is most
current and is the version that will continue to be used in the future. The alpha API is obsolete
and will eventually die out. If you learn Java using beta API, you’ll be much better prepared for
any future changes (which will be minor) than if you have to worry about both APIs at once.

Java is still in development. “Beta” means that Java is not complete and that things may change
between the time this book is being written and the time you read this. Keep this in mind as you
work with Java and with the software you’ll use to create and compile programs. If things aren’t
behaving the way you expect, check the Web sites mentioned at the end of this introduction for
more information.

Teach Yourself Java in 21 Days covers the Java language and its class libraries in 21 days, organized
as three separate weeks. Each week covers a different broad area of developing Java applets and
applications.

In the first week, you’ll learn about the Java language itself:

■■ Day 1 is the basic introduction: what Java is, why it’s cool, and how to get the
software. You’ll also create your first Java applications and applets.

030-4 FM 1/29/96, 8:12 PM22

xxiii

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

■■ On Day 2, you’ll explore basic object-oriented programming concepts as they apply to
Java.

■■ On Day 3, you start getting down to details with the basic Java building blocks: data
types, variables, and expressions such as arithmetic and comparisons.

■■ Day 4 goes into detail about how to deal with objects in Java: how to create them,
how to access their variables and call their methods, and how to compare and copy
them. You’ll also get your first glance at the Java class libraries.

■■ On Day 5, you’ll learn more about Java with arrays, conditional statements. and
loops.

■■ Day 6 is the best one yet. You’ll learn how to create classes, the basic building blocks
of any Java program, as well as how to put together a Java application (an application
being a Java program that can run on its own without a Web browser).

■■ Day 7 builds on what you learned on Day 6. On Day 7, you’ll learn more about how
to create and use methods, including overriding and overloading methods and
creating constructors.

Week 2 is dedicated to applets and the Java class libraries:

■■ Day 8 provides the basics of applets—how they’re different from applications, how to
create them, and the most important parts of an applet’s life cycle. You’ll also learn
how to create HTML pages that contain Java applets.

■■ On Day 9, you’ll learn about the Java classes for drawing shapes and characters to the
screen—in black, white, or any other color.

■■ On Day 10, you’ll start animating those shapes you learned about on Day 9, includ-
ing learning what threads and their uses are.

■■ Day 11 covers more detail about animation, adding bitmap images and audio to the
soup.

■■ Day 12 delves into interactivity—handling mouse and keyboard clicks from the user
in your Java applets.

■■ Day 13 is ambitious; on that day you’ll learn about using Java’s Abstract Windowing
Toolkit to create a user interface in your applet including menus, buttons, checkboxes,
and other elements.

■■ On Day 14, you explore the last of the main Java class libraries for creating applets:
windows and dialogs, networking, and a few other tidbits.

Week 3 finishes up with advanced topics, for when you start doing larger and more complex Java
programs, or when you want to learn more:

■■ On Day 15, you’ll learn more about the Java language’s modifiers—for abstract and
final methods and classes as well as for protecting a class’s private information from
the prying eyes of other classes.

030-4 FM 1/29/96, 8:12 PM23

Teach Yourself JAVA in 21 Days
M T W T F S S

21

xxiv

P2/V4SQC6 TY Java in 21 Days 030-4 louisa 12.31.95 FM LP#4

■■ Day 16 covers interfaces and packages, useful for abstracting protocols of methods to
aid reuse and for the grouping and categorization of classes.

■■ Day 17 covers exceptions: errors and warnings and other abnormal conditions,
generated either by the system or by you in your programs.

■■ Day 18 builds on the thread basics you learned on Day 10 to give a broad overview of
multithreading and how to use it to allow different parts of your Java programs to run
in parallel.

■■ On Day 19, you’ll learn all about the input and output streams in Java’s I/O library.

■■ Day 20 teaches you about native code—how to link C code into your Java programs
to provide missing functionality or to gain performance.

■■ Finally, on Day 21, you’ll get an overview of some of the “behind-the-scenes” techni-
cal details of how Java works: the bytecode compiler and interpreter, the techniques
Java uses to ensure the integrity and security of your programs, and the Java garbage
collector.

Conventions Used in This Book
Text that you type and text that should appear on your screen is presented in monospace type:

It will look like this.

to mimic the way text looks on your screen. Variables and placeholders will appear in monospace
italic.

The end of each chapter offers common questions asked about that day’s subject matter with
answers from the authors.

Web Sites for Further Information
Before, while, and after you read this book, there are two Web sites that may be of interest to
you as a Java developer.

The official Java web site is at http://java.sun.com/. At this site, you’ll find the Java
development software, the HotJava web browser, and online documentation for all aspects of
the Java language. It has several mirror sites that it lists online, and you should probably use the
site “closest” to you on the Internet for your downloading and Java Web browsing. There is also
a site for developer resources, called Gamelan, at http://www.gamelan.com/.

This book also has a companion Web site at http://www.lne.com/Web/Java/. Information at
that site includes examples, more information and background for this book, corrections to this
book, and other tidbits that were not included here.

030-4 FM 1/29/96, 8:12 PM24

1

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc8 TY Java in 21 Days 030-4 Everly 12.11.95 AAG1 LP#2

M
T W

R
F S S

■■ An Introduction to Java Programming

Platform independence

The Java compiler and the java interpreter

■■ Object-Oriented Programming and Java

Objects and classes

Encapsulation

Modularity

■■ Java Basics

Java statements and expressions

Variables and data types

Comparisons and logical operators

■■ Working with Objects

Testing and modifying instance variables

Converting objects

■■ Arrays, Conditionals, and Loops

Conditional tests

Iteration

Block statements

WEEK

AT
 A

 G
LA

N
C

E

2

3

4

5

6

7

11

030-4s AAG 01 1/29/96, 8:13 PM1

2

Week 1 at a Glance
M

T W
R

F S S

WEEKWEEK

1

P2/V4/sqc8 TY Java in 21 Days 030-4 Everly 12.11.95 AAG1 LP#2

■■ Creating Classes and Applications in Java

Defining constants, instance and class
variables, and methods

■■ More About Methods

Overloading methods

Constructor methods

Overriding methods

030-4s AAG 01 1/29/96, 8:13 PM2

3

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

M
T W

R
F S S

An Introduction to
Java Programming

by Laura Lemay

WEEK

1

11

030-4s CH01.i 1/29/96, 8:34 PM3

4

An Introduction to Java Programming
M

T W
R

F S S

DAYDAY

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

Hello and welcome to Teach Yourself Java in 21 Days! Starting today and for the next three weeks
you’ll learn all about the Java language and how to use it to create applets, as well as how to create
stand-alone Java applications that you can use for just about anything.

An applet is a dynamic and interactive program that can run inside a Web page displayed
by a Java-capable browser such as HotJava or Netscape 2.0.

The HotJava browser is a World Wide Web browser used to view Web pages, follow links, and
submit forms. It can also download and play applets on the reader’s system.

That’s the overall goal for the next three weeks. Today, the goals are somewhat more modest,
and you’ll learn about the following:

■■ What exactly Java and HotJava are, and their current status

■■ Why you should learn Java—its various features and advantages over other program-
ming languages

■■ Getting started programming in Java—what you’ll need in terms of software and
background, as well as some basic terminology

■■ How to create your first Java programs—to close this day, you’ll create both a simple
Java application and a simple Java applet!

What Is Java?
Java is an object-oriented programming language developed by Sun Microsystems, a company
best known for its high-end Unix workstations. Modeled after C++, the Java language was
designed to be small, simple, and portable across platforms and operating systems, both at the
source and at the binary level (more about this later).

Java is often mentioned in the same breath as HotJava, a World Wide Web browser from Sun
like Netscape or Mosaic (see Figure 1.1). What makes HotJava different from most other
browsers is that, in addition to all its basic Web features, it can also download and play applets
on the reader’s system. Applets appear in a Web page much in the same way as images do, but
unlike images, applets are dynamic and interactive. Applets can be used to create animations,
figures, or areas that can respond to input from the reader, games, or other interactive effects on
the same Web pages among the text and graphics.

Although HotJava was the first World Wide Web browser to be able to play Java applets, Java
support is rapidly becoming available in other browsers. Netscape 2.0 provides support for Java
applets, and other browser developers have also announced support for Java in forthcoming
products.

NEW
TERM

☛

030-4s CH01.i 1/29/96, 8:34 PM4

5

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

To create an applet, you write it in the Java language, compile it using a Java compiler, and refer
to that applet in your HTML Web pages. You put the resulting HTML and Java files on a Web
site much in the same way that you make ordinary HTML and image files available. Then, when
someone using the HotJava browser (or other Java-aware browser) views your page with the
embedded applet, that browser downloads the applet to the local system and executes it, and
then the reader can view and interact with your applet in all its glory (readers using other
browsers won’t see anything). You’ll learn more about how applets, browsers, and the World
Wide Web work together further on in this book.

The important thing to understand about Java is that you can do so much more with it besides
create applets. Java was written as a full-fledged programming language in which you can
accomplish the same sorts of tasks and solve the same sorts of problems that you can in other
programming languages, such as C or C++. HotJava itself, including all the networking, display,
and user interface elements, is written in Java.

Figure 1.1.
The HotJava browser.

030-4s CH01.i 1/29/96, 8:35 PM5

6

An Introduction to Java Programming
M

T W
R

F S S

DAYDAY

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

Java’s Past, Present, and Future
The Java language was developed at Sun Microsystems in 1991 as part of a research project to
develop software for consumer electronics devices—television sets, VCRs, toasters, and the
other sorts of machines you can buy at any department store. Java’s goals at that time were to
be small, fast, efficient, and easily portable to a wide range of hardware devices. It is those same
goals that made Java an ideal language for distributing executable programs via the World Wide
Web, and also a general-purpose programming language for developing programs that are easily
usable and portable across different platforms.

The Java language was used in several projects within Sun, but did not get very much commercial
attention until it was paired with HotJava. HotJava was written in 1994 in a matter of months,
both as a vehicle for downloading and running applets and also as an example of the sort of
complex application that can be written in Java.

At the time this book is being written, Sun has released the beta version of the Java Developer’s
Kit (JDK), which includes tools for developing Java applets and applications on Sun systems
running Solaris 2.3 or higher for Windows NT and for Windows 95. By the time you read this,
support for Java development may have appeared on other platforms, either from Sun or from
third-party companies.

Note that because the JDK is currently in beta, it is still subject to change between now and when
it is officially released. Applets and applications you write using the JDK and using the examples
in this book may require some changes to work with future versions of the JDK. However,
because the Java language has been around for several years and has been used for several projects,
the language itself is quite stable and robust and most likely will not change excessively. Keep
this beta status in mind as you read through this book and as you develop your own Java
programs.

Support for playing Java programs is a little more confusing at the moment. Sun’s HotJava is
not currently included with the Beta JDK; the only available version of HotJava is an older alpha
version, and, tragically, applets written for the alpha version of Java do not work with the beta
JDK, and vice versa. By the time you read this, Sun may have released a newer version of HotJava
which will enable you to view applets.

The JDK does include an application called appletviewer that allows you to test your Java applets
as you write them. If an applet works in the appletviewer, it should work with any Java-capable
browser. You’ll learn more about applet viewer later today.

What’s in store for the future? In addition to the final Java release from Sun, other companies
have announced support for Java in their own World Wide Web browsers. Netscape Commu-
nications Corporation has already incorporated Java capabilities into the 2.0 version of their very
popular Netscape Navigator Web browser—pages with embedded Java applets can be viewed
and played with Netscape. With support for Java available in as popular a browser as Netscape,

030-4s CH01.i 1/29/96, 8:35 PM6

7

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

tools to help develop Java applications (debuggers, development environments, and so on) most
likely will be rapidly available as well.

Why Learn Java?
At the moment, probably the most compelling reason to learn Java—and probably the reason
you bought this book—is that HotJava applets are written in Java. Even if that were not the case,
Java as a language has significant advantages over other languages and other programming
environments that make it suitable for just about any programming task. This section describes
some of those advantages.

Java Is Platform-Independent
Platform independence is one of the most significant advantages that Java has over other
programming languages, particularly for systems that need to work on many different platforms.
Java is platform-independent at both the source and the binary level.

Platform-independence is a program’s capability of moving easily from one computer
system to another.

At the source level, Java’s primitive data types have consistent sizes across all development
platforms. Java’s foundation class libraries make it easy to write code that can be moved from
platform to platform without the need to rewrite it to work with that platform.

Platform-independence doesn’t stop at the source level, however. Java binary files are also
platform-independent and can run on multiple problems without the need to recompile the
source. How does this work? Java binary files are actually in a form called bytecodes.

Bytecodes are a set of instructions that looks a lot like some machine codes, but that is not
specific to any one processor.

Normally, when you compile a program written in C or in most other languages, the compiler
translates your program into machine codes or processor instructions. Those instructions are
specific to the processor your computer is running—so, for example, if you compile your code
on a Pentium system, the resulting program will run only on other Pentium systems. If you want
to use the same program on another system, you have to go back to your original source, get a
compiler for that system, and recompile your code. Figure 1.2 shows the result of this system:
multiple executable programs for multiple systems.

Things are different when you write code in Java. The Java development environment has two
parts: a Java compiler and a Java interpreter. The Java compiler takes your Java program and
instead of generating machine codes from your source files, it generates bytecodes.

NEW
TERM

☛

NEW
TERM

☛

030-4s CH01.i 1/29/96, 8:35 PM7

8

An Introduction to Java Programming
M

T W
R

F S S

DAYDAY

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

To run a Java program, you run a program called a bytecode interpreter, which in turn executes
your Java program (see Figure 1.3). You can either run the interpreter by itself, or—for applets—
there is a bytecode interpreter built into HotJava and other Java-capable browsers that runs the
applet for you.

Figure 1.2.
Traditional compiled
programs.

Your Code
Compiler (Pentium)

Binary File

(Pentium)

Binary File

(PowerPC)

Binary File

(SPARC)

Compiler (PowerPC)

Compiler (SPARC)

Figure 1.3.
Java programs.

Java Code Java Compiler

(Pentium)

Java Bytecode

(Platform-

Independent)

Java Compiler

(PowerPC)

Java Compiler

(SPARC)

Java Interpreter

(Pentium)

Java Interpreter

(PowerPC)

Java Interpreter

(SPARC)

Window

Window

Window

030-4s CH01.i 1/29/96, 8:35 PM8

9

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

Why go through all the trouble of adding this extra layer of the bytecode interpreter? Having
your Java programs in bytecode form means that instead of being specific to any one system, your
programs can be run on any platform and any operating or window system as long as the Java
interpreter is available. This capability of a single binary file to be executable across platforms
is crucial to what enables applets to work, because the World Wide Web itself is also platform-
independent. Just as HTML files can be read on any platform, so applets can be executed on any
platform that is a Java-capable browser.

The disadvantage of using bytecodes is in execution speed. Because system-specific programs
run directly on the hardware for which they are compiled, they run significantly faster than Java
bytecodes, which must be processed by the interpreter. For many Java programs, the speed may
not be an issue. If you write programs that require more execution speed than the Java interpreter
can provide, you have several solutions available to you, including being able to link native code
into your Java program or using tools to convert your Java bytecodes into native code. Note that
by using any of these solutions, you lose the portability that Java bytecodes provide. You’ll learn
about each of these mechanisms on Day 20.

Java Is Object-Oriented
To some, object-oriented programming (OOP) technique is merely a way of organizing
programs, and it can be accomplished using any language. Working with a real object-oriented
language and programming environment, however, enables you to take full advantage of object-
oriented methodology and its capabilities of creating flexible, modular programs and reusing
code.

Many of Java’s object-oriented concepts are inherited from C++, the language on which it is
based, but it borrows many concepts from other object-oriented languages as well. Like most
object-oriented programming languages, Java includes a set of class libraries that provide basic
data types, system input and output capabilities, and other utility functions. These basic classes
are part of the Java development kit, which also has classes to support networking, common
Internet protocols, and user interface toolkit functions. Because these class libraries are written
in Java, they are portable across platforms as all Java applications are.

You’ll learn more about object-oriented programming and Java tomorrow.

Java Is Easy to Learn
In addition to its portability and object-orientation, one of Java’s initial design goals was to be
small and simple, and therefore easier to write, easier to compile, easier to debug, and, best of
all, easy to learn. Keeping the language small also makes it more robust because there are fewer
chances for programmers to make difficult-to-find mistakes. Despite its size and simple design,
however, Java still has a great deal of power and flexibility.

030-4s CH01.i 1/29/96, 8:35 PM9

10

An Introduction to Java Programming
M

T W
R

F S S

DAYDAY

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

Java is modeled after C and C++, and much of the syntax and object-oriented structure is
borrowed from the latter. If you are familiar with C++, learning Java will be particularly easy for
you, because you have most of the foundation already.

Although Java looks similar to C and C++, most of the more complex parts of those languages
have been excluded from Java, making the language simpler without sacrificing much of its
power. There are no pointers in Java, nor is there pointer arithmetic. Strings and arrays are real
objects in Java. Memory management is automatic. To an experienced programmer, these
omissions may be difficult to get used to, but to beginners or programmers who have worked
in other languages, they make the Java language far easier to learn.

Getting Started with
Programming in Java

Enough background! Let’s finish off this day by creating two real Java programs: a stand-alone
Java application and an applet that you can view in either in the appletviewer (part of the JDK)
or in a Java-capable browser. Although both these programs are extremely simple, they will give
you an idea of what a Java program looks like and how to compile and run it.

Getting the Software
In order to write Java programs, you will, of course, need a Java development environment. At
the time this book is being written, Sun’s Java Development Kit provides everything you need
to start writing Java programs. The JDK is available for Sun SPARC systems running Solaris 2.2
or higher and for Windows NT and Windows 95. You can get the JDK from several places:

■■ The CD-ROM that came with this book contains the full JDK distribution. See the
CD information for installation instructions.

■■ The JDK can be downloaded from Sun’s Java FTP site at ftp://java.sun.com/pub/ or
from a mirror site (ftp://www.blackdown.org/pub/Java/pub/is one).

Note: The Java Development Kit is currently in beta release. By the time you read
this, The JDK may be available for other platforms, or other organizations may be
selling Java development tools as well.

Although Netscape and other Java-aware browsers provide an environment for playing Java
applets, they do not provide a mechanism for developing Java applications. For that, you need
separate tools—merely having a browser is not enough.

030-4s CH01.i 1/29/96, 8:35 PM10

11

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

Applets and Applications
Java applications fall into two main groups: applets and applications.

Applets, as you have learned, are Java programs that are downloaded over the World Wide Web
and executed by a Web browser on the reader’s machine. Applets depend on a Java-capable
browser in order to run (although they can also be viewed using a tool called the appletviewer,
which you’ll learn about later today).

Java applications are more general programs written in the Java language. Java applications don’t
require a browser to run, and in fact, Java can be used to create most other kinds of applications
that you would normally use a more conventional programming language to create. HotJava
itself is a Java application.

A single Java program can be an applet or an application or both, depending on how you write
that program and the capabilities that program uses. Throughout this first week, you’ll be
writing mostly HotJava applications; then you’ll apply what you’ve learned to write applets in
Week 2. If you’re eager to get started with applets, be patient. Everything that you learn while
you’re creating simple Java applications will apply to creating applets, and it’s easier to start with
the basics before moving onto the hard stuff. You’ll be creating plenty of applets in Week 2.

Creating a Java Application
Let’s start by creating a simple Java application: the classic Hello World example that all language
books use to begin.

As with all programming languages, your Java source files are created in a plain text editor, or
in an editor that can save files in plain ASCII without any formatting characters. On Unix,
emacs, ped, or vi will work; on Windows, Notepad or DOS Edit are both text editors.

Fire up your editor of choice, and enter the Java program shown in Listing 1.1. Type this
program, as shown, in your text editor. Be careful that all the parentheses, braces, and quotes
are there.

Listing 1.1. Your first Java application.
1: class HelloWorld {
2: public static void main (String args[]) {
3: System.out.println(“Hello World!”);
4: }
5: }

Type

030-4s CH01.i 1/29/96, 8:35 PM11

12

An Introduction to Java Programming
M

T W
R

F S S

DAYDAY

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

!! Warning: The numbers before each line are part of the listing and not part of the
program; they’re there so I can refer to specific line numbers when I explain what’s
going on in the program. Do not include them in your own file.

This program has two main parts:

■■ All the program is enclosed in a class definition—here, a class called HelloWorld.

■■ The body of the program (here, just the one line) is contained in a routine called
main(). In Java applications, as in a C or C++ program, main() is the first
routine that is run when the program is executed.

You’ll learn more about both these parts of a Java application as the book progresses.

Once you finish typing the program, save the file. Conventionally, Java source files are named
the same name as the class they define, with an extension of .java. This file should therefore be
called HelloWorld.java.

Now, let’s compile the source file using the Java compiler. In Sun’s JDK, the Java compiler is
called javac.

To compile your Java program, Make sure the javac program is in your execution path and type
javac followed by the name of your source file:

javac HelloWorld.java

Note: In these examples, and in all the examples throughout this book, we’ll be
using Sun’s Java compiler, part of the JDK. If you have a third-party development
environment, check with the documentation for that program to see how to
compile your Java programs.

The compiler should compile the file without any errors. If you get errors, go back and make
sure that you’ve typed the program exactly as it appears in Listing 1.1.

When the program compiles without errors, you end up with a file called HelloWorld.class, in
the same directory as your source file. This is your Java bytecode file. You can then run that
bytecode file using the Java interpreter. In the JDK, the Java interpreter is called simply java.
Make sure the java program is in your path and type java followed by the name of the file without
the .class extension:

java HelloWorld

Analysis

030-4s CH01.i 1/29/96, 8:35 PM12

13

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

If your program was typed and compiled correctly, you should get the string “Hello World!”
printed to your screen as a response.

Note: Remember, the Java compiler and the Java interpreter are different things.
You use the Java compiler (javac) for your Java source files to create .class files, and
you use the Java interpreter (java)to actually run your class files.

Creating a Java Applet
Creating applets is different from creating a simple application, because Java applets run and are
displayed inside a Web page with other page elements and as such have special rules for how they
behave. Because of these special rules for applets in many cases (particularly the simple ones),
creating an applet may be more complex than creating an application.

For example, to do a simple Hello World applet, instead of merely being able to print a message,
you have to create an applet to make space for your message and then use graphics operations
to paint the message to the screen.

Note: Actually, if you run the Hello World application as an applet, the Hello
World message prints to a special window or to a log file, depending on how the
browser has screen messages set up. It will not appear on the screen unless you
write your applet to put it there.

In the next example, you create that simple Hello World applet, place it inside a Web page, and
view the result.

First, you set up an environment so that your Java-capable browser can find your HTML files
and your applets. Much of the time, you’ll keep your HTML files and your applet code in the
same directory. Although this isn’t required, it makes it easier to keep track of each element. In
this example, you use a directory called HTML that contains all the files you’ll need.

mkdir HTML

Now, open up that text editor and enter Listing 1.2.

030-4s CH01.i 1/29/96, 8:36 PM13

14

An Introduction to Java Programming
M

T W
R

F
S

S

DAYDAY

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

Listing 1.2. The Hello World applet.
1: import java.awt.Graphics;
2:
3: class HelloWorldApplet extends java.applet.Applet {
4:
5: public void paint(Graphics g) {
6: g.drawString(ÒHello world!Ó, 5, 25);
7: }
8: }

Save that file inside your HTML directory. Just like with Java applications, give your file a name
that has the same name as the class. In this case, the filename would be HelloWorldApplet.java .

Features to note about applets? There are a couple IÕd like to point out:

nn The import line at the top of the file is somewhat analogous to an #include statement
in C; it enables this applet to interact with the JDK classes for creating applets and for
drawing graphics on the screen.

nn The paint() method displays the content of the applet onto the screen. Here, the
string Hello World gets drawn. Applets use several standard methods to take the place
of main() , which include init() to initialize the applet, start() to start it running,
and paint() to display it to the screen. YouÕll learn about all of these in Week 2.

Now, compile the applet just as you did the application, using javac , the Java compiler.

javac HelloWorldApplet.java

Again, just as for applications, you should now have a file called HelloWorldApplet.class in your
HTML directory.

To include an applet in a Web page, you refer to that applet in the HTML code for that Web
page. Here, you create a very simple HTML file in the HTML directory (see Listing 1.3).

Listing 1.3. The HTML with the applet in it.
1: <HTML>
2: <HEAD>
3: <TITLE>Hello to Everyone!</TITLE>
4: </HEAD><BODY>
5: <P>My Java applet says:
6: <APPLET CODE=ÓHelloWorldApplet.classÓ WIDTH=150 HEIGHT=25>
7: </BODY>
8: </HTML>

Type

Type

030-4s CH01.i 1/29/96, 8:36 PM14

15

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

You refer to an applet in your HTML files with the <APPLET> tag. You’ll learn more about
<APPLET> later on, but here are two things to note:

■■ Use the CODE attribute to indicate the name of the class that contains your applet.

■■ Use the WIDTH and HEIGHT attributes to indicate the size of the applet. The browser uses
these values to know how big a chunk of space to leave for the applet on the page.
Here, a box 150 pixels wide and 25 pixels high is created.

Save the HTML file in your HTML directory, with a descriptive name (for example, you might
name your HTML file the same name as your applet—HellowWorldApplet.html).

And now, you’re ready for the final test—actually viewing the result of your applet. To view the
applet, you need one of the following:

■■ A browser that supports Java applets, such as Netscape 2.0.

■■ The appletviewer application, which is part of the JDK. The appletviewer is not a
Web browser and won’t enable you to see the entire Web page, but it’s acceptable for
testing to see how an applet will look and behave if there is nothing else available.

Note: Do not use the alpha version of HotJava to view your applets; applets
developed with the beta JDK and onward cannot be viewed by the alpha HotJava.
If, by the time you read this, there is a more recent version of HotJava, you can use
that one instead.

If you’re using a Java-capable browser such as Netscape to view your applet files, you can use the
Open Local... item under the File menu to navigate to the HTML file containing the applet
(make sure you open the HTML file and not the class file). You don’t need to install anything
on a Web server yet; all this works on your local system.

If you don’t have a Web browser with Java capabilities built into it, you can use the appletviewer
program to view your Java applet. To run appletviewer, just indicate the path to the HTML file
on the command line:

appletviewer HTML/HelloWorldApplet.html

Tip: Although you can start appletviewer from the same directory as your HTML
and class files, you may not be able to reload that applet without quitting
appletviewer first. If you start appletviewer from some other directory (as in the
previous command line), you can modify and recompile your Java applets and then
just use the Reload menu item to view the newer version.

Analysis

030-4s CH01.i 1/29/96, 8:36 PM15

16

An Introduction to Java Programming
M

T W
R

F S S

DAYDAY

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

Now, if you use the browser to view the applet, you see something similar to the image shown
in Figure 1.4. If you’re using appletviewer, you won’t see the text around the applet (My Java
applet says...), but you will see the Hello World itself.

Figure 1.4.
The Hello World applet.

Summary
Today, you got a basic introduction to the Java language and its goals and features. Java is a
programming language, similar to C or C++, in which you can develop a wide range of programs.
The most common use of Java at the moment is in creating applets for HotJava, an advanced
World Wide Web browser also written in Java. Applets are Java programs that are downloaded
and run as part of a Web page. Applets can create animations, games, interactive programs, and
other multimedia effects on Web pages.

Java’s strengths lie in its portability—both at the source and at the binary level, in its object-
oriented design—and in its simplicity. Each of these features help make applets possible, but
they also make Java an excellent language for writing more general-purpose programs that do
not require HotJava or other Java-capable browser to run. These general-purpose Java programs
are called applications. HotJava itself is a Java application.

To end this day, you experimented with an example applet and an example application, getting
a feel for the differences between the two and how to create, compile, and run Java programs—
or, in the case of applets, how to include them in Web pages. From here, you now have the
foundation to create more complex applications and applets.

Q&A
Q I’d like to use HotJava as my regular Web browser. You haven’t mentioned much

about HotJava today.

A The focus of this book is primarily on programming in Java and in the HotJava
classes, rather than on using HotJava itself. Documentation for using the HotJava
browser comes with the HotJava package.

Q I know a lot about HTML, but not much about computer programming. Can I
still write Java programs?

030-4s CH01.i 1/29/96, 8:36 PM16

17

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P2/V4sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch01 LP#4

A If you have no programming experience whatsoever, you most likely will find pro-
gramming Java significantly more difficult. However, Java is an excellent language to
learn programming with, and if you patiently work through the examples and the
exercises in this book, you should be able to learn enough to get started with Java.

Q According to today’s lesson, Java applets are downloaded via HotJava and run on
the reader’s system. Isn’t that an enormous security hole? What stops someone
from writing an applet that compromises the security of my system—or worse,
that damages my system?

A Sun’s Java team has thought a great deal about the security of applets within Java-
capable browsers and has implemented several checks to make sure applets cannot do
nasty things:

■■ Java applets cannot read or write to the disk on the local system.

■■ Java applets cannot execute any programs on the local system.

■■ Java applets cannot connect to any machines on the Web except for the server
from which they are originally downloaded.

In addition, the Java compiler and interpreter check both the Java source code and the
Java bytecodes to make sure that the Java programmer has not tried any sneaky tricks
(for example, overrunning buffers or stack frames).

These checks obviously cannot stop every potential security hole, but they can
significantly reduce the potential for hostile applets. You’ll learn more about security
issues later on in this book.

Q I followed all the directions you gave for creating a Java applet. I loaded it into
HotJava, but Hello World didn’t show up. What did I do wrong?

A I’ll bet you’re using the alpha version of HotJava to view the applet. Unfortunately,
between alpha and beta, significant changes were made as to how applets are written.
The result is that you can’t view beta applets (as this one was) in the alpha version of
HotJava, nor can you view alpha applets in browsers that expect beta applets. To view
the applet, either use a different browser, or use the appletviewer application that
comes with the JDK.

030-4s CH01.i 1/29/96, 8:36 PM17

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

M
T W

R
F S S

Object-Oriented
Programming
and Java

by Laura Lemay

WEEK

1

22

030-4S CH02.i 1/29/96, 8:37 PM19

20

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

Object-oriented programming (OOP) is one of the bigger programming buzzwords of recent
years, and you can spend years learning all about object-oriented programming methodologies
and how they can make your life easier than The Old Way of programming. It all comes down
to organizing your programs in ways that echo how things are put together in the real world.

Today, you’ll get an overview of object-oriented programming concepts in Java and how they
relate to how you structure your own programs:

■■ What classes and objects are, and how they relate to each other

■■ The two main parts of a class or object: its behaviors and its attributes

■■ Class inheritance and how inheritance affects the way you design your programs

■■ Some information about packages and interfaces

If you’re already familiar with object-oriented programming, much of today’s lesson will be old
hat to you. You may want to skim it and go to a movie today instead. Tomorrow, you’ll get into
more specific details.

Thinking in Objects: An Analogy
Consider, if you will, Legos. Legos, for those who do not spend much time with children, are
small plastic building blocks in various colors and sizes. They have small round bits on one side
that fit into small round holes on other Legos so that they fit together snugly to create larger
shapes. With different Lego bits (Lego wheels, Lego engines, Lego hinges, Lego pulleys), you can
put together castles, automobiles, giant robots that swallow cities, or just about anything else you
can create. Each Lego bit is a small object that fits together with other small objects in predefined
ways to create other larger objects.

Here’s another example. You can walk into a computer store and, with a little background and
often some help, assemble an entire PC computer system from various components: a
motherboard, a CPU chip, a video card, a hard disk, a keyboard, and so on. Ideally, when you
finish assembling all the various self-contained units, you have a system in which all the units
work together to create a larger system with which you can solve the problems you bought the
computer for in the first place.

Internally, each of those components may be vastly complicated and engineered by different
companies with different methods of design. But you don’t need to know how the component
works, what every chip on the board does, or how, when you press the A key, an “A” gets sent
to your computer. As the assembler of the overall system, each component you use is a self-
contained unit, and all you are interested in is how the units interact with each other. Will this
video card fit into the slots on the motherboard and will this monitor work with this video card?
Will each particular component speak the right commands to the other components it interacts
with so that each part of the computer is understood by every other part? Once you know what

030-4S CH02.i 1/29/96, 8:37 PM20

21

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

the interactions are between the components and can match the interactions, putting together
the overall system is easy.

What does this have to do with programming? Everything. Object-oriented programming
works in exactly this same way. Using object-oriented programming, your overall program is
made up of lots of different self-contained components (objects), each of which has a specific
role in the program and all of which can talk to each other in predefined ways.

Objects and Classes
Object-oriented programming is modeled on how, in the real world, objects are often made up
of many kinds of smaller objects. This capability of combining objects, however, is only one very
general aspect of object-oriented programming. Object-oriented programming provides several
other concepts and features to make creating and using objects easier and more flexible, and the
most important of these features is that of classes.

A class is a template for multiple objects with similar features. Classes embody all the
features of a particular set of objects.

When you write a program in an object-oriented language, you don’t define actual objects. You
define classes of objects.

For example, you might have a Tree class that describes the features of all trees (has leaves and
roots, grows, creates chlorophyll). The Tree class serves as an abstract model for the concept of
a tree—to reach out and grab, or interact with, or cut down a tree you have to have a concrete
instance of that tree. Of course, once you have a tree class, you can create lots of different
instances of that tree, and each different tree instance can have different features (short, tall,
bushy, drops leaves in Autumn), while still behaving like and being immediately recognizable
as a tree (see Figure 2.1).

An instance of a class is another word for an actual object. If classes are an abstract
representation of an object, an instance is its concrete representation.

So what, precisely, is the difference between an instance and an object? Nothing, really. Object
is the more general term, but both instances and objects are the concrete representation of a class.
In fact, the terms instance and object are often used interchangeably in OOP language. An
instance of a tree and a tree object are both the same thing.

In an example closer to the sort of things you might want to do in Java programming, you might
create a class for the user interface element called a button. The Button class defines the features
of a button (its label, its size, its appearance) and how it behaves (does it need a single click or
a double click to activate it, does it change color when it’s clicked, what does it do when it’s
activated?). Once you define the Button class, you can then easily create instances of that
button—that is, button objects—that all take on the basic features of the button as defined by

NEW
TERM

☛

NEW
TERM

☛

030-4S CH02.i 1/29/96, 8:37 PM21

22

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

the class, but may have different appearances and behavior based on what you want that
particular button to do. By creating a Button class, you don’t have to keep rewriting the code
for each individual button you want to use in your program, and you can reuse the Button class
to create different kinds of buttons as you need them in this program and in other programs.

Figure 2.1.
The tree class and
tree instances.

Tree

Tree Class

(Abstract)

Tree

Tree

Tree

Tip: If you’re used to programming in C, you can think of a class as sort of
creating a new composite data type by using struct and typedef. Classes, how-
ever, can provide much more than just a collection of data, as you’ll discover in the
rest of today’s lesson.

When you write a Java program, you design and construct a set of classes. Then, when your
program runs, instances of those classes are created and discarded as needed. Your task, as a Java
programmer, is to create the right set of classes to accomplish what your program needs to
accomplish.

030-4S CH02.i 1/29/96, 8:37 PM22

23

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

Fortunately, you don’t have to start from the very beginning: the Java environment comes with
a library of classes that implement a lot of the basic behavior you need—not only for basic
programming tasks (classes to provide basic math functions, arrays, strings, and so on), but also
for graphics and networking behavior. In many cases, the Java class libraries may be enough so
that all you have to do in your Java program is create a single class that uses the standard class
libraries. For complicated Java programs, you may have to create a whole set of classes with
defined interactions between them.

A class library is a set of classes.

Behavior and Attributes
Every class you write in Java is generally made up of two components: attributes and behavior.
In this section, you’ll learn about each one as it applies to a thoeretical class called Motorcycle.
To finish up this section, you’ll create the Java code to implement a representation of a
motorcycle.

Attributes
Attributes are the individual things that differentiate one object from another and determine the
appearance, state, or other qualities of that object. Let’s create a theoretical class called
Motorcycle. The attributes of a motorcycle might include the following:

■■ Color: red, green, silver, brown

■■ Style: cruiser, sport bike, standard

■■ Make: Honda, BMW, Bultaco

Attributes of an object can also include information about its state; for example, you could have
features for engine condition (off or on) or current gear selected.

Attributes are defined by variables; in fact, you can consider them analogous to global variables
for the entire object. Because each instance of a class can have different values for its variables,
each variable is called an instance variable.

Instance variables define the attributes of an object. The class defines the kind of attribute,
and each instance stores its own value for that attribute.

Each attribute, as the term is used here, has a single corresponding instance variable; changing
the value of a variable changes the attribute of that object. Instance variables may be set when
an object is created and stay constant throughout the life of the object, or they may be able to
change at will as the program runs.

NEW
TERM

☛

NEW
TERM

☛

030-4S CH02.i 1/29/96, 8:38 PM23

24

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

In addition to instance variables, there are also class variables, which apply to the class itself and
to all its instances. Unlike instance variables, whose values are stored in the instance, class
variables’ values are stored in the class itself. You’ll learn about class variables later on this week;
you’ll learn more specifics about instance variables tomorrow.

Behavior
A class’s behavior determines what instances of that class do when their internal state changes
or when that instance is asked to do something by another class or object. Behavior is the way
objects can do anything to themselves or have anything done to them. For example, to go back
to the theoretical Motorcycle class, here are some behaviors that the Motorcycle class might have:

■■ Start the engine

■■ Stop the engine

■■ Speed up

■■ Change gear

■■ Stall

To define an object’s behavior, you create methods, which look and behave just like functions
in other languages, but are defined inside a class. Java does not have functions defined outside
classes (as C++ does).

Methods are functions defined inside classes that operate on instances of those classes.

Methods don’t always affect only a single object; objects communicate with each other using
methods as well. A class or object can call methods in another class or object to communicate
changes in the environment or to ask that object to change its state.

Just as there are instance and class variables, there are also instance and class methods. Instance
methods (which are so common they’re usually just called methods) apply and operate on an
instance; class methods apply and operate on a class (or on other objects). You’ll learn more about
class methods later on this week.

Creating a Class
Up to this point, today’s lesson has been pretty theoretical. In this section, you’ll create a working
example of the Motorcycle class so that you can see how instance variables and methods are
defined in a class. You’ll also create a Java application that creates a new instance of the
Motorcycle class and shows its instance variables.

NEW
TERM

☛

030-4S CH02.i 1/29/96, 8:38 PM24

25

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

Note: I’m not going to go into a lot of detail about the actual syntax of this
example here. Don’t worry too much about it if you’re not really sure what’s going
on; it will become clear to you later on this week. All you really need to worry
about in this example is understanding the basic parts of this class definition.

Ready? Let’s start with a basic class definition. Open up that editor and enter the following:

class Motorcycle {

}

Congratulations! You’ve now created a class. Of course, it doesn’t do very much at the moment,
but that’s a Java class at its very simplest.

First, let’s create some instance variables for this class—three of them, to be specific. Just below
the first line, add the following three lines:

String make;
String color;
boolean engineState;

Here, you’ve created three instance variables: two, make and color, can contain String objects
(String is part of that standard class library mentioned earlier). The third, engineState, is a
boolean that refers to whether the engine is off or on.

Technical Note: boolean in Java is a real data type that can have the value true or
false. Unlike C, booleans are not numbers. You’ll hear about this again tomorrow
so you won’t forget.

Now let’s add some behavior (methods) to the class. There are all kinds of things a motorcycle
can do, but to keep things short, let’s add just one method—a method that starts the engine.
Add the following lines below the instance variables in your class definition:

void startEngine() {
 if (engineState == true)
 System.out.println(“The engine is already on.”);
 else {
 engineState = true;
 System.out.println(“The engine is now on.”);
 }
}

030-4S CH02.i 1/29/96, 8:38 PM25

26

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

The startEngine method tests to see whether the engine is already running (in the line
engineState == true) and, if it is, merely prints a message to that effect. If the engine isn’t already
running, it changes the state of the engine to true and then prints a message.

With your methods and variables in place, save the program to a file called Motorcycle.java
(remember, you should always name your Java files the same names as the class they define).
Here’s what your program should look like so far:

class Motorcycle {

 String make;
 String color;
 boolean engineState;

 void startEngine() {
 if (engineState == true)
 System.out.println(“The engine is already on.”);
 else {
 engineState = true;
 System.out.println(“The engine is now on.”);
 }
 }
}

Tip: The indentation of each part of the class isn’t important to the Java compiler.
Using some form of indentation, however, makes your class definition easier for
you and for other people to read. The indentation used here, with instance vari-
ables and methods indented from the class definition, is the style used throughout
this book. The Java class libraries use a similar indentation. You can choose any
indentation style that you like.

Before you compile this class, let’s add one more method. The showAtts method prints the
current values of the instance variables in an instance of your Motorcycle class. Here’s what it
looks like:

void showAtts() {
 System.out.println(“This motorcycle is a “
 + color + “ “ + make);
 if (engineState == true)
 System.out.println(“The engine is on.”);
 else System.out.println(“The engine is off.”);
}

The showAtts method prints two lines to the screen: the make and color of the motorcycle object,
and whether or not the engine is on or off.

030-4S CH02.i 1/29/96, 8:38 PM26

27

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

Save that file again and compile it using javac:

javac Motorcycle.java

Note: After this point, I’m going to assume you know how to compile and run Java
programs. I won’t repeat this information after this.

What happens if you now use the Java interpreter to run this compiled class? Try it. Java assumes
that this class is an application and looks for a main method. This is just a class, however, so it
doesn’t have a main method. The Java interpreter (java) gives you an error like this one:

In class Motorcycle: void main(String argv[]) is not defined

To do something with the Motorcycle class—for example, to create instances of that class and
play with them—you’re going to need to create a Java application that uses this class or add a
main method to this one. For simplicity’s sake, let’s do the latter. Listing 2.1 shows the main()
method you’ll add to the Motorcycle class (you’ll go over what this does in a bit).

Listing 2.1. The main() method for Motorcycle.java.
 1: public static void main (String args[]) {
 2: Motorcycle m = new Motorcycle();
 3: m.make = “Yamaha RZ350”;
 4: m.color = “yellow”;
 5: System.out.println(“Calling showAtts...”);
 6: m.showAtts();
 7: System.out.println(“--------”);
 8: System.out.println(“Starting engine...”);
 9: m.startEngine();
10: System.out.println(“--------”);
11: System.out.println(“Calling showAtts...”);
12: m.showAtts();
13: System.out.println(“--------”);
14: System.out.println(“Starting engine...”);
15: m.startEngine();
16:}

With the main() method, the Motorcycle class is now an application, and you can compile it
again and this time it’ll run. Here’s how the output should look:

Calling showAtts...
This motorcycle is a yellow Yamaha RZ350
The engine is off.

Output

Type

030-4S CH02.i 1/29/96, 8:38 PM27

28

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

Starting engine...
The engine is now on.

Calling showAtts...
This motorcycle is a yellow Yamaha RZ350
The engine is on.

Starting engine...
The engine is already on.

The contents of the main() method are all going to look very new to you, so let’s go through
it line by line so that you at least have a basic idea of what it does (you’ll get details about
the specifics of all of this tomorrow and the day after).

The first line declares the main() method. The main() method always looks like this; you’ll learn
the specifics of each part later this week.

Line 2, Motorcycle m = new Motorcycle(), creates a new instance of the Motorcycle class and
stores a reference to it in the variable m. Remember, you don’t usually operate directly on classes
in your Java programs; instead, you create objects from those classes and then modify and call
methods in those objects.

Lines 3 and 4 set the instance variables for this motorcycle object: the make is now a Yamaha RZ350
(a very pretty motorcycle from the mid-1980s), and the color is yellow.

Lines 5 and 6 call the showAtts() method, defined in your motorcycle object. (Actually, only
6 does; 5 just prints a message that you’re about to call this method.) The new motorcycle object
then prints out the values of its instance variables—the make and color as you set in the previous
lines—and shows that the engine is off.

Line 7 prints a divider line to the screen; this is just for prettier output.

Line 9 calls the startEngine() method in the motorcycle object to start the engine. The engine
should now be on.

Line 12 prints the values of the instance variables again. This time, the report should say the
engine is now on.

Line 15 tries to start the engine again, just for fun. Because the engine is already on, this should
print the error message.

Inheritance, Interfaces, and Packages
Now that you have a basic grasp of classes, objects, methods, variables, and how to put it all
together in a Java program, it’s time to confuse you again. Inheritance, interfaces, and packages
are all mechanisms for organizing classes and class behaviors. The Java class libraries use all these
concepts, and the best class libraries you write for your own programs will also use these concepts.

Analysis

030-4S CH02.i 1/29/96, 8:39 PM28

29

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

Inheritance
Inheritance is one of the most crucial concepts in object-oriented programming, and it has a very
direct effect on how you design and write your Java classes. Inheritance is a powerful mechanism
that means when you write a class you only have to specify how that class is different from some
other class, while also giving you dynamic access to the information contained in those other
classes.

With inheritance, all classes—those you write, those from other class libraries that you use,
and those from the standard utility classes as well—are arranged in a strict hierarchy (see

Figure 2.2).

Each class has a superclass (the class above it in the hierarchy), and each class can have one or
more subclasses (classes below that class in the hierarchy). Classes further down in the hierarchy
are said to inherit from classes further up in the hierarchy.

NEW
TERM

☛

Figure 2.2.
A class hierarchy. • Class A is the superclass of B

• Class B is a subclass of A

• Class B is the superclass

 of C, D, and E

• Classes C, D, and E

 are subclasses of B

Class A

Class B

Class DClass C Class E

Subclasses inherit all the methods and variables from their superclasses—that is, in any particular
class, if the superclass defines behavior that your class needs, you don’t have to redefine it or copy
that code from some other class. Your class automatically gets that behavior from its superclass,
that superclass gets behavior from its superclass, and so on all the way up the hierarchy. Your
class becomes a combination of all the features of the classes above it in the hierarchy.

At the top of the Java class hierarchy is the class Object; all classes inherit from this one superclass.
Object is the most general class in the hierarchy; it defines behavior specific to all objects in the
Java class hierarchy. Each class farther down in the hierarchy adds more information and
becomes more tailored to a specific purpose. In this way, you can think of a class hierarchy as

030-4S CH02.i 1/29/96, 8:39 PM29

30

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

defining very abstract concepts at the top of the hierarchy and those ideas becoming more
concrete the farther down the chain of superclasses you go.

Most of the time when you write new Java classes, you’ll want to create a class that has all the
information some other class has, plus some extra information. For example, you may want a
version of a Button with its own built-in label. To get all the Button information, all you have
to do is define your class to inherit from Button. Your class will automatically get all the behavior
defined in Button (and in Button’s superclasses), so all you have to worry about are the things
that make your class different from Button itself. This mechanism for defining new classes as the
differences between them and their superclasses is called subclassing.

Subclassing involves creating a new class that inherits from some other class in the class
hierarchy. Using subclassing, you only need to define the differences between your class

and its parent; the additional behavior is all available to your class through inheritance.

What if your class defines entirely new behavior, and isn’t really a subclass of another class? Your
class can also inherit directly from Object, which still allows it to fit neatly into the Java class
hierarchy. In fact, if you create a class definition that doesn’t indicate its superclass in the first
line, Java automatically assumes you’re inheriting from Object. The Motorcycle class you created
in the previous section inherited from Object.

Creating a Class Hierarchy
If you’re creating a larger set of classes, it makes sense for your classes not only to inherit from
the existing class hierarchy, but also to make up a hierarchy themselves. This may take some
planning beforehand when you’re trying to figure out how to organize your Java code, but the
advantages are significant once it’s done:

■■ When you develop your classes in a hierarchy, you can factor out information com-
mon to multiple classes in superclasses, and then reuse that superclass’s information
over and over again. Each subclass gets that common information from its superclass.

■■ Changing (or inserting) a class further up in the hierarchy automatically changes the
behavior of the lower classes—no need to change or recompile any of the lower
classes, because they get the new information through inheritance and not by copying
any of the code.

For example, let’s go back to that Motorcycle class, and pretend you created a Java program to
implement all the features of a motorcycle. It’s done, it works, and everything is fine. Now, your
next task is to create a Java class called Car.

Car and Motorcycle have many similar features—both are vehicles driven by engines. Both
 have transmissions and headlamps and speedometers. So, your first impulse may be to open up
your Motorcycle class file and copy over a lot of the information you already defined into the
new class Car.

NEW
TERM

☛

030-4S CH02.i 1/29/96, 8:39 PM30

31

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

A far better plan is to factor out the common information for Car and Motorcycle into a more
general class hierarchy. This may be a lot of work just for the classes Motorcycle and Car, but once
you add Bicycle, Scooter, Truck, and so on, having common behavior in a reuseable superclass
significantly reduces the amount of work you have to do overall.

Let’s design a class hierarchy that might serve this purpose. Starting at the top is the class Object,
which is the root of all Java classes. The most general class to which motorcycle and car both
belong might be called Vehicle. A vehicle, generally, is defined as a thing that propels someone
from one place to another. In the Vehicle class, you define only the behavior that enables
someone to be propelled from point a to point b, and nothing more.

Below Vehicle? How about two classes: PersonPoweredVehicle and EnginePoweredVehicle?
EnginePoweredVehicle is different from Vehicle because is has an engine, and the behaviors
might include stopping and starting the engine, having certain amounts of gasoline and oil, and
perhaps the speed or gear in which the engine is running. Person-powered vehicles have some
kind of mechanism for translating people motion into vehicle motion—pedals, for example.
Figure 2.3 shows what you have so far.

Figure 2.3.
The basic vehicle hierarchy. Object

Vehicle

EnginePoweredVehiclePersonPoweredVehicle

Now, let’s become even more specific. With EnginePoweredVehicle, you might have several
classes: Motorcycle, Car, Truck, and so on. Or you can factor out still more behavior and have
intermediate classes for TwoWheeled and FourWheeled vehicles, with different behaviors for each
(see Figure 2.4).

Finally, with a subclass for the two-wheeled engine-powered vehicles you can finally have a class
for motorcycles. Alternatively, you could additionally define scooters and mopeds, both of
which are two-wheeled engine-powered vehicles but have different qualities from motorcycles.

Where do qualities such as make or color come in? Wherever you want them to go—or, more
usually, where they fit most naturally in the class hierarchy. You can define the make and color

030-4S CH02.i 1/29/96, 8:39 PM31

32

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

on Vehicle, and all the subclasses will have those variables as well. The point to remember is that
you have to define a feature or a behavior only once in the hierarchy; it’s automatically reused
by each subclass.

Figure 2.4.
Two-wheeled and four-
wheeled vehicles.

TwoWheeled

EnginePoweredVehicle

FourWheeled

EnginePoweredVehicle

EnginePoweredVehicle

Motorcycle Scooter Moped

How Inheritance Works
How does inheritance work? How is it that instances of one class can automatically get variables
and methods from the classes further up in the hierarchy?

For instance variables, when you create a new instance of a class, you get a “slot” for each variable
defined in the current class and for each variable defined in all its superclasses. In this way, all
the classes combine to form a template for the current object and then each object fills in the
information appropriate to its situation.

Methods operate similarly: new objects have access to all the method names of its class and its
superclasses, but method definitions are chosen dynamically when a method is called. That is,
if you call a method on a particular object, Java first checks the object’s class for the definition
of that method. If it’s not defined in the object’s class, it looks in that class’s superclass, and so
on up the chain until the method definition is found (see Figure 2.5).

Things get complicated when a subclass defines a method that has the same signature (name and
number and type of arguments) as a method defined in a superclass. In this case, the method
definition that is found first (starting at the bottom and working upward toward the top of the
hierarchy) is the one that is actually executed. Because of this, you can purposefully define a
method in a subclass that has the same signature as a method in a superclass, which then “hides”
the superclass’s method. This is called overriding a method. You’ll learn all about methods on
Day 7.

030-4S CH02.i 1/29/96, 8:39 PM32

33

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

Overriding a method is creating a method in a subclass that has the same signature (name,
number and type of arguments) as a method in a superclass. That new method then hides

the superclass’s method (see Figure 2.6).

Figure 2.5.
How methods are located.

Class Class
Message sent to object and

passed up class hierarchy

until a definition is found

Method

definition

Class Class

Class

Object Object

NEW
TERM

☛

Figure 2.6.
Overriding methods.

Class Class
Message sent to object and

passed up class hierarchy

until a definition is found

Method is overridden

by this definition

Initial method

definition Class

Class

Object Object

030-4S CH02.i 1/29/96, 8:40 PM33

34

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

Single and Multiple Inheritance
Java’s form of inheritance, as you learned in the previous sections, is called single inheritance.
Single inheritance means that each Java class can have only one superclass (although any given
superclass can have multiple subclasses).

In other object-oriented programming languages, such as C++ and Smalltalk, classes can have
more than one superclass, and they inherit combined variables and methods from all those
classes. This is called multiple inheritance. Multiple inheritance can provide enormous power
in terms of being able to create classes that factor just about all imaginable behavior, but it can
also significantly complicate class definitions and the code to produce them. Java makes
inheritance simpler by being only singly inherited.

Interfaces and Packages
Java has two remaining concepts to discuss here: packages and interfaces. Both are advanced
topics for implementing and designing groups of classes and class behavior. You’ll learn about
both interfaces and packages on Day 16, but they are worth at least introducing here.

Recall that Java classes have only a single superclass, and they inherit variables and methods from
that superclass and all its superclasses. Although single inheritance makes the relationship
between classes and the functionality those classes implement easy to understand and to design,
it can also be somewhat restricting—in particular, when you have similar behavior that needs
to be duplicated across different “branches” of the class hierarchy. Java solves this problem of
shared behavior by using the concept of interfaces.

An interface is a collection of method names, without actual definitions, that indicate that
a class has a set of behaviors in addition to the behaviors the class gets from its superclasses.

Although a single Java class can have only one superclass (due to single inheritance), that class
can also implement any number of interfaces. By implementing an interface, a class provides
method implementations (definitions) for the method names defined by the interface. If two
very disparate classes implement the same interface, they can both respond to the same method
calls (as defined by that interface), although what each class actually does in response to those
method calls may be very different.

You don’t need to know very much about interfaces right now. You’ll learn more as the book
progresses, so if all this is very confusing, don’t panic!

The final new Java concept for today is that of packages.

Packages in Java are a way of grouping together related classes and interfaces. Packages
enable modular groups of classes to be available only if they are needed and eliminate

potential conflicts between class names in different groups of classes.

NEW
TERM

☛

NEW
TERM

☛

030-4S CH02.i 1/29/96, 8:40 PM34

35

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

You’ll learn all about packages, including how to create and use them, in Week 3. For now, there
are only a few things you need to know:

■■ The class libraries in the Java Developer’s Kit are contained in a package called java.
The classes in the java package are guaranteed to be available in any Java implementa-
tion, and are the only classes guaranteed to be available across different implementa-
tions. The java package itself contains other packages for classes that define the
language itself, the input and output classes, some basic networking, and the window
toolkit functions. Classes in other packages (for example, classes in the sun or netscape
packages) may be available only in specific implementations.

■■ By default, your Java classes have access to only the classes in java.lang (the base
language package inside the java package). To use classes from any other package, you
have to either refer to them explicitly by package name or import them in your source
file.

■■ To refer to a class within a package, list all the packages that class is contained in and
the class name, all separated by periods (.). For example, take the Color class, which is
contained in the awt package (awt stands for Abstract Windowing Toolkit). The awt
package, in turn, is inside the java package. To refer to the Color class in your pro-
gram, you use the notation java.awt.Color.

Creating a Subclass
To finish up today, let’s create a class that is a subclass of another class and override some
methods. You’ll also get a basic feel for how packages work in this example.

Probably the most typical instance of creating a subclass, at least when you first start
programming in Java, is in creating an applet. All applets are subclasses of the class Applet (which
is part of the java.applet package). By creating a subclass of Applet, you automatically get all
the behavior from the window toolkit and the layout classes that enables your applet to be drawn
in the right place on the page and to interact with system operations, such as keypresses and
mouse clicks.

In this example, you’ll create an applet similar to the Hello World applet from yesterday, but
one that draws the Hello string in a larger font and a different color. To start this example, let’s
first construct the class definition itself. Remember the HTML and classes directories you
created yesterday? Let’s go back to those, go back to your text editor, and enter the following class
definition:

public class HelloAgainApplet extends java.applet.Applet {
}

Here, you’re creating a class called HelloAgainApplet. Note the part that says extends
java.applet.Applet—that’s the part that says your applet class is a subclass of the Applet class.

030-4S CH02.i 1/29/96, 8:40 PM35

36

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

Note that because the Applet class is contained in the java.applet package, you don’t have
automatic access to that class, and you have to refer to it explicitly by package and class name.

The other part of this class definition is the public keyword. Public means that your class is
available to the Java system at large once it is loaded. Most of the time you need to make a class
public only if you want it to be visible to all the other classes in your Java program; but applets,
in particular, must be declared to be public. (You’ll learn more about public classes in Week 3.)

A class definition with nothing in it doesn’t really have much of a point; without adding or
overriding any of its superclasses’ variables or methods, there’s no point to creating a subclass
at all. Let’s add some information to this class to make it different from its superclass.

First, add an instance variable to contain a Font object:

Font f = new Font(“TimesRoman”,Font.BOLD,36);

The f instance variable now contains a new instance of the class Font, part of the java.awt
package. This particular font object is a Times Roman font, boldface, 36 points high. In the
previous Hello World applet, the font used for the text was the default font: 12 point Times
Roman. Using a font object, you can change the font of the text you draw in your applet.

By creating an instance variable to hold this font object, you make it available to all the methods
in your class. Now let’s create a method that uses it.

When you write applets, there are several “standard” methods defined in the applet superclasses
that you will commonly override in your applet class. These include methods to initialize the
applet, to start it running, to handle operations such as mouse movements or mouse clicks, or
to clean up when the applet stops running. One of those standard methods is the paint()
method, which actually displays your applet on screen. The default definition of paint() doesn’t
do anything—it’s an empty method. By overriding paint(), you tell the applet just what to draw
on the screen. Here’s a definition of paint():

public void paint(Graphics g) {
 g.setFont(f);
 g.setColor(Color.red);
 g.drawString(“Hello again!”, 5, 25);
}

There are two things to know about the paint() method. First, note that this method is declared
public, just as the applet itself was. The paint() method is actually public for a different
reason—because the method it’s overriding is also public. If you try to override a method in your
own class that’s public in a superclass, you get a compiler error, so the public is required.

Secondly, note that the paint() method takes a single argument: an instance of the Graphics
class. The Graphics class provides platform-independent behavior for rendering fonts, colors,
and basic drawing operations. You’ll learn a lot more about the Graphics class in Week 2, when
you create more extensive applets.

030-4S CH02.i 1/29/96, 8:40 PM36

37

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

Inside your paint() method, you’ve done three things:

■■ You’ve told the graphics object that the default drawing font will be the one contained
in the instance variable f.

■■ You’ve told the graphics object that the default color is an instance of the Color class
for the color red.

■■ Finally, you’ve drawn your “Hello Again!” string onto the screen itself, at the x and y
positions of 5 and 25. The string will be rendered in the default font and color.

For an applet this simple, this is all you need to do. Here’s what the applet looks like so far:

public class HelloAgainApplet extends java.applet.Applet {

 Font f = new Font(“TimesRoman”,Font.BOLD,36);

 public void paint(Graphics g) {
 g.setFont(f);
 g.setColor(Color.red);
 g.drawString(“Hello again!”, 5, 50);
 }
}

If you’ve been paying attention, you’ll notice something is wrong with this example up to this
point. If you don’t know what it is, try saving this file (remember, save it to the same name as
the class: HelloAgainApplet.java) and compiling it using the Java compiler. You should get a
bunch of errors similar to this one:

HelloAgainApplet.java:7: Class Graphics not found in type declaration.

Why are you getting these errors? Because the classes you’re referring to are part of a package.
Remember that the only package you have access to automatically is java.lang. You referred to
the Applet class in the first line of the class definition by referring to its full package name
(java.applet.Applet). Further on in the program, however, you referred to all kinds of other
classes as if they were already available.

There are two ways to solve this problem: refer to all external classes by full package name or
import the appropriate class or package at the beginning of your class file. Which one you choose
to do is mostly a matter of choice, although if you find yourself referring to a class in another
package lots of times, you may want to import it to cut down on the amount of typing.

In this example, you’ll import the classes you need. There are three of them: Graphics, Font, and
Color. All three are part of the java.awt package. Here are the lines to import these classes. These
lines go at the top of your program, before the actual class definition:

import java.awt.Graphics;
import java.awt.Font;
import java.awt.Color;

030-4S CH02.i 1/29/96, 8:40 PM37

38

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

Tip: You also can import an entire package of (public) classes by using an asterisk
(*) in place of a specific class name. For example, to import all the classes in the awt
package, you can use this line:

import java.awt.*;

Now, with the proper classes imported into your program, HelloAgainApplet should compile
cleanly to a class file. To test it, create an HTML file with the <APPLET> tag as you did yesterday.
Here’s an HTML file to use:

<HTML>
<HEAD>
<TITLE>Another Applet</TITLE>
</HEAD>
<BODY>
<P>My second Java applet says:
<APPLET CODE=”HelloAgainApplet.class” WIDTH=200 HEIGHT=50>
</APPLET>
</BODY>
</HTML>

For this HTML example, your Java class file is in the same directory as this HTML file. Save
the file to HelloAgainApplet.html and fire up your Java-aware browser or the Java applet viewer.
Figure 2.7 shows the result you should be getting (the Hello Again string is red).

Figure 2.7.
The Hello Again applet.

Summary
If this is your first encounter with object-oriented programming, a lot of the information in this
chapter is going to seem really theoretical and overwhelming. Fear not—the further along in this
book you get, and the more Java applications you create, the easier it is to understand.

One of the biggest hurdles of object-oriented programming is not necessarily the concepts, it’s
their names. OOP has lots of jargon surrounding it. To summarize today’s material, here’s a
glossary of terms and concepts you learned today:

030-4S CH02.i 1/29/96, 8:40 PM38

39

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

2

Class: A template for an object, which contains variables and methods representing
behavior and attributes. Classes can inherit variables and methods from other classes.

Object: A concrete instance of some class. Multiple objects that are instances of the
same class have access to the same methods, but often have different values for their
instance variables.

Instance: The same thing as an object; each object is an instance of some class.

Superclass: A class further up in the inheritance hierarchy than its child, the subclass.

Subclass: A class lower in the inheritance hierarchy than its parent, the superclass.
When you create a new class, that’s often called subclassing.

Instance method: A method defined in a class, which operates on an instance of that
class. Instance methods are usually called just methods.

Class method: A method defined in a class, which can operate on the class itself or on
any object.

Instance variable: A variable that is owned by an individual instance and whose value is
stored in the instance.

Class variable: A variable that is owned by the class and all its instances as a whole, and
is stored in the class.

Interface: A collection of abstract behavior specifications that individual classes can
then implement.

Package: A collection of classes and interfaces. Classes from packages other than
java.lang must be explicitly imported or referred to by full package name.

Q&A
Q Methods are effectively functions that are defined inside classes. If they look like

functions and act like functions, why aren’t they called functions?

A Some object-oriented programming languages do call them functions (C++ calls them
member functions). Other object-oriented languages differentiate between functions
inside and outside a body of a class or object, where having separate terms is impor-
tant to understanding how each works. Because the difference is relevant in other
languages, and because the term method is now in such common use in object-
oriented technology, Java uses the word as well.

Q I understand instance variables and methods, but not class variables and
methods.

A Most everything you do in a Java program will be with objects. Some behaviors and
attributes, however, make more sense if they are stored in the class itself rather than in
the object. For example, to create a new instance of a class, you need a method that is

030-4S CH02.i 1/29/96, 8:40 PM39

40

Object-Oriented Programming and Java
M

T W
R

F S S

DAYDAY

2

P2/V4sqc6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch02 LP#3

defined for the class itself, not for an object. (Otherwise, how can you create an
instance of class? You need an object to call the new method in, but you don’t have an
object yet.) Class variables, on the other hand, are often used when you have an
attribute whose value you want to share with the instances of a class.

Most of the time, you’ll use instance variables and methods. You’ll learn more about
class variables and methods later on this week.

030-4S CH02.i 1/29/96, 8:40 PM40

41

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

M
T W

R
F S S

Java Basics

by Laura Lemay

WEEK

1

33

030-4S CH03.i 1/29/96, 8:45 PM41

42

Java Basics
M

T W
R

F S S

DAYDAY

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

On Days 1 and 2, you learned about Java programming in very broad terms—what a Java
program and an executable look like, and how to create simple classes. For the remainder of this
week, you’re going to get down to details and deal with the specifics of what the Java language
looks like.

Today, you won’t define any classes or objects or worry about how any of them communicate
inside a Java program. Rather, you’ll draw closer and examine simple Java statements—the basic
things you can do in Java within a method definition such as main().

Today you’ll learn about the following:

■■ Java statements and expressions

■■ Variables and data types

■■ Comments

■■ Literals

■■ Arithmetic

■■ Comparisons

■■ Logical operators

Technical Note: Java looks a lot like C++, and—by extension—like C. Much of
the syntax will be very familiar to you if you are used to working in these languages.
If you are an experienced C or C++ programmer, you may want to pay special
attention to the Technical Notes (such as this one), because they will provide
information about the specific differences between these and other traditional
languages and Java.

Statements and Expressions
A statement is the simplest thing you can do in Java; a statement forms a single Java operation.
All the following are simple Java statements:

int i = 1;
import java.awt.Font;
System.out.println(“This motorcycle is a “
 + color + “ “ + make);
m.engineState = true;

Statements sometimes return values—for example, when you add two numbers together or test
to see whether one value is equal to another. These kind of statements are called expressions.
We’ll discuss these later on today.

030-4S CH03.i 1/29/96, 8:45 PM42

43

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

The most important thing to remember about Java statements is that each one ends with a
semicolon. Forget the semicolon and your Java program won’t compile.

Java also has compound statements, or blocks, which can be placed wherever a single statement
can. Block statements are surrounded by braces ({}). You’ll learn more about blocks in Chapter
5, “Arrays, Conditionals, and Loops.”

Variables and Data Types
Variables are locations in memory in which values can be stored. They have a name, a type, and
a value. Before you can use a variable, you have to declare it. After it is declared, you can then
assign values to it.

Java actually has three kinds of variables: instance variables, class variables, and local variables.

Instance variables, as you learned yesterday, are used to define attributes or the state for a
particular object. Class variables are similar to instance variables, except their values apply to all
that class’s instances (and to the class itself) rather than having different values for each object.

Local variables are declared and used inside method definitions, for example, for index counters
in loops, as temporary variables, or to hold values that you need only inside the method
definition itself. They can also be used inside blocks ({}), which you’ll learn about later this week.
Once the method (or block) finishes executing, the variable definition and its value cease to exist.
Use local variables to store information needed by a single method and instance variables to store
information needed by multiple methods in the object.

Although all three kinds of variables are declared in much the same ways, class and instance
variables are accessed and assigned in slightly different ways from local variables. Today, you’ll
focus on variables as used within method definitions; tomorrow, you’ll learn how to deal with
instance and class variables.

Note: Unlike other languages, Java does not have global variables—that is, vari-
ables that are global to all parts of a program. Instance and class variables can be
used to communicate global information between and among objects. Remember,
Java is an object-oriented language, so you should think in terms of objects and
how they interact, rather than in terms of programs.

Declaring Variables
To use any variable in a Java program, you must first declare it. Variable declarations consist of
a type and a variable name:

030-4S CH03.i 1/29/96, 8:44 PM43

44

Java Basics
M

T W
R

F S S

DAYDAY

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

int myAge;
String myName;
boolean isTired;

Variable definitions can go anywhere in a method definition (that is, anywhere a regular Java
statement can go), although they are most commonly declared at the beginning of the definition
before they are used:

public static void main (String args÷]) {
 int count;
 String title;
 boolean isAsleep;
...
}

You can string together variable names with the same type:

int x, y, z;
String firstName, LastName;

You can also give each variable an initial value when you declare it:

int myAge, mySize, numShoes = 28;
String myName = “Laura”;
boolean isTired = true;
int a = 4, b = 5, c = 6;

If there are multiple variables on the same line with only one initializer (as in the first of the
previous examples), the initial value applies to only the last variable in a declaration. You can also
group individual variables and initializers on the same line using commas, as with the last
example, above.

Local variables must be given values before they can be used (your Java program will not compile
if you try to use an unassigned local variable). For this reason, it’s a good idea always to give local
variables initial values. Instance and class variable definitions do not have this restriction (their
initial value depends on the type of the variable: null for instances of classes, 0 for numeric
variables, ‘\0’ for characters, and false for booleans).

Notes on Variable Names
Variable names in Java can start with a letter, an underscore (_), or a dollar sign ($). They cannot
start with a number. After the first character, your variable names can include any letter or
number. Symbols, such as %, *, @, and so on, are often reserved for operators in Java, so be careful
when using symbols in variable names.

In addition, the Java language uses the Unicode character set. Unicode is a character set
definition that not only offers characters in the standard ASCII character set, but also several
million other characters for representing most international alphabets. This means that you can

030-4S CH03.i 1/29/96, 8:44 PM44

45

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

use accented characters and other glyphs as legal characters in variable names, as long as they have
a Unicode character number above 00C0.

!! Caution: The Unicode specification is a two-volume set of lists of thousands of
characters. If you don’t understand Unicode, or don’t think you have a use for it,
it’s safest just to use plain numbers and letters in your variable names. You’ll learn a
little more about Unicode later on.

Finally, note that the Java language is case-sensitive, which means that uppercase letters are
different from lowercase letters. This means that the variable X is different from the variable x,
and a rose is not a Rose is not a ROSE. Keep this in mind as you write your own Java programs
and as you read Java code other people have written.

By convention, Java variables have meaningful names, often made up of several words
combined. The first word is lowercase, but all following words have an initial uppercase letter:

Button theButton;
long reallyBigNumber;
boolean currentWeatherStateOfPlanetXShortVersion;

Variable Types
In addition to the variable name, each variable declaration must have a type, which defines what
values that variable can hold. The variable type can be one of three things:

■■ One of the eight basic primitive data types

■■ The name of a class

■■ An array

You’ll learn about how to declare and use array variables in Chapter 5.

The eight primitive data types handle common types for integers, floating-point numbers,
characters, and boolean values (true or false). They’re called primitive because they’re built into
the system and are not actual objects, which makes them more efficient to use. Note that these
data types are machine-independent, which means that you can rely on their sizes and
characteristics to be consistent across your Java programs.

There are four Java integer types, each with different ranges of values (as listed in Table 3.1). All
are signed, which means they can hold either positive or negative numbers. Which type you
choose for your variables depends on the range of values you expect that variable to hold; if a
value becomes too big for the variable type, it is truncated.

030-4S CH03.i 1/29/96, 8:44 PM45

46

Java Basics
M

T W
R

F S S

DAYDAY

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

Table 3.1. Integer types.

Type Size Range

byte 8 bits –128 to 127

short 16 bits –-32,768 to 32,767

int 32 bits –2,147,483,648 to 2,147,483,647

long 64 bits –9223372036854775808 to 9223372036854775807

Floating-point numbers are used for numbers with a decimal part. Java floating-point numbers
are compliant with IEEE 754 (an international standard for defining floating-point numbers
and arithmetic). There are two floating-point types: float (32 bits, single-precision) and double
(64 bits, double-precision).

The char type is used for individual characters. Because Java uses the Unicode character set, the
char type has 16 bits of precision, unsigned.

Finally, the boolean type can have one of two values, true or false. Note that unlike in other
C-like languages, boolean is not a number, nor can it be treated as one. All tests of boolean
variables should test for true or false.

In addition to the eight basic data types, variables in Java can also be declared to hold an instance
of a particular class:

String LastName;
Font basicFont;
OvalShape myOval;

Each of these variables can then hold only instances of the given class. As you create new classes,
you can declare variables to hold instances of those classes (and their subclasses) as well.

Technical Note: Java does not have a typedef statement (as in C and C++). To
declare new types in Java, you declare a new class; then variables can be declared to
be of that class’s type.

Assigning Values to Variables
Once a variable has been declared, you can assign a value to that variable by using the assignment
operator =:

size = 14;
tooMuchCaffiene = true;

030-4S CH03.i 1/29/96, 8:44 PM46

47

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

Comments
Java has three kinds of comments. /* and */ surround multiline comments, as in C or C++. All
text between the two delimiters is ignored:

/* I don’t know how I wrote this next part; I was working
 really late one night and it just sort of appeared. I
 suspect the code elves did it for me. It might be wise
 not to try and change it.
*/

Comments cannot be nested; that is, you cannot have a comment inside a comment.

Double-slashes (//) can be used for a single line of comment. All the text up to the end of the
line is ignored:

int vices = 7; // are there really only 7 vices?

The final type of comment begins with /** and ends with */. These are special comments that
are used for the javadoc system. Javadoc is used to generate API documentation from the code.
You won’t learn about javadoc in this book; you can find out more information from the
documentation that came with Sun’s Java Developer’s Kit or from Sun’s Java home page (http:/
/java.sun.com).

Literals
Literals are used to indicate simple values in your Java programs.

Literal is a programming language term, which essentially means that what you type is
what you get. For example, if you type 4 in a Java program, you automatically get an integer

with the value 4. If you type ‘a’, you get a character with the value a.

Literals may seem intuitive most of the time, but there are some special cases of literals in Java
for different kinds of numbers, characters, strings, and boolean values.

Number Literals
There are several integer literals. 4, for example, is a decimal integer literal of type int (although
you can assign it to a variable of type byte or short because it’s small enough to fit into those
types). A decimal integer literal larger than an int is automatically of type long. You also can force
a smaller number to a long by appending an L or l to that number (for example, 4L is a long
integer of value 4). Negative integers are preceded by a minus sign—for example, -45.

Integers can also be expressed as octal or hexadecimal: a leading 0 indicates that a number is
octal—for example, 0777 or 0004. A leading 0x (or 0X) means that it is in hex (0xFF, 0XAF45).

NEW
TERM

☛

030-4S CH03.i 1/29/96, 8:44 PM47

48

Java Basics
M

T W
R

F S S

DAYDAY

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

Hexadecimal numbers can contain regular digits (0–9) or upper- or lowercase hex digits (a–f or
A–F).

Floating-point literals usually have two parts: the integer part and the decimal part—for
example, 5.677777. Floating-point literals result in a floating-point number of type double,
regardless of the precision of that number. You can force the number to the type float by
appending the letter f (or F) to that number—for example, 2.56F.

You can use exponents in floating-point literals using the letter e or E followed by the exponent
(which can be a negative number): 10e45 or .36E-2.

Boolean Literals
Boolean literals consist of the keywords true and false. These keywords can be used anywhere
you need a test or as the only possible values for boolean variables.

Character Literals
Character literals are expressed by a single character surrounded by single quotes: ’a’, ’#’, ’3’,
and so on. Characters are stored as 16-bit Unicode characters. Table 3.2 lists the special codes
that can represent nonprintable characters, as well as characters from the Unicode character set.
The letter d in the octal, hex, and Unicode escapes represents a number or a hexadecimal digit
(a–f or A–F).

Table 3.2. Character escape codes.

Escape Meaning

\n Newline

\t Tab

\b Backspace

\r Carriage return

\f Formfeed

\\ Backslash

\’ Single quote

\” Double quote

\ddd Octal

\xdd Hexadecimal

\udddd Unicode character

030-4S CH03.i 1/29/96, 8:43 PM48

49

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

Technical Note: C and C++ programmers should note that Java does not include
character codes for \a (bell) or \v (vertical tab).

String Literals
A combination of characters is a string. Strings in Java are instances of the class String. Strings
are not simple arrays of characters as they are in C or C++, although they do have many array-
like characteristics (for example, you can test their length and add and delete individual
characters as if they were arrays). Because string objects are real objects in Java, they have
methods that enable you to combine, test, and modify strings very easily.

String literals consist of a series of characters inside double quotes:

“Hi, I’m a string literal.”
“” //an empty string

Strings can contain character constants such as newline, tab, and Unicode characters:

“A string with a \t tab in it”
“Nested strings are \”strings inside of\” other strings”
“This string brought to you by Java\u2122”

In the last example, the Unicode code sequence for \u2122 produces a trademark symbol (™).

Note: Just because you can represent a character using a Unicode escape does not
mean your computer can display that character—the computer or operating system
you are running may not support Unicode, or the font you’re using may not have a
glyph (picture) for that character. All that Unicode escapes in Java provide is a way
to encode special characters for systems that support Unicode.

When you use a string literal in your Java program, Java automatically creates an instance of the
class String for you with the value you give it. Strings are unusual in this respect; the other literals
do not behave in this way (none of the primitive base types are actual objects), and usually
creating a new object involves explicitly creating a new instance of a class. You’ll learn more about
strings, the String class, and the things you can do with strings later today and tomorrow.

030-4S CH03.i 1/29/96, 8:43 PM49

50

Java Basics
M

T W
R

F S S

DAYDAY

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

Expressions and Operators
Expressions are the simplest form of statement in Java that actually accomplishes something.

Expressions are statements that return a value.

Operators are special symbols that are commonly used in expressions.

Arithmetic and tests for equality and magnitude are common examples of expressions. Because
they return a value, you can assign that result to a variable or test that value in other Java
statements.

Operators in Java include arithmetic, various forms of assignment, increment and decrement,
and logical operations. This section describes all these things.

Arithmetic
Java has five operators for basic arithmetic (see Table 3.3).

Table 3.3. Arithmetic operators.

Operator Meaning Example

+ Addition 3 + 4

– Subtraction 5 – 7

* Multiplication 5 * 5

÷ Division 14 ÷ 7

% Modulus 20 % 7

Each operator takes two operands, one on either side of the operator. The subtraction operator
(–) can also be used to negate a single operand.

Integer division results in an integer. Because integers don’t have decimal fractions, any
remainder is ignored. The expression 31 ÷ 9, for example, results in 3 (9 goes into 31 only 3
times).

Modulus (%) gives the remainder once the operands have been evenly divided. For example, 31
% 9 results in 4 because 9 goes into 31 three times, with 4 left over.

Note that, for integers, the result type of most operations is an int or a long, regardless of the
original type of the operands. Large results are of type long; all others are int. Arithmetic wherein
one operand is an integer and another is a floating point results in a floating-point result. (If
you’re interested in the details of how Java promotes and converts numeric types from one type

NEW
TERM

☛

030-4S CH03.i 1/29/96, 8:43 PM50

51

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

to another, you may want to check out the Java Language Specification; that’s more detail than
I want to cover here.)

Listing 3.1 is an example of simple arithmetic.

Listing 3.1. Simple arithmetic.
 1: class ArithmeticTest {
 2: public static void main (String[] args) {
 3: short x = 6;
 4: int y = 4;
 5: float a = 12.5f;
 6: float b = 7f;
 7:
 8: System.out.println(“x is “ + x + “, y is “ + y);
 9: System.out.println(“x + y = “ + (x + y));
10: System.out.println(“x - y = “ + (x - y));
11: System.out.println(“x / y = “ + (x / y));
12: System.out.println(“x % y = “ + (x % y));
13:
14: System.out.println(“a is “ + a + “, b is “ + b;
15: System.out.println(“a / b = “ + (a / b));
16: }
17:
18: }

x is 6, y is 4
x + y = 10
x - y = 2
x / y = 1
x % y = 2
a is 12.5, b is 7
a / b = 1.78571

In this simple Java application (note the main() method), you initially define four variables
in lines 3 through 6: x and y, which are integers (type int), and a and b, which are floating-
point numbers (type float). Keep in mind that the default type for floating-point literals

(such as 12.5) is double, so to make sure these are numbers of type float, you have to use an f
after each one (lines 5 and 6).

The remainder of the program merely does some math with integers and floating point numbers
and prints out the results.

There is one other thing to mention about this program: the method System.out.println().
You’ve seen this method on previous days, but you haven’t really learned exactly what it does.
The System.out.println() method merely prints a message to the standard output of your
system—to the screen, to a special window, or maybe just to a special log file, depending on your
system and the development environment you’re running (Sun’s JDK prints it to the screen).
The System.out.println() method takes a single argument—a string—but you can use + to
concatenate values into a string, as you’ll learn later today.

Type

Output

Analysis

030-4S CH03.i 1/29/96, 8:43 PM51

53

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

Take, for example, the following two expressions:

y = x++;
y = ++x;

These two expressions give very different results because of the difference between prefix and
postfix. When you use postfix operators (x++ or x––), y gets the value of x before before x is
incremented; using prefix, the value of x is assigned to y after the increment has occurred. Listing
3.2 is a Java example of how all this works.

Listing 3.2. Test of prefix and postfix increment operators.
 1: class PrePostFixTest {
 2:
 3: public static void main (String args[]) {
 4: int x = 0;
 5: int y = 0;
 6:
 7: System.out.println(“x and y are “ + x + “ and “ + y);
 8: x++;
 9: System.out.println(“x++ results in “ + x);
10: ++x;
11: System.out.println(“++x results in “ + x);
12: System.out.println(“Resetting x back to 0.”);
13: x = 0;
14: System.out.println(“——————”);
15: y = x++;
16: System.out.println(“y = x++ (postfix) results in:”);
17: System.out.println(“x is “ + x);
18: System.out.println(“y is “ + y);
19: System.out.println(“——————”);
20:
21: y = ++x;
22: System.out.println(“y = ++x (prefix) results in:”);
23: System.out.println(“x is “ + x);
24: System.out.println(“y is “ + y);
25: System.out.println(“——————”);
26:
27: }
28:
29: }

x and y are 0 and 0
x++ results in 1
++x results in 2
Resetting x back to 0.
——————
y = x++ (postfix) results in:
x is 1
y is 0
——————
y = ++x (prefix) results in:
x is 2
y is 2
——————

Output

Type

030-4S CH03.i 1/29/96, 8:42 PM53

54

Java Basics
M

T W
R

F S S

DAYDAY

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

In the first part of this example, you increment x alone using both prefix and postfix
increment operators. In each, x is incremented by 1 each time. In this simple form, using
either prefix or postfix works the same way.

In the second part of this example, you use the expression y = x++, in which the postfix
increment operator is used. In this result, the value of x is incremented after that value is assigned
to y. Hence the result: y is assigned the original value of x (0), and then x is incremented by 1.

In the third part, you use the prefix expression y = ++x. Here, the reverse occurs: x is incremented
before its value is assigned to y. Because x is 1 from the previous step, its value is incremented
(to 2), and then that value is assigned to y. Both x and y end up being 2.

Technical Note: Technically, this description is not entirely correct. In reality, Java
always completely evaluates all expressions on the right of an expression before
assigning that value to a variable, so the concept of “assigning x to y before x is
incremented” isn’t precisely right. Instead, Java takes the value of x and “remem-
bers” it, evaluates (increments) x, and then assigns the original value of x to y.
Although in most simple cases this distinction may not be important, for more
complex expressions with side effects it may change the behavior of the expression
overall. See the Language Specification for many more details about the details of
expression evaluation in Java.

Comparisons
Java has several expressions for testing equality and magnitude. All of these expressions return
a boolean value (that is, true or false). Table 3.5 shows the comparison operators:

Table 3.5. Comparison operators.

Operator Meaning Example

== Equal x == 3

!= Not equal x != 3

< Less than x < 3

> Greater than x > 3

≤ Less than or equal to x ≤ 3

≥ Greater than or equal to x ≥ 3

Analysis

030-4S CH03.i 1/29/96, 8:42 PM54

55

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

Logical Operators
Expressions that result in boolean values (for example, the comparison operators) can be
combined by using logical operators that represent the logical combinations AND, OR, XOR, and
logical NOT.

For AND combinations, use either the & or &&. The expression will be true only if both operands
tests are also true; if either expression is false, the entire expression is false. The difference between
the two operators is in expression evaluation. Using &, both sides of the expression are evaluated
regardless of the outcome. Using &&, if the left side of the expression is false, the entire expression
returns false, and the right side of the expression is never evaluated.

For OR expressions, use either | or ||. OR expressions result in true if either or both of the operands
is also true; if both operands are false, the expression is false. As with & and &&, the single |
evaluates both sides of the expression regardless of the outcome; with ||, if the left expression
is true, the expression returns true and the right side is never evaluated.

In addition, there is the XOR operator ̂ , which returns true only if its operands are different (one
true and one false, or vice versa) and false otherwise (even if both are true).

In general, only the && and || are commonly used as actual logical combinations. &, |, and ̂ are
more commonly used for bitwise logical operations.

For NOT, use the ! operator with a single expression argument. The value of the NOT expression
is the negation of the expression; if x is true, !x is false.

Bitwise Operators
Finally, here’s a short summary of the bitwise operators in Java. These are all inherited from C
and C++ and are used to perform operations on individual bits in integers. This book does not
go into bitwise operations; it’s an advanced topic covered better in books on C or C++. Table
3.6 summarizes the bitwise operators.

Table 3.6. Bitwise operators.

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<< Left shift

>> Right shift

>>> Zero fill right shift

continues

030-4S CH03.i 1/29/96, 8:42 PM55

56

Java Basics
M

T W
R

F S S

DAYDAY

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

~ Bitwise complement

<<= Left shift assignment (x = x << y)

>>= Right shift assignment (x = x >> y)

>>>= Zero fill right shift assignment (x = x >>> y)

x&=y AND assignment (x = x & y)

x|=y OR assignment (x + x | y)

x^=y NOT assignment (x = x ^ y)

Operator Precedence
Operator precedence determines the order in which expressions are evaluated. This, in some
cases, can determine the overall value of the expression. For example, take the following
expression:

y = 6 + 4 / 2

Depending on whether the 6 + 4 expression or the 4 ÷ 2 expression is evaluated first, the value
of y can end up being 5 or 8. Operator precedence determines the order in which expressions
are evaluated, so you can predict the outcome of an expression. In general, increment and
decrement are evaluated before arithmetic, arithmetic expressions are evaluated before compari-
sons, and comparisons are evaluated before logical expressions. Assignment expressions are
evaluated last.

Table 3.8 shows the specific precedence of the various operators in Java. Operators further up
in the table are evaluated first; operators on the same line have the same precedence and are
evaluated left to right based on how they appear in the expression itself. For example, give that
same expression y = 6 + 4 ÷ 2, you now know, according to this table, that division is evaluated
before addition, so the value of y will be 8.

Table 3.7. Operator precedence.

Operator Notes

. [] () Parentheses () group expressions; dot (.) is used for access to
methods and variables within objects and classes (discussed
tomorrow); [] is used for arrays (discussed later on in the week)

++ –– ! ~ instanceof Returns true or false based on whether the object is an instance
of the named class or any of that class’s superclasses (discussed
tomorrow)

Table 3.6. continued

Operator Meaning

030-4S CH03.i 1/29/96, 8:42 PM56

57

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

new (type)expression The new operator is used for creating new instances of classes; ()
in this case is for casting a value to another type (you’ll learn
about both of these tomorrow)

* ÷ % Multiplication, division, modulus

+ – Addition, subtraction

<< >> >>> Bitwise left and right shift

< > ≤ ≥ Relational comparison tests

== != Equality

& AND

^ XOR

| OR

&& Logical AND

|| Logical OR

? : Shorthand for if...then...else (discussed on Day 5)

= += –= *= ÷= %= ^= Various assignments

&= |= <<= >>= >>>=

You can always change the order in which expressions are evaluated by using parentheses around
the expressions you want to evaluate first. You can nest parentheses to make sure expressions
evaluate in the order you want them to (the innermost parenthetical expression is evaluated
first). The following expression results in a value of 5, because the 6 + 4 expression is evaluated
first, and then the result of that expression (10) is divided by 2:

y = (6 + 4) / 2

Parentheses also can be useful in cases where the precedence of an expression isn’t immediately
clear—in other words, they can make your code easier to read. Adding parentheses doesn’t hurt,
so if they help you figure out how expressions are evaluated, go ahead and use them.

String Arithmetic
One special expression in Java is the use of the addition operator (+) to create and concatenate
strings. In most of the previous examples shown today and in earlier lessons, you’ve seen lots of
lines that looked something like this:

System.out.println(name + “ is a “ + color “ beetle”);

The output of that line (to the standard output) is a single string, with the values of the variables
(here, name and color), inserted in the appropriate spots in the string. So what’s going on here?

Operator Notes

030-4S CH03.i 1/29/96, 8:42 PM57

58

Java Basics
M

T W
R

F S S

DAYDAY

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

The + operator, when used with strings and other objects, creates a single string that contains
the concatenation of all its operands. If any of the operands in string concatenation is not a string,
it is automatically converted to a string, making it easy to create these sorts of output lines.

Technical Note: An object or type can be converted to a string if you implement
the method toString(). All objects have a default string representation (the name
of the class followed by brackets), but most classes override toString() to provide a
more meaningful printable representation.

String concatenation makes lines such as the previous one especially easy to construct. To create
a string, just add all the parts together—the descriptions plus the variables—and output it to the
standard output, to the screen, to an applet, or anywhere.

The += operator, which you learned about earlier, also works for strings. For example, take the
following expression:

myName += “ Jr.”;

This expression is equivalent to this:

myName = myName + “ Jr.”;

just as it would be for numbers. In this case, it changes the value of myName (which might be
something like John Smith to have a Jr. at the end (John Smith Jr.).

Summary
As you learned in the last two lessons, a Java program is made up primarily of classes and objects.
Classes and objects, in turn, are made up of methods and variables, and methods are made up
of statements and expressions. It is those last two things that you’ve learned about today; the
basic building blocks that enable you to create classes and methods and build them up to a full-
fledged Java program.

Today, you learned about variables, how to declare them and assign values to them; literals for
easily creating numbers, characters, and strings; and operators for arithmetic, tests, and other
simple operations. With this basic syntax, you can move on tomorrow to learning about working
with objects and building simple useful Java programs.

To finish up this summary, Table 3.8 is a list of all the operators you learned about today so that
you can refer back to them.

030-4S CH03.i 1/29/96, 8:42 PM58

59

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

Table 3.8. Operator summary.

Operator Meaning

+ Addition

– Subtraction

* Multiplication

÷ Division

% Modulus

< Less than

> Greater than

≤ Less than or equal to

≥ Greater than or equal to

== Equal

!= Not equal

&& Logical AND

|| Logical OR

! Logical NOT

& AND

| OR

^ XOR

<< Left shift

>> Right shift

>>> Zero fill right shift

~ Complement

= Assignment

++ Increment

–– Decrement

+= Add and assign

–= Subtract and assign

*= Multiply and assign

÷= Divide and assign

%= Modulus and assign

&= AND and assign

continues

030-4S CH03.i 1/29/96, 8:41 PM59

60

Java Basics
M

T W
R

F S S

DAYDAY

3

P2/V4 sqc7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 03 LP#4

|= OR and assign

<<= Left shift and assign

>>= Right shift and assign

>>>= Zero fill right shift and assign

Q&A
Q I didn’t see any way to define constants.

A You can’t create local constants in Java; you can create only constant instance and class
variables. You’ll learn how to do this tomorrow.

Q What happens if you declare a variable to be some integer type and then give it a
number outside the range of values that variable can hold?

A Logically, you would think that the variable is just converted to the next larger type,
but this isn’t what happens. What does happen is called overflow. This means that if a
number becomes too big for its variable, that number wraps around to the smallest
possible negative number for that type j

/Fstarts counting upward toward zero again.

Because this can result in some very confusing (and wrong) results, make sure that you
declare the right integer type for all your numbers. If there’s a chance a number will
overflow its type, use the next larger type instead.

Q How can you find out the type of a given variable?

A If you’re using the base types (int, float, boolean), j

/Fso on, you can’t. If you care
about the type, you can convert the value to some other type by using casting (you’ll
learn about this tomorrow).

If you’re using class types, you can use the instanceof operator, which you’ll learn
more about tomorrow.

Q Why does Java have all these shorthand operators for arithmetic and assignment?
It’s really hard to read that way.

A The syntax of Java is based on C++, jnd therefore on C. One of C’s implicit goals is
the capability of doing very powerful things with a minimum of typing. Because of
this, shorthand operators, such as the wide array of assignments, are common.

There’s no rule that says you have to use these operators in your own programs,
however. If you find your code to be more readable using the long form, no one will
come to your house and make you change it.

Table 3.8. continued

Operator Meaning

030-4S CH03.i 1/29/96, 8:41 PM60

61

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

4

M
T W

R
F S S

Working with
Objects

by Laura Lemay

WEEK

1

44

030-4s CH04.i 1/29/96, 8:45 PM61

62

Working with Objects
M

T W
R

F S S

DAYDAY

4

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

Let’s start today’s lesson with an obvious statement: because Java is an object-oriented language,
you’re going to be dealing with a lot of objects. You’ll create them, modify them, move them
around, change their variables, call their methods, combine them with other objects—and, of
course, develop classes and use your own objects in the mix.

Today, therefore, you’ll learn all about the Java object in its natural habitat. Today’s topics
include:

■■ Creating instances of classes

■■ Testing and modifying class and instance variables in your new instance

■■ Calling methods in that object

■■ Casting (converting) objects and other data types from one class to another

■■ Other odds and ends about working with objects

■■ An overview of the Java class libraries

Creating New Objects
When you write a Java program, you define a set of classes. As you learned on Day 2, classes are
templates for objects; for the most part, you merely use the class to create instances and then work
with those instances. In this section, therefore, you’ll learn how to create a new object from any
given class.

Remember strings from yesterday? You learned that using a string literal—a series of characters
enclosed in double-quotes—creates a new instance of the class String with the value of that
string.

The String class is unusual in that respect—although it’s a class, there’s an easy way to create
instances of that class using a literal. The other classes don’t have that shortcut; to create instances
of those classes you have to do so explicitly by using the new operator.

Note: What about the literals for numbers and characters? Don’t they create
objects, too? Actually, they don’t. The primitive data types for numbers and
characters create numbers and characters, but for efficiency, they aren’t actually
objects. You can put object-wrappers around them if you need to treat them like
objects (you’ll learn how to do this later).

030-4s CH04.i 1/29/96, 8:46 PM62

63

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

4

Using new
To create a new object, you use new with the name of the class you want to create an instance
of, then parentheses after that:

String str = new String();

Random r = new Random();

Motorcycle m2 = new Motorcycle()

The parentheses are important; don’t leave them off. The parentheses can be empty, in which
case the most simple, basic object is created, or the parentheses can contain arguments that
determine the initial values of instance variables or other initial qualities of that object. The
number and type of arguments you can use with new are defined by the class itself by using a
special method called a constructor; you’ll learn about how to create constructors in your own
classes later on this week.

!! Caution: Some classes may not enable you to create instances without any argu-
ments. Check the class to make sure.

For example, take the Date class, which creates date objects. Listing 4.1 is a Java program that
shows three different ways of creating a Date object using new:

Listing 4.1. Laura’s Date program.
 1: import java.util.Date;
 2:
 3: class CreateDates {
 4:
 5: public static void main (String args[]) {
 6: Date d1, d2, d3;
 7:
 8: d1 = new Date();
 9: System.out.println(“Date 1: “ + d1);
10:
11: d2 = new Date(71, 7, 1, 7, 30);
12: System.out.println(“Date 2: “ + d2);
13:
14: d3 = new Date(“April 3 1993 3:24 PM”);
15: System.out.println(“Date 3: “ + d3);
16: }
17: }

Date 1: Sun Nov 26 19:10:56 PST 1995
Date 2: Sun Aug 01 07:30:00 PDT 1971
Date 3: Sat Apr 03 15:24:00 PST 1993

Type

Output

030-4s CH04.i 1/29/96, 8:46 PM63

64

Working with Objects
M

T W
R

F S S

DAYDAY

4

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

In this example, three different dates are created by using different arguments to new. The
first instance (line 8) uses new with no arguments, which creates a Date object for today’s
date (as the first line of the output shows).

The second Date object you create in this example has five integer arguments. The arguments
represent a date: year, month, day, hours, and seconds. And, as the output shows, this creates
a Date object for that particular date: Sunday, August first, 1971, at 7:30 AM.

The third version of Date takes one argument, a string, representing the date as a text string.
When the Date object is created, that string is parsed, and a Date object with that date and time
is created (see the third line of output). The date string can take many different formats; see the
API documentation for the Date class (part of the java.util package) for information about
what strings you can use.

What new Does
What does new do? When you use the new operator, several things happen: first, the new instance
of the given class is created, and memory is allocated for it. In addition (and most importantly),
when the new object is created, a special method defined in the given class is called. This special
method is called a constructor.

Constructors are special methods for creating and initializing new instances of classes.
Constructors initialize the new object and its variables, create any other objects that object

needs, and generally perform any other operations the object needs to run.

Multiple constructor definitions in a class can each have a different number or type of
arguments—then, when you use new, you can specify different arguments in the argument list,
and the right constructor for those arguments will be called. That’s how each of those different
versions of new that were listed previously can create different things.

When you create your own classes, you can define as many constructors as you need to
implement that class’s behavior. You’ll learn how to create constructors on Day 7.

A Note on Memory Management
Memory management in Java is dynamic and automatic. When you create a new object in Java,
Java automatically allocates the right amount of memory for that object in the heap. You don’t
have to allocate any memory for any objects explicitly; Java does it for you.

What happens when you’re finished with that object? How do you de-allocate the memory that
object uses? The answer is again: memory management is automatic. Once you finish with an
object, that object no longer has any live references to it (it won’t be assigned to any variables
you’re still using or stored in any arrays). Java has a garbage collector that looks for unused objects

Analysis

NEW
TERM

☛

030-4s CH04.i 1/29/96, 8:46 PM64

65

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

4

and reclaims the memory that those objects are using. You don’t have to do any explicit freeing
of memory; you just have to make sure you’re not still holding onto an object you want to get
rid of. You’ll learn more specific details about the Java garbage collector and how it works on
Day 21.

Accessing and Setting Class and
Instance Variables

Now you have your very own object, and that object may have class or instance variables defined
in it. How do you work with those variables? Easy! Class and instance variables behave in exactly
the same ways as the local variables you learned about yesterday; you just refer to them slightly
differently than you do regular variables in your code.

Getting Values
To get at the value to an instance variable, you use dot notation.

With dot notation, an instance or class variable name has two parts: the object on the left
side of the dot, and the variable on the right side of the dot.

For example, if you have an object assigned to the variable myObject, and that object has a variable
called var, you refer to that variable’s value like this:

myObject.var;

This form for accessing variables is an expression (it returns a value), and both sides of the dot
are also expressions. This means that you can nest instance variable access. If that var instance
variable itself holds an object, and that object has its own instance variable called state, you can
refer to it like this:

myObject.var.state;

Dot expressions are evaluated left to right, so you start with myObject’s variable var, which points
to another object with the variable state. You end up with the value of that state variable.

Changing Values
Assigning a value to that variable is equally easy—just tack an assignment operator on the right
side of the expression:

myObject.var.state = true;

NEW
TERM

☛

030-4s CH04.i 1/29/96, 8:46 PM65

66

Working with Objects
M

T W
R

F S S

DAYDAY

4

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

Listing 4.2 is an example of a program that tests and modifies the instance variables in a Point
object. Point is part of the java.awt package and refers to a coordinate point with an x and a y
value.

Listing 4.2. The TestPoint Class.
 1: import java.awt.Point;
 2:
 3: class TestPoint {
 4:
 5: public static void main (String args[]) {
 6: Point thePoint = new Point(10,10);
 7:
 8: System.out.println(“X is “ + thePoint.x);
 9: System.out.println(“Y is “ + thePoint.y);
10:
11: System.out.println(“Setting X to 5.”);
12: thePoint.x = 5;
13: System.out.println(“Setting y to 15.”);
14: thePoint.y = 15;
15:
16: System.out.println(“X is “ + thePoint.x);
17: System.out.println(“Y is “ + thePoint.y);
18:
19: }
20: }

X is 10
Y is 10
Setting X to 5.
Setting y to 15.
X is 5
Y is 15

In this example, you first create an instance of Point where X and Y are both 10 (line 6). Lines
8 and 9 print out those individual values, and you can see dot notation at work there. Lines
11 through 14 change the values of those variables to 5 and 15, respectively. Finally, lines

16 and 17 print out the values of X and Y again to show how they’ve changed.

Class Variables
Class variables, as you learned before, are variables that are defined and stored in the class itself.
Their values, therefore, apply to the class and to all its instances.

With instance variables, each new instance of the class gets a new copy of the instance variables
that class defines. Each instance can then change the values of those instance variables without
affecting any other instances. With class variables, there is only one copy of that variable. Every
instance of the class has access to that variable, but there is only one value. Changing the value
of that variable changes it for all the instances of that class.

Type

Output

Analysis

030-4s CH04.i 1/29/96, 8:46 PM66

67

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

4

You define class variables by including the static keyword before the variable itself. You’ll learn
more about this on Day 6. For example, take the following partial class definition:

class FamilyMember {
 static String surname = “Johnson”;
 String name;
 int age;
 ...
}

Instances of the class FamilyMember each have their own values for name and age. But the class
variable surname has only one value for all family members. Change surname, and all the instances
of FamilyMember are affected.

To access class variables, you use the same dot notation as you do with instance variables. To
get or change the value of the class variable, you can use either the instance or the name of the
class on the left side of the dot. Both the lines of output in this example print the same value):

FamilyMember dad = new FamilyMember()
System.out.println(“Family’s surname is: “ + dad.surname);
System.out.println(“Family’s surname is: “ + FamilyMember.surname);

Because you can use an instance to change the value of a class variable, it’s easy to become
confused about class variables and where their values are coming from (remember, the value of
a class variable affects all the instances). For this reason, it’s a good idea to use the name of the
class when you refer to a class variable—it makes your code easier to read and strange results
easier to debug.

Calling Methods
Calling a method in objects is similar to referring to its instance variables: method calls also use
dot notation. The object whose method you’re calling is on the left side of the dot; the name
of the method and its arguments is on the right side of the dot:

myObject.methodOne(arg1, arg2, arg3);

Note that all methods must have parentheses after them, even if that method takes no arguments:

myObject.methodNoArgs();

If the method you’ve called results in an object that itself has methods, you can nest methods
as you would variables:

myObject.getClass().getName();

You can combine nested method calls and instance variable references as well:

myObject.var.methodTwo(arg1, arg2);

030-4s CH04.i 1/29/96, 8:47 PM67

68

Working with Objects
M

T W
R

F S S

DAYDAY

4

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

System.out.println(), the method you’ve been using all through the book this far, is a great
example of nesting variables and methods. The System class (part of the java.lang package)
describes system-specific behavior. System.out is a class variable that contains an instance of the
class PrintStream that points to the standard output of the system. PrintStream instances have
a println() method that prints a string to that output stream.

Listing 4.3 shows an example of calling some methods defined in the String class. Strings
include methods for string tests and modification, similar to what you would expect in a string
library in other languages.

Listing 4.3. Several Uses of String methods.
 1: class TestString {
 2:
 3: public static void main (String args[]) {
 4: String str = “Now is the winter of our discontent”;
 5:
 6: System.out.println(“The string is: “ + str);
 7: System.out.println(“Length of this string: “
 8: + str.length());
 9: System.out.println(“The character at position 5: “
10: + str.charAt(5));
11: System.out.println(“The substring from 11 to 18: “
12: + str.substring(11, 18));
13: System.out.println(“The index of the character d: “
14: + str.indexOf(‘d’));
15: System.out.print(“The index of the beginning of the “);
16: System.out.println(“substring \”winter\”:”
17: + str.indexOf(“winter”));
18: System.out.println(“The string in upper case: “
19: + str.toUpperCase());
20: }
21: }

The string is: Now is the winter of our discontent
Length of this string: 35
The character at position 5: s
The substring from positions 11 to 18: winter
The index of the character d: 25
The index of the beginning of the substring “winter”: 11
The string in upper case: NOW IS THE WINTER OF OUR DISCONTENT

In line 4, you create a new instance of String by using a string literal (it’s easier that way
than using new and then putting the characters in individually). The remainder of the
program simply calls different string methods to do different operations on that string:

■■ Line 6 prints the value of the string we created in line 4: “Now is the winter of our
discontent”.

Type

Output

Analysis

030-4s CH04.i 1/29/96, 8:47 PM68

69

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

4

■■ Line 7 calls the length() method in the new String object. This string has 35 charac-
ters.

■■ Line 9 calls the charAt() method, which returns the character at the given position in
the string. Note that string positions start at 0, so the character at position 5 is s.

■■ Line 11 calls the substring() method, which takes two integers indicating a range and
returns the substring at those starting and ending points. The substring() method
can also be called with only one argument, which returns the substring from that
position to the end of the string.

■■ Line 13 calls the indexOf() method, which returns the position of the first instance of
the given character (here, ‘d’).

■■ Line 15 shows a different use of the indexOf() method, which takes a string argument
and returns the index of the beginning of that string.

■■ Finally, line 18 uses the toUpperCase() method to return a copy of the string in all
uppercase.

Class Methods
Class methods, like class variables, apply to the class as a whole and not to its instances. Class
methods are commonly used for general utility methods that may not operate directly on an
instance of that class, but fit with that class conceptually. For example, the String class contains
a class method called valueOf(), which can take one of many different types of arguments
(integers, booleans, other objects, and so on). The valueOf() method then returns a new
instance of String containing the string value of the argument it was given. This method doesn’t
operate directly on an existing instance of String, but getting a string from another object or data
type is definitely a String-like operation, and it makes sense to define it in the String class.

Class methods can also be useful for gathering general methods together in one place (the class).
For example, the Math class, defined in the java.lang package, contains a large set of
mathematical operations as class methods—there are no instances of the class Math, but you can
still use its methods with numeric or boolean arguments.

To call a class method, use dot notation as you do with instance methods. As with class variables,
you can use either an instance of the class or the class itself on the left site of the dot. However,
for the same reasons noted in the discussion on class variables, using the name of the class for
class variables makes your code easier to read. The last two lines in this example produce the same
result:

String s, s2;
s = “foo”;
s2 = s.valueOf(5);
s2 = String.valueOf(5);

030-4s CH04.i 1/29/96, 8:47 PM69

70

Working with Objects
M

T W
R

F S S

DAYDAY

4

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

References to Objects
As you work with objects, one important thing going on behind the scenes is the use of references
to those objects. When you assign objects to variables, or pass objects as arguments to methods,
you are passing references to those objects, not the objects themselves or copies of those objects.

An example should make this clearer. Examine the following snippet of code:

import java.awt.Point;

class ReferencesTest {

 public static void main (String args[]) {
 Point pt1, pt2;
 pt1 = new Point(100, 100);
 pt2 = pt1;

 pt1.x = 200;
 pt1.y = 200;
 System.out.println(“Point1: “ + pt1.x + “, “ + pt1.y);
 System.out.println(“Point2: “ + pt2.x + “, “ + pt2.y);
 }
}

In this program, you declare two variables of type Point, and assign a new Point object to pt1.
Then you assign the value of pt1 to pt2.

Now, here’s the challenge. After changing pt1’s x and y instance variables, what will pt2 look
like?

Here’s the output of that program:

Point1: 200, 200
Point2: 200, 200

As you can see, pt2 was also changed. When you assign the value of pt1 to pt2, you actually
create a reference from p2 to the same object to which pt1 refers. Change the object that
pt2 refers to, and you also change the object that pt1 points to, because both are references

to the same object.

Output
Analysis

Figure 4.1.
References. x: 200

y: 200

Point objectpt1

pt2

The fact that Java uses references becomes particularly important when you pass arguments to
methods. You’ll learn more about this later on today, but keep these references in mind.

030-4s CH04.i 1/29/96, 8:47 PM70

71

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

4

Technical Note: There are no explicit pointers or pointer arithmetic in Java—just
references. However, because of Java references, you have most of the capabilities
that you have with pointers without the confusion and lurking bugs that explicit
pointers can create.

Casting and Converting Objects and
Primitive Types

Sometimes in your Java programs you may have a value stored somewhere that is the wrong type.
Maybe it’s an instance of the wrong class, or perhaps it’s a float and you want it to be an int,
or it’s an integer and you want it to be a string. To convert the value of one type to another, you
use a mechanism called casting.

Casting is a mechanism of converting the value of an object or primitive type into another
type. The result of a cast is a new object or value; casting does not affect the original object

or value.

Although the concept of casting is a simple one, the rules for what types in Java can be converted
to what other types are complicated by the fact that Java has both primitive types (int, float,
boolean), and object types (String, Point, Window, and so on). Because of these three types, there
are three forms of casts and conversions to talk about in this section:

■■ Casting between primitive types: int to float to boolean

■■ Casting between object types: an instance of a class to an instance of another class

■■ Converting primitive types to objects and then extracting primitive values back out of
those objects

 Casting Primitive Types
Casting between primitive types enables you to “convert” the value of one type to another
primitive type—for example, to assign a number of one type to a variable of another type.
Casting between primitive types most commonly occurs with the numeric types; boolean values
cannot be cast to any other primitive type. You can, however, cast 1 or 0 to boolean values.

Often, if the type you are casting to is “larger” than the type of the value you’re converting, you
may not have to use an explicit cast. You can often automatically treat a byte or a character as
an int, for example, or an int as a long, an int as a float, or anything as a double automatically.
In this case, because the larger type provides more precision than the smaller, no loss of
information occurs when the value is cast.

NEW
TERM

☛

030-4s CH04.i 1/29/96, 8:47 PM71

72

Working with Objects
M

T W
R

F S S

DAYDAY

4

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

To convert a large value to smaller type, you must use an explicit cast, because converting that
value may result in a loss of precision. Explicit casts look like this:

(typename) value

In this form, typename is the name of the type you’re converting to (for example: short, int,
float, boolean), and value is an expression that results in the value you want to convert. This
expression divides the values of x by the value of y and casts the result to an int:

(int) (x / y);

Note that because the precedence of casting is higher than that of arithmetic, you have to use
parentheses so that the result of the division is what gets cast to an int.

 Casting Objects
Instances of classes can also be cast to instances of other classes, with one restriction: the class
of the object you’re casting and the class you’re casting it to must be related by inheritance; that
is, you can cast an object only to an instance of its class’s sub- or superclass—not to any random
class.

Analogous to converting a primitive value to a larger type, some objects may not need to be cast
explicitly. In particular, because instances’ subclasses usually contain all the information that
instances’ superclasses do, you can use an instance of a subclass anywhere a superclass is expected.
Suppose you have a method that takes two arguments: one of type Object, and one of type
Number. You don’t have to pass instances of those particular classes to that method. For the Object
argument, you can pass any subclass of Object (any object, in other words), and for the Number
argument you can pass in any instance of any subclass of Number (Integer, Boolean, Float, and
so on).

Casting an object to an instance of one of that object’s superclasses loses the information the
original subclass provided and requires a specific cast. To cast an object to another class, you use
the same casting operation that you used for base types:

(classname) object

In this case, classname is the name of the class you want to cast the object to, and object is a
reference to the object you’re casting. Note that casting creates a new instance of the new class
with all the information that the old object contained; the old object still continues to exist as
it did before.

Here’s a (fictitious) example of a cast of an instance of the class GreenApple to an instance of the
class Apple (where GreenApple is theoretically a subclass of Apple):

GreenApple a;
Apple a2;

030-4s CH04.i 1/29/96, 8:48 PM72

73

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

4

a = new GreenApple();
a2 = (Apple) a;

In addition to casting objects to classes, you can also cast objects to interfaces—but only if that
object’s class or one of its superclasses actually implements that interface. Casting an object to
an interface then enables you to call one of that interface’s methods even if that object’s class does
not directly implement that interface. You’ll learn more about interfaces in Week 3.

Converting Primitive Types
to Objects and Vice Versa

Now you know how to cast a primitive type to another primitive type and how to cast between
classes. How can you cast one to the other?

You can’t! Primitive types and objects are very different things in Java and you can’t
automatically cast or convert between the two. However, the java.lang package includes several
special classes that correspond to each primitive data type: Integer for ints, Float for floats,
Boolean for booleans, and so on.

Using class methods defined in these classes, you can create an object-equivalent for all the
primitive types using new. The following line of code creates an instance of the Integer class with
the value 35:

Integer intObject = new Integer(35);

Once you have actual objects, you can treat those values as objects. Then, when you want the
primitive values back again, there are methods for that as well—for example, the intValue()
method extracts an int primitive value from an Integer object:

int theInt = intObject.intValue(); // returns 35

See the Java API documentation for these special classes for specifics on the methods for
converting primitives to and from objects.

Odds and Ends
This section is a catchall for other information about working with objects, in particular:

■■ Comparing objects

■■ Copying objects

■■ Finding out the class of any given object

■■ Testing to see whether an object is an instance of a given class

030-4s CH04.i 1/29/96, 8:48 PM73

74

Working with Objects
M

T W
R

F S S

DAYDAY

4

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

Comparing Objects
Yesterday, you learned about operators for comparing values: equals, not equals, less than, and
so on. Most of these operators work only on primitive types, not on objects. If you try to use other
values as operands, the Java compiler produces errors.

The exception to this rule is with the operators for equality: == (equal) and != (not equal). These
operators, when used with objects, tests whether the two operands refer to exactly the same
object.

What should you do if you want to be able to compare instances of your class and have
meaningful results? You have to implement special methods in your class, and you have to call
those methods using those method names.

Technical Note: Java does not have the concept of operator overloading—that is,
the capability of defining the behavior of the built-in operators by defining meth-
ods in your own classes. The built-in operators remain defined only for numbers.

A good example of this is the String class. It is possible to have two strings, two independent
objects in memory with the same values—that is, the same characters in the same order.
According to the == operator, however, those two String objects will not be equal, because,
although their contents are the same, they are not the same object.

The String class, therefore, defines a method called equals() that tests each character in the
string and returns true if the two strings have the same values. Listing 4.4 illustrates this.

Listing 4.4. A Test of String Equality.
 1: class EqualsTest {
 2:
 3: public static void main (String args[]) {
 4: String str1, str2;
 5: str1 = “she sells sea shells by the sea shore.”;
 6: str2 = str1;
 7:
 8: System.out.println(“String1: “ + str1);
 9: System.out.println(“String2: “ + str2);
10: System.out.println(“Same object? “ + (str1 == str2));
11:
12: str2 = new String(str1);
13:
14: System.out.println(“String1: “ + str1);
15: System.out.println(“String2: “ + str2);
16: System.out.println(“Same object? “ + (str1 == str2));
17: System.out.println(“Same value? “ + str1.equals(str2));
18: }
19: }

Type

030-4s CH04.i 1/29/96, 8:48 PM74

75

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

4

String1: she sells sea shells by the sea shore.
String2: she sells sea shells by the sea shore.
Same object? true
String1: she sells sea shells by the sea shore.
String2: she sells sea shells by the sea shore.
Same object? false
Same value? true

The first part of this program (lines 4 through 6) declares two variables, str1 and str2,
assigns the literal she sells sea shells by the sea shore. to str1, and then assigns that
value to str2. As you know from object references, now str1 and str2 point to the same

object, and the test at line 10 proves that.

In the second part, you create a new string object with the value of str1. Now you have two
different string objects with the same value. Testing them to see whether they’re the same object
by using the == operator (line 16) returns the expected answer, as does testing them using the
equals method (line 17) to compare their values.

Technical Note: Why can’t you just use another literal when you change str2,
rather than using new? String literals are optimized in Java—if you create a string
using a literal, and then use another literal with the same characters, Java knows
enough merely to give you the first String object back. Both strings are the same
objects—to create two separate objects you have to go out of your way.

Copying Objects
Recall from the section on object references that assigning variables and passing objects as
arguments to methods affect only the object’s reference and doesn’t create copies of those
objects. How do you create copies of objects? There are two ways: the copy() method and the
clone() method.

The copy() method (defined in Object, and so available to all objects), takes a single argument—
another instance of the same class—and copies the values of all the argument’s instance variables
into the instance variables of the current object (the one in which you’re calling the method).
Note that if those instance variables in turn hold references to objects, only the references are
copied, not the objects.

Point pt1, pt2, pt3;
pt1 = new Point(0,0);
pt2 = new Point(100,100);

pt2.copy(pt1); // pt1’s values are copied into pt2; both now are (0,0).

Output

Analysis

030-4s CH04.i 1/29/96, 8:48 PM75

76

Working with Objects
M

T W
R

F S S

DAYDAY

4

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

The clone() method is similar to copy(), except that clone() takes no arguments. The clone()
method creates a new instance of the same class as the source object and then copies the values
of the instance variables (either primitive types or references to other objects). clone() returns
an instance of the class Object; to use it as an instance of the original class you have to cast it.
Here’s an example that clones the Point object in pt2 and stores the result in pt3:

pt3 = (Point) pt2.clone();

Determining the Class of an Object
Want to find out the class of an object? Here’s the way to do it for an object assigned to the
variable obj:

String name = obj.getClass().getName();

What does this do? The getClass() method is defined in the Object class, and as such is available
for all objects. The result of that method is a Class object (where Class is itself a class), which
has a method called getName(). getName() returns a string representing the name of the class.

Another test that might be useful to you is the instanceof operator. instanceof has two
operands: an object on the left, and the name of a class on the right. The expression returns true
or false based on whether the object is an instance of the named class or any of that class’s
superclasses:

“foo” instanceof String // true
Point pt = new Point(10,10);
pt instanceof String // false

The instanceof operator can also be used for interfaces; if an object implements an interface,
the instanceof operator with an interface name on the right side returns true. You’ll learn all
about interfaces in Week 3.

The Java Class Libraries
To finish up today, let’s look at the some of the Java class libraries. Actually, you’ve had some
experience with them already, so they shouldn’t seem that strange.

The Java class libraries provide the set of classes that are guaranteed to be available in any
commercial Java environment (for example, in HotJava or in Netscape 2.0). Those classes are
in the java package and include all the classes you’ve seen so far in this book, plus a whole lot
more classes you’ll learn about later on in this book (and more you may not learn about at all).

The Java Developer’s Kit comes with documentation for all the Java class libraries, which
includes descriptions of each class’s instance variables, methods, constructors, interfaces, and so
on. A shorter summary of the Java API is in Appendix B as well. Exploring the Java class libraries

030-4s CH04.i 1/29/96, 8:48 PM76

77

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

4

and their methods and instance variables is a great way to figure out what Java can and cannot
do, as well as a starting point for your own development.

Here are the class packages that are part of the Java class libraries:

■■ java.lang: Classes that apply to the language itself, which includes the Object class,
the String class, and the System class. It also contains the special classes for the
primitive types (Integer, Character, Float, and so on).

■■ java.util: Utility classes, such as Date, as well as simple collection classes, such as
Vector and Hashtable.

■■ java.io: Input and output classes for writing to and reading from streams (such as
standard input and output) and for handling files.

■■ java.net: Classes for networking support, including Socket and URL (a class to
represent references to documents on the World Wide Web).

■■ java.awt: (the Abstract Window Toolkit): Classes to implement a graphical user
interface, including classes for Window, Menu, Button, Font, CheckBox, and so on. This
package also includes classes for processing images (the java.awt.Image package).

■■ java.applet: Classes to implement Java applets, including the Applet class itself, as
well as the AudioClip class.

In addition to the Java classes, your development environment may also include additional
classes that provide other utilities or functionality. Although these classes may be useful, because
they are not part of the standard Java library, they won’t be available to other people trying to
run your Java program. This is particularly important for applets, because applets are expected
to be able to run on any platform, using any Java-aware browser. Only classes inside the java
package are guaranteed to be available on all browsers and Java environments.

Summary
Objects, objects everywhere. Today, you learned all about how to deal with objects: how to
create them, how to find out and change the values of their variables, and how to call their
methods. You also learned how to copy and compare them, and how to convert them into other
objects. Finally, you learned a bit about the Java class libraries—which give you a whole slew of
classes to play with in your own programs.

You now have the fundamentals of how to deal with most simple things in the Java language.
All you have left are arrays, conditionals, and loops, which you’ll learn about tomorrow. Then
you’ll learn how to define and use classes in Java applications on Day 6, and launch directly into
applets next week. With just about everything you do in your Java programs, you’ll always come
back to objects.

030-4s CH04.i 1/29/96, 8:49 PM77

78

Working with Objects
M

T W
R

F S S

DAYDAY

4

P2/V4/sqc4 TY Java in 21 Days 030-4 Josette 12.21.95 Ch04 LP#4

Q&A
Q I’m confused about the differences between objects and the primitive data types,

such as int and boolean.

A The primitive types in the language (byte, short, int, long, float, double, and char)
represent the smallest things in the language. They are not objects, although in many
ways they can be handled like objects—they can be assigned to variables and passed in
and out of methods. Most of the operations that work exclusively on objects, however,
will not.

Objects usually represent instances of classes and as such, are much more complex
data types than simple numbers and characters, often containing numbers and
characters as instance or class variables.

Q In the section on calling methods, you had examples of calling a method with a
different number of arguments each time—and it gave a different kind of result.
How is that possible?

A That’s called method overloading. Overloading enables the same function name to have
different behavior based on the arguments it’s called with—and the number and type
of arguments can vary. When you define methods in your own classes, you define
separate method signatures with different sets or arguments and different definitions.
When that method is called, Java figures out which definition to execute based on the
number and type of arguments with which you called it.

You’ll learn all about this on Day 6.

Q No operator overloading in Java? Why not? I thought Java was based on C++,
and C++ has operator overloading.

A Java was indeed based on C++, but it was also designed to be simple, so many of
C++’s features have been removed. The argument against operator overloading is that
because the operator can be defined to mean anything, it makes it very difficult to
figure out what any given operator is doing at any one time. This can result in entirely
unreadable code. Given the potential for abuse, the designers of Java felt it was one of
the C++ features that was best left out.

030-4s CH04.i 1/29/96, 8:49 PM78

79

5

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

M
T W

R
F S S

Arrays,
Conditionals,
and Loops

by Laura Lemay

5
WEEK

1

5

030-4s CH05.i 1/29/96, 9:02 PM79

80

Arrays, Conditionals, and Loops
M

T W
R

F S S

DAYDAY

5

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

Although you could write Java programs using what you’ve learned so far, those programs would
be pretty dull. Much of the good stuff in Java or in any programming language results when you
have arrays to store values in and control-flow constructs (loops and conditionals) to execute
different bits of a program based on tests. Today, you’ll find out about the following:

■■ Arrays, one of the most useful objects in Java, which enable you to collect objects into
an easy-to-manage list

■■ Block statements, for grouping together related statements

■■ if and switch, for conditional tests

■■ for and while loops, for iteration or repeating a statement or statements multiple
times

Arrays
Arrays in Java are different than they are in other languages. Arrays in Java are actual objects that
can be passed around and treated just like other objects.

Arrays are a way to store a list of items. Each element of the array holds an individual item,
and you can place items into and remove items from those slots as you need to.

Arrays can contain any type of value (base types or objects), but you can’t store different types
in a single array. You can have an array of integers, or an array of strings, or an array of arrays,
but you can’t have an array that contains, for example, both strings and integers.

To create an array in Java, you use three steps:

1. Declare a variable to hold the array.

2. Create a new array object and assign it to the array variable.

3. Store things in that array.

Declaring Array Variables
The first step to creating an array is creating a variable that will hold the array, just as you would
any other variable. Array variables indicate the type of object the array will hold (just as they do
for any variable) and the name of the array, followed by empty brackets ([]). The following are
all typical array variable declarations:

String difficultWords[];

Point hits[];

int temps[];

NEW
TERM

☛

030-4s CH05.i 1/29/96, 9:02 PM80

81

5

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

An alternate method of defining an array variable is to put the brackets after the type instead of
after the variable. They are equivalent, but this latter form is often much more readable. So, for
example, these three declarations could be written like this:

String[] difficultWords;

Point[] hits;

int[] temps;

Creating Array Objects
The second step is to create an array object and assign it to that variable. There are two ways to
do this:

■■ Using new

■■ Directly initializing the contents of that array

The first way is to use the new operator to create a new instance of an array:

String[] names = new String[10];

That line creates a new array of Strings with ten slots, or elements. When you create the new array
object using new, you must indicate how many elements that array will hold.

Array objects can contain primitive types such as integers or booleans, just as they can contain
objects:

int[] temps = new int[99];

When you create an array object using new, all its elements are initialized for you (0 for numeric
arrays, false for boolean, ‘\0’ for character arrays, and null for everything else). You can also
create and initialize an array at the same time. Instead of using new to create the new array object,
enclose the elements of the array inside braces, separated by commas:

String[] chiles = { “jalapeno”, “anaheim”, “serrano,”
 “habanero,” “thai” };

Each of the elements inside the braces must be of the same type and must be the same type as
the variable that holds that array. An array the size of the number of elements you’ve included
will be automatically created for you. This example creates an array of String objects named
chiles that contains five elements.

Accessing Array Elements
Once you have an array with initial values, you can test and change the values in each slot of that
array. To get at a value stored within an array, use the array subscript expression:

myArray[subscript];

030-4s CH05.i 1/29/96, 9:02 PM81

82

Arrays, Conditionals, and Loops
M

T W
R

F S S

DAYDAY

5

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

The myArray part of this expression is a variable holding an array object, although it can also be
an expression that results in an array). The subscript is the slot within the array to access, which
can also be an expression. Array subscripts start with 0, as they do in C and C++. So, an array
with ten elements has array values from subscript 0 to 9.

Note that all array subscripts are checked to make sure that they are inside the boundaries of the
array (greater than 0 but less than the array’s length) either when your Java program is compiled
or when it is run. It is impossible in Java to access or assign a value to an array element outside
of the boundaries of the array. Note the following two statements, for example:

String arr[] = new String[10];
arr[10] = “eggplant”;

A program with that last statement in it produces a compiler error at that line when you try to
compile it. The array stored in arr has only ten elements numbered from 0, the element at
subscript 10 doesn’t exist, and the Java compiler will check for that.

If the array subscript is calculated at run-time (for example, as part of a loop) and ends up outside
the boundaries of the array, the Java interpreter also produces an error (actually, to be technically
correct, it throws an exception). You’ll learn more about exceptions later on next week and on
Day 18.

How can you keep from overrunning the end of an array accidentally in your own programs?
You can test for the length of the array in your programs using the length instance variable—
it’s available for all array objects, regardless of type:

int len = arr.length // returns 10

Changing Array Elements
To assign a value to a particular array slot, merely put an assignment statement after the array
access expression:

myarray[1] = 15;
sentence[0] = “The”;
sentence[10] = sentence[0];

An important thing to note is that an array of objects in Java is an array of references to those
objects (similar in some ways to an array of pointers in C or C++). When you assign a value to
a slot in an array, you’re creating a reference to that object, just as you do for a plain variable.
When you move values around inside arrays (as in that last line), you just reassign the reference;
you don’t copy the value from one slot to another. Arrays of primitive types such as ints or floats
do copy the values from one slot to another.

Arrays of references to objects, as opposed to the objects themselves, are particularly useful
because it means you can have multiple references to the same objects both inside and outside
arrays—for example, you can assign an object contained in an array to a variable and refer to that
same object by using either the variable or the array position.

030-4s CH05.i 1/29/96, 9:03 PM82

83

5

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

Multidimensional Arrays
Java does not support multidimensional arrays. However, you can declare and create an array
of arrays (and those arrays can contain arrays, and so on, for however many dimensions you
need), and access them as you would C-style multidimensional arrays:

int coords[][] = new int[12][12];
coords[0][0] = 1;
coords[0][1] = 2;

Block Statements
A block statement is a group of other statements surrounded by braces ({}). You can use a block
anywhere a single statement would go, and the new block creates a new local scope for the
statements inside it. This means that you can declare and use local variables inside a block, and
those variables will cease to exist after the block is finished executing. For example, here’s a block
inside a method definition that declares a new variable y. You cannot use y outside the block in
which it’s declared:

void testblock() {
 int x = 10;
 { // start of block
 int y = 50;
 System.out.println(“inside the block:”);
 System.out.println(“x:” + x);
 System.out.println(“y:” + y);
 } // end of block
}

Blocks are not usually used in this way—alone in a method definition. You’ve mostly seen blocks
up to this point surrounding class and method definitions, but another very common use of
block statements is in the control flow constructs you’ll learn about in the remainder of today’s
lesson.

if Conditionals
The if conditional, which enables you to execute different bits of code based on a simple test
in Java, is nearly identical to if statements in C. if conditionals contain the keyword if,
followed by a boolean test, followed by a statement (often a block statement) to execute if the
test is true:

if (x < y)
 System.out.println(“x is smaller than y”);

An optional else keyword provides the statement to execute if the test is false:

if (x < y)
 System.out.println(“x is smaller than y”);
else System.out.println(“y is bigger.”);

030-4s CH05.i 1/29/96, 9:03 PM83

84

Arrays, Conditionals, and Loops
M

T W
R

F S S

DAYDAY

5

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

Technical Note: The difference between if conditionals in Java and C or C++ is
that the test must return a boolean value (true or false). Unlike in C, the test
cannot return an integer.

if (engineState == true)
 System.out.println(“Engine is already on.”);
else {
 System.out.println(“Now starting Engine”);
 if (gasLevel >= 1)
 engineState = true;
 else System.out.println(“Low on gas! Can’t start engine.”);
}

This example uses the test (engineState == false). For boolean tests of this type, a common
shortcut is merely to include the first part of the expression, rather than explicitly testing its value
against true or false:

if (engineState)
 System.out.println(“Engine is on.”);
else System.out.println(“Engine is off”);

The Conditional Operator
An alternative to using the if and else keywords in a conditional statement is to use the
conditional operator, sometimes called the ternary operator.

A conditional operator is a ternary operator because it has three terms.

The conditional operator is an expression, meaning that it returns a value (unlike the more
general if, which can result in any statement or block being executed). The conditional operator
is most useful for very short or simple conditionals, and looks like this:

test ? trueresult : falseresult

The test is an expression that returns true or false, just like the test in the if statement. If the
test is true, the conditional operator returns the value of trueresult; if it’s false, it returns the
value of falseresult. For example, the following conditional tests the values of x and y, returns
the smaller of the two, and assigns that value to the variable smaller:

int smaller = x < y ? x : y;

The conditional operator has a very low precedence; that is, it’s usually evaluated only after all
its subexpressions are evaluated. The only operators lower in precedence are the assignment
operators. See the precedence chart in Day 3’s lesson for a refresher on precedence of all the
operators.

NEW
TERM

☛

030-4s CH05.i 1/29/96, 9:03 PM84

85

5

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

switch Conditionals
A common practice in programming in any language is to test a variable against some value, and
if it doesn’t match that value, to test it again against a different value, and if it doesn’t match that
one to make yet another test, and so on. Using only if statements, this can become unwieldy,
depending on how it’s formatted and how many different options you have to test. For example,
you might end up with a set of if statements something like this or longer:

if (oper == ‘+’)
 addargs(arg1,arg2);
else if (oper == ‘=’)
 subargs(arg1,arg2);
else if (oper == ‘*’)
 multargs(arg1,arg2);
else if (oper == ‘/’)
 divargs(arg1,arg2);

This form of if statement is called a nested if, because each else statement in turn contains yet
another if, and so on, until all possible tests have been made.

A common shorthand mechanism for nested ifs that you can use in some cases allows you tests
and actions together in a single statement. This is the switch or case statement; in Java it’s switch
and behaves as it does in C:

switch (test) {
 case valueOne:
 resultOne;
 break;
 case valueTwo:
 resultTwo;
 break;
 case valueThree:
 resultThree;
 break;
 ...
 default: defaultresult;
}

In the switch statement, the test (a primitive type of byte, char, short, or int) is compared with
each of the case values in turn. If a match is found, the statement, or statements after the test
is executed. If no match is found, the default statement is executed. The default is optional,
so if there isn’t a match in any of the cases and default doesn’t exist, the switch statement
completes without doing anything.

Note that the significant limitation of the switch in Java is that the tests and values can be only
simple primitive types (and then only primitive types that are castable to int). You cannot use
larger primitive types (long, float) or objects within a switch, nor can you test for any
relationship other than equality. This limits the usefulness of switch to all but the simplest cases;
nested ifs can work for any kind of test on any type.

030-4s CH05.i 1/29/96, 9:03 PM85

86

Arrays, Conditionals, and Loops
M

T W
R

F S S

DAYDAY

5

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

Here’s a simple example of a switch statement similar to the nested if shown earlier:

switch (oper) {
 case ‘+’:
 addargs(arg1,arg2);
 break;
 case ‘*’:
 subargs(arg1,arg2);
 break;
 case ‘-’:
 multargs(arg1,arg2);
 break;
 case ‘/’:
 divargs(arg1,arg2);
 break;
 }

Note the break statement included in every line. Without the explicit break, once a match is
made, the statements for that match and also all the statements further down in the switch are
executed until a break or the end of the switch is found (and then execution continues after the
end of the switch). In some cases, this may be exactly what you want to do, but in most cases,
you’ll want to make sure to include the break so that only the statements you want to be executed
are executed.

One handy use of falling through occurs when you want multiple values to execute the same
statements. In this instance, you can use multiple case lines with no result, and the switch will
execute the first statements it finds. For example, in the following switch statement, the string
“x is an even number.” is printed if x has values of 2, 4, 6, or 8. All other values of x print the
string “x is an odd number.”

switch (x) {
 case 2:
 case 4:
 case 6:
 case 8:
 System.out.println(“x is an even number.”);
 break;
 default: System.out.println(“x is an odd number.”);
}

for Loops
The for loop, as in C, repeats a statement or block of statements some number of times until
a condition is matched. for loops are frequently used for simple iteration in which you repeat
a block of statements a certain number of times and then stop, but you can use for loops for just
about any kind of loop.

The for loop in Java looks roughly like this:

for (initialization; test; increment) {

030-4s CH05.i 1/29/96, 9:03 PM86

87

5

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

 statements;
}

The start of the for loop has three parts:

■■ initialization is an expression that initializes the start of the loop. If you have a loop
index, this expression might declare and initialize it, for example, int i = 0. Variables
that you declare in this part of the for loop are local to the loop itself; they cease
existing after the loop is finished executing. (This is different from C or C++.)

■■ test is the test that occurs after each pass of the loop. The test must be a boolean
expression or function that returns a boolean value, for example, i < 10. If the test is
true, the loop executes. Once the test is false, the loop stops executing.

■■ increment is any expression or function call. Commonly, the increment is used to
change the value of the loop index to bring the state of the loop closer to returning
false and completing.

The statement part of the for loop is the statement that is executed each time the loop iterates.
Just as with if, you can include either a single statement here or a block; the previous example
used a block because that is more common. Here’s an example of a for loop that initializes all
the values of a String array to null strings:

String strArray[] = new String[10];
int i; // loop index

for (i = 0; i < strArray.length; i++)
 strArray[i] = “”;

Any of the parts of the for loop can be empty statements, that is, you can simply include a
semicolon with no expression or statement, and that part of the for loop will be ignored. Note
that if you do use a null statement in your for loop, you may have to initialize or increment any
loop variables or loop indices yourself elsewhere in the program.

You can also have an empty statement for the body of your for loop, if everything you want to
do is in the first line of that loop. For example, here’s one that finds the first prime number higher
than 4000:

for (i = 4001; notPrime(i); i += 2)
 ;

Note that a common mistake in C that also occurs in Java is accidentally to put a semicolon after
the first line of the for loop:

for (i = 0; i < 10; i++);
 System.out.println(“Loop!”);

Because the first semicolon ends the loop with an empty statement, the loop doesn’t actually do
anything. The println function will be printed only once, because it’s actually outside the for
loop entirely. Be careful not to make this mistake in your own Java programs.

030-4s CH05.i 1/29/96, 9:03 PM87

88

Arrays, Conditionals, and Loops
M

T W
R

F S S

DAYDAY

5

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

while and do Loops
Finally, there are while and do loops. while and do loops, like for loops, enable a block of Java
code to be executed repeatedly until a specific condition is met. Whether you use a for loop, a
while, or a do is mostly a matter of your programming style.

while and do loops, like for, are exactly the same as those same constructions in C and C++.

while Loops
The while loop is used to repeat a statement or block of statements as long as a particular
condition is true. while loops look like this:

while (condition) {
 bodyOfLoop;
}

The condition is a boolean expression. If it returns true, the while loop executes the statements
in bodyOfLoop and then tests the condition again, repeating until the condition is false. I’ve
shown the while loop here with a block statement, because it’s most commonly used, although
you can use a single statement in place of the block.

Here’s an example of a while loop that copies the elements of an array of integers (in array1)
to an array of floats (in array2), casting each element to a float as it goes. The one catch is that
if any of the elements in the first array is 0, the loop will immediately exit at that point. To cover
both the cases wherein all the elements have been copied and an element is 0, you can use a
compound test with the && operator:

while ((ch != ‘ ‘) && (ch != ‘\t’) && (ch != ‘\n’) && (ch != ‘\r’)) {
 addChar(ch, theName);
 ch = instream.read();
}

Note that if the condition is initially false the first time it is tested (for example, if the first element
in that first array is 0), the body of the while loop will never be executed. If you need to execute
the loop at least once, you can do one of two things:

■■ Duplicate the body of the loop outside the while loop.

■■ Use a do loop (described below).

The do loop is considered the better solution of the two.

030-4s CH05.i 1/29/96, 9:04 PM88

89

5

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

do...while Loops
The do loop is just like a while loop, except that do executes a given statement or block until a
condition is false. The main difference is that while loops test the condition before looping,
making it possible that the body of the loop will never execute if the condition is false the first
time it’s tested. do loops run the body of the loop at least once before testing the condition. do
loops look like this:

do {
 bodyOfLoop;
} while (condition);

Here, the bodyOfLoop part is the statements that are executed with each iteration. It’s shown here
with a block statement because it’s most commonly used that way, but you can substitute the
braces for a single statement as you can with the other control-flow constructs. The condition
is a boolean test. If it returns true, the loop is run again. If it returns false, the loop exits. Keep
in mind that with do loops, the body of the loop executes at least once.

Here’s a simple example of a do loop that prints a message each time the loop iterates:

int x = 1;
do {
 System.out.println(“Looping, round “ + x);
 x++;
} while (x <= 10);

Here’s the output of these statements:

Looping, round 1
Looping, round 2
Looping, round 3
Looping, round 4
Looping, round 5
Looping, round 6
Looping, round 7
Looping, round 8
Looping, round 9
Looping, round 10

Breaking Out of Loops
In all the loops (for, while, and do), the loop ends when the condition you’re testing for is met.
What happens if something odd occurs within the body of the loop and you want to exit the loop
early? For that, you can use the break and continue keywords.

Output

030-4s CH05.i 1/29/96, 9:04 PM89

90

Arrays, Conditionals, and Loops
M

T W
R

F S S

DAYDAY

5

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

You’ve already seen break as part of the switch statement; it stops execution of the switch, and
the program continues. The break keyword, when used with a loop, does the same thing—it
immediately halts execution of the current loop. If you’ve nested loops within loops, execution
picks up in the next outer loop; otherwise, the program merely continues executing the next
statement after the loop.

For example, suppose you have a while loop that copies elements from one array into another.
Each element in the array should be copied until the end of the array is reached or if an element
contains 0. You can test for that latter case inside the body of the while and then use a break to
exit the loop:

while (count < array1.length) {
 if (array1[count] == 0) {
 break;
 }
 array2[count] = array1[count];
 count++;
 }
}

continue is similar to break except that instead of halting execution of the loop entirely, the loop
starts over at the next iteration. For do and while loops, this means the execution of the clock
starts over again; for for loops, the increment expression is evaluated and then block is executed.
continue is useful when you want to special-case elements within a loop. With the previous
example of copying one array to another, you can test for whether the current element is 0 and
restart the loop if you find it so that the resulting array will never contain zero. Note that because
you’re skipping elements in the first array, you now have to keep track of two different array
counters:

while (count < array1.length) {
 if (array1[count] == 0)
 continue;

 array2[count2++] = (float)array1[count++];
}

Labeled Loops
Both break and continue can have an optional label that tells Java where to break to. Without
a label, break jumps outside the nearest loop (to an enclosing loop or to the next statement
outside the loop), and continue restarts the enclosing loop. Using labeled breaks and continues
enables you to break outside nested loops or to continue a loop outside the current loop.

030-4s CH05.i 1/29/96, 9:04 PM90

91

5

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

To use a labeled loop, add the label before the initial part of the loop, with a colon between them.
Then, when you use break or continue, add the name of the label after the keyword itself:

out:
 for (int i = 0; i <10; i++) {
 while (x < 50) {
 if (i * x == 400)
 break out;
 ...
 }
 ...
 }

In this snippet of code, the label out labels the outer for loop. Then, inside both the for and the
while loop, if a particular condition is met inside both loops, a break causes the execution to
creak out of both loops and restart back at the label (out).

Here’s another example. the following program contains a nested for loop. Inside the innermost
loop, if the sum values of the two counters is greater than four, both loops exit at once:

foo:
 for (int i = 1; i <= 5; i++)
 for (int j = 1; j <= 3; j++) {
 System.out.println(“i is “ + i + “, j is “ + j);
 if ((i + j) > 4)
 break foo;
 }
System.out.println(“end of loops”);

Here’s the output from this program:

i is 1, j is 1
i is 1, j is 2
i is 1, j is 3
i is 2, j is 1
i is 2, j is 2
i is 2, j is 3
end of loops

As you can see, the loop iterated until the sum of i and j was greater than 4, and then both
loops exited back to the outer block and the final message was printed.

Summary
Today, you learned about three main topics that you’ll most likely use quite often in your own
Java programs: arrays, conditionals, and loops.

You learned how to declare an array variable, create and assign an array object to that variable,
and access and change elements within that array.

Analysis

Output

030-4s CH05.i 1/29/96, 9:04 PM91

92

Arrays, Conditionals, and Loops
M

T W
R

F S S

DAYDAY

5

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

Conditionals include the if and switch statements, with which you can branch to different parts
of your program based on a boolean test.

Finally, you learned about the for, while, and do loops, each of which enable you to execute a
portion of your program repeatedly until a given condition is met.

Now that you’ve learned the small stuff, all that’s left is to go over the bigger issues of declaring
classes and creating methods within which instances of those classes can communicate with each
other by calling methods. Get to bed early tonight, because tomorrow is going to be a wild ride.

Q&A
Q If arrays are objects, and you use new to create them, and they have an instance

variable length, where is the Array class? I didn’t see it in the Java class libraries.

A Arrays are implemented kind of weirdly in Java. The Array class is constructed
automatically when your Java program runs; Array provides the basic framework for
arrays, including the length variable. Additionally, each primitive type and object has
an implicit subclass of Array that represents an array of that class or object. When you
create a new array object, it may not have an actual class, but it behaves as if it does.

Q Does Java have gotos?

A The Java language defines the keyword goto, but it is not currently used for anything.
In other words, no, Java does not have gotos.

Q I declared a variable inside a block statement for an if. When the if was done,
the definition of that variable vanished. Where did it go?

A In technical terms, block statements inside braces form a new lexical scope. What this
means is that if you declare a variable inside a block, it’s only visible and usable inside
that block. Once the block finishes executing, all the variables you declared go away.

It’s a good idea to declare most of your variables in the outermost block in which
they’ll be needed—usually at the top of a block statement. The exception might be
very simple variables, such as index counters in for loops, where declaring them in the
first line of the for loop is an easy shortcut.

You’ll learn more about variables and scope tomorrow.

Q What can’t you use switch with strings?

A Strings are objects, and switch in Java works only for the primitive types that can be
cast to integers (byte, char, short, and int). To compare strings, you have to use
nested ifs, which enable more general expression tests, including string comparison.

030-4s CH05.i 1/29/96, 9:04 PM92

93

5

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

SQC 6 P2/V4 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch5 LP#3

Q It seems to me that a lot of for loops could be written as while loops, and vice
versa.

A True. The for loop is actually a special case of while that enables you to iterate a loop
a specific number of times. You could just as easily do this with a while and then
increment a counter inside the loop. Either works equally well. This is mostly just a
question of programming style and personal choice.

030-4s CH05.i 1/29/96, 9:04 PM93

95

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

M
T W

R
F S S

Creating Classes
and Applications
in Java

By Laura Lemay

WEEK

1

66

030-4s CH06.i 1/29/96, 9:05 PM95

96

Creating Classes and Applications in Java
M

T W
R

F S S

DAYDAY

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

In just about every lesson up to this point you’ve been creating Java applications—writing
classes, creating instance variables and methods, and running those applications to perform
simple tasks. Also up to this point, you’ve focused either on the very broad (general object-
oriented theory) or the very minute (arithmetic and other expressions). Today, you pull it all
together and learn how and why to create classes by using the following basics:

■■ The parts of a class definition

■■ Declaring and using instance variables

■■ Defining and using methods

■■ Creating Java applications, including the main() method and how to pass arguments
to a Java program from a command line

Defining Classes
Defining classes is pretty easy; you’ve seen how to do it a bunch of times in previous lessons. To
define a class, use the class keyword and the name of the class:

class MyClassName {
...
}

If this class is a subclass of another class, use extends to indicate the superclass of this class:

class myClassName extends mySuperClassName {
...
}

If this class implements a specific interface, use implements to refer to that interface:

class MyRunnableClassName implements Runnable {
...
}

Both extends and implements are optional. You’ll learn about using and defining interfaces in
Week 3.

Creating Instance and Class Variables
A class definition with nothing in it is pretty dull; usually, when you create a class, you have
something you want to add to make that class different from its superclasses. Inside each class
definition are declarations and definitions for variables or methods or both—for the class and
for each instance. In this section, you’ll learn all about instance and class variables; the next
section talks about methods.

030-4s CH06.i 1/29/96, 9:05 PM96

97

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

Type

Defining Instance Variables
On Day 3, you learned how to declare and initialize local variables—that is, variables inside
method definitions. Instance variables, fortunately, are declared and defined in exactly the same
way as local variables; the only difference is their location in the class definition. Instance
variables are considered instance variables if they are declared outside a method definition.
Customarily, however, most instance variables are defined just after the first line of the class
definition. For example, Listing 6.1 shows a simple class definition for the class Bicycle, which
inherits from the class PersonPoweredVehicle. This class definition contains four instance
variables:

■■ bikeType: the kind of bicycle this bicycle is—for example, Mountain or Street

■■ chainGear, the number of gears in the front

■■ rearCogs, the number of minor gears on the rear axle

■■ currentGearFront and currentGearRear: the gears the bike is currently in, both front
and rear

Listing 6.1. The bicycle class.
1: class Bicycle extends PersonPoweredVehicle {
2: String bikeType;
3: int chainGear;
4: int rearCogs;
5: int currentGearFront;
6: int currentGearRear;
7: }

Constants
Constants are useful for setting global states in a method or object, or for giving meaningful
names to object-wide values that will never change. In Java, you can create constants only for
instance or class variables, not for local variables.

A constant variable or constant is a variable whose value never changes (which may seem
strange given the meaning of the word “variable”).

To declare a constant, use the final keyword before the variable declaration and include an
initial value for that variable:

final float pi = 3.141592;
final boolean debug = false;
final int maxsize = 40000;

NEW
TERM

☛

030-4s CH06.i 1/29/96, 9:06 PM97

98

Creating Classes and Applications in Java
M

T W
R

F S S

DAYDAY

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

Technical Note: The only way to define constants in Java is by using the final
keyword. Neither the C and C++ constructs for #define nor const are available in
Java.

Constants can be useful for naming various states of an object and then testing for those states.
For example, suppose you have a test label that can be aligned left, right, or center. You can define
those values as constant integers:

final int LEFT = 0;
final int RIGHT = 1;
final int CENTER = 2;

The variable alignment is then also declared as an int:

int alignment;

Then, later on in the body of a method definition, you can either set the alignment:

this.alignment = CENTER;

or test for a given alignment:

switch (this.alignment) {
 case LEFT: // deal with left alignment
 ...
 break;
 case RIGHT: // deal with right alignment
 ...
 break;
 case CENTER: // deal with center alignment
 ...
 break;
}

Class Variables
As you learned in previous lessons, class variables are global to a class and to all that class’s
instances. You can think of class variables as being even more global than instance variables. Class
variables are good for communicating between different objects with the same class, or for
keeping track of global states among a set of objects.

To declare a class variable, use the static keyword in the class declaration:

static int sum;
static final int maxObjects = 10;

030-4s CH06.i 1/29/96, 9:06 PM98

99

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

Creating Methods
Methods, as you learned on Day 2, define an object’s behavior—what happens when that object
is created and the various operations that object can perform during its lifetime. In this section,
you’ll get a basic introduction to method definition and how methods work; tomorrow, you’ll
go into more detail about advanced things you can do with methods.

Defining Methods
Method definitions have four basic parts:

■■ The name of the method

■■ The type of object or base type this method returns

■■ A list of parameters

■■ The body of the method

The method’s signature is a combination of the name of the method, the type of object or
base type this method returns, and a list of parameters.

Note: To keep things simple today, I’ve left off two optional parts of the method
definition: an access qualifier such as public or private, and the throws keyword,
which indicates the exceptions a method can throw. You’ll learn about these parts
of a method definition in Week 3.

In other languages, the name of the method (or function, subroutine, or procedure) is enough
to distinguish it from other methods in the program. In Java, you can have different methods
that have the same name but a different return type or argument list. This is called method
overloading, and you’ll learn more about it tomorrow.

Here’s what a basic method definition looks like:

returntype methodname (type1 arg1, type2 arg2, type3 arg3..) {
 ...
}

The returntype is the primitive type or class of the of the value this method returns. It can be
one of the primitive types, a class name, or void if the method does not return a value at all.

Note that if this method returns an array object, the array brackets can go either after the return
type or after the parameter list; because the former way is considerably easier to read, it is used
in the examples today (and throughout this book):

int[] makeRange (int lower, int upper) {...}

NEW
TERM

☛

030-4s CH06.i 1/29/96, 9:06 PM99

100

Creating Classes and Applications in Java
M

T W
R

F S S

DAYDAY

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

The method’s parameter list is a set of variable declarations, separated by commas, inside
parentheses. These parameters become local variables in the body of the method, whose values
are the objects or values of primitives passed in when the method is called.

Inside the body of the method you can have statements, expressions, method calls to other
objects, conditionals, loops, and so on—everything you’ve learned about in the previous lessons.

If your method has a real return type (that is, it has not been declared to return void), somewhere
inside the body of the method you need to return a value. Use the return keyword to do this.
Listing 6.2 shows an example of a class that defines a makeRange() method. makeRange() takes
two integers—a lower bound and an upper bound—and creates an array that contains all the
integers between those two boundaries (inclusive).

Listing 6.2. The RangeClass class.
 1: class RangeClass {
 2: int[] makeRange (int lower, int upper) {
 3: int arr[] = new int[(upper - lower) + 1];
 4:
 5: for (int i = 0; i < arr.length; i++) {
 6: arr[i] = lower++;
 7: }
 8: return arr;
 9: }
10:
11: public static void main (String arg[]) {
12: int theArray[];
13: RangeClass theRange = new RangeClass();
14:
15: theArray = theRange.makeRange(1,10);
16: System.out.print(“The array: [“);
17: for (int i = 0; i < theArray.length; i++) {
18: System.out.print(theArray[i] + “ “);
19: }
20: System.out.println(“]”);
21: }
22:
23: }

Here’s the output of this program:

The array: [1 2 3 4 5 6 7 8 9 10]

The main() method in this class tests the makeRange() method by creating a range where
the lower and upper boundaries of the range are 1 and 10, respectively (see line 6), and then
uses a for loop to print the values of the new array.

Type

Output

Analysis

030-4s CH06.i 1/29/96, 9:07 PM100

101

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

The this Keyword
Sometimes, in the body of a method definition, you may want to refer to the current object—
for example, to refer to that object’s instance variables or to pass the current object as an
argument to another method. To refer to the current object in these cases, you can use the this
keyword. this refers to the current object, and you can use it anywhere that object might
appear—in dot notation to refer to the object’s instance variables, as an argument to a method,
as the return value for the current method, and so on. Here’s an example:

t = this.x // the x instance variable for this object
this.myMethod(this) // call the mymethod method, defined in
 // this class, and pass it the current
 // object
return this; // return the current object

In many cases, however, you may be able to omit the this keyword. You can refer to both
instance variables and method calls defined in the current class simply by name; the this is
implicit in those references. So, the first two examples could be written like this:

t = x // the x instance variable for this object
myMethod(this) // call the myMethod method, defined in this
 // class

Note: Omitting the this keyword for instance variables depends on whether there
are no variables of the same name declared in the local scope. See the next section
for details.

Keep in mind that because this is a reference to the current instance of a class, it makes sense
to use it only inside the body of an instance method definition. Class methods, that is, methods
declared with the static keyword, cannot use this.

Variable Scope and Method Definitions
When you refer to a variable within your method definitions, Java checks for a definition of that
variable first in the current scope (which may be a block), then in the outer scopes up to the
current method definition. If that variable is not a local variable, Java then checks for a definition
of that variable as an instance variable in the current class, and then, finally, in each superclass
in turn.

Because of the way Java checks for the scope of a given variable, it is possible for you to create
a variable in a lower scope such that a definition of that same variable “hides” the original value
of that variable. This can introduce subtle and confusing bugs into your code.

030-4s CH06.i 1/29/96, 9:07 PM101

102

Creating Classes and Applications in Java
M

T W
R

F S S

DAYDAY

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

Type

For example, note this small Java program:

class ScopeTest {
 int test = 10;

 void printTest () {
 int test = 20;
 System.out.println(“test = “ + test);
 }
}

In this class, you have two variables with the same name and definition: the first, an instance
variable, has the name test and is initialized to the value 10. The second is a local variable with
the same name, but with the value 20. Because the local variable hides the instance variable, the
println() method will print that test is 20.

You can get around this particular instance by using this.test to refer to the instance variable,
and just test to refer to the local variable.

A more insidious example of this occurs when you redefine a variable in a subclass that already
occurs in a superclass. This can create very insidious bugs in your code—for example, you may
call methods that are intended to change the value of an instance variable, but that change the
wrong one. Another bug might occur when you cast an object from one class to another—the
value of your instance variable may mysteriously change (because it was getting that value from
the superclass instead of from your class). The best way to avoid this behavior is to make sure
that, when you define variables in a subclass, you’re aware of the variables in each of that class’s
superclasses and you don’t duplicate what is already there.

Passing Arguments to Methods
When you call a method with object parameters, the variables you pass into the body of the
method are passed by reference, which means that whatever you do to those objects inside the
method affects the original objects as well. This includes arrays and all the objects that arrays
contain; when you pass an array into a method and modify its contents, the original array is
affected. (Note that primitive types are passed by value.)

Here’s an example to demonstrate how this works. First, you have a simple class definition,
which includes a single method called OneToZero() (see Listing 6.3).

Listing 6.3. The PassByReference class.
 1: class PassByReference {
 2: int OnetoZero (int arg[]) {
 3: int count = 0;
 4:
 5: for (int i = 0; i < arg.length; i++) {
 6: if (arg[i] == 1) {

030-4s CH06.i 1/29/96, 9:07 PM102

103

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

Type

 7: count++;
 8: arg[i] = 0;
 9: }
10: }
11: return count;
12: }
13: }

The OnetoZero() method does two things:

■■ It counts the number of ones in the array and returns that value.

■■ If it finds a one, it substitutes a zero in its place in the array.

Listing 6.4 shows the main() method for the PassByReference class, which tests the OnetoZero()
method:

Listing 6.4. The main() method in PassByReference.
 1: public static void main (String arg[]) {
 2: int arr[] = { 1, 3, 4, 5, 1, 1, 7 };
 3: PassByReference test = new PassByReference();
 4: int numOnes;
 5:
 6: System.out.print(“Values of the array: [“);
 7: for (int i = 0; i < arr.length; i++) {
 8: System.out.print(arr[i] + “ “);
 9: }
10: System.out.println(“]”);
11:
12: numOnes = test.OnetoZero(arr);
13: System.out.println(“Number of Ones = “ + numOnes);
14: System.out.print(“New values of the array: [“);
15: for (int i = 0; i < arr.length; i++) {
16: System.out.print(arr[i] + “ “);
17: }
18: System.out.println(“]”);
19: }

Here is the output of this program:

Values of the array: [1 3 4 5 1 1 7]
Number of Ones = 3
New values of the array: [0 3 4 5 0 0 7]

Let’s go over the main() method line by line so that you can see what is going on.

Lines 2 through 4 set up the initial variables for this example. The first one is an array of integers;
the second one is an instance of the class PassByReference, which is stored in the variable test.
The third is a simple integer to hold the number of ones in the array.

Output

Analysis

030-4s CH06.i 1/29/96, 9:07 PM103

104

Creating Classes and Applications in Java
M

T W
R

F S S

DAYDAY

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

Lines 6 through 11 print out the initial values of the array; you can see the output of these lines
in the first line of the output.

Line 12 is where the real work takes place; this is where you call the OnetoZero() method, defined
in the object test, and pass it the array stored in arr. This method returns the number of ones
in the array, which you’ll then assign to the variable numOnes.

Got it so far? Line 13 prints out the number of ones, that is, the value you got back from the
OnetoZero() method. It returns three, as you would expect.

The last bunch of lines print out the array values. Because a reference to the array object is passed
to the method, changing the array inside that method changes that original copy of the array.
Printing out the values in lines 14 through 18 proves this—that last line of output shows that
all the 1s in the array have been changed to 0s.

Class Methods
Just as you have class and instance variables, you also have class and instance methods, and the
difference between the two types of methods are analogous. Class methods are global to the class
itself and available to any other classes or objects. Therefore, class methods can be used anywhere
regardless of whether an instance of the class exists or not.

For example, the Java class libraries include a class called Math. The Math class defines a whole
set of math operations that can be used in any program with the various number types:

float root = Math.sqrt(453.0);
System.out.print(“The larger of x and y is” + Math.max(x,y));

To define class methods, use the static keyword in front of the method definition, just as you
would create a class variable. For example, that max class method might have a signature like this:

static int max (int arg1, int arg2) { ... }

In a similar example, Java supplies “wrapper” classes for each of the base types—for example,
classes for Integer, Float, and Boolean. Using class methods defined in those classes, you can
convert to and from objects and base types. For example, the parseInt() class method in the
Integer class takes a string and a radix (base) and returns the value of that string as an integer:

int count = Integer.parseInt(“42”, 10) // returns 42

Most methods that operate on a particular object, or that affect that object, should be defined
as instance methods. Methods that provide some general utility but do not directly affect an
instance of that class are better declared as class methods.

030-4s CH06.i 1/29/96, 9:08 PM104

105

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

Creating Java Applications
Now that you know how to create classes, objects, and class and instance variables and methods,
all that’s left is to put it together into something that can actually run—in other words, to create
a Java application.

Applications, to refresh your memory, are Java programs that run on their own. Applications
are different from applets, which require HotJava or a Java-capable browser to view them. Much
of what you’ve been using up to this point have been Java applications; next week you’ll dive into
how to create applets. (Applets require a bit more background in order to get them to interact
with the browser and draw and update with the graphics system. You’ll learn all of this next
week.)

A Java application consists of one of more classes and can be as large or as small as you want it
to be. HotJava is an example of a Java application. The only thing you need to make a Java
application run is one class that serves as the “jumping-off” point for the rest of your Java
program. If your program is small enough, it may need only the one class.

The jumping-off class for your program needs one thing: a main() method. When you run your
compiled Java class (using the Java interpreter), the main() method is the first thing that gets
called. None of this should be much of a surprise to you at this point; you’ve been creating Java
applications with main() methods all along.

The signature for the main() method always looks like this:

public static void main (String arg[]) {...}

Here’s a run-down of the parts of the main() method:

■■ public means that this method is available to other classes and objects. The main()
method must be declared public. You’ll learn more about public and private
methods in Week 3.

■■ static means that this is a class method.

■■ void means the main() method doesn’t return anything.

■■ main() takes one parameter: an array of strings. This argument is used for command-
line arguments, which you’ll learn about in the next section.

The body of the main() method contains any code you need to get your application started:
initial variables or creating instances of any classes you may have declared.

When Java executes the main() method, keep in mind that main() is a class method—the class
that holds it is not automatically instantiated when your program runs. If you want to treat that
class as an object, you have to instantiate it in the main() method yourself (all the examples up
to this point have done this).

030-4s CH06.i 1/29/96, 9:08 PM105

106

Creating Classes and Applications in Java
M

T W
R

F S S

DAYDAY

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

Java Applications and Command-Line
Arguments

Because Java applications are stand-alone programs, it’s useful to be able to pass arguments or
options to that program to determine how the program is going to run, or to enable a generic
program to operate on many different kinds of input. Command-line arguments can be used
for many different purposes—for example, to turn on debugging input, to indicate a filename
to read or write from, or for any other information that you might want your Java program to
know.

Passing Arguments to Java Programs
To pass arguments to a Java program, you merely append them to the command line when you
run your Java program:

java Myprogram argumentOne 2 three

On this command line, you have three arguments: argumentOne, the number 2, and three. Note
that a space separates arguments, so this command line produces three arguments:

java myprogram Java is cool

To group arguments, surround them with double-quotes. This command line produces one
argument:

java myprogram “Java is cool”

The double-quotes are stripped off before the argument gets to your Java program.

Handling Arguments in Your Java Program
How does Java handle arguments? It stores them in an array of strings, which is passed to the
main() method in your Java program. Remember the signature for main():

public static void main (String arg[]) {...}

Here, arg is the name of the array of strings that contains the list of arguments. You can actually
call it anything you want; argv is common (after the array of the same name from C and Unix
shell scripting).

Inside your main() method, you can then handle the arguments your program was given by
iterating over the array of arguments and handling those arguments any way you want. For
example, Listing 6.5 is a really simple class that prints out the arguments it gets, one per line.

030-4s CH06.i 1/29/96, 9:08 PM106

107

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

Type Listing 6.5. The EchoArgs class.
1: class EchoArgs {
2: public static void main(String args[]) {
3: for (int i = 0; i < args.length; i++) {
4: System.out.println(“Argument “ + i + “: “ + args[i]);
5: }
6: }
7: }

The following is some sample input and output from this program:

java EchoArgs 1 2 3 jump

Argument 0: 1
Argument 1: 2
Argument 2: 3
Argument 3: jump

java EchoArgs “foo bar” zap twaddle 5

Argument 0: foo bar
Argument 1: zap
Argument 2: twaddle
Argument 3: 5

Note how the arguments are grouped in the listing; putting quotes around foo bar causes that
argument to be treated as one unit inside the argument array.

Technical Note: The array of arguments in Java is not analogous to argv in C and
Unix. In particular, arg[0], the first element in the array of arguments, is the first
command-line argument after the name of the class—not the name of the program
as it would be in C. Be careful of this as you write your Java programs.

An important thing to note about the arguments you pass into a Java program is that those
arguments will be stored in an array of strings. This means that any arguments you pass to your
Java program will be converted to strings so they can be stored in the argument array. To treat
them as non-strings, you’ll have to convert them to whatever type you want them to be.

For example, suppose you have a very simple Java program called SumAverage that takes any
number of numeric arguments and returns the sum and the average of those arguments. Listing
6.6 shows a first pass at this program.

Output

Output

030-4s CH06.i 1/29/96, 9:08 PM107

108

Creating Classes and Applications in Java
M

T W
R

F S S

DAYDAY

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

Type Listing 6.6. First try at the SumAverage class.
 1: class SumAverage {
 2: public static void main (String args[]) {
 3: int sum = 0;
 4:
 5: for (int i = 0; i < args.length; i++) {
 6: sum += args[i];
 7: }
 8:
 9: System.out.println(“Sum is: “ + sum);
10: System.out.println(“Average is: “ +
11: (float)sum / (float)args.length);
12: }
13: }

At first glance, this program seems rather straightforward—a for loop iterates over the array
of arguments, summing them, and then the sum and the average are printed out as the last
step.

What happens when you try and compile this? You get the following error:

SumAverage.java:9: Incompatible type for +=. Can’t convert java.lang.String to int.
 sum += args[i];

You get this error because the argument array is an array of strings. Even though you passed
integers into the program from the command line, those integers were converted to strings
before they were stored in the array. To be able to sum those integers, you have to convert them
back from strings to integers. There’s a class method for the Integer class, called parseInt, that
does just this. If you change line 7 to use that method, everything works just fine:

sum += Integer.parseInt(args[i]);

Now, compiling the program produces no errors and running it with various arguments returns
the expected results. For example, java SumAverage 1 2 3 returns the following output:

Sum is: 6
Average is: 2

Summary
Today, you put together everything you’ve come across in the preceding days of this week about
how to create Java classes and use them in Java applications. This included the following:

■■ Instance and class variables, which hold the attributes of the class and its instances.
You learned how to declare them, how they are different from regular local variables,
and how to declare constants.

Analysis

Output

030-4s CH06.i 1/29/96, 9:09 PM108

109

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 6 LP#3

■■ Instance and class methods, which define a class’s behavior. You learned how to define
methods, including the parts of a method’s signature, how to return values from a
method, how arguments are passed in and out of methods, and the this keyword to
refer to the current object

■■ Java applications—all about the main() method and how it works as well as how to
pass arguments into a Java application from a command line.

Q&A
Q I tried creating a constant variable inside a method, and I got a compiler error

when I tried it. What was I doing wrong?

A You can create only constant (final) class or instance variables; local variables cannot
be constant.

Q static and final are not exactly the most descriptive words for creating class
variables, class methods, and constants. Why not use class and const?

A static comes from Java’s C++ heritage; C++ uses the static keyword to retain
memory for class variables and methods (and, in fact, they aren’t called class methods
and variables in C++: static member functions and variables are more common
terms).

final, however, is new. final is used in a more general way for classes and methods to
indicate that those things cannot be subclassed or overridden. Using the final
keyword for variables is consistent with that behavior. final variables are not quite the
same as constant variables in C++, which is why the const keyword is not used.

Q In my class, I have an instance variable called name. I also have a local variable
called name in a method, which, because of variable scope, gets hidden by the
local variable. Is there any way to get hold of the instance variable’s value?

A The easiest way is not to name your local variables the same names as your instance
variables. If you feel you must, you can use this.name to refer to the instance variable
and name to refer to the local variable.

Q I want to pass command-line arguments to an applet. How do I do this?

A You’re writing applets already? Been skipping ahead, have you? The answer is that you
use HTML attributes to pass arguments to an applet, not the command line (you
don’t have a command line for applets). You’ll learn how to do this next week.

Q I wrote a program to take four arguments, but if I give it too few arguments, it
crashes with a run-time error.

A Testing for the number and type of arguments your program expects is up to you in
your Java program; Java won’t do it for you. If your program requires four arguments,
test that you have indeed been given four arguments, and return an error message if
you haven’t.

030-4s CH06.i 1/29/96, 9:09 PM109

111

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

7

M
T W

R
F S S

More About
Methods

by Laura Lemay

WEEK

1

77

030-4s CH07.i 1/29/96, 9:11 PM111

112

More About Methods
M

T W
R

F S S

DAYDAY

7

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

Methods are arguably the most important part of any object-oriented language. Whereas classes
and objects provide the framework, and class and instance variables provide a way of holding
that class or object’s attributes and state, it is the methods that actually provide an object’s
behavior and define how that object interacts with other objects in the system.

Yesterday, you learned a little about defining methods. With what you learned yesterday, you
could create lots of Java programs, but you’d be missing some of the features of methods that
make them really powerful, that make your objects and classes more efficient and easier to
understand. Today, you’ll learn about these additional features, including the following:

■■ Overloading methods, sometimes called creating polymorphic methods—that is,
creating methods with multiple signatures and definitions but with the same name

■■ Creating constructor methods—methods that enable you to initialize objects to set up
an initial state in the system when an object is created

■■ Overriding methods—creating a different definition for a method that has been
defined in a superclass

■■ Finalizer methods—a way for an object to clean up after itself before it is removed
from the system

Creating Methods with the Same
Name, Different Arguments

Yesterday, you learned how to create methods with a single name and a single signature.
Methods in Java can also be overloaded—that is, you can create methods that have the same
name, but different signatures and different definitions. Method overloading enables instances
of your class to have a simpler interface to other objects (no need for entirely different methods
that do essentially the same thing) and to behave differently based on the input to that method.

When you call a method in an object, Java matches up the method name and the number and
type of arguments to choose which method definition to execute.

To create an overloaded method, all you need to do is create several different method definitions
in your class, all with the same name, but with different parameter lists (either in number or type
of arguments) and with different bodies. Java can understand method overloading as long as
each parameter list is unique for each method name.

Note that Java differentiates overloaded methods with the same name, based on the number and
type of parameters to that method, not on its return type. That is, if you try to create two methods
with the same name, same parameter list, but different return types, you’ll get a compiler error.
The variable names you choose for each parameter to the method are irrelevant—all that matters
is the number and the type.

030-4s CH07.i 1/29/96, 9:11 PM112

113

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

7

Here’s an example of creating an overloaded method. Listing 7.1 shows a simple class definition
for a class called MyRect, which defines a rectangular shape. The MyRect class has four instance
variables to define the upper left and lower right corners of the rectangle: x1, y1, x2, and y2.

Note: Why did I call it MyRect? Java’s awt package has a class called Rectangle that
implements much of this same behavior. I called this class MyRect to prevent
confusion between the two classes.

Listing 7.1. The MyRect class.
class MyRect {
 int x1 = 0;
 int y1 = 0;
 int x2 = 0;
 int y2 = 0;
}

When a new instance of the myRect class is initially created, all its instance variables are initialized
to 0. Let’s define a buildRect() method that takes four integer arguments and “resizes” the
rectangle to have the appropriate values for its corners, returning the resulting rectangle object
(note that because the arguments have the same names as the instance variables, you have to
make sure to use this to refer to them):

MyRect buildRect(int x1, int y1, int x2, int y2) {
 this.x1 = x1;
 this.y1 = y1;
 this.x2 = x2;
 this.y2 = y2;
 return this;
}

What if you want to define a rectangle’s dimensions in a different way—for example, by using
Point objects rather than individual coordinates? You can overload buildRect() so that its
parameter list takes two Point objects (note that you’ll need to import the Point class at the top
of your source file so Java can find it):

MyRect buildRect(Point topLeft, Point bottomRight) {
 x1 = topLeft.x;
 y1 = topLeft.y;
 x2 = bottomRight.x;
 y2 = bottomRight.y;
 return this;
}

Type

030-4s CH07.i 1/29/96, 9:12 PM113

114

More About Methods
M

T W
R

F S S

DAYDAY

7

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

Type

Perhaps you want to define the rectangle using a top corner and a width and height. Just create
a different definition for buildRect():

MyRect buildRect(Point topLeft, int w, int h) {
 x1 = topLeft.x;
 y1 = topLeft.y;
 x2 = (x1 + w);
 y2 = (y1 + h);
 return this;
}

To finish up this example, let’s create a method to print out the rectangle’s coordinates, and a
main() method to test it all (just to prove that this does indeed work). Listing 7.2 shows the
completed class definition with all its methods.

Listing 7.2. The complete MyRect class.
import java.awt.Point;

class MyRect {
 int x1 = 0;
 int y1 = 0;
 int x2 = 0;
 int y2 = 0;

 MyRect buildRect(int x1, int y1, int x2, int y2) {
 this.x1 = x1;
 this.y1 = y1;
 this.x2 = x2;
 this.y2 = y2;
 return this;
 }

 MyRect buildRect(Point topLeft, Point bottomRight) {
 x1 = topLeft.x;
 y1 = topLeft.y;
 x2 = bottomRight.x;
 y2 = bottomRight.y;
 return this;
 }

 MyRect buildRect(Point topLeft, int w, int h) {
 x1 = topLeft.x;
 y1 = topLeft.y;
 x2 = (x1 + w);
 y2 = (y1 + h);
 return this;
 }

 void printRect(){
 System.out.print(“MyRect: <“ + x1 + “, “ + y1);
 System.out.println(“, “ + x2 + “, “ + y2 + “>”);
 }

030-4s CH07.i 1/29/96, 9:12 PM114

115

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

7

 public static void main (String args[]) {
 MyRect rect = new MyRect();

 System.out.println(“Calling buildRect with coordinates 25,25 50,50:”);
 rect.buildRect(25, 25, 50, 50);
 rect.printRect();
 System.out.println(“----------”);

 System.out.println(“Calling buildRect w/points (10,10), (20,20):”);
 rect.buildRect(new Point(10,10), new Point(20,20));
 rect.printRect();
 System.out.println(“----------”);

 System.out.print(“Calling buildRect w/1 point (10,10),”);
 System.out.println(“ width (50) and height (50)”);

 rect.buildRect(new Point(10,10), 50, 50);
 rect.printRect();
 System.out.println(“----------”);

 }
}

Here’s the output of this Java program:

Calling buildRect with coordinates 25,25 50,50:
MyRect: <25, 25, 50, 50>

Calling buildRect w/points (10,10), (20,20):
MyRect: <10, 10, 20, 20>

Calling buildRect w/1 point (10,10), width (50) and height (50)
MyRect: <10, 10, 60, 60>

As you can see from this example, all the buildRect() methods work based on the arguments
with which they are called. You can define as many versions of a method as you need to in your
own classes to implement the behavior you need for that class.

Constructor Methods
In addition to regular methods, you can also define constructor methods in your class definition.

A constructor method is a special kind of method that determines how an object is initialized
when it’s created.

Unlike regular methods, you can’t call a constructor method by calling it directly; instead,
constructor methods are called by Java automatically. Here’s how it works: when you use new
to create a new instance of a class, Java does three things:

■■ Allocates memory for the object

Output

NEW
TERM

☛

030-4s CH07.i 1/29/96, 9:12 PM115

116

More About Methods
M

T W
R

F S S

DAYDAY

7

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

Type

■■ Initializes that object’s instance variables, either to their initial values or to a default (0
for numbers, null for objects, false for booleans)

■■ Calls the class’s constructor method (which may be one of several methods)

If a class doesn’t have any special constructor methods defined, you’ll still end up with an object,
but you’ll have to set its instance variables or call other methods that object needs to initialize
itself to that object afterward. All the examples you’ve created up to this point have behaved like
this.

By defining constructor methods in your own classes, you can set initial values of instance
variables, call methods based on those variables or call methods on other objects, or calculate
initial properties of your object. You can also overload constructors, as you would regular
methods, to create an object that has specific properties based on the arguments you give to new.

Basic Constructors
Constructors look a lot like regular methods, with two basic differences:

■■ Constructors always have the same name as the class.

■■ Constructors don’t have a return type.

For example, Listing 7.3 shows a simple class called Person, with a constructor that initializes
its instance variables based on the arguments to new. The class also includes a method for the
object to introduce itself, and a main() method to test each of these things.

Listing 7.3. The Person class.
class Person {
 String name;
 int age;

 Person(String n, int a) {
 name = n;
 age = a;
 }

 void printPerson() {
 System.out.print(“Hi, my name is “ + name);
 System.out.println(“. I am “ + age + “ years old.”);
 }

 public static void main (String args[]) {
 Person p;

 p = new Person(“Laura”, 20);
 p.printPerson();
 System.out.println(“--------”);

030-4s CH07.i 1/29/96, 9:13 PM116

117

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

7Type

 p = new Person(“Tommy”, 3);
 p.printPerson();
 System.out.println(“--------”);
 }
}

Here’s the output for this example program:

Hi, my name is Laura. I am 20 years old.

Hi, my name is Tommy. I am 3 years old.

Calling Another Constructor
Some constructors you write may be a superset of another constructor defined in your class; that
is, they might have the same behavior plus a little bit more. Rather than duplicating identical
behavior in multiple constructor methods in your class, it makes sense to be able to just call that
first constructor from inside the body of the second constructor. Java provides a special syntax
for doing this. To call a constructor defined on the current class, use this form:

this(arg1, arg2, arg3...);

The arguments to this are, of course, the arguments to the constructor.

Overloading Constructors
Like regular methods, constructors can also take varying numbers and types of parameters,
enabling you to create your objects with exactly the properties you want it to have, or for it to
be able to calculate properties from different kinds of input.

For example, the buildRect() methods you defined in the MyRect class earlier today would make
excellent constructors, because what they’re doing is initializing an object’s instance variables to
the appropriate objects. So, instead of the original buildRect() method you had defined (which
took four parameters for the coordinates of the corners), you can create a constructor instead.
Listing 7.4 shows a new class, called MyRect2, that has all the same functionality of the original
MyRect, except with overloaded constructor methods instead of the buildRect() method.

Listing 7.4. The MyRect2 class (with constructors).
import java.awt.Point;

class MyRect2 {
 int x1 = 0;
 int y1 = 0;

Output

continues

030-4s CH07.i 1/29/96, 9:13 PM117

118

More About Methods
M

T W
R

F S S

DAYDAY

7

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

 int x2 = 0;
 int y2 = 0;

 MyRect2(int x1, int y1, int x2, int y2) {
 this.x1 = x1;
 this.y1 = y1;
 this.x2 = x2;
 this.y2 = y2;
 }

 MyRect2(Point topLeft, Point bottomRight) {
 x1 = topLeft.x;
 y1 = topLeft.y;
 x2 = bottomRight.x;
 y2 = bottomRight.y;
}

 MyRect2(Point topLeft, int w, int h) {
 x1 = topLeft.x;
 y1 = topLeft.y;
 x2 = (x1 + w);
 y2 = (y1 + h);
}

 void printRect(){
 System.out.print(“MyRect: <“ + x1 + “, “ + y1);
 System.out.println(“, “ + x2 + “, “ + y2 + “>”);
 }

 public static void main (String args[]) {
 MyRect2 rect;

 System.out.println(“Calling MyRect2 with coordinates 25,25 50,50:”);
 rect = new MyRect2(25, 25, 50,50);
 rect.printRect();
 System.out.println(“----------”);

 System.out.println(“Calling buildRect w/points (10,10), (20,20):”);
 rect= new MyRect2(new Point(10,10), new Point(20,20));
 rect.printRect();
 System.out.println(“----------”);

 System.out.print(“Calling buildRect w/1 point (10,10),”);
 System.out.println(“ width (50) and height (50)”);
 rect = new MyRect2(new Point(10,10), 50, 50);
 rect.printRect();
 System.out.println(“----------”);

 }
}

Here’s the output for this example program (it’s the same output from the previous example;
only the code to produce it has changed):

Listing 7.4. continued

030-4s CH07.i 1/29/96, 9:13 PM118

119

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

7

Calling MyRect2 with coordinates 25,25 50,50:
MyRect: <25, 25, 50, 50>

Calling buildRect w/points (10,10), (20,20):
MyRect: <10, 10, 20, 20>

Calling buildRect w/1 point (10,10), width (50) and height (50)
MyRect: <10, 10, 60, 60>

Overriding Methods
When you class a method in an object, Java looks for that method definition in the correct object,
and if it doesn’t find one, it passes the method call up the class hierarchy until a method
definition is found. Method inheritance enables you to define and use methods repeatedly in
subclasses without having to duplicate the code itself.

However, there may be times when you want an object to respond to the same methods but have
different behavior when that method is called. In this case, you can override that method.
Overriding a method involves defining a method in a subclass that has the same signature as a
method in a superclass. Then, when that method is called, the method in the subclass is found
and executed instead of the one in the superclass.

Creating Methods
that Override Existing Methods

To override a method, all you have to do is create a method in your superclass that has the same
signature (name, return type, and parameter list) as a method defined by one of your class’s
superclasses. Because Java executes the first method definition it finds that matches the
signature, this effectively “hides” the original method definition. Here’s a simple example;
Listing 7.5 shows a simple class with a method called printMe(), which prints out the name of
the class and the values of its instance variables.

Listing 7.5. The PrintClass class.
class PrintClass {
 int x = 0;
 int y = 1;

 void printMe() {
 System.out.println(“X is “ + x + “, Y is “ + y);
 System.out.println(“I am an instance of the class “ +
 this.getClass().getName());
 }
}

Output

Type

030-4s CH07.i 1/29/96, 9:14 PM119

120

More About Methods
M

T W
R

F S S

DAYDAY

7

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

Type

Type

Listing 7.6 shows a class called PrintSubClass that is a subclass of (extends) PrintClass. The
only difference between PrintClass and PrintSubClass is that the latter has a z instance variable.

Listing 7.6. The PrintSubClass class.
class PrintSubClass extends PrintClass {
 int z = 3;

 public static void main (String args[]) {
 PrintSubClass obj = new PrintSubClass();
 obj.printMe();
 }
}

Here’s the output from PrintSubClass:

X is 0, Y is 1
I am an instance of the class PrintSubClass

In the main() method of PrintSubClass, you create a PrintSubClass object and call the
printMe() method. Note that PrintSubClass doesn’t define this method, so Java looks for
it in each of PrintSubClass’s superclasses—and finds it, in this case, in PrintClass.

Unfortunately, because printMe() is still defined in PrintClass, it doesn’t print the z instance
variable.

Now, let’s create a third class. PrintSubClass2 is nearly identical to PrintSubClass, but you
override the printMe() method to include the z variable. Listing 7.7 shows this class.

Listing 7.7. The PrintSubClass2 class.
class PrintSubClass2 extends PrintClass {
 int z = 3;

 void printMe() {
 System.out.println(“x is “ + x + “, y is “ + y +
 “, z is “ + z);
 System.out.println(“I am an instance of the class “ +
 this.getClass().getName());
 }

 public static void main (String args[]) {
 PrintSubClass2 obj = new PrintSubClass2();
 obj.printMe();
 }
}

Now, when you instantiate this class and call the printMe() method, the version of printMe()
you defined for this class is called instead of the one in the superclass PrintClass (as you can see
in this output):

Output

Analysis

030-4s CH07.i 1/29/96, 9:14 PM120

121

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

7

Type

x is 0, y is 1, z is 3
I am an instance of the class PrintSubClass2

Calling the Original Method
Usually, there are two reasons why you want to override a method that a superclass has already
implemented:

■■ To replace the definition of that original method completely

■■ To augment the original method with additional behavior

You’ve already learned about the first one; by overriding a method and giving that method a new
definition, you’ve hidden the original method definition. But sometimes you may just want to
add behavior to the original definition rather than erase it altogether. This is particularly useful
where you end up duplicating behavior in both the original method and the method that
overrides it; by being able to call the original method in the body of the overridden method, you
can add only what you need.

To call the original method from inside a method definition, use the super keyword to pass the
method call up the hierarchy:

void myMethod (String a, String b) {
 // do stuff here
 super.myMethod(a, b);
 // maybe do more stuff here
}

The super keyword, like the this keyword, is a placeholder for this class’s superclass. You can
use it anywhere you want to refer to your superclass rather than to the current class.

For example, Listing 7.8 shows those printMe() methods used in the previous example.

Listing 7.8. The printMe methods.
// from PrintClass
void printMe() {
 System.out.println(“X is “ + x + “, Y is “ + y);
 System.out.println(“I am an instance of the class” +
 this.getClass().getName());
 }
}

//from PrintSubClass2
 void printMe() {
 System.out.println(“X is “ + x + “, Y is “ + y + “, Z is “ + z);
 System.out.println(“I am an instance of the class “ +
 this.getClass().getName());
 }

Output

030-4s CH07.i 1/29/96, 9:14 PM121

122

More About Methods
M

T W
R

F S S

DAYDAY

7

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

Rather than duplicating most of the behavior of the superclass’s method in the subclass, you can
rearrange the superclass’s method so that additional behavior can easily be added:

// from PrintClass
void printMe() {
 System.out.println(“I am an instance of the class” +
 this.getClass().getName());
 System.out.println(“X is “ + x);
 System.out.println(“Y is “ + y);
 }
}

Then, in the superclass, when you override printMe, you can merely call the original method and
then add the extra stuff:

// From PrintSubClass2
void printMe() {
 super.printMe();
 System.out.println(“Z is “ + z);
 }
}

Here’s the output of calling printMe() on an instance of the superclass:

I am an instance of the class PrintSubClass2
X is 0
Y is 1
Z is 3

Overriding Constructors
Constructors cannot technically be overridden. Because they always have the same name as the
current class, you’re always creating new constructors instead of inheriting the ones you’ve got.
Much of the time, this is fine, because when your class’s constructor is called, the constructor
with the same signature for all your superclass is also called, so initialization of all the parts of
a class you inherit can happen.

However, when you’re defining constructors for your own class, you may want to change how
your object is initialized, not only by initializing the information your class adds, but also to
change the information that is already there. You can do this by explicitly calling your
superclass’s constructors.

To call a regular method in a superclass, you use super.methodname(arguments). Because with
constructors you don’t have a method name to call, however, you have to use a different form:

super(arg1, arg2, ...);

Similar to using this(...) in a constructor, super(...) calls the constructor method for the
immediate superclass (which may, in turn, call the constructor of its superclass, and so on).

Output

030-4s CH07.i 1/29/96, 9:15 PM122

123

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

7

Type

For example, Listing 7.9 shows a class called NamedPoint, which extends the class Point from
Java’s awt package. The Point class has only one constructor, which takes an x and a y argument
and returns a Point object. NamedPoint has an additional instance variable (a string for the name)
and defines a constructor to initialize x, y, and the name.

Listing 7.9. The NamedPoint class.
1: import java.awt.Point;

2: class NamedPoint extends Point {
3: String name;
4:
5: NamedPoint(int x, int y, String name) {
6: super(x,y);
7: this.name = name;
8: }
9: }

The constructor defined here for NamedPoint (lines 6 through 8) calls Point’s constructor
method to initialize Point’s instance variables (x and y). Although you can just as easily
initialize x and y yourself, you may not know what other things Point is doing to initialize

itself, so it’s always a good idea to pass constructors up the hierarchy to make sure everything
is set up correctly.

Finalizer Methods
Finalizer methods are like the opposite of constructor methods; whereas a constructor method
is used to initialize an object, finalizer methods are called just before the object is garbage-
collected and its memory reclaimed.

To create a finalizer method, include a method with the following signature in your class
definition:

void finalize() {
 ...
}

Inside the body of that finalize() method, include any cleaning up you want to do for that
object.

Before you start using finalizer methods extensively in your Java programs, however, be aware
that finalizer methods have several very important restrictions. First of all, the finalizer method
is not guaranteed to be called until the object’s memory is actually reclaimed, which may be some
time after you’ve removed all references to that object.

Analysis

030-4s CH07.i 1/29/96, 9:15 PM123

124

More About Methods
M

T W
R

F S S

DAYDAY

7

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

You can always call the finalize() method yourself at any time; it’s just a plain method like any
other. However, calling finalize() does not trigger an object to be garbage-collected. Only
removing all references to an object will cause it to be marked for deleting, and even then, Java
may or may not call the finalize() method itself—regardless of whether or not you’ve already
called it.

Finalizer methods are best used for optimizing the removal of an object—for example, by
removing references to other objects, by cleaning up things that object may have touched, or for
other optional behaviors that may make it easier for that object to be removed. In most cases,
you may not need to use finalize() at all.

Summary
Today, you learned all kinds of techniques for using, reusing, defining, and redefining methods.
You learned how to overload a method name so that the same method can have different
behaviors based on the arguments with which it’s called. You learned about constructor
methods, which are used to initialize a new object when it’s created. You learned about method
inheritance and how to override methods that have been defined in a class’s superclasses. Finally,
you learned about finalizer methods, that can be used to clean up after an object just before that
object is garbage-collected and its memory reclaimed.

Congratulations on completing your first week of Teach Yourself Java in 21 Days ! Starting next
week, you’ll apply everything you’ve learned this week to writing Java applets and to working
with more advanced concepts in putting together Java programs and working with the standard
Java class libraries.

Q&A
Q I created two methods with the following signatures:

int total(int arg1, int arg2, int arg3) {...}
float total(int arg1, int arg2, int arg3) {...}

The Java compiler complains when I try to compile the class with these method
definitions. But their signatures are different—what have I done wrong?

A Method overloading in Java works only if the parameter lists are different—either in
number or type of arguments. Return type is not relevant for method overloading.
Think about it—if you had two methods with exactly the same parameter list, how
would Java know which one to call?

030-4s CH07.i 1/29/96, 9:16 PM124

125

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 7 LP#3

7

Q You described using the this() method (this(arg, arg, ...)) to call a construc-
tor from inside another constructor. Are you limited to using the this() method
call inside constructors?

A No, you can use that method anywhere to refer to the current object’s constructor.
On an existing object, calling a constructor is an easy way to reinitialize that object
back to its default state (or to change it to have the state that you want it to have).

Q Can I overload overridden methods (that is, can I create methods that have the
same name as an inherited method, but a different parameter list)?

A Sure! As long as a parameter lists vary, it doesn’t matter whether you’ve defined a new
method name or one that you’ve inherited from a superclass.

Q I created a finalizer method to decrement a class variable and print a message
when my object gets garbage-collected. This way I can keep track of how many
objects of this class are running at any given time. But sometimes finalize() gets
called and sometimes it doesn’t. How can I guarantee that finalize() will be
called and my program will operate correctly?

A finalize() is provided as a convenience, to give an object a chance to clean up after
itself. finalize() may or may not be called on any given object before it is garbage-
collected, so you should not depend on its existence; you should be using finalize()
only to provide program optimizations.

If you absolutely require that an object perform some operation before that object gets
garbage-collected, you should create a specific method other than finalize() and
explicitly call that method before discarding references to that object.

030-4s CH07.i 1/29/96, 9:16 PM125

127

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4 /sqc8 TY Java in 21 Days 030-4 Everly 12.11.95 AAG 2 LP#2

M
T W

R
F S S

■■ Java Applet Basics

Including an applet on a Web page

Passing parameters

■■ Graphics, Fonts, and Color

Graphics primitives

The Color class

■■ Simple Animation and Threads

paint() and repaint()

Reducing animation flicker

stop and start

■■ More Animation, Images, and Sound

Scaling options, executing sound effectively

Double-buffering

■■ Managing Simple Events and Interactivity

MouseDown and MouseUp

The Java event handler

WEEK

AT
 A

 G
LA

N
C

E

9

10

11

12

13

14

82

030-4s AAG 02 1/29/96, 8:16 PM127

128

Week 2 at a Glance
M

T W
R

F S S

WEEKWEEK

2

P2/V4 /sqc8 TY Java in 21 Days 030-4 Everly 12.11.95 AAG 2 LP#2

■■ User Interfaces with the Java Abstract Windowing Toolkit

Canvases, text components, widgets, and window construction components

■■ Windows, Networking, and Other Tidbits

Programming menus and creating links inside applets

030-4s AAG 02 1/29/96, 8:16 PM128

129

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P2/V4sqc 7 TY Java in 21 Days 030-4 mww 12.12.95 Ch 8 LP#2

M
T W

R
F S S

Java Applet Basics

by Laura Lemay

WEEK

2

88

030-4s CH08.i 1/29/96, 9:17 PM129

130

Java Applet Basics
M

T W
R

F S S

DAYDAY

8

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 Ch 8 LP#3

Much of Java’s current popularity has come about because of Java-capable World Wide Web
browsers and their support for applets: small programs that run inside a Web page and can be
used to create dynamic, interactive Web designs. Applets, as I noted at the beginning of this
book, are written in the Java language, and can be viewed in any browser that supports Java,
including Sun’s HotJava and Netscape’s Navigator 2.0. Learning how to create applets is most
likely the reason you bought this book, so let’s waste no more time.

Last week, you focused on learning about the Java language itself, and most of the little programs
you created were Java applications. This week, now that you have the basics down, you move
on to creating and using applets, which includes a discussion of many of the classes in the
standard Java class library.

Today, you’ll start with the basics:

■■ A small review of differences between Java applets and applications

■■ Getting started with applets: the basics of how an applet works and how to create your
own simple applets

■■ Including an applet on a Web page by using the <APPLET> tag, including the various
features of that tag

■■ Passing parameters to applets

How Applets and Applications Are
Different

Although you explored the differences between Java applications and Java applets in the early
part of this book, let’s review them.

In short, Java applications are stand-alone Java programs that can be run by using just the Java
interpreter, for example, from a command line. Most everything you’ve used up to this point
in the book has been a Java application, albeit a simple one.

Java applets, however, are run from inside a World Wide Web browser. A reference to an applet
is embedded in a Web page using a special HTML tag. When a reader, using a Java-aware
browser, loads a Web page with an applet in it, the browser downloads that applet from a Web
server and executes it on the local system (the one the browser is running on).

Because Java applets run inside the Java browser, they have access to the same capabilities that
the browser has: sophisticated graphics, drawing, and image processing packages; user interface
elements; networking; and event handling. Java applications can also take advantage of these
features, but they don’t require them (you’ll learn how to create Java applications that use applet-
like graphics and UI features on Day 14).

030-4s CH08.i 1/29/96, 9:18 PM130

131

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P2/V4sqc 7 TY Java in 21 Days 030-4 mww 12.12.95 Ch 8 LP#2

The advantages applets have over applications in terms of graphics and UI capabilities, however,
are hampered by restrictions on what applets can do. Given the fact that Java applets can be
downloaded from anywhere and run on a client’s system, restrictions are necessary to prevent
an applet from causing system damage or security breaches. Without these restrictions in place,
Java applets could be written to contain viruses or trojan horses (programs that seem friendly
but do some sort of damage to the system), or be used to compromise the security of the system
that runs them. The restrictions on what an applet can do include the following:

■■ Applets can’t read or write to the reader’s file system, except in specific directories
(which are defined by the user through an access control list that, by default, is
empty). Some browsers may not even allow an applet to read or write to the file
system at all.

■■ Applets can’t usually communicate with a server other than the one that had originally
stored the applet. (This may be configurable by the browser; however, you should not
depend on having this behavior available.)

■■ Applets can’t run any programs on the reader’s system. For Unix systems, this includes
forking a process.

■■ Applets can’t load programs native to the local platform, including shared libraries
such as DLLs.

In addition, Java itself includes various forms of security and consistency checking in the Java
compiler and interpreter to prevent unorthodox use of the language (you’ll learn more about this
on Day 21). This combination of restrictions and security features make it more difficult for a
rogue Java applet to do damage to the client’s system.

Note: The most important words in the last sentence are “more difficult.” These
restrictions can prevent most of the more obvious ways of trying to cause damage
to a client’s system, but it’s impossible to be absolutely sure that a clever program-
mer cannot somehow work around those restrictions. Sun has asked the Net at
large to try to break Java’s security and to create an applet that can work around the
restrictions imposed on it. If a hole is found, Sun will patch it. You’ll learn about
more issues in Java security on Day 21.

Creating Applets
For the most part, all the Java programs you’ve created up to this point have been Java
applications—simple programs with a single main() method that created objects, set instance
variables, and ran methods. Today and in the days following, you’ll be creating applets

030-4s CH08.i 1/29/96, 9:18 PM131

132

Java Applet Basics
M

T W
R

F S S

DAYDAY

8

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 Ch 8 LP#3

exclusively, so you should have a good grasp of how an applet works, the sorts of features an
applet has, and where to start when you first create your own applets. Without further ado, let’s
get on with it.

To create an applet, you create a subclass of the class Applet, in the java.applet package. The
Applet class provides behavior to enable your applet not only to work within the browser itself,
but also to take advantage of the capabilities of AWT to include UI elements, to handle mouse
and keyword events, and to draw to the screen. Although your applet can have as many “helper”
classes as it needs, it’s the main applet class that triggers the execution of the applet. That initial
applet class always has a signature like this:

public class myClass extends java.applet.Applet {
 ...
}

Note the public keyword. Java requires that your applet subclass be declared public. Again, this
is true only of your main applet class; any helper classes you create can be public or private as
you wish. Public, private, and other forms of access control are described on Day 15.

When Java encounters your applet in a Web page, it loads your initial applet class over the
network, as well as any other helper classes that first class uses. Unlike with applications, where
Java calls the main() method directly on your initial class, when your applet is loaded, Java creates
an instance of that class, and all the system-based methods are sent to that instance. Different
applets on the same page, or on different pages that use the same class, use different instances,
so each one can behave differently from other applets running on the same system.

Major Applet Activities
To create a basic Java application, your class has to have one method, main(), with a specific
signature. Then, when your application starts up, main is executed, and from main you can set
up the behavior that your programs need. Applets are similar but more complicated. Applets
have many different activities that correspond to various major events in the life cycle of the
applet—for example, initialization, painting, or mouse events. Each activity has a corresponding
method, so when an event occurs, the browser or other Java-capable tool calls those specific
methods.

By default, none of those activity methods have any definitions; to provide behavior for those
events you must override the appropriate method in your applet’s subclass. You don’t have to
override all of them, of course; different applet behavior requires different methods to be
overridden.

You’ll learn about the various important methods to override as the week progresses, but, for a
general overview, here are five of the more important methods in an applet’s execution:
initialization, starting, stopping, destroying, and painting.

030-4s CH08.i 1/29/96, 9:18 PM132

133

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P2/V4sqc 7 TY Java in 21 Days 030-4 mww 12.12.95 Ch 8 LP#2

Initialization
Initialization occurs when the applet is first loaded (or reloaded). Initialization can include
creating the objects it needs, setting up an initial state, loading images or fonts, or setting
parameters. To provide behavior for the initialization of your applet, override the init()

method:

public void init() {
 ...
}

Starting
After an applet is initialized, it is started. Starting can also occur if the applet was previously
stopped. For example, an applet is stopped if the reader follows a link to a different page, and
it is started again when the reader returns to this page. Note that starting can occur several times
during an applet’s life cycle, whereas initialization happens only once. To provide startup
behavior for your applet, override the start() method:

public void start() {
 ...
}Functionality that you put in the

start() method might include starting up a thread to control
the applet, sending the appropriate messages to helper objects, or in some way telling the applet
to begin running. You’ll learn more about starting applets on Day 10.

Stopping
Stopping and starting go hand in hand. Stopping occurs when the reader leaves the page that
contains a currently running applet. By default, when the reader leaves a page, the applet
continues running, using up system resources. By overriding stop, you can suspend execution
of the applet and then restart it if the applet is viewed again. To stop an applet’s execution, use
the stop() method:

public void stop() {
 ...
}

Destroying
Destroying sounds more violent than it is. Destroying enables the applet to clean up after itself
just before it or the browser exits—for example, to kill any running threads or to release any other
running objects. Generally, you won’t want to override destroy unless you have specific
resources that need to be released—for example, threads that the applet has created. To provide
clean up behavior for your applet, override the destroy() method:

030-4s CH08.i 1/29/96, 9:19 PM133

134

Java Applet Basics
M

T W
R

F S S

DAYDAY

8

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 Ch 8 LP#3

public void destroy() {
 ...
}

Technical Note: How is destroy() different from finalize(), which was described
on Day 7? First, destroy() applies only to applets. finalize() is a more general-
purpose way for a single object of any type to clean up after itself.

The other difference is that destroy() is always called when the applet has finished
executing, either because the browser is exiting or because the applet is being
reloaded. finalize() is not guaranteed to be executed.

Painting
Painting is how an applet actually draws something on the screen, be it text, a line, a colored
background, or an image. Painting can occur many hundreds of times during an applet’s life
cycle—for example, once after the applet is initialized, if the browser is placed behind another
window on the screen and then brought forward again, if the browser window is moved to a
different position on the screen, or perhaps repeatedly in the case of animations. You override
the paint() method for your applet to have an actual appearance on the screen. The paint()
method looks like this:

public void paint(Graphics g) {
 ...
}

Note that unlike the other major methods in this section, paint() takes an argument, an instance
of the class Graphics. This object is created and passed to paint by the browser, so you don’t have
to worry about it. However, you will have to make sure that the Graphics class (part of the
java.awt package) gets imported into your applet code, usually through an import statement at
the top of your Java file:

import java.awt.Graphics;

A Simple Applet
On Day 2, you created a simple applet called HelloAgainApplet (this was the one with the big
red Hello Again). There, you created and used that applet as an example of creating a subclass.
Let’s go over the code for that applet again, this time looking at it slightly differently in light of
the things you just learned about applets. Listing 8.1 shows the code for that applet.

030-4s CH08.i 1/29/96, 9:19 PM134

135

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P2/V4sqc 7 TY Java in 21 Days 030-4 mww 12.12.95 Ch 8 LP#2

Type Listing 8.1. The Hello Again applet.
 1: import java.awt.Graphics;
 2: import java.awt.Font;
 3: import java.awt.Color;
 4:
 5: public class HelloAgainApplet extends java.applet.Applet {
 6:
 7: Font f = new Font(“TimesRoman”,Font.BOLD,36);
 8:
 9: public void paint(Graphics g) {
10: g.setFont(f);
11: g.setColor(Color.red);
12: g.drawString(“Hello again!”, 5, 50);
13: }
14: }

This applet overrides paint(), one of the major methods described in the previous section.
Because the applet doesn’t actually execute (all it does is print a couple of words to the
screen), and there’s not really anything to initialize, you don’t need a start() or a stop()

or an init() method.

The paint method is where the real work of this applet (what little work goes on) really occurs.
The Graphics object passed into the paint() method holds that graphics state—that is, the
current features of the drawing surface. Lines 10 and 11 set up the default font and color for this
graphics state (here, the font object help in the f instance variable, and an object representing
the color red that’s stored in the Color class’s variable red).

Line 12 then draws the string “Hello Again!” by using the current font and color at the position
5, 50. Note that the 0 point for y is at the top left of the applet’s drawing surface, with positive
y moving downward, so 50 is actually at the bottom of the applet. Figure 8.1 shows how the
applet’s bounding box and the string are drawn on the page.

Analysis

Figure 8.1.
Drawing the applet.

0,0

50

5

030-4s CH08.i 1/29/96, 9:20 PM135

136

Java Applet Basics
M

T W
R

F S S

DAYDAY

8

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 Ch 8 LP#3

Type

Including an Applet on a Web Page
After you create a class or classes that contain your applet and compile them into class files as
you would any other Java program, you have to create a Web page that will hold that applet by
using the HTML language. There is a special HTML tag for including applets in Web pages;
Java-capable browsers use the information contained in that tag to locate the compiled class files
and execute the applet itself. In this section, you’ll learn about how to put Java applets in a Web
page and how to serve those files to the Web at large.

Note: The following section assumes you have at least a passing understanding of
writing HTML pages. If you need help in this area, you may find the book Teach
Yourself Web Publishing with HTML in 14 Days useful. It is also from Sams.Net
(and also written by one of the authors of this book).

The <APPLET> Tag
To include an applet on a Web page, use the <APPLET> tag. <APPLET> is a special extension to
HTML for including applets in Web pages. Listing 8.2 shows a very simple example of a Web
page with an applet included in it.

Listing 8.2. A simple HTML page.
 1: <HTML>
 2: <HEAD>
 3: <TITLE>This page has an applet on it</TITLE>
 4: </HEAD>
 5: <BODY>
 6: <P>My second Java applet says:
 7:

 8: <APPLET CODE=”HelloAgainApplet.class” WIDTH=200 HEIGHT=50>
 9: There would be an applet here if your browser
10: supported Java.
11: </APPLET>
12: </BODY>
13: </HTML>

There are three things to note about the <APPLET> tag in this page:

■■ The CODE attribute indicates the name of the class file that loads this applet, including
the .class extension. In this case, the class file must be in the same directory as this

Analysis

030-4s CH08.i 1/29/96, 9:21 PM136

137

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P2/V4sqc 7 TY Java in 21 Days 030-4 mww 12.12.95 Ch 8 LP#2

HTML file. To indicate applets are in a different directory, use CODEBASE, described
later today.

■■ WIDTH and HEIGHT are required and used to indicate the bounding box of the applet—
that is, how big a box to draw for the applet on the Web page. Be sure you set WIDTH
and HEIGHT to be an appropriate size for the applet; depending on the browser, if your
applet draws outside the boundaries of the space you’ve given it, you may not be able
to see or get to those parts of the applet outside the bounding box.

■■ The text between the <APPLET> and </APPLET> tags is displayed by browsers that do
not understand the <APPLET> tag (which includes most browsers that are not Java-
capable). Because your page may be viewed in many different kinds of browsers, it is a
very good idea to include alternate text here so that readers of your page who don’t
have Java will see something other than a blank line. Here, you include a simple
statement that says There would be an applet here if your browser supported
Java.

Note that the <APPLET> tag, like the tag, is not itself a paragraph, so it should be enclosed
inside a more general text tag, such as <P> or one of the heading tags (<H1> , <H2>, and so on).

Testing the Result
Now with a class file and an HTML file that refers to your applet, you should be able to load
that HTML file into your Java-capable browser (using either the Open Local... dialog item or
a file URL, or by indicating the filename on a command line). The browser loads and parses your
HTML file, and then loads and executes your applet class.

Figure 8.2 shows the Hello Again applet, in case you’ve forgotten what it looks like.

Figure 8.2.
The Hello Again applet.

Making Java Applets Available to the Web
After you have an applet and an HTML file, and you’ve verified that everything is working
correctly on your local system, the last step is making that applet available to the World Wide
Web at large so that anyone with a Java-capable browser can view that applet.

030-4s CH08.i 1/29/96, 9:21 PM137

138

Java Applet Basics
M

T W
R

F S S

DAYDAY

8

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 Ch 8 LP#3

Java applets are served by a Web server the same way that HTML files, images, and other media
are. You don’t need special server software to make Java applets available to the Web; you don’t
even need to configure your server to handle Java files. If you have a Web server up and running,
or space on a Web server available to you, all you have to do is move your HTML and compiled
class files to that server, as you would any other file.

If you don’t have a Web server, you have to rent space on one or set one up yourself. (Web server
setup and administration, as well as other facets of Web publishing in general, are outside the
scope of this book.)

More About the <APPLET> Tag
In its simplest form, by using CODE, WIDTH, and HEIGHT, the <APPLET> tag merely creates a space
of the appropriate size and then loads and plays the applet in that space. The <APPLET> tag,
however, does include several attributes that can help you better integrate your applet into the
overall design of your Web page.

Note: The attributes available for the <APPLET> tag are almost identical to those for
the HTML tag.

ALIGN
The ALIGN attribute defines how the applet will be aligned on the page. This attribute can have
one of nine values: LEFT, RIGHT, TOP, TEXTTOP, MIDDLE, ABSMIDDLE, BASELINE, BOTTOM, and
ABSBOTTOM.

In the case of ALIGN=LEFT and ALIGN=RIGHT, the applet is placed at the left or right margins of the
page, respectively, and all text following that applet flows in the space to the right or left of that
applet. The text will continue to flow in that space until the end of the applet, or you can use
a line break tag (
) with the CLEAR attribute to start the left line of text below that applet. The
CLEAR attribute can have one of three values: CLEAR=LEFT starts the text at the next clear left
margin, CLEAR=RIGHT does the same for the right margin, and CLEAR=ALL starts the text at the next
line where both margins are clear.

For example, here’s a snippet of HTML code that aligns an applet against the left margin, has
some text flowing alongside it, and then breaks at the end of the paragraph so that the next bit
of text starts below the applet:

030-4s CH08.i 1/29/96, 9:21 PM138

139

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P2/V4sqc 7 TY Java in 21 Days 030-4 mww 12.12.95 Ch 8 LP#2

<P><APPLET CODE=”HelloAgainApplet” WIDTH=300 HEIGHT=200
ALIGN=LEFT>Hello Again!</APPLET>
To the left of this paragraph is an applet. It’s a
simple, unassuming applet, in which a small string is
printed in red type, set in 36 point Times bold.
<BR CLEAR=ALL>
<P>In the next part of the page, we demonstrate how
under certain conditions, styrofoam peanuts can be
used as a healthy snack.

Figure 8.3 shows how this applet and the text surrounding it might appear in a Java-capable
browser.

Figure 8.3.
An applet aligned left.

For smaller applets, you may want to include your applet within a single line of text. To do this,
there are seven values for ALIGN that determine how the applet is vertically aligned with the text:

■■ ALIGN=TEXTTTOP aligns the top of the applet with the top of the tallest text in the line.

■■ ALIGN=TOP aligns the applet with the topmost item in the line (which may be another
applet, or an image, or the top of the text).

■■ ALIGN=ABSMIDDLE aligns the middle of the applet with the middle of the largest item in
the line.

■■ ALIGN=MIDDLE aligns the middle of the applet with the middle of the baseline of the
text.

■■ ALIGN=BASELINE aligns the bottom of the applet with the baseline of the text.
ALIGN=BASELINE is the same as ALIGN=BOTTOM, but ALIGN=BASELINE is a more descriptive
name.

■■ ALIGN=ABSBOTTOM aligns the bottom of the applet with the lowest item in the line
(which may be the baseline of the text or another applet or image).

Figure 8.4 shows the various alignment options, where the line is an image and the arrow is a
small applet.

030-4s CH08.i 1/29/96, 9:22 PM139

140

Java Applet Basics
M

T W
R

F S S

DAYDAY

8

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 Ch 8 LP#3

HSPACE and VSPACE
The HSPACE and VSPACE attributes are used to set the amount of space, in pixels, between an applet
and its surrounding text. HSPACE controls the horizontal space (the space to the left and right of
the applet). VSPACE controls the vertical space (the space above and below). For example, here’s
that sample snippet of HTML with vertical space of 10 and horizontal space of 50:

<P><APPLET CODE=”HelloAgainApplet” WIDTH=300 HEIGHT=200
ALIGN=LEFT VSPACE=10 HSPACE=50>Hello Again!</APPLET>
To the left of this paragraph is an applet. It’s a
simple, unassuming applet, in which a small string is
printed in red type, set in 36 point Times bold.
<BR CLEAR=ALL>
<P>In the next part of the page, we demonstrate how
under certain conditions, styrofoam peanuts can be
used as a healthy snack.

The result in a typical Java browser might look like that in Figure 8.5.

Figure 8.4.
Applet alignment options.

030-4s CH08.i 1/29/96, 9:22 PM140

141

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P2/V4sqc 7 TY Java in 21 Days 030-4 mww 12.12.95 Ch 8 LP#2

CODE and CODEBASE
CODE is used to indicate the name of the class file that holds the current applet. If CODE is used
alone in the <APPLET> tag, the class file is searched for in the same directory as the HTML file
that references it.

If you want to store your class files in a different directory than that of your HTML files, you
have to tell the Java-capable browser where to find those class files. To do this, you use CODEBASE.
CODE contains only the name of the class file; CODEBASE contains an alternate pathname where
classes are contained. For example, if you store your class files in a directory called /classes, which
is in the same directory as your HTML files, CODEBASE is the following:

<APPLET CODE=”myclass.class” CODEBASE=”classes”
 WIDTH=100 HEIGHT=100>

Passing Parameters to Applets
With Java applications, you can pass parameters to your main() routine by using arguments on
the command line. You can then parse those arguments inside the body of your class, and the
application acts accordingly based on the arguments it is given.

Applets, however, don’t have a command line. How do you pass in different arguments to an
applet? Applets can get different input from the HTML file that contains the <APPLET> tag
through the use of applet parameters. To set up and handle parameters in an applet, you need
two things:

■■ A special parameter tag in the HTML file

■■ Code in your applet to parse those parameters

Figure 8.5.
Vertical and horizontal
space.

50

50

10

030-4s CH08.i 1/29/96, 9:23 PM141

142

Java Applet Basics
M

T W
R

F S S

DAYDAY

8

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 Ch 8 LP#3

Applet parameters come in two parts: a name, which is simply a name you pick, and a value,
which determines the value of that particular parameter. So, for example, you can indicate the
color of text in an applet by using a parameter with the name color and the value red. You can
determine an animation’s speed using a parameter with the name speed and the value 5.

In the HTML fie that contains the embedded applet, you indicate each parameter using the
<PARAM> tag, which has two attributes for the name and the value, called (surprisingly enough),
NAME and VALUE. The <PARAM> tag goes inside the opening and closing <APPLET> tags:

<APPLET CODE=”MyApplet.class” WIDTH=100 HEIGHT=100>
<PARAM NAME=font VALUE=”TimesRoman”>
<PARAM NAME=size VALUE=”36">
A Java applet appears here.</APPLET>

This particular example defines two parameters to the MyApplet applet: one whose name is font
and whose value is TimesRoman, and one whose name is size and whose value is 36.

Those parameters are passed to your applet when it is loaded. In the init() method for your
applet, you can then get hold of those parameters by using the getParameter method.
getParameter takes one argument—a string representing the name of the parameter you’re
looking for—and returns a string containing the corresponding value of that parameter. (Like
arguments in Java applications, all the parameter values are converted to strings.) To get the
value of the font parameter from the HTML file, you might have a line such as this in your
init() method:

String theFontName = getParameter(“font”);

Note: The names of the parameters as specified in <PARAM> and the names of the
parameters in getParameter must match identically, including having the same
upper and lower case. In other words, <PARAM= NAME=”name”> is different from
<PARAM NAME=”Name”>. If your parameters are not being properly passed to your
applet, make sure the parameter names match.

Note that if a parameter you expect has not been specified in the HTML file, getParameter
returns null. Most often, you will want to test for a null parameter and supply a reasonable
default:

if (theFontName == null)
 theFontName = “Courier”

Keep in mind also that because getParameter returns strings, if you want a parameter to be some
other object or type, you have to convert it yourself. To parse the size parameter from that same
HTML file and assign it to an integer variable called theSize, you might use the following lines:

030-4s CH08.i 1/29/96, 9:23 PM142

143

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P2/V4sqc 7 TY Java in 21 Days 030-4 mww 12.12.95 Ch 8 LP#2

int theSize;
String s = getParameter(“size”);
if (s == null)
 theSize = 12;
else theSize = Integer.parseInt(s);

Get it? Not yet? Let’s create an example of an applet that uses this technique. You’ll modify the
HelloAgainApplet so that it says hello to a specific name, for example “Hello Bill” or “Hello
Alice”. The name is passed into the applet through an HTML parameter.

Let’s start with the original HelloAgainApplet class:

import java.awt.Graphics;
import java.awt.Font;
import java.awt.Color;

public class MoreHelloApplet extends java.applet.Applet {

 Font f = new Font(“TimesRoman”,Font.BOLD,36);

 public void paint(Graphics g) {
 g.setFont(f);
 g.setColor(Color.red);
 g.drawString(“Hello Again!”, 5, 50);
 }
}

The first thing you need to add in this class is a place for the name. Because you’ll need that name
throughout the applet, let’s add an instance variable for the name, just after the variable for the
font:

String name;

To set a value for the name, you have to get the parameter. The best place to handle parameters
to an applet is inside an init() method. The init() method is defined similarly to paint()
(public, with no arguments, and a return type of void). Make sure when you test for a parameter
that you test for a value of null. The default, in this case, if a name isn’t indicated, is to say hello
to “Laura”:

public void init() {
this.name = getParameter(“name”);
 if (this.name == null)
 this.name = “Laura”;
 }

One last thing to do now that you have the name from the HTML parameters is to modify the
name so that it’s a complete string—that is, to tack “Hello “ onto the beginning, and an
exclamation point onto the end. You could do this in the paint method just before printing the
string to the screen. Here it’s done only once, however, whereas in paint it’s done every time
the screen is repainted—in other words, it’s slightly more efficient to do it inside init() instead:

this.name = “Hello “ + this.name + “!”;

030-4s CH08.i 1/29/96, 9:23 PM143

144

Java Applet Basics
M

T W
R

F S S

DAYDAY

8

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 Ch 8 LP#3

Type

Type

And now, all that’s left is to modify the paint() method. The original drawString method
looked like this:

g.drawString(“Hello Again!”, 5, 50);

To draw the new string you have stored in the name instance variable, all you need to do is
substitute that variable for the literal string:

g.drawString(this.name, 5, 50);

Listing 8.3 shows the final result of the MoreHelloApplet class. Compile it so that you have a class
file ready.

Listing 8.3. The MoreHelloApplet class.
 1: import java.awt.Graphics;
 2: import java.awt.Font;
 3: import java.awt.Color;
 4:
 5: public class MoreHelloApplet extends java.applet.Applet {
 6:
 7: Font f = new Font(“TimesRoman”,Font.BOLD,36);
 8: String name;
 9:
10: public void init() {
11: this.name = getParameter(“name”);
12: if (this.name == null)
13: this.name = “Laura”;
14:
15: this.name = “Hello “ + this.name + “!”;
16: }
17:
18: public void paint(Graphics g) {
19: g.setFont(f);
20: g.setColor(Color.red);
21: g.drawString(this.name, 5, 50);
22: }
23: }

Now, let’s create the HTML file that contains this applet. Listing 8.4 shows a new Web page
for the MoreHelloApplet applet.

Listing 8.4. The HTML file for the MoreHelloApplet applet.
 1: <HTML>
 2: <HEAD>
 3: <TITLE>Hello!</TITLE>
 4: </HEAD>
 5: <BODY>

030-4s CH08.i 1/29/96, 9:24 PM144

145

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P2/V4sqc 7 TY Java in 21 Days 030-4 mww 12.12.95 Ch 8 LP#2

 6: <P>
 7: <APPLET CODE=”MoreHelloApplet.class” WIDTH=300 HEIGHT=50>
 8: <PARAM NAME=name VALUE=”Bonzo”>
 9: Hello to whoever you are!
10: </APPLET>
11: </BODY>
12: </HTML>

Note the <APPLET> tag, which points to the class file for the applet with the appropriate
width and height (300 and 50). Just below it (line 8) is the <PARAM> tag, which you use to
pass in the name. Here, the NAME parameter is simply name, and the value is the strong

“Bonzo”.

Loading up this HTML file produces the result shown in Figure 8.6.

Type

Let’s try a second example. Remember that in the code for MoreHelloApplet, if no name is
specified, the default is the name “Laura”. Listing 8.5 creates an HTML file with no parameter
tag for name.

Listing 8.5. Another HTML File for the
MoreHelloApplet applet.

 1: <HTML>
 2: <HEAD>
 3: <TITLE>Hello!</TITLE>
 4: </HEAD>
 5: <BODY>
 6: <P>
 7: <APPLET CODE=”MoreHelloApplet.class” WIDTH=300 HEIGHT=50>
 8: Hello to whoever you are!
 9: </APPLET>
10: </BODY>
11: </HTML>

Here, because no name was supplied, the applet uses the default, and the result is what you might
expect (see Figure 8.7).

Figure 8.6.
The result of
MoreHelloApplet, first try.

Analysis

030-4s CH08.i 1/29/96, 9:24 PM145

146

Java Applet Basics
M

T W
R

F S S

DAYDAY

8

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 Ch 8 LP#3

Summary
Applets are probably the most common use of the Java language today. Applets are more
complicated than many Java applications because they are executed and drawn inline with a Web
page. Applets can more easily provide easy access to the graphics, user interface, and events
systems in the Web browser itself. Today, you learned the basics of creating applets, including
the following things:

■■ All applets you develop using Java inherit from the Applet class, part of the java.applet
package. The Applet class provides basic behavior for how the applet will be integrated
with and react to the browser and various forms of input from that browser and the
person running it. By subclassing Applet, you have access to all that behavior.

■■ Applets have five main methods, which are used for the basic activities an applet
performs during its life cycle: init(), start(), stop(), destroy(), and paint().
Although you don’t need to override all these methods, these are the most common
methods you’ll see repeated in many of the applets you’ll create in this book and in
other sample programs.

■■ To run a compiled applet class file, you include it in an HTML Web page by using
the <APPLET> tag. When a Java-capable browser comes across <APPLET>, it loads and
plays the applet described in that tag. Note that to publish Java applets on the World
Wide Web alongside HTML files you do not need special server software; any plain
old Web server will do just fine.

■■ Unlike applications, applets do not have a common line on which to pass arguments,
so those arguments must be passed into the applet through the HTML file that
contains it. You indicate parameters in an HTML file by using the <PARAM> tag inside
the opening and closing <APPLET> tags. <PARAM> has two attributes: NAME for the name
of the parameter, and VALUE for its value. Inside the body of your applet (usually in
init()), you can then gain access to those parameters using the getParameter method.

Figure 8.7.
The result of
MoreHelloApplet,
second try.

030-4s CH08.i 1/29/96, 9:25 PM146

147

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P2/V4sqc 7 TY Java in 21 Days 030-4 mww 12.12.95 Ch 8 LP#2

Q&A
Q In the first part of today’s lesson, you say that applets are downloaded from

random Web servers and run on the client’s system. What’s to stop an applet
developer from creating an applet that deletes all the files on that system, or in
some other way compromises the security of the system?

A Recall that Java applets have several restrictions that make it difficult for most of the
more obvious malicious behavior to take place. For example, because Java applets
cannot read or write files on the client system, they cannot delete files or read system
files that might contain private information. Because they cannot run programs on the
client’s system, they cannot, for example, use the system’s mail system to mail files to
someone elsewhere on the network.

In addition, Java’s very architecture makes it difficult to circumvent these restrictions.
The language itself, the Java compiler, and the Java interpreter all have checks to make
sure that no one has tried to sneak in bogus code or play games with the system itself.
You’ll learn more about these checks at the end of this book.

Of course, no system can claim to be entirely secure, and the fact that Java applets are
run on the client’s system makes them especially ripe for suspicion.

Q Wait a minute. If I can’t read or write files or run programs on the system the
applet is running on, doesn’t that mean I basically can’t do anything other than
simple animations and flashy graphics? How can I save state in an applet? How
can I create, say, a word processor or a spreadsheet as a Java applet?

A For everyone who doesn’t believe that Java is secure enough, there is someone who
believes that Java’s security restrictions are too severe for just these reasons. Yes, Java
applets are limited because of the security restrictions. But given the possibility for
abuse, I believe that it’s better to err on the side of being more conservative as far as
security is concerned. Consider it a challenge.

Keep in mind, also, that Java applications have none of the restrictions that Java
applets do, but because they are also compiled to bytecode, they are portable across
platforms. It may be that the thing you want to create would make a much better
application than an applet.

Q I have an older version of HotJava. I followed all the examples in this section,
but HotJava cannot read my applets (it seems to ignore that they exist). What’s
going on?

030-4s CH08.i 1/29/96, 9:25 PM147

148

Java Applet Basics
M

T W
R

F S S

DAYDAY

8

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 Ch 8 LP#3

A You most likely have an alpha version of HotJava. Recall that significant changes were
made to the Java API and how Java applets are written between alpha and beta. The
results of these changes are that browsers that support alpha applets cannot read beta
applets, and vice versa. The HTML tags are even different, so an older browser just
skips over newer applets, and vice versa.

By the time you read this, there may be a new version of HotJava with support for
beta. If not, you can use Netscape 2.0 or the JDK’s applet viewer to view applets
written to the beta specification.

Q I noticed in a page about the <APPLET> tag that there’s also a NAME attribute. You
didn’t discuss it here.

A NAME is used when you have multiple applets on a page that need to communicate with
each other. You’ll learn about this on Day 12.

Q I have an applet that takes parameters and an HTML file that passes it those
parameters. But when my applet runs, all I get are null values. What’s going on
here?

A Do the names of your parameters (in the NAME attribute) match exactly with the names
you’re testing for in getParameter? They must be exact, including case, for the match
to be made. Make sure also that your <PARAM> tags are inside the opening and closing
<APPLET> tags, and that you haven’t misspelled anything.

030-4s CH08.i 1/29/96, 9:26 PM148

149

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

M
T W

R
F S S

Graphics, Fonts,
and Color

by Laura Lemay

WEEK

2

99

030-4s CH09.i 1/29/96, 9:27 PM149

150

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Now you have a basic understanding of how applets work. For the remainder of this week you’ll
cover the sorts of things you can do with applets with the built-in Java class libraries, and how
you can combine them to produce interesting effects. You’ll start today with how to draw to the
screen—that is, how to produce lines and shapes with the built-in graphics primitive, how to
print text using fonts, and how to use and modify color in your applets. Today you’ll learn,
specifically:

■■ How the graphics system works in Java: the Graphics class, the coordinate system used
to draw to the screen, and how applets paint and repaint

■■ Using the Java graphics primitives, including drawing and filling lines, rectangles,
ovals, and arcs

■■ Creating and using fonts, including how to draw characters and strings and how to
find out the metrics of a given font for better layout

■■ All about color in Java, including the Color class and how to set the foreground
(drawing) and background color for your applet

Note: Today’s lesson discusses many of the basic operations available to you with
the Java class libraries regarding graphics, fonts, and color. However, today’s lesson,
as well as all of this book, is also intended to be more of an introduction and an
overview than an exhaustive description of all the features available to you. Be sure
to check out the Java API documentation for more information on the classes
described today.

The Graphics Class
With Java’s graphics capabilities, you can draw lines, shapes, characters, and images to the screen
inside your applet. Most of the graphics operations in Java are methods defined in the Graphics
class. You don’t have to create an instance of Graphics in order to draw something in your applet;
in your applet’s paint() method (which you learned about yesterday), you are given a Graphics
object. By drawing on that object, you draw onto your applet and the results appear on screen.

The Graphics class is part of the java.awt package, so if your applet does any painting (as it usually
will), make sure you import that class at the beginning of your Java file:

import java.awt.Graphics;

public class MyClass extended java.applet.Applet {
...
}

030-4s CH09.i 1/29/96, 9:28 PM150

151

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

20,20

0,0 +X

+Y

60,60

The Graphics Coordinate System
To draw an object on the screen, you call one of the drawing methods available in the Graphics
class. All the drawing methods have arguments representing endpoints, corners, or starting
locations of the object as values in the applet’s coordinate system—for example, a line starts at
the points 10,10 and ends at the points 20,20.

Java’s coordinate system has the origin (0,0) in the top left corner. Positive x values are to the
right, and positive y values are down. All pixel values are integers; there are no partial or fractional
pixels. Figure 9.1 shows how you might draw a simple square by using this coordinate system.

Java’s coordinate system is different from many painting and layout programs that have their
x and y in the bottom left. If you’re not used to working with this upside-down graphics system,
it may take some practice to get familiar with it.

Drawing and Filling
The Graphics class provides a set of simple built-in graphics primitives for drawing, including
lines, rectangles, polygons, ovals, and arcs.

Note: Bitmap images, such as GIF files, can also be drawn by using the Graphics
class. You’ll learn about this tomorrow.

Figure 9.1.
The Java graphics coordi-
nate system.

030-4s CH09.i 1/29/96, 9:28 PM151

152

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Lines
To draw straight lines, use the drawLine method. drawLine takes four arguments: the x and y
coordinates of the starting point and the x and y coordinates of the ending point.

public void paint(Graphics g) {
 g.drawLine(25,25,75,75);
}

Figure 9.2 shows the result of this snippet of code.

Rectangles
The Java graphics primitives provide not just one, but three kinds of rectangles:

■■ Plain rectangles

■■ Rounded rectangles, which are rectangles with rounded corners

■■ Three-dimensional rectangles, which are drawn with a shaded border

For each of these rectangles, you have two methods to choose from: one that draws the rectangle
in outline form, and one that draws the rectangle filled with color.

To draw a plain rectangle, use either the drawRect or fillRect methods. Both take four
arguments: the x and y coordinates of the top left corner of the rectangle, and the width and
height of the rectangle to draw. For example, the following paint() method draws two squares:
the left one is an outline and the right one is filled (Figure 9.3 shows the result):

public void paint(Graphics g) {
 g.drawRect(20,20,60,60);
 g.fillRect(120,20,60,60);
}

Rounded rectangles are, as you might expect, rectangles with rounded edges. The drawRoundRect
and fillRoundRect methods to draw rounded rectangles are similar to regular rectangles except
that rounded rectangles have two extra arguments for the width and height of the angle of the

Figure 9.2.
Drawing lines.

030-4s CH09.i 1/29/96, 9:29 PM152

153

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

corners. Those two arguments determine how far along the edges of the rectangle the arc for the
corner will start; the first for the angle along the horizontal plane, the second for the vertical.
Larger values for the angle width and height make the overall rectangle more rounded; values
equal to the width and height of the rectangle itself produce a circle. Figure 9.4 shows some
examples of rounded corners.

Figure 9.3.
Rectangles.

Figure 9.4.
Rounded corners.

5

20

20

10

30
5

Here’s a paint method that draws two rounded rectangles: one as an outline with a rounded
corner 10 pixels square; the other, filled, with a rounded corner 20 pixels square (Figure 9.5 shows
the resulting squares):

public void paint(Graphics g) {
 g.drawRoundRect(20,20,60,60,10,10);
 g.fillRoundRect(120,20,60,60,20,20);
}

030-4s CH09.i 1/29/96, 9:29 PM153

154

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Finally, there are three-dimensional rectangles. These rectangles aren’t really 3D; instead, they
have a shadow effect that makes them appear either raised or indented from the surface of the
applet. Three-dimensional rectangles have four arguments for the x and y of the start position
and the width and height of the rectangle. The fifth argument is a boolean indicating whether
the 3D effect is to raise the rectangle (true) or indent it (false). As with the other rectangles,
there are also different methods for drawing and filling: draw3DRect and fill3DRect. Here’s code
to produce two of them—the left one indented, the right one raised (Figure 9.6 shows the result):

public void paint(Graphics g) {
 g.draw3DRect(20,20,60,60,true);
 g.draw3DRect(120,20,60,60,false);
}

Figure 9.5.
Rounded rectangles.

Figure 9.6.
Three-dimensional
rectangles.

Note: In the current beta version of the Java developer’s kit, it is very difficult to
see the 3D effect on 3D rectangles, due to a very small line width. (In fact, I
enhanced Figure 9.6 to better show the effect.) If you are having troubles with 3D
rectangles, this may be why. Drawing 3D rectangles in any color other than black
makes them easier to see.

030-4s CH09.i 1/29/96, 9:30 PM154

155

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Polygons
Polygons are shapes with an unlimited number of sides. To draw a polygon, you need a set of
x and y coordinates, and the drawing method then starts at one, draws a line to the second, then
a line to the third, and so on.

As with rectangles, you can draw an outline or a filled polygon (the drawPolygon and fillPolygon
methods, respectively). You also have a choice of how you want to indicate the list of
coordinates—either as arrays of x and y coordinates or as an instance of the Polygon class.

Using the first method, the drawPolygon and fillPolygon methods take three arguments:

■■ An array of integers representing x coordinates

■■ An array of integers representing y coordinates

■■ An integer for the total number of points

The x and y arrays should, of course, have the same number of elements.

Here’s an example of drawing a polygon’s outline by using this method (Figure 9.7 shows the
result):

public void paint(Graphics g) {
 int exes[] = { 39,94,97,142,53,58,26 };
 int whys[] = { 33,74,36,70,108,80,106 };
 int pts = exes.length;

 g.drawPolygon(exes,whys,pts);
}

Note that Java does not automatically close the polygon; if you want to complete the shape, you
have to include the starting point of the polygon at the end of the array. Drawing a filled polygon,
however, joins the starting and ending points.

Figure 9.7.
A polygon.

030-4s CH09.i 1/29/96, 9:30 PM155

156

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

The second way of calling drawPolygon and fillPolygon is to use a Polygon object. The Polygon
class is useful if you intend to add points to the polygon or if you’re building the polygon on the
fly. The Polygon class enables you to treat the polygon as an object rather than having to deal
with individual arrays.

To create a polygon object you can either create an empty polygon:

Polygon poly = new Polygon();

or create a polygon from a set of points using integer arrays, as in the previous example:

int exes[] = { 39,94,97,142,53,58,26 };
int whys[] = { 33,74,36,70,108,80,106 };
int pts = exes.length;
Polygon poly = new Polygon(exes,whys,pts);

Once you have a polygon object, you can append points to the polygon as you need to:

poly.addPoint(20,35);

Then, to draw the polygon, just use the polygon object as an argument to drawPolygon or
fillPolygon. Here’s that previous example, rewritten this time with a Polygon object. You’ll also
fill this polygon rather than just drawing its outline (Figure 9.8 shows the output):

public void paint(Graphics g) {
 int exes[] = { 39,94,97,142,53,58,26 };
 int whys[] = { 33,74,36,70,108,80,106 };
 int pts = exes.length;
 Polygon poly = new Polygon(exes,whys,pts);
 g.fillPolygon(poly);
}

Ovals
Use ovals to draw ellipses or circles. Ovals are just like rectangles with overly rounded corners.
In fact, you draw them using the same four arguments: the x and y of the top corner, and the

Figure 9.8.
Another polygon.

030-4s CH09.i 1/29/96, 9:31 PM156

157

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

width and height of the oval itself. Note that, because you’re drawing an oval, the starting point
is some distance to the left and up from the actual outline of the oval itself. Again, if you think
of it as a rectangle, it’s easier to place.

As with the other drawing operations, the drawOval method draws an outline of an oval, and the
fillOval method draws a filled oval.

Here’s an example of two ovals, a circle and an ellipse (Figure 9.9 shows how these two ovals
appear on screen):

public void paint(Graphics g) {
 g.drawOval(20,20,60,60);
 g.fillOval(120,20,100,60);
}

Arc
Of the drawing operations, arcs are the most complex to construct, which is why I saved them
for last. An arc is a part of a oval; in fact, the easiest way to think of an arc is as a section of a
complete oval. Figure 9.10 shows some arcs.

Figure 9.9.
Ovals.

Figure 9.10.
Arcs.

030-4s CH09.i 1/29/96, 9:31 PM157

158

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

The drawArc method takes six arguments: the starting corner, the width and height, the angle
at which to start the arc, and the degrees to draw it before stopping. Once again, there is a drawArc
method to draw the arc’s outline and the fillArc to fill the arc. Filled arcs are drawn as if they
were sections of a pie; instead of joining the two endpoints, both endpoints are joined to the
center of the circle.

The important thing to understand about arcs is that you’re actually formulating the arc as an
oval and then drawing only some of that. The starting corner and width and height are not the
starting point and width and height of the actual arc as drawn on the screen; they’re the width
and height of the full ellipse of which the arc is a part. Those first points determine the size and
shape of the arc; the last two arguments (for the degrees) determine the starting and ending
points.

Let’s start with a simple arc, a C shape on a circle as shown in Figure 9.11.

Figure 9.11.
A C arc.

To construct the method to draw this arc, the first thing you do is think of it as a complete circle.
Then you find the x and y coordinates and the width and height of that circle. Those four values
are the first four arguments to the drawArc or fillArc methods. Figure 9.12 shows how to get
those values from the arc.

Figure 9.12.
Constructing a circular arc.

100

100

030-4s CH09.i 1/29/96, 9:32 PM158

159

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

To get the last two arguments, think in degrees around the circle. Zero degrees is at 3 o’clock,
90 degrees is at 12 o’clock, 180 at 9 o’clock, and 270 at 6 o’clock. The start of the arc is the degree
value of the start of the arc. In this example, the starting point is the top of the C at 90 degrees;
90 is the fifth argument.

The sixth and last argument is another degree value indicating how far around the circle to sweep
and the direction to go in (it’s not the ending degree angle, as you might think). In this case,
because you’re going halfway around the circle, you’re sweeping 180 degrees—and 180 is
therefore the last argument in the arc. The important part is that you’re sweeping 180 degrees
counterclockwise, which is in the positive direction in Java. If you are drawing a backwards C,
you sweep 180 degrees in the negative direction, and the last argument is –180. See Figure 9.13
for the final illustration of how this works.

Note: It doesn’t matter which side of the arc you start with; because the shape of
the arc has already been determined by the complete oval it’s a section of, starting
at either endpoint will work.

Figure 9.13.
Arcs on circles.

Here’s the code for this example; you’ll draw an outline of the C and a filled C to its right, as
shown in Figure 9.14:

public void paint(Graphics g) {
 g.drawArc(20,20,60,60,90,180);
 g.fillArc(120,20,60,60,90,180);
}

Circles are an easy way to visualize arcs on circles; arcs on ellipses are slightly more difficult. Let’s
go through this same process to draw the arc shown in Figure 9.15.

90°

90°

270°

180°

0°180°

030-4s CH09.i 1/29/96, 9:32 PM159

160

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Figure 9.15.
An elliptical arc.

Figure 9.14.
Two circular arcs.

Like the arc on the circle, this arc is a piece of a complete oval, in this case, an elliptical oval. By
completing the oval that this arc is a part of, you can get the starting points and the width and
height arguments for the drawArc or fillArc method (Figure 9.16).

Figure 9.16.
Arcs on ellipses.

Then, all you need is to figure out the starting angle and the angle to sweep. This arc doesn’t
start on a nice boundary such as 90 or 180 degrees, so you’ll need some trial and error. This arc
starts somewhere around 25 degrees, and then sweeps clockwise about 130 degrees (Figure
9.17).

Figure 9.17.
Starting and ending points.

140

30

90°

270°

-130°

25°
0°180°

030-4s CH09.i 1/29/96, 9:33 PM160

161

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

With all portions of the arc in place, you can write the code. Here’s the Java code for this arc,
both drawn and filled (note in the filled case how filled arcs are drawn as if they were pie sections):

public void paint(Graphics g) {
 g.drawArc(10,20,150,50,25,-130);
 g.fillArc(10,80,150,50,25,-130);
}

Figure 9.18 shows the two elliptical arcs.

To summarize, here are the steps to take to construct arcs in Java:

■■ Think of the arc as a slice of a complete oval.

■■ Construct the full oval with the starting point and the width and height (it often helps
to draw the full oval on the screen to get an idea of the right positioning).

■■ Determine the starting angle for the beginning of the arc.

■■ Determine how far to sweep the arc and in which direction (counterclockwise
indicates positive values, clockwise indicates negatives).

A Simple Graphics Example
Here’s an example of an applet that uses many of the built-in graphics primitives to draw a
rudimentary shape. In this case, it’s a lamp with a spotted shade (or a sort of cubist mushroom,
depending on your point of view). Listing 9.1 has the complete code for the lamp; Figure 9.19
shows the resulting applet.

Figure 9.18.
Two elliptical arcs.

030-4s CH09.i 1/29/96, 9:33 PM161

162

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Type Listing 9.1. The Lamp class.
 1: import java.awt.*;
 2:
 3: public class Lamp extends java.applet.Applet {
 4:
 5: public void paint(Graphics g) {
 6: // the lamp platform
 7: g.fillRect(0,250,290,290);
 8:
 9: // the base of the lamp
10: g.drawLine(125,250,125,160);
11: g.drawLine(175,250,175,160);
12:
13: // the lamp shade, top and bottom edges
14: g.drawArc(85,157,130,50,-65,312);
15: g.drawArc(85,87,130,50,62,58);
16:
17: // lamp shade, sides
18: g.drawLine(85,177,119,89);
19: g.drawLine(215,177,181,89);
20:
21: // dots on the shade
22: g.fillArc(78,120,40,40,63,-174);

Figure 9.19.
The Lamp applet.

030-4s CH09.i 1/29/96, 9:34 PM162

163

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

23: g.fillOval(120,96,40,40);
24: g.fillArc(173,100,40,40,110,180);
25: }
26: }

Copying and Clearing
Once you’ve drawn a few things on the screen, you may want to move them around or clear the
entire applet. The Graphics class provides methods for doing both these things.

The copyArea method copies a rectangular area of the screen to another area of the screen.
copyArea takes six arguments: the x and y of the top corner of the rectangle to copy, the width
and the height of that rectangle, and the distance in the x and y directions to which to copy it.
For example, this line copies a square area 100 pixels on a side 100 pixels directly to its right:

g.copyArea(0,0,100,100,100,0);

To clear a rectangular area, use the clearRect method. clearRect, which takes the same four
arguments as the drawRect and fillRect methods, fills the given rectangle with the current
background color of the applet (you’ll learn how to set the current background color later on
today).

To clear the entire applet, you can use the size() method, which returns a Dimension object
representing the width and height of the applet. You can then get to the actual values for width
and height by using the width and height instance variables:

g.clearRect(0,0,this.size().width,this.height());

Text and Fonts
The Graphics class also enables you to print text on the screen, in conjunction with the Font class,
and, sometimes, the Font metrics class. The Font class represents a given font—its name, style,
and point size—and Font metrics gives you information about that font (for example, the actual
height or width of a given character) so that you can precisely lay out text in your applet.

Note that the text here is static text, drawn to the screen once and intended to stay there. You’ll
learn about entering text from the keyboard later on this week.

Creating Font Objects
To draw text to the screen, first you need to create an instance of the Font class. Font objects
represent an individual font—that is, its name, style (bold, italic), and point size. Font names
are strings representing the family of the font, for example, “TimesRoman”, “Courier”, or

030-4s CH09.i 1/29/96, 9:34 PM163

164

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

“Helvetica”. Font styles are constants defined by the Font class; you can get to them using class
variables—for example, Font.PLAIN, Font.BOLD, or Font.ITALIC. Finally, the point size is the size
of the font, as defined by the font itself; the point size may or may not be the height of the
characters.

To create an individual font object, use these three arguments to the Font class’s new constructor:

Font f = new Font(“TimesRoman”, Font.BOLD, 24);

This example creates a font object for the TimesRoman BOLD font, in 24 points. Note that like most
Java classes, you have to import this class before you can use it.

Font styles are actually integer constants that can be added to create combined styles; for
example, Font.BOLD + Font.ITALIC produces a font that is both bold and italic.

The fonts you have available to you in your applet depend on the system on which the applet
is running. Currently, although there is a mechanism in Java to get a list of fonts (see the
getFontList method, defined in the java.awt.Toolkit class), it appears not to be working
currently in the beta version of the JDK. Once these capabilities work, it is possible to get a list
of fonts on the system and to be able to make choices based on that list; for now, to make sure
your applet is completely compatible across systems, it’s a very good idea to limit the fonts you
use in your applets to “TimesRoman”, “Helvetica”, and “Courier”. If Java can’t find a font you
want to use, it will substitute some default font, usually Courier.

Drawing Characters and Strings
With a font object in hand, you can draw text on the screen using the methods drawChars and
drawString. First, though, you need to set the current font to your font object using the setFont
method.

The current font is part of the graphics state that is kept track of by the Graphics object on which
you’re drawing. Each time you draw a character or a string to the screen, that text is drawn by
using the current font. To change the font of the text, first change the current font. Here’s a
paint() method that creates a new font, sets the current font to that font, and draws the string
“This is a big font.”, starting from the point 10,100.

public void paint(Graphics g) {
 Font f = new Font(“TimesRoman”, Font.PLAIN,72);
 g.setFont(f);
 g.drawString(“This is a big font.”,10,100);
}

This should all look familiar to you; this is how the Hello applets throughout this book were
produced.

The latter two arguments to drawString determine the point where the string will start. The x
value is the start of the leftmost edge of the text; y is the baseline for the entire string.

030-4s CH09.i 1/29/96, 9:35 PM164

165

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Type

Similar to drawString is the drawChars method that, instead of taking a string as an argument,
takes an array of characters. drawChars has five arguments: the array of characters, an n integer
representing the first character in the array to draw, another integer for the last character in the
array to draw (all characters between the first and last are drawn), and the x and y for the starting
point. Most of the time, drawString is more useful than drawChars.

Listing 9.2 shows an applet that draws several lines of text in different fonts; Figure 9.20 shows
the result.

Listing 9.2. Many different fonts.
 1: import java.awt.Font;
 2: import java.awt.Graphics;
 3:
 4: public class ManyFonts extends java.applet.Applet {
 5:
 6: public void paint(Graphics g) {
 7: Font f = new Font(“TimesRoman”, Font.PLAIN, 18);
 8: Font fb = new Font(“TimesRoman”, Font.BOLD, 18);
 9: Font fi = new Font(“TimesRoman”, Font.ITALIC, 18);
10: Font fbi = new Font(“TimesRoman”, Font.BOLD + Font.ITALIC, 18);
11:
12: g.setFont(f);
13: g.drawString(“This is a plain font”, 10, 25);
14: g.setFont(fb);
15: g.drawString(“This is a bold font”, 10, 50);
16: g.setFont(fi);
17: g.drawString(“This is an italic font”, 10, 75);
18: g.setFont(fbi);
19: g.drawString(“This is a bold italic font”, 10, 100);
20: }
21:
22: }

Figure 9.20.
The output of the
ManyFonts applet.

030-4s CH09.i 1/29/96, 9:35 PM165

166

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Finding Out Information About a Font
Sometimes, you may want to make decisions in your Java program based on the qualities of the
current font—for example, its point size, or the total height of its characters. You can find out
some basic information about fonts and font objects by using simple methods on Graphics and
on the Font objects. Table 9.1 shows some of these methods:

Table 9.1. Font methods.

Method Name In Object Action

getFont() Graphics Returns the current font object as previously set by
setFont()

getName() Font Returns the name of the font as a string

getSize() Font Returns the current font size (an integer)

getStyle() Font Returns the current style of the font (styles are integer
constants: 0 is plain, 1 is bold, 2 is italic, 3 is bold italic)

isPlain() Font Returns true or false if the font’s style is plain

isBold() Font Returns true or false if the font’s style is bold

isItalic() Font Returns true or false if the font’s style is italic

For more detailed information about the qualities of the current font (for example, the length
or height of given characters), you need to work with font metrics. The FontMetrics class
describes information specific to a given font: the leading between lines, the height and width
of each character, and so on. To work with these sorts of values, you create a FontMetrics object
based on the current font by using the applet method getFontMetrics:

Font f = new Font(“TimesRoman”, Font.BOLD, 36);
FontMetrics fmetrics = getFontMetrics(f);
g.setfont(f);

Table 9.2 shows some of the things you can find out using font metrics. All these methods should
be called on a FontMetrics object.

Table 9.2. Font metrics methods.

Method Name Action

stringWidth() Given a string, returns the full width of that string, in pixels

charWidth() Given a character, returns the width of that character

030-4s CH09.i 1/29/96, 9:36 PM166

167

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Type

Method Name Action

getAscent() Returns the ascent of the font, that is, the distance between the
font’s baseline and the top of the characters

getDescent() Returns the descent of the font—that is, the distance between the
font’s baseline and the bottoms of the characters (for characters such
as p and q that drop below the baseline)

getLeading() Returns the leading for the font, that is, the spacing betweenthe
descent of one line and the ascent of another line

getHeight() Returns the total height of the font, which is the sum of the ascent,
descent, and leading value

As an example of the sorts of information you can use with font metrics, Listing 9.3 shows the
Java code for an applet that automatically centers a string horizontally and vertically inside an
applet. The centering position is different depending on the font and font size; by using font
metrics to find out the actual size of a string, you can draw the string in the appropriate place.

Note the applet.size() method here, which returns the width and height of the overall applet
area as a Dimension object. You can then get to the individual width and height by using the width
and height instance variables.

Figure 9.21 shows the result (less interesting than if you actually compile and experiment with
various applet sizes).

Listing 9.3. Centering a string.
 1: import java.awt.Font;
 2: import java.awt.Graphics;
 3: import java.awt.FontMetrics;
 4:
 5: public class Centered extends java.applet.Applet {
 6:
 7: public void paint(Graphics g) {
 8: Font f = new Font(“TimesRoman”, Font.PLAIN, 36);
 9: FontMetrics fm = getFontMetrics(f);
10: g.setFont(f);
11:
12: String s = “This is how the world ends.”;
13: int xstart = (this.size().width - fm.stringWidth(s)) / 2;
14: int ystart = (this.size().height - fm.getHeight()) / 2;
15:
16: g.drawString(s, xstart, ystart);
17: }
18:}

030-4s CH09.i 1/29/96, 9:37 PM167

168

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Color
Drawing black lines and tests on a gray background is all very nice, but being able to use different
colors is much nicer. Java provides methods and behaviors for dealing with color in general
through the Color class, and also provides methods for setting the current foreground and
background colors so that you can draw with the colors you created.

Java’s abstract color model uses 24-bit color, wherein a color is represented as a combination of
red, green, and blue values. Each component of the color can have a number between 0 and 255.
0,0,0 is black, 255,255,255 is white, and Java can represent millions of colors between as well.

Java’s abstract color model maps onto the color model of the platform Java is running on, which
usually has only 256 colors or fewer from which to choose. If a requested color in a color object
is not available for display, the resulting color may be mapped to another or dithered, depending
on how the browser viewing the color implemented it, and depending on the platform on which
you’re running. In other words, although Java gives the capability of managing millions of
colors, very few may actually be available to you in real life.

Using Color Objects
To draw an object in a particular color, you must create an instance of the Color class to represent
that color. The Color class defines a set of standard color objects, stored in class variables, that
enable you quickly to get a color object for some of the more popular colors. For example,
Color.red gives you a Color object representing red (RGB values of 255, 0, and 0), Color.white
gives you a white color (RGB values of 255, 255, and 255), and so on. Table 9.3 shows the
standard colors defined by variables in the Color class.

Table 9.3. Standard colors.

Color Name RGB Value

Color.white 255,255,255

Color.black 0,0,0

Color.lightGray 192,192,192

Color.gray 128,128,128

Color.darkGray 64,64,64

Figure 9.21.
The centered text.

030-4s CH09.i 1/29/96, 9:37 PM168

169

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

Color.red 255,0,0

Color.green 0,255,0

Color.blue 0,0,255

Color.yellow 255,255,0

Color.magenta 255,0,255

Color.cyan 0,255,255

Color.pink 255,175,175

Color.orange 255,200,0

If the color you want to draw in is not one of the standard color objects, fear not. You can create
a color object for any combination of red, green, and blue, as long as you have the values of the
color you want. Just create a new color object:

Color c = new Color(140,140,140);

This line of Java code creates a color object representing a dark grey. You can use any
combination of red, green, and blue values to construct a color object.

Alternatively, you can also create a color object using three floats from 0.0 to 1.0:

Color c = new Color(0.34,1.0,0.25)

Testing and Setting the Current Colors
To draw an object or text using a color object, you have to set the current color to be that color
object, just as you have to set the current font to the font in which you want to draw. Use the
setColor method (a method for Graphics objects) to do this:

g.setColor(Color.green);

After setting the current color, all drawing operations will occur in that color.

In addition to setting the current color for the graphics context, you can also set the background
and foreground colors for the applet itself by using the setBackground and setForeground
methods. Both of these methods are defined in the java.awt.Component class, which Applet—
and therefore your classes—automatically inherits.

The setBackground method sets the background color of the applet, which is usually a dark grey.
It takes a single argument, a color object:

setBackground(Color.white);

Color Name RGB Value

030-4s CH09.i 1/29/96, 9:38 PM169

170

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

The setForeground method also takes a single color as an argument, and affects everything that
has been drawn on the applet, regardless of the color in which it has been drawn. You can use
setForeground to change the color of everything in the applet at once, rather than having to
redraw everything:

setForeground(Color.black);

In addition to the setColor, setForeground, and setBackground methods, there are correspond-
ing “get” methods that enable you to retrieve the current graphics color, background, or
foreground. Those methods are getColor (defined in Graphics objects), getForeground (defined
in Applet), and getBackground (also in Applet). You can use these methods to choose colors
based on existing colors in the applet:

setForeground(g.getColor());

A Single Color Example
Listing 9.4 shows the code for an applet that fills the applet’s drawing area with square boxes,
each of which has a randomly chosen color in it. It’s written so that it can handle any size of applet
and automatically fill the area with the right number of boxes.

Listing 9.4. Random color boxes.
 1: import java.awt.Graphics;
 2: import java.awt.Color;
 3:
 4: public class ColorBoxes extends java.applet.Applet {
 5:
 6: public void paint(Graphics g) {
 7: int rval, gval, bval;
 8:
 9: for (int j = 30; j < (this.size().height -25); j += 30)
10: for (int i = 5; i < (this.size().width -25); i+= 30) {
11: rval = (int)Math.floor(Math.random() * 256);
12: gval = (int)Math.floor(Math.random() * 256);
13: bval = (int)Math.floor(Math.random() * 256);
14:
15: g.setColor(new Color(rval,gval,bval));
16: g.fillRect(i,j,25,25);
17: g.setColor(Color.black);
18: g.drawRect(i-1,j-1,25,25);
19: }
20: }
21: }

The two for loops are the heart of this example; the first one draws the rows, and the second
draws the individual boxes within the row. When a box is drawn, the random color is

Type

Analysis

030-4s CH09.i 1/29/96, 9:39 PM170

171

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

calculated first, and then the box is drawn. A black outline is drawn around each box, because
some of them tend to blend into the background of the applet.

Because this paint method generates new colors each time the applet is painted, you can
regenerate the colors by moving the window around or by covering the applet’s window with
another one. Figure 9.22 shows the final applet (although given that this picture is black and
white, you can’t get the full effect of the multicolored squares).

Summary
You present something on the screen by painting inside your applet: shapes, graphics, text, or
images. Today, you learned the basics of how to paint, including using the graphics primitives
to draw rudimentary shapes, using fonts and font metrics to draw text, and using Color objects
to change the color of what you’re drawing on the screen. It’s this foundation in painting that
enables you to do animation inside an applet (which basically involves just painting repeatedly
to the screen) and to work with images. These are topics you’ll learn about tomorrow.

Q&A
Q In all the examples you show, and in all the tests I’ve made, the graphics primi-

tives, such as drawLine and drawRect, produce lines that are one pixel wide. How
can I draw thicker lines?

A In the current state of the Java Graphics class, you can’t; no methods exist for chang-
ing the default line width. If you really need a thicker line, you have to draw multiple
lines one pixel apart to produce that effect.

Q I wrote an applet to use Helvetica. It worked fine on my system, but when I run
it on my friend’s system, everything is in Courier. Why?

Figure 9.22.
The random colors applet.

030-4s CH09.i 1/29/96, 9:39 PM171

172

Graphics, Fonts, and Color
M

T W
R

F S S

DAYDAY

9

P2/V4sqc 6 TY Java in 21 Days 030-4 ayanna 12.15.95 Ch 9 LP#3

A Your friend most likely doesn’t have the Helvetica font installed on his or her system.
When Java can’t find a font, it substitutes a default font instead—in your case,
Courier. The best way to deal with this is to query the font list. As I’m writing this,
however, querying the font list doesn’t yet work, so your safest bet is to stick with
either Times Roman or Courier in your applets.

Q I tried out that applet that draws boxes with random colors, but each time it
draws, a lot of the boxes are the same color. If the colors are truly random, why is
it doing this?

A Two reasons. The first is that the random number generator I used in that code (from
the Math class) isn’t a very good random number generator; in fact, the documentation
for that method says as much. For a better random number generator, use the Random
class from the java.util package.

The second, more likely, reason is that there just aren’t enough colors available in your
browser or on your system to draw all the colors that the applet is generating. If your
system can’t produce the wide range of colors available using the Color class, or if the
browser has allocated too many colors for other things, you may end up with duplicate
colors in the boxes, depending on how the browser and the system has been written to
handle that. Usually your applet won’t use quite so many colors, so you won’t run
into this problem quite so often.

030-4s CH09.i 1/29/96, 9:40 PM172

173

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

M
T W

R
F S S

Simple Animation
and Threads

by Laura Lemay

WEEK

2

1010

030-4s CH10.i 1/29/96, 9:42 PM173

174

Simple Animation and Threads
M

T W
R

F S S

DAYDAY

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

The first thing I ever saw Java do was an animation: a large red “Hi there!” that ran across the
screen from the right to left. Even that simple form of animation was enough to make me stop
and think, “this is really cool.”

That sort of simple animation takes only a few methods to implement in Java, but those few
methods are the basis for any Java applet that you want to update the screen dynamically.
Starting with simple animations is a good way to build up to the more complicated applets.
Today, you’ll learn the fundamentals of animation in Java: how the various parts of the system
all work together so that you can create moving figures and dynamic updateable applets.
Specifically, you’ll explore the following:

■■ How Java animations work—the paint() and repaint() methods, starting and
stopping dynamic applets, and how to use and override these methods in your own
applets

■■ Threads—what they are and how they can make your applets more well-behaved with
other applets and with the Java system in general

■■ Reducing animation flicker, a common problem with animation in Java

Throughout today, you’ll also work with lots of examples of real applets that create animations
or perform some kind of dynamic movement.

Creating Animation in Java
Animation in Java involves two steps: constructing a frame of animation, and then asking Java
to paint that frame. Repeat as necessary to create the illusion of movement. The basic, static
applets that you created yesterday taught you how to accomplish the first part; all that’s left is
how to tell Java to paint a frame.

Painting and Repainting
The paint() method, as you learned yesterday, is called by Java whenever the applet needs to
be painted—when the applet is initially drawn, when the window containing it is moved, or
when another window is moved from over it. You can also, however, ask Java to repaint the
applet at a time you choose. So, to change the appearance of what is on the screen, you construct
the image or “frame” you want to paint, and then ask Java to paint this frame. If you do this
repeatedly, and fast enough, you get animation inside your Java applet. That’s all there is to it.

Where does all this take place? Not in the paint() method itself. All paint() does is put dots
on the screen. paint(), in other words, is responsible only for the current frame of the animation
at a time. The real work of changing what paint() does, of modifying the frame for an
animation, actually occurs somewhere else in the definition of your applet.

030-4s CH10.i 1/29/96, 9:43 PM174

175

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

In that “somewhere else,” you construct the frame (set variables for paint() to use, create color
or font or other objects that paint() will need), and then call the repaint() method. repaint()
is the trigger that causes Java to call paint() and causes your frame to get drawn.

Technical Note: Because a Java applet can contain many different components
that all need to be painted (as you’ll learn later on this week), and in fact, applets
are embedded inside a larger Java application that also paints to the screen in
similar ways, when you call repaint() (and therefore paint()) you’re not actually
immediately drawing to the screen as you do in other window or graphics toolkits.
Instead, repaint() is a request for Java to repaint your applet as soon as it can.
Much of the time, the delay between the call and the actual repaint is negligible.

Starting and Stopping
an Applet’s Execution

Remember start() and stop() from Day 8? These are the methods that trigger your applet to
start and stop running. You didn’t use start() and stop() yesterday, because the applets on that
day did nothing except paint once. With animations and other Java applets that are actually
processing and running over time, you’ll need to make use of start() and stop() to trigger the
start of your applet’s execution, and to stop it from running when you leave the page that
contains that applet. For most applets, you’ll want to override start and stop for just this reason.

The start() method triggers the execution of the applet. You can either do all the applet’s work
inside that method, or you can call other object’s methods in order to do so. Usually, start()
is used to create and begin execution of a thread so the applet can run in its own time.

stop(), on the other hand, suspects an applet’s execution so when you move off the page on
which the applet is displaying, it doesn’t keep running and using up system resources. Most of
the time when you create a start() method, you should also create a corresponding stop().

Putting It Together
Explaining how to do Java animation in text is more of a task than actually showing you how
it works in code. An example or two will help make the relationship between all these methods
clearer.

Listing 10.1 shows a sample applet that, at first glance, uses basic applet animation to display
the date and time and constantly updates it every second, creating a very simple animated digital
clock (a frame from that clock is shown in Figure 10.1).

030-4s CH10.i 1/29/96, 9:44 PM175

176

Simple Animation and Threads
M

T W
R

F S S

DAYDAY

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

Type

The words “at first glance” in the previous paragraph are very important: this applet doesn’t
work! However, despite the fact that it doesn’t work, you can still learn a lot about basic
animation with it, so working through the code will still be valuable. In the next section, you’ll
learn just what’s wrong with it.

See whether you can figure out what’s going on with this code before you go on to the analysis.

Listing 10.1. The Date applet.
 1: import java.awt.Graphics;
 2: import java.awt.Font;
 3: import java.util.Date;
 4:
 5: public class DigitalClock extends java.applet.Applet {
 6:
 7: Font theFont = new Font(“TimesRoman”,Font.BOLD,24);
 8: Date theDate;
 9:
10: public void start() {
11: while (true) {
12: theDate = new Date();
13: repaint();
14: try { Thread.sleep(1000); }
15: catch (InterruptedException e) { }
16: }
17: }
18:
19: public void paint(Graphics g) {
20: g.setFont(theFont);
21: g.drawString(theDate.toString(),10,50);
22: }
23: }

Think you’ve got the basic idea? Let’s go through it, line by line.

Lines 7 and 8 define two basic instance variables: theFont and theDate, which hold objects
representing the current font and the current date, respectively. More about these later.

Figure 10.1.
The digital clock.

Analysis

030-4s CH10.i 1/29/96, 9:44 PM176

177

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

The start() method triggers the actual execution of the applet. Note the while loop inside this
method; given that the test (true) always returns true, the loop never exits. A single animation
frame is constructed inside that while loop, with the following steps:

■■ The Date class represents a date and time (Date is part of the java.util package—note
that it was specifically imported in line three). Line 12 creates a new instance of the
Date class, which holds the current date and time, and assigns it to the theDate
instance variable.

■■ The repaint() method is called.

■■ Lines 14 and 15, as complicated as they look, do nothing except pause for 1000
milliseconds (one second) before the loop repeats. The sleep() method there, part of
the Thread class, is what causes the applet to pause. Without a specific sleep()
method, the applet would run as fast as it possibly could, which, for faster computer
systems, might be too fast for the eye to see. Using sleep() enables you to control
exactly how fast the animation takes place. The try and catch stuff around it enables
Java to manage errors if they occur. try and catch are called exceptions and are
described on Day 18, next week.

On to the paint() method. Here, inside paint(), all that happens is that the current font (in
the variable theFont) is set, and the date itself is printed to the screen (note that you have to call
the toString() method to convert the date to a string). Because paint() is called repeatedly with
whatever value happens to be in theDate, the string is updated every second to reflect the new
date.

There are a few things to note about this example. First, you might think it would be easier to
create the new Date object inside the paint() method. That way you could use a local variable
and not need an instance variable to pass the Date object around. Although doing things that
way creates cleaner code, it also results in a less efficient program. The paint() method is called
every time a frame needs to be changed. In this case, it’s not that important(), but in an
animation that needs to change frames very quickly, the paint() method has to pause to create
that new object every time. By leaving paint() to do what it does best—painting the screen—
and calculating new objects before hand, you can make painting as efficient as possible. This is
precisely the same reason why the Font object is also in an instance variable.

Threads: What They Are
and Why You Need Them

Depending on your experience with operating systems and with environments within those
systems, you may or may not have run into the concept of threads. Let’s start from the beginning
with some definitions.

030-4s CH10.i 1/29/96, 9:45 PM177

178

Simple Animation and Threads
M

T W
R

F S S

DAYDAY

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

When a program runs, it starts executing, runs its initialization code, calls methods or
procedures, and continues running and processing until it’s complete or until the program is
exited. That program uses a single thread—where the thread is a single locus of control for the
program.

Multithreading, as in Java, enables several different execution threads to run at the same time
inside the same program, in parallel, without interfering with each other.

Here’s a simple example. Suppose you have a long computation near the start of a program’s
execution. This long computation may not be needed until later on in the program’s
execution—it’s actually tangential to the main point of the program, but it needs to get done
eventually. In a single-threaded program, you have to wait for that computation to finish before
the rest of the program can continue running. In a multithreaded system, you can put that
computation into its own thread, enabling the rest of the program to continue running
independently.

Using threads in Java, you can create an applet so that it runs in its own thread, and it will happily
run all by itself without interfering with any other part of the system. Using threads, you can
have lots of applets running at once on the same page. Depending on how many you have, you
may eventually exhaust the system so that all of them will run slower, but all of them will run
independently.

Even if you don’t have lots of applets, using threads in your applets is good Java programming
practice. The general rule of thumb for well-behaved applets: whenever you have any bit of
processing that is likely to continue for a long time (such as an animation loop, or a bit of code
that takes a long time to execute), put it in a thread.

The Problem with the Digital Clock Applet
That Digital Clock applet in the last section doesn’t use threads. Instead, you put the while loop
that cycles through the animation directly into the start() method so that when the applet starts
running it keeps going until you quit the browser or applet viewer. Although this may seem like
a good way to approach the problem, the digital clock won’t work because the while loop in the
start() method is monopolizing all the resources in the system—including painting. If you try
compiling and running the digital clock applet, all you get is a blank screen. You also won’t be
able to stop the applet, because there’s no way a stop() method can ever be called.

The solution to this problem is to rewrite the applet to use threads. Threads enable this applet
to animate on its own without interfering with other system operations, enable it to be started
and stopped, and enable you to run it in parallel with other applets.

030-4s CH10.i 1/29/96, 9:45 PM178

179

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

Writing Applets with Threads
How do you create an applet that uses threads? There are several things you need to do.
Fortunately, none of them are difficult, and a lot of the basics of using threads in applets is just
boilerplate code that you can copy and paste from one applet to another. Because it’s so easy,
there’s almost no reason not to use threads in your applets, given the benefits.

There are four modifications you need to make to create an applet that uses threads:

■■ Change the signature of your applet class to include the words implements Runnable.

■■ Include an instance variable to hold this applet’s thread.

■■ Modify your start() method to do nothing but spawn a thread and start it running.

■■ Create a run() method that contains the actual code that starts your applet running.

The first change is to the first line of your class definition. You’ve already got something like this:

public class MyAppletClass extends java.applet.Applet {
...
}

You need to change it to the following (I’ve put it on two lines so it’ll fit on this page; it can be
either like this or on one line depending on your preference):

public class MyAppletClass extends java.applet.Applet implements Runnable {
...
}

What does this do? It includes support for the Runnable interface in your applet. If you think
way back to Day 2, you’ll remember that interfaces are a way to collect method names common
to different classes, which can then be mixed in and implemented inside different classes that
need to implement that behavior. Here, the Runnable interface includes the behavior your applet
needs to run a thread; in particular, it gives you a default definition for the run() method.

The second step is to add an instance variable to hold this applet’s thread. Call it anything you
like; it’s a variable of the type Thread (Thread is a class in java.lang, so you don’t have to import
it):

Thread runner;

Third, add a start() method or modify the existing one so that it does nothing but create a new
thread and start it running. Here’s a typical example of a start() method:

public void start() {
 if (runner == null); {
 runner = new Thread(this);
 runner.start();
 }
 }

030-4s CH10.i 1/29/96, 9:45 PM179

180

Simple Animation and Threads
M

T W
R

F S S

DAYDAY

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

If you modify start() to do nothing but spawn a thread, where does the body of your applet
go? It goes into a new method, run(), which looks like this:

public void run() {
 // what your applet actually does
}

run() can contain anything you want to run in the separate thread: initialization code, the actual
loop for your applet, or anything else that needs to run in its own thread. You also can create
new objects and call methods from inside run(), and they’ll also run inside that thread. The run
method is the real heart of your applet.

Finally, now that you’ve got threads running and a start method to start them, you should add
a stop() method to suspend execution of that thread (and therefore whatever the applet is doing
at the time) when the reader leaves the page. stop(), like start(), is usually something along
these lines:

public void stop() {
 if (runner != null) {
 runner.stop();
 runner = null;
 }
 }

The stop() method here does two things: it stops the thread from executing and also sets the
thread’s variable (runner) to null. Setting the variable to null makes the Thread object it
previously contained available for garbage collection so that the applet can be removed from
memory after a certain amount of time. If the reader comes back to this page and this applet,
the start method creates a new thread and starts up the applet once again.

And that’s it! Four basic modifications, and now you have a well-behaved applet that runs in its
own thread.

Fixing The Digital Clock
Remember the problems you had with the Digital Clock applet at the beginning of this section?
Let’s fix them so you can get an idea of how a real applet with threads looks. You’ll follow the
four steps outlined in the previous section.

First, modify the class definition to include the Runnable interface (the class is renamed to
DigitalThreads instead of DigitalClock):

public class DigitalThreads extends java.applet.Applet
 implements Runnable {
 ...

Second, add an instance variable for the Thread:

Thread runner;

030-4s CH10.i 1/29/96, 9:46 PM180

181

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

Type

For the third step, swap the way you did things. Because the bulk of the applet is currently in
a method called start(), but you want it to be in a method called run(), rather than do a lot
of copying and pasting, just rename the existing start() to run():

public void run() {
 while (true) {
 ...

Finally, add the boilerplate start() and stop() methods:

public void start() {
 if (runner == null); {
 runner = new Thread(this);
 runner.start();
 }
 }

 public void stop() {
 if (runner != null) {
 runner.stop();
 runner = null;
 }
 }

You’re finished! One applet converted to use threads in less than a minute flat. The code for the
final applet appears in Listing 10.2.

Listing 10.2. The fixed digital clock applet.
 1: import java.awt.Graphics;
 2: import java.awt.Font;
 3: import java.util.Date;
 4:
 5: public class DigitalThreads extends java.applet.Applet
 6: implements Runnable {
 7:
 8: Font theFont = new Font(“TimesRoman”,Font.BOLD,24);
 9: Date theDate;
10: Thread runner;
11:
12: public void start() {
13: if (runner == null); {
14: runner = new Thread(this);
15: runner.start();
16: }
17: }
18:
19: public void stop() {
20: if (runner != null) {
21: runner.stop();
22: runner = null;
23: }
24: }

continues

030-4s CH10.i 1/29/96, 9:46 PM181

182

Simple Animation and Threads
M

T W
R

F S S

DAYDAY

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

25:
26: public void run() {
27: while (true) {
28: theDate = new Date();
29: repaint();
30: try { Thread.sleep(1000); }
31: catch (InterruptedException e) { }
32: }
33: }
34:
35: public void paint(Graphics g) {
36: g.setFont(theFont);
37: g.drawString(theDate.toString(),10,50);
38: }
39: }
40:

Reducing Animation Flicker
If you’ve been following along with this book and trying the examples as you go, rather than
reading this book on the airplane or in the bathtub, you may have noticed that when the date
program runs every once in a while, there’s an annoying flicker in the animation. (Not that
there’s anything wrong with reading this book in the bathtub, but you won’t see the flicker if
you do that, so just trust me—there’s a flicker.) This isn’t a mistake or an error in the program;
in fact, that flicker is a side effect of creating animations in Java. Because it is really annoying,
however, you’ll learn how to reduce flicker in this part of today’s lesson so that your animations
run cleaner and look better on the screen.

Flicker and How to Avoid It
Flicker is caused by the way Java paints and repaints each frame of an applet. At the beginning
of today’s lesson, you learned that when you call the repaint() method, repaint() calls paint().
That’s not precisely true. A call to paint() does indeed occur in response to a repaint(), but
what actually happens are the following steps:

1. The call to repaint() results in a call to the method update().

2. The update() method clears the screen of any existing contents (in essence, fills it with
the current background color), and then calls paint().

3. The paint() method then draws the contents of the current frame.

It’s Step 2, the call to update(), that causes animation flicker. Because the screen is cleared
between frames, the parts of the screen that don’t change alternate rapidly between being painted
and being cleared. Hence, flickering.

Listing 10.2. continued

030-4s CH10.i 1/29/96, 9:47 PM182

183

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

Type

There are two major ways to avoid flicker in your Java applets:

■■ Override update() either not to clear the screen at all, or to clear only the parts of the
screen you’ve changed.

■■ Override both update() and paint(), and use double-buffering.

If the second way sounds complicated, that’s because it is. Double-buffering involves drawing
to an offscreen graphics surface and then copying that entire surface to the screen. Because it’s
more complicated, you’ll explore that one tomorrow. Today, let’s cover the easier solution:
overriding update.

How to Override Update
The cause of flickering lies in the update() method. To reduce flickering, therefore, override
both update() and paint(). Here’s what the default version of update() does (in the Component
class, which you’ll learn more about on Day 13):

public void update(Graphics g) {
 g.setColor(getBackground());
 g.fillRect(0, 0, width, height);
 g.setColor(getForeground());
 paint(g);
}

Basically, update() clears the screen (or, to be exact, fills the applet’s bounding rectangle with
the background color), sets things back to normal, and then calls paint(). When you override
update(), you have to keep these two things in mind and make sure that your version of update()
does something similar. In the next two sections, you’ll work through some examples of
overriding update() in different cases to reduce flicker.

Solution One: Don’t Clear the Screen
The first solution to reducing flicker is not to clear the screen at all. This works only for some
applets, of course. Here’s an example of an applet of this type. The ColorSwirl applet prints a
single string to the screen (“All the swirly colors”), but that string is presented in different
colors that fade into each other dynamically. This applet flickers terribly when it’s run. Listing
10.3 shows the source for this applet, and Figure 10.2 shows the result.

Listing 10.3. The ColorSwirl applet.
 1: import java.awt.Graphics;
 2: import java.awt.Color;
 3: import java.awt.Font;
 4:

continues

030-4s CH10.i 1/29/96, 9:48 PM183

184

Simple Animation and Threads
M

T W
R

F S S

DAYDAY

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

 5: public class ColorSwirl extends java.applet.Applet
 6: implements Runnable {
 7:
 8: Font f = new Font(“TimesRoman”,Font.BOLD,48);
 9: Color colors[] = new Color[50];
10: Thread runThread;
11:
12: public void start() {
13: if (runThread == null) {
14: runThread = new Thread(this);
15: runThread.start();
16: }
17: }
18:
19: public void stop() {
20: if (runThread != null) {
21: runThread.stop();
22: runThread = null;
23: }
24: }
25:
26: public void run() {
27:
28: // initialize the color array
29: float c = 0;
30: for (int i = 0; i < colors.length; i++) {
31: colors[i] =
32: Color.getHSBColor(c, (float)1.0,(float)1.0);
33: c += .02;
34: }
35:
36: // cycle through the colors
37: int i = 0;
38: while (true) {
39: setForeground(colors[i]);
40: repaint();
41: i++;
42: try { Thread.sleep(50); }
43: catch (InterruptedException e) { }
44: if (i == colors.length) i = 0;
45: }
46: }
47:
48: public void paint(Graphics g) {
49: g.setFont(f);
50: g.drawString(“All the Swirly Colors”, 15,50);
51: }
52: }

Listing 10.3. continued

030-4s CH10.i 1/29/96, 9:48 PM184

185

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

There are three new things to note about this applet that might look strange to you:

■■ When the applet starts, the first thing you do (in lines 28 through 34) is to create an
array of Color objects that contains all the colors the text will display. By creating all
the colors beforehand you can then just draw text in, one at a time; it’s faster to
precompute all the colors at once.

■■ To create the different colors, a method in the Color class called getHSBColor() creates
a color object based on values for hue, saturation, and brightness, rather than the
standard red, green, and blue. This is easier; by incrementing the hue value and
keeping saturation and brightness constant you can create a range of colors without
having to know the RGB for each one. If you don’t understand this, don’t worry
about it; it’s just an easy way to create the color array.

■■ The applet then cycles through the array of colors, setting the foreground to each one
in turn and calling repaint. When it gets to the end of the array, it starts over again
(line 44), so the process repeats over and over ad infinitum.

Now that you understand what the applet does, let’s fix the flicker. Flicker here results because
each time the applet is painted, there’s a moment where the screen is cleared. Instead of the text
cycling neatly from red to a nice pink to purple, it’s going from red to grey, to pink to grey, to
purple to grey, and so on—not very nice looking at all.

Because the screen clearing is all that’s causing the problem, the solution is easy: override
update() and remove the part where the screen gets cleared. It doesn’t really need to get cleared
anyhow, because nothing is changing except the color of the text. With the screen clearing
behavior removed from update(), all update needs to do is call paint(). Here’s what the
update() method looks like in this applet:

public void update(Graphics g) {
 paint(g);
 }

With that—with one small three-line addition—no more flicker. Wasn’t that easy?

Analysis

Figure 10.2.
The ColorSwirl applet.

030-4s CH10.i 1/29/96, 9:49 PM185

186

Simple Animation and Threads
M

T W
R

F S S

DAYDAY

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

Type

Solution Two: Redraw
Only What You Have To

For some applets, it won’t be quite that easy. Here’s another example. In this applet, called
Checkers, a red oval (a checker piece) moves from a black square to a white square, as if on a
checkerboard. Listing 10.4 shows the code for this applet, and Figure 10.3 shows the applet
itself.

Listing 10.4. The Checkers applet.
 1: import java.awt.Graphics;
 2: import java.awt.Color;
 3:
 4: public class Checkers extends java.applet.Applet
 5: implements Runnable {
 6:
 7: Thread runner;
 8: int xpos;
 9:
10: public void start() {
11: if (runner == null); {
12: runner = new Thread(this);
13: runner.start();
14: }
15: }
16:
17: public void stop() {
18: if (runner != null) {
19: runner.stop();
20: runner = null;
21: }
22: }
23:
24: public void run() {
25: setBackground(Color.blue);
26: while (true) {
27: for (xpos = 5; xpos <= 105; xpos+=4) {
28: repaint();
29: try { Thread.sleep(100); }
30: catch (InterruptedException e) { }
31: }
32: for (xpos = 105; xpos > 5; xpos -=4) {
33: repaint();
34: try { Thread.sleep(100); }
35: catch (InterruptedException e) { }
36: }
37: }
38: }
39:
40: public void paint(Graphics g) {
41: // Draw background
42: g.setColor(Color.black);

030-4s CH10.i 1/29/96, 9:49 PM186

187

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

43: g.fillRect(0,0,100,100);
44: g.setColor(Color.white);
45: g.fillRect(101,0,100,100);
46:
47: // Draw checker
48: g.setColor(Color.red);
49: g.fillOval(xpos,5,90,90);
50: }
51: }

Here’s a quick run-through of what this applet does: an instance variable, xpos, keeps track
of the current starting position of the checker (because it moves horizontally, the y stays
constant and the x changes). In the run() method, you change the value of x and repaint,

waiting 50 milliseconds between each move. The checker moves from one side of the screen to
the other and then moves back (hence the two for loops in that method).

In the actual paint() method, the background squares are painted (one black and one white),
and then the checker is drawn at its current position.

This applet, like the Swirling Colors applet, also has a terrible flicker. (In line 25, the background
is blue to emphasize it, so if you run this applet you’ll definitely see the flicker.)

However, the solution to solving the flicker problem for this applet is more difficult than for the
last one, because you actually want to clear the screen before the next frame is drawn. Otherwise,
the red checker won’t have the appearance of leaving one position and moving to another; it’ll
just leave a red smear from one side of the checkerboard to the other.

How do you get around this? You still clear the screen, in order to get the animation effect, but,
rather than clearing the entire screen, you clear only the part that you actually changed. By
limiting the redraw to only a small area, you can eliminate much of the flicker you get from
redrawing the entire screen.

Figure 10.3.
The Checkers applet.

Analysis

030-4s CH10.i 1/29/96, 9:50 PM187

188

Simple Animation and Threads
M

T W
R

F S S

DAYDAY

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

To limit what gets redrawn, you need a couple of things. First, you need a way to restrict the
drawing area so that each time paint() is called, only the part that needs to get redrawn actually
gets redrawn. Fortunately, this is easy by using a mechanism called clipping.

Clipping, part of the graphics class, enables you to restrict the drawing area to a small
portion of the full screen; although the entire screen may get instructions to redraw, only

the portions inside the clipping area are actually drawn.

The second thing you need is a way to keep track of the actual area to redraw. Both the left and
right edges of the drawing area change for each frame of the animation (one side to draw the new
oval, the other to erase the bit of the oval left over from the previous frame), so to keep track of
those two x values, you need instance variables for both the left side and the right.

With those two concepts in mind, let’s start modifying the Checkers applet to redraw only what
needs to be redrawn. First, you’ll add instance variables for the left and right edges of the drawing
area. Let’s call those instance variables ux1 and ux2 (u for update), where ux1 is the left side of
the area to draw and ux2 the right.

int ux1,ux2;

Now let’s modify the run() method so that it keeps track of the actual area to be drawn, which
you would think is easy—just update each side for each iteration of the animation. Here,
however, things can get complicated because of the way Java uses paint() and repaint().

The problem with updating the edges of the drawing area with each frame of the animation is
that for every call to repaint() there may not be an individual corresponding paint(). If system
resources get tight (because of other programs running on the system or for any other reason),
paint() may not get executed immediately and several calls to paint() may queue up waiting
for their turn to change the pixels on the screen. In this case, rather than trying to make all those
calls to paint() in order (and be potentially behind all the time), Java catches up by executing
only the most recent call to paint() and skips all the others.

If you update the edges of the drawing area with each repaint(), and a couple of calls to paint()
are skipped, you end up with bits of the drawing surface not being updated and bits of the oval
left behind. There’s a simple way around this: update the leading edge of the oval each time the
frame updates, but only update the trailing edge if the most recent paint has actually occurred.
This way, if a couple of calls to paint() get skipped, the drawing area will get larger for each
frame, and when paint() finally gets caught up, everything will get repainted correctly.

Yes, this is horrifyingly complex. If I could have written this applet simpler, I would have, but
without this mechanism the applet will not get repainted correctly. Let’s step through it slowly
in the code so you can get a better grasp of what’s going on at each step.

Let’s start with run(), where each frame of the animation takes place. Here’s where you calculate
each side of the drawing area based on the old position of the oval and the new position of the

NEW
TERM

☛

030-4s CH10.i 1/29/96, 9:51 PM188

189

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

oval. When the oval is moving toward the left side of the screen, this is easy. The value of ux1
(the left side of the drawing area) is the previous oval’s x position (xpos), and the value of ux2
is the x position of the current oval plus the width of that oval (90 pixels in this example).

Here’s what the old run() method looked like, to refresh your memory:

public void run() {
 setBackground(Color.blue);
 while (true) {
 for (xpos = 5; xpos <= 105; xpos+=4) {
 repaint();
 try { Thread.sleep(100); }
 catch (InterruptedException e) { }
 }
 for (xpos = 105; xpos > 5; xpos -=4) {
 repaint();
 try { Thread.sleep(100); }
 catch (InterruptedException e) { }
 }
 }
}

In the first for loop in the run() method, where the oval is moving towards the right, you first
update ux2 (the right edge of the drawing area):

ux2 = xpos + 90;

Then, after the repaint() has occurred, you update ux1 to reflect the old x position of the oval.
However, you want to update this value only if the paint actually happened. How can you tell
if the paint actually happened? You can reset ux1 in paint() to a given value (0), and then test
to see whether you can update that value or whether you have to wait for the paint() to occur:

if (ux1 == 0) ux1 = xpos;

Here’s the new, completed for loop for when the oval is moving to the right:

for (xpos = 5; xpos <= 105; xpos+=4) {
 ux2 = xpos + 90;
 repaint();
 try { Thread.sleep(100); }
 catch (InterruptedException e) { }
 if (ux1 == 0) ux1 = xpos;
}

When the oval is moving to the left, everything flips. ux1, the left side, is the leading edge of the
oval that gets updated every time, and ux2, the right side, has to wait to make sure it gets updated.
So, in the second for loop, you first update ux1 to be the x position of the current oval:

ux1 = xpos;

Then, after the repaint() is called, you test to make sure the paint happened and update ux2:

if (ux2 == 0) ux2 = xpos + 90;

030-4s CH10.i 1/29/96, 9:51 PM189

190

Simple Animation and Threads
M

T W
R

F S S

DAYDAY

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

Type

Here’s the new version of the secod for loop inside run():

for (xpos = 105; xpos > 5; xpos -=4) {
 ux1 = xpos;
 repaint();
 try { Thread.sleep(100); }
 catch (InterruptedException e) { }
 if (ux2 == 0) ux2 = xpos + 90;
}

Those are the only modifications run() needs. Let’s override update to limit the region that is
being painted to the left and right edges of the drawing area that you set inside run(). To clip
the drawing area to a specific rectangle, use the clipRect() method. clipRect(), like drawRect(),
fillRect(), and clearRect(), is defined for graphics objects and takes four arguments: x and
y starting positions, and width and height of the region.

Here’s where ux1 and ux2 come into play. ux1 is the x point of the top corner of the region; then
use ux2 to get the width of the region by subtracting ux1 from that value. Finally, to finish
update(), you call paint():

public void update(Graphics g) {
 g.clipRect(ux1, 5, ux2 - ux1, 95);
 paint(g);
 }

Note that with the clipping region in place, you don’t have to do anything to the actual paint()
method. paint() goes ahead and draws to the entire screen each time, but only the areas inside
the clipping region actually get changed on screen.

You need to update the trailing edge of each drawing area inside paint() in case several calls to
paint() were skipped. Because you are testing for a value of 0 inside run(), you merely reset ux1
and ux2 to 0 after drawing everything:

ux1 = ux2 = 0;

Those are the only changes you have to make to this applet in order to draw only the parts of
the applet that changed (and to manage the case where some frames don’t get updated
immediately). Although this doesn’t totally eliminate flickering in the animation, it does reduce
it a great deal. Try it and see. Listing 10.5 shows the final code for the Checkers applet.

Listing 10.5. The final Checkers applet.
 1: import java.awt.Graphics;
 2: import java.awt.Color;
 3:
 4: public class Checkers2 extends java.applet.Applet implements Runnable {
 5:
 6: Thread runner;
 7: int xpos;

030-4s CH10.i 1/29/96, 9:52 PM190

191

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

 8: int ux1,ux2;
 9:
10: public void start() {
11: if (runner == null); {
12: runner = new Thread(this);
13: runner.start();
14: }
15: }
16:
17: public void stop() {
18: if (runner != null) {
19: runner.stop();
20: runner = null;
21: }
22: }
23:
24: public void run() {
25: setBackground(Color.blue);
26: while (true) {
27: for (xpos = 5; xpos <= 105; xpos+=4) {
28: ux2 = xpos + 90;
29: repaint();
30: try { Thread.sleep(100); }
31: catch (InterruptedException e) { }
32: if (ux1 == 0) ux1 = xpos;
33: }
34: for (xpos = 105; xpos > 5; xpos -=4) {
35: ux1 = xpos;
36: repaint();
37: try { Thread.sleep(100); }
38: catch (InterruptedException e) { }
39: if (ux2 == 0) ux2 = xpos + 90;
40: }
41: }
42: }
43: public void update(Graphics g) {
44: g.clipRect(ux1, 5, ux2 - ux1, 95);
45: paint(g);
46: }
47:
48: public void paint(Graphics g) {
49: // Draw background
50: g.setColor(Color.black);
51: g.fillRect(0,0,100,100);
52: g.setColor(Color.white);
53: g.fillRect(101,0,100,100);
54:
55: // Draw checker
56: g.setColor(Color.red);
57: g.fillOval(xpos,5,90,90);
58:
59: // reset the drawing area
60: ux1 = ux2 = 0;
61: }
62:}

030-4s CH10.i 1/29/96, 9:52 PM191

192

Simple Animation and Threads
M

T W
R

F S S

DAYDAY

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

Summary
Congratulations on getting through Day 10! This day was a bit rough; you’ve learned a lot, and
it all might seem overwhelming. You learned about a plethora of methods to use and override:
start(), stop(), paint(), repaint(), run(), and update()—and you got a solid foundation in
creating and using threads.

After today, you’re over the worst hurdles in terms of understanding applets. Other than
handling bitmap images, which you’ll learn about tomorrow, you now have the basic
background to create just about any animation you want in Java.

Q&A
Q Why all the indirection with paint and repaint and update and all that? Why not

have a simple paint method that just puts stuff on the screen when you want it
there?

A The Java AWT toolkit enables you to nest drawable surfaces within other drawable
surfaces. When a paint takes place, all the parts of the system are redrawn, starting
from the outermost surface and moving downward into the most nested one. Because
the drawing of your applet takes place at the same time everything else is drawn, your
applet doesn’t get any special treatment. Your applet will be painted when everything
else is painted. Although with this system you sacrifice some of the immediacy of
instant painting, it enables your applet to co-exist with the rest of the system more
cleanly.

Q Are Java threads like threads on other systems?

A Java threads have been influenced by other thread systems, and if you’re used to
working with threads, many of the concepts in Java threads will be very familiar to
you. You learned the basics today; you’ll learn more next week on Day 17.

Q When an applet uses threads, I just have to tell the thread to start and it starts,
and tell it to stop and it stops? That’s it? I don’t have to test anything in my loops
or keep track of its state? Is just stops?

A It just stops. When you put your applet into a thread, Java can control the execution
of your applet much more readily. By causing the thread to stop, your applet just
stops running, and then resumes when the thread starts up again. Yes, it’s all auto-
matic. Neat, isn’t it?

030-4s CH10.i 1/29/96, 9:53 PM192

193

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

10

P2/V4sqc 8 TY Java in 21 Days 030-4 andy 12.27.95 Ch 10 LP#3

Q The Swirling Colors applet seems to display only five or six colors. What’s going
on here?

A This is the same problem that you ran into yesterday wherein, on some systems, there
might not be enough colors to be able to display all of them reliably. If you’re running
into this problem, other than upgrading your hardware, you might try quitting other
applications running on your system that use color. Other browsers or color tools in
particular might be hogging colors that Java wants to be able to use.

Q Even with the changes you made, the Checkers applet still flickers.

A And, unfortunately, it will continue to do so. Reducing the size of the drawing area by
using clipping does significantly reduce the flickering, but it doesn’t stop it entirely.
For many applets, using either of the methods described today may be enough to
reduce animation flicker to the point where your applet works right. To get totally
flicker-free animation, you’ll use a technique called double-buffering, which you’ll
learn about tomorrow.

030-4s CH10.i 1/29/96, 9:53 PM193

195

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

M
T W

R
F S S

More Animation,
Images, and Sound

by Laura Lemay

WEEK

2

1111

030-4s CH11.i 1/29/96, 9:54 PM195

196

More Animation, Images, and Sound
M

T W
R

F S S

DAYDAY

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

Animations are fun and easy to do in Java, but there’s only so much you can do with the built-
in Java methods for lines and fonts and colors. For really interesting animations, you have to
provide your own images for each frame of the animation—and having sounds is nice, as well.
Today, you’ll do more with animations, incorporating images and sounds into Java applets.

Specifically, you’ll explore the following topics:

■■ Using images—getting them from the server, loading them into Java, and displaying
them in your applet

■■ Creating animations by using images, including an extensive example

■■ Using sounds—getting them and playing them at the appropriate times

■■ Sun’s Animator applet—an easy way to organize animations and sounds in Java

■■ Double-buffering—hardcore flicker avoidance

Retrieving and Using Images
Basic image handling in Java is easy. The Image class in java.awt provides abstract methods to
represent common image behavior, and special methods defined in Applet and Graphics give
you everything you need to load and display images in your applet as easily as drawing a rectangle.
In this section, you’ll learn about how to get and draw images in your Java applets.

Getting Images
To display an image in your applet, you first must load that image over the net into your Java
program. Images are stored as separate files from your Java class files, so you have to tell Java
where to find them.

The Applet class provides a method called getImage, which loads an image and automatically
creates an instance of the Image class for you. To use it, all you have to do is import the
java.awt.Image class, and then give getImage the URL of the image you want to load. There are
two ways of doing the latter step:

■■ The getImage method with a single argument (an object of type URL) retrieves the
image at that URL.

■■ The getImage method with two arguments: the base URL (also a URL object) and a
string representing the path or filename of the actual image (relative to the base).

Although the first way may seem easier (just plug in the URL as a URL object), the second is more
flexible. Remember, because you’re compiling Java files, if you include a hard-coded URL of an
image and then move your files around to a different location, you have to recompile all your
Java files.

030-4s CH11.i 1/29/96, 9:55 PM196

197

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

The latter form, therefore, is usually the one to use. The Applet class also provides two methods
that will help with the base URL argument to getImage:

■■ The getDocumentBase() method returns a URL object representing the directory of the
HTML file that contains this applet. So, for example, if the HTML file is located at
http://www.myserver.com/htmlfiles/javahtml/, getDocumentBase returns a URL
pointing to that path.

■■ The getCodeBase() method returns a string representing the directory in which this
applet is contained—which may or may not be the same directory as the HTML file,
depending on whether the CODEBASE attribute in <APPLET> is set or not.

Whether you use getDocumentBase() or getCodebase() depends on whether your images are
relative to your HTML files or relative to your Java class files. Use whichever one applies better
to your situation. Note that either of these methods is more flexible than hard-coding a URL
or pathname into the getImage method; using either getDocumentBase or getCodeBase enables
you to move your HTML files and applets around and Java can still find your images.

Here are a few examples of getImage, to give you an idea of how to use it. This first call to getImage
retrieves the file at that specific URL (“http://www.server.com/files/image.gif”). If any part
of that URL changes, you have to recompile your Java applet to take the new path into account:

Image img = getImage(
 new URL(“http://www.server.com/files/image.gif”));

In the following form of getImage, the image.gif file is in the same directory as the HTML files
that refer to this applet:

Image img = getImage(getDocumentBase(), “image.gif”)

In this similar form, the file image.gif is in the same directory as the applet itself:

Image img = getImage(getCodeBase(), “image.gif”)

If you have lots of image files, it’s common to put them into their own subdirectory. This form
of getImage looks for the file image.gif in the directory images, which, in turn, is in the same
directory as the Java applet:

Image img = getImage(getCodeBase(), “images/image.gif”)

If Java can’t find the file you’ve indicated, getImage returns null. Your program will continue
to run—you just won’t see that image on your screen when you try to draw it.

Note: Currently, Java supports images in the GIF and JPEG formats. Other image
formats may be available later; however, for now, your images should be in either
GIF or JPEG.

030-4s CH11.i 1/29/96, 9:55 PM197

198

More Animation, Images, and Sound
M

T W
R

F S S

DAYDAY

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

Type

Drawing Images
All that stuff with getImage does nothing except go off and retrieve an image and stuff it into
an instance of the Image class. Now that you have an image, you have to do something with it.

The most likely thing you’re going to want to do is display it as you would a rectangle or a text
string. The Graphics class provides two methods to do just that, both called drawImage.

The first version of drawImage takes four arguments: the image to display, the x and y positions
of the top left corner, and this:

void paint() {
 g.drawImage(img, 10, 10, this);
}

This first form does what you would expect it to: it draws the image in its original dimensions
with the top left corner at the given x and y positions. Listing 11.1 shows the code for a very
simple applet that loads in an image called ladybug.gif and displays it. Figure 11.1 shows the
obvious result.

Listing 11.1. The Ladybug applet.
 1: import java.awt.Graphics;
 2: import java.awt.Image;
 3:
 4: public class LadyBug extends java.applet.Applet {
 5:
 6: Image bugimg;
 7:
 8: public void init() {
 9: bugimg = getImage(getCodeBase(),
10: “images/ladybug.gif”);
11: }
12:
13: public void paint(Graphics g) {
14: g.drawImage(bugimg,10,10,this);
15: }
16: }

The second form of drawImage takes six arguments: the image to draw, the x and y
coordinates, a width and height of the image bounding box, and this. If the width and
height arguments for the bounding box are smaller or larger than the actual image, the

image is automatically scaled to fit. Using those extra arguments enables you to squeeze and
expand images into whatever space you need them to fit in (keep in mind, however, that there
may be some image degradation from scaling it smaller or larger than its intended size).

One helpful hint for scaling images is to find out the size of the actual image that you’ve loaded,
so you can then scale it to a specific percentage and avoid distortion in either direction. Two
methods defined for the Image class enable you do this: getWidth() and getHeight(). Both take

Analysis

030-4s CH11.i 1/29/96, 9:56 PM198

199

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

Type

a single argument, an instance of ImageObserver, which is used to track the loading of the image
(more about this later). Most of the time, you can use just this as an argument to either
getWidth() or getHeight().

Figure 11.1.
The Ladybug image.

If you stored the ladybug image in a variable called bugimg, for example, this line returns the
width of that image, in pixels:

theWidth = bugimg.getWidth(this);

Listing 11.2 shows another use of the ladybug image, this time scaled several times to different
sizes (Figure 11.2 shows the result).

Listing 11.2. More Ladybugs, scaled.
 1: import java.awt.Graphics;
 2: import java.awt.Image;
 3:
 4: public class LadyBug2 extends java.applet.Applet {
 5:
 6: Image bugimg;
 7:
 8: public void init() {
 9: bugimg = getImage(getCodeBase(),
10: “images/ladybug.gif”);
11: }
12:
13: public void paint(Graphics g) {
14: int iwidth = bugimg.getWidth(this);
15: int iheight = bugimg.getHeight(this);
16: int xpos = 10;
17:
18: // 25 %

continues

030-4s CH11.i 1/29/96, 9:57 PM199

200

More Animation, Images, and Sound
M

T W
R

F S S

DAYDAY

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

19: g.drawImage(bugimg,xpos,10,
20: iwidth / 4, iheight / 4, this);
21:
22: // 50 %
23: xpos += (iwidth / 4) + 10;
24: g.drawImage(bugimg, xpos , 10,
25: iwidth / 2, iheight / 2, this);
26:
27: // 100%
28: xpos += (iwidth / 2) + 10;
29: g.drawImage (bugimg, xpos, 10, this);
30:
31: // 150% x, 25% y
32: g.drawImage(bugimg, 10, iheight + 30,
33: (int)(iwidth * 1.5), iheight / 4, this);
34: }
35: }

I’ve been steadfastly ignoring mentioning that last argument to drawImage: the mysterious
this, which also appears as an argument to getWidth() and getHeight(). Why is this
argument used? Its official use is to pass in an object that functions as an ImageObserver

(that is, an object that implements the ImageObserver interface). Image observers enable you
to watch the progress of how far along an image is in the loading process and to make decisions

Listing 11.2. continued

Figure 11.2.
The second Ladybug applet.

Analysis

030-4s CH11.i 1/29/96, 9:58 PM200

201

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

when the image is only fully or partially loaded. The Applet class, which your applet inherits
from, contains default behavior for watching for images that should work in the majority of
cases—hence, the this argument to drawImage(), getWidth(), and getHeight(). The only
reason you’ll want to use an alternate argument in its place is if you are tracking lots of images
loading synchronously. See the java.awt.image.ImageObserver class for more details.

Modifying Images
In addition to the basics and handling images described in this section, the java.awt.image
package provides more classes and interfaces that enable you to modify images and their internal
colors, or to create bitmap images by hand. Most of these classes require background knowledge
in image processing, including a good grasp of color models and bitwise operations. All these
things are outside the scope of an introductory book on Java, but if you have this background
(or you’re interested in trying it out), the classes in java.awt.image will be helpful to you. Take
a look at the example code for creating and using images that comes with the Java development
kit for examples of how to use the image classes.

Creating Animation Using Images
Creating animations by using images is much the same as creating images by using fonts, colors,
or shapes—you use the same methods, the same procedures for painting, repainting, and
reducing flicker that you learned about yesterday. The only difference is that you have a stack
of images to flip through rather than a set of painting methods.

Probably the best way to show you how to use images for animation is simply to walk through
an example. Here’s an extensive one of an animation of a small cat called Neko.

An Example: Neko
Neko was a small Macintosh animation/game written and drawn by Kenji Gotoh in 1989.
“Neko” is Japanese for “cat,” and the animation is of a small kitten that chases the mouse pointer
around the screen, sleeps, scratches, and generally acts cute. The Neko program has since been
ported to just about every possible platform, as well as rewritten as a popular screensaver.

For this example, you’ll implement a small animation based on the original Neko graphics.
Because the original Neko the cat was autonomous (it could “sense” the edges of the window
and turn and run in a different direction), this applet merely causes Neko to run in from the left
side of the screen, stop in the middle, yawn, scratch its ear, sleep a little, and then run off to the
right.

030-4s CH11.i 1/29/96, 9:58 PM201

202

More Animation, Images, and Sound
M

T W
R

F S S

DAYDAY

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

Note: This is by far the largest of the applets discussed in this book, and if I either
print it here and then describe it, or build it up line by line, you’ll be here for days.
Instead, I’m going to describe the parts of this applet independently, and I’m going
to leave out the basics—the stuff you learned yesterday about starting and stopping
threads, what the run() method does, and so on. All the code is printed later today
so that you can put it all together.

Before you begin writing Java code to construct an animation, you should have all the images
that form the animation itself. For this version of Neko there are nine of them (the original has
36), as shown in Figure 11.3.

I’ve stored these images in a subdirectory of my applet directory called, appropriately, images.
Where you store your images isn’t all the important, but you should take note of where you’ve
put them because you’ll need that information

Now, onto the applet. The basic idea of animation by using images is that you have a set of
images, and you display them one at a time, rapidly, so they give the appearance of movement.
The easiest way to manage this in Java is to store the images in an array of class Image, and then
to have a special variable that stores a reference to the current image.

Technical Note: The java.util class contains a class (HashTable) that implements
a hash table. For large amounts of images, a hash table is faster to find and retrieve
images from than an array is. Because you have a relatively small amount of images
here, and because arrays are easier to deal with, I’ll use an array here.

For the Neko applet, you’ll include instance variables to implement both these things: an array
to hold the images called nekopics, and a variable of type Image to hold the current image:

Image nekopics[] = new Image[9];
Image currentimg;

Because you’ll need to pass the position of the current image around between the methods in
this applet, you’ll also need to keep track of the current x and y positions. The y stays constant
for this particular applet, but the x may vary. let’s add two instance variables for those two
positions:

Figure 11.3.
The images for Neko.

030-4s CH11.i 1/29/96, 9:59 PM202

203

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

int xpos;
int ypos = 50;

Now, onto the body of the applet. During the applet’s initialization, you’ll read in all the images
and store them in the nekopics array. This is the sort of operation that works especially well in
an init() method.

Given that you have nine images with nine different filenames, you could do a separate call to
getImage for each one. You can save at least a little typing, however, by creating an array of the
file names (nekosrc, an array of strings) and then just using a for loop to iterate over each one.
Here’s the init() method for the Neko applet that loads all the images into the nekopics array:

public void init() {

 String nekosrc[] = { “right1.gif”, “right2.gif”,
 “stop.gif”, “yawn.gif”, “scratch1.gif”,
 “scratch2.gif”,”sleep1.gif”, “sleep2.gif”,
 “awake.gif” };
 for (int i=0; i < nekopics.length; i++) {
 nekopics[i] = getImage(getCodeBase(),
 “images/” + nekosrc[i]);
 }
}

Note here in the call to getImage that the directory these images are stored in is included as part
of the path.

With the images loaded, the next step is to start animating the bits of the applet. You do this
inside the applet’s thread’s run() method. In this applet, Neko does five main things:

■■ Runs in from the left side of the screen

■■ Stops in the middle and yawns

■■ Scratches four times

■■ Sleeps

■■ Wakes up and runs off to the right side of the screen

Because you could animate this applet by merely painting the right image to the screen at the
right time, it makes more sense to write this applet so that many of Neko’s activities are
contained in individual methods. This way, you can reuse some of the activities (the animation
of Neko running, in particular) if you want Neko to do things in a different order.

Let’s start by creating a method to make Neko run. Because you’re going to be using this one
twice, making it generic is a good plan. Let’s create the nekorun method, which takes two
arguments: the x position to start, and the x position to end. Neko then runs between those two
positions (the y remains constant).

There are two images that represent Neko running; so, to create the running effect, you need
to alternate between those two images (stored in positions 0 and 1 of the image array), as well

030-4s CH11.i 1/29/96, 10:00 PM203

204

More Animation, Images, and Sound
M

T W
R

F S S

DAYDAY

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

as move them across the screen. The moving part is a simple for loop between the start and
end arguments, setting the global x position to the current loop value. Swapping the images
means merely testing to see which one is active at any turn of the loop and assigning the other
one to the current image. Finally, at each new frame, you’ll call repaint and sleep for a bit.

Actually, given that during this animation there will be a lot of sleeping of various intervals, it
makes sense to create a method that does the sleeping for the appropriate time interval. Call it
pause—here’s its definition:

void pause(int time) {
 try { Thread.sleep(time); }
 catch (InterruptedException e) { }
}

Back to the nekorun method. To summarize, nekorun iterates from the start position to the end
position. For each turn of the loop, it sets the current x position, sets currentimg to the right
animation frame, calls repaint, and pauses. Got it? Here’s the definition of nekorun:

void nekorun(int start, int end) {
 for (int i = start; i < end; i+=10) {
 this.xpos = i;
 // swap images
 if (currentimg == nekopics[0])
 currentimg = nekopics[1];
 else if (currentimg == nekopics[1])
 currentimg = nekopics[0];
 repaint();
 pause(150);
 }
}

Note that in that second line you increment the loop by ten pixels. Why ten pixels, and not, say,
five or eight? The answer is determined mostly through trial and error to see what looks right.
Ten seems to work best for the animation. When you write your own animations, you have to
play with both the distances and the sleep times until you get an animation you like.

Speaking of repaint, let’s cover the paint() method, which paints each frame. Here the paint
method is trivially simple; all paint is responsible for is painting the current image at the current
x and y positions. All that information is stored in global variables, so the paint method has only
a single line in it:

public void paint(Graphics g) {
 g.drawImage(currentimg, xpos, ypos, this);
}

Now let’s back up to the run() method, where the main processing of this animation is
happening. You’ve created the nekorun method; in run you’ll call that method with the
appropriate values to make Neko run from the right edge of the screen to the center:

030-4s CH11.i 1/29/96, 10:00 PM204

205

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

// run from one side of the screen to the middle
nekorun(0, this.size().width / 2);

The second major thing Neko does in this animation is stop and yawn. You have a single frame
for each of these things (in positions 2 and 3 in the array), so you don’t really need a separate
method for them. All you need to do is set the appropriate image, call repaint(), and pause for
the right amount of time. This example pauses for a second each time for both stopping and
yawning—again, using trial and error. Here’s the code:

// stop and pause
currentimg = nekopics[2];
repaint();
pause(1000);

// yawn
currentimg = nekopics[3];
repaint();
pause(1000);

Let’s move on to the third part of the animation: scratching. There’s no horizontal for this part
of the animation. You alternate between the two scratching images (stored in positions 4 and
5 of the image array). Because scratching is a distinct action, however, let’s create a separate
method for it.

The nekoscratch method takes a single argument: the number of times to scratch. With that
argument, you can iterate, and then, inside the loop, alternate between the two scratching images
and repaint each time:

void nekoscratch(int numtimes) {
 for (int i = numtimes; i > 0; i--) {
 currentimg = nekopics[4];
 repaint();
 pause(150);
 currentimg = nekopics[5];
 repaint();
 pause(150);
 }
}

Inside the run method, you can then call nekoscratch with an argument of four:

// scratch four times
nekoscratch(4);

Onward! After scratching, Neko sleeps. Again, you have two images for sleeping (in positions
6 and 7 of the array), which you’ll alternate a certain number of times. Here’s the nekosleep
method, which takes a single number argument, and animates for that many “turns”:

void nekosleep(int numtimes) {
 for (int i = numtimes; i > 0; i--) {
 currentimg = nekopics[6];

030-4s CH11.i 1/29/96, 10:00 PM205

206

More Animation, Images, and Sound
M

T W
R

F S S

DAYDAY

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

Type

 repaint();
 pause(250);
 currentimg = nekopics[7];
 repaint();
 pause(250);
 }
}

Call nekosleep in the run() method like this:

// sleep for 5 “turns”
nekosleep(5);

Finally, to finish off the applet, Neko wakes up and runs off to the right side of the screen. wake
up is your last image in the array (position eight), and you can reuse the nekorun method to finish:

// wake up and run off
currentimg = nekopics[8];
repaint();
pause(500);
nekorun(xpos, this.size().width + 10);

There’s one more thing left to do to finish the applet. The images for the animation all have white
backgrounds. Drawing those images on the default applet background (a medium grey) means
an unsightly white box around each image. To get around the problem, merely set the applet’s
background to white at the start of the run() method:

setBackground(Color.white);

Got all that? There’s a lot of code in this applet, and a lot of individual methods to accomplish
a rather simple animation, but it’s not all that complicated. The heart of it, as in the heart of all
Java animations, is to set up the frame and then call repaint() to enable the screen to be drawn.

Note that you don’t do anything to reduce the amount of flicker in this applet. It turns out that
the images are small enough, and the drawing area also small enough, that flicker is not a problem
for this applet. It’s always a good idea to write your animations to do the simplest thing first, and
then add behavior to make them run cleaner.

To finish up this section, Listing 11.3 shows the complete code for the Neko applet.

Listing 11.3. The final Neko applet.
36: import java.awt.Graphics;
37: import java.awt.Image;
38: import java.awt.Color;
39:
40: public class Neko extends java.applet.Applet
41: implements Runnable {
42:
43: Image nekopics[] = new Image[9];
44: Image currentimg;
45: Thread runner;
46: int xpos;

030-4s CH11.i 1/29/96, 10:01 PM206

207

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

47: int ypos = 50;
48:
49: public void init() {
50: String nekosrc[] = { “right1.gif”, “right2.gif”,
51: “stop.gif”, “yawn.gif”, “scratch1.gif”,
52: “scratch2.gif”,”sleep1.gif”, “sleep2.gif”,
53: “awake.gif” };
54:
55: for (int i=0; i < nekopics.length; i++) {
56: nekopics[i] = getImage(getCodeBase(),
57: “images/” + nekosrc[i]);
58: }
59:
60: public void start() {
61: if (runner == null) {
62: runner = new Thread(this);
63: runner.start();
64: }
65: }
66:
67: public void stop() {
68: if (runner != null) {
69: runner.stop();
70: runner = null;
71: }
72: }
73:
74: public void run() {
75:
76: setBackground(Color.white);
77:
78: // run from one side of the screen to the middle
79: nekorun(0, this.size().width / 2);
80:
81: // stop and pause
82: currentimg = nekopics[2];
83: repaint();
84: pause(1000);
85:
86: // yawn
87: currentimg = nekopics[3];
88: repaint();
89: pause(1000);
90:
91: // scratch four times
92: nekoscratch(4);
93:
94: // sleep for 5 “turns”
95: nekosleep(5);
96:
97: // wake up and run off
98: currentimg = nekopics[8];
99: repaint();
100: pause(500);
101: nekorun(xpos, this.size().width + 10);

continues

030-4s CH11.i 1/29/96, 10:01 PM207

208

More Animation, Images, and Sound
M

T W
R

F S S

DAYDAY

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

102: }
103:
104: void nekorun(int start, int end) {
105: for (int i = start; i < end; i+=10) {
106: this.xpos = i;
107: // swap images
108: if (currentimg == nekopics[0])
109: currentimg = nekopics[1];
110: else if (currentimg == nekopics[1])
111: currentimg = nekopics[0];
112: else currentimg = nekopics[0];
113:
114: repaint();
115: pause(150);
116: }
117: }
118:
119: void nekoscratch(int numtimes) {
120: for (int i = numtimes; i > 0; i--) {
121: currentimg = nekopics[4];
122: repaint();
123: pause(150);
124: currentimg = nekopics[5];
125: repaint();
126: pause(150);
127: }
128: }
129:
130: void nekosleep(int numtimes) {
131: for (int i = numtimes; i > 0; i--) {
132: currentimg = nekopics[6];
133: repaint();
134: pause(250);
135: currentimg = nekopics[7];
136: repaint();
137: pause(250);
138: }
139:
140: void pause(int time) {
141: try { Thread.sleep(time); }
142: catch (InterruptedException e) { }
143: }
144:
145: public void paint(Graphics g) {
146: g.drawImage(currentimg, xpos, ypos, this);
147: }
148: }

Listing 11.3. continued

030-4s CH11.i 1/29/96, 10:02 PM208

209

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

Retrieving and Using Sounds
Java has built-in support for playing sounds in conjunction with running animations or for
sounds on their own. In fact, support for sound, like support for images, is built into the Applet
and awt classes, so using sound in your Java applets is as easy as loading and using images.

Currently, the only sound format that Java supports is Sun’s AU format, sometimes called µ-
law format. AU files tend to be smaller than sound files in other formats, but the sound quality
is not very good. If you’re especially concerned with sound quality, you may want your sound
clips to be references in the traditional HTML way (as links to external files) rather than included
in a Java applet.

The simplest way to retrieve and play a sound is through the play() method, part of the Applet
class and therefore available to you in your applets. The play() method is similar to the getImage
method in that it takes one of two forms:

■■ play with one argument, a URL object, loads and plays the given audio clip at that
URL.

■■ play() with two arguments, one a base URL and one a pathname, loads and plays that
audio file. The first argument can most usefully be either a call to getDocumentBase()
or getCodeBase().

For example, the following line of code retrieves and plays the sound meow.au, which is
contained in the audio directory. The audio directory, in turn, is located in the same directory
as this applet:

play(getCodeBase(), “audio/meow.au”);

The play method retrieves and plays the given sound as soon as possible after it is called. If it
can’t find the sound, you won’t get an error; you just won’t get any audio when you expect it.

If you want to play a sound repeatedly, start and stop the sound clip, or run the clip as a loop
(play it over and over), things are slightly more complicated—but not much more so. In this case,
you use the applet method getAudioClip() to load the sound clip into an instance of the class
AudioClip (part of java.applet—don’t forget to import it) and then operate directly on that
AudioClip object.

Suppose, for example, that you have a sound loop that you want to play in the background of
your applet. In your initialization code, you can use this line to get the audio clip:

AudioClip clip = getAudioClip(getCodeBase(),
 “audio/loop.au”);

Then, to play the clip once, use the play method:

clip.play();

030-4s CH11.i 1/29/96, 10:02 PM209

210

More Animation, Images, and Sound
M

T W
R

F S S

DAYDAY

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

Type

To stop a currently playing sound clip, use the stop() method:

clip.stop();

To loop the clip (play it repeatedly), use the loop() method:

clip.loop();

If the getAudioClip method can’t find the sound you indicate, or can’t load it for any reason,
the AudioClip variable is set to null. It’s a good idea to test for this case in your code before trying
to play the audio clip—, because trying to call the play(), stop(), and loop() methods on a null
object will result in an error (actually, an exception).

In your applet, you can play as many audio clips as you need; all the sounds you use play
concurrently as your applet executes.

Note that if you use a background sound—a sound clip that loops repeatedly—that sound clip
will not stop playing automatically when you suspend the applet’s thread. This means that even
if your reader moves to another page, the first applet’s sounds will continue to play. You can fix
this problem by stopping the applet’s background sound in your stop() method:

public void stop() {
 if (runner != null) {
 if (bgsound!= null)
 bgsound.stop();
 runner.stop();
 runner = null;
 }
}

Listing 11.4 shows a simple framework for an applet that plays two sounds: the first, a
background sound called loop.au, plays repeatedly. The second, a horn honking (beep.au) plays
every five seconds. (I won’t bother giving you a picture of this applet, because it doesn’t actually
display anything other than a simple string to the screen).

Listing 11.4. The AudioLoop applet.
 1: import java.awt.Graphics;
 2: import java.applet.AudioClip;
 3:
 4: public class AudioLoop extends java.applet.Applet
 5: implements Runnable {
 6:
 7: AudioClip bgsound;
 8: AudioClip beep;
 9: Thread runner;
10:
11: public void start() {
12: if (runner == null) {
13: runner = new Thread(this);
14: runner.start();

030-4s CH11.i 1/29/96, 10:03 PM210

211

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

15: }
16: }
17:
18: public void stop() {
19: if (runner != null) {
20: if (bgsound != null) bgsound.stop();
21: runner.stop();
22: runner = null;
23: }
24: }
25:
26: public void init() {
27: bgsound = getAudioClip(getCodeBase(),”audio/loop.au”);
28: beep = getAudioClip(getCodeBase(), “audio/beep.au”);
29: }
30:
31: public void run() {
32: if (bgsound != null) bgsound.loop();
33: while (runner != null) {
34: try { Thread.sleep(5000); }
35: catch (InterruptedException e) { }
36: if (bgsound != null) beep.play();
37: }
38: }
39:
40: public void paint(Graphics g) {
41: g.drawString(“Playing Sounds....”, 10, 10);
42: }
43: }

Sun’s Animator Applet
Because most Java animations have a lot of code in common, being able to reuse all that code
as much as possible makes creating animations with images and sounds much easier, particular
for Java developers who aren’t as good at the programming side of Java. For just this reason, Sun
provides an Animator class as part of the standard Java release.

The Animator applet provides a simple, general-purpose animation interface. You compile the
code and create an HTML file with the appropriate parameters for the animation. Using the
Animator applet, you can do the following:

■■ Create an animation loop, that is, an animation that plays repeatedly.

■■ Add a soundtrack to the applet.

■■ Add sounds to be played at individual frames.

■■ Indicate the speed at which the animation is to occur.

■■ Specify the order of the frames in the animation—which means that you can reuse
frames that repeat during the course of the animation.

030-4s CH11.i 1/29/96, 10:03 PM211

212

More Animation, Images, and Sound
M

T W
R

F S S

DAYDAY

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

Even if you don’t intend to use Sun’s Animator code, it’s a great example of how animations
work in$Java and the sorts of clever tricks you can use in$a Java applet.

The Animator class is part of the Java distribution (in the demo directory), or you can find out
more information about it at the$Java home page, http://java.sun.com.

More About Flicker: Double-Buffering
Yesterday, you learned two simple ways to reduce flickering in$animations. Although you
learned specifically about animations using drawing, flicker can also result from animations
using images. In addition to the$two flicker-reducing methods described yesterday, there is one
other way to reduce flicker in an application: double-buffering.

With double-buffering, you create a second surface (offscreen, so to speak), do all your
painting to that offscreen surface, and then draw the$whole surface at once onto the actual

applet (and onto the screen) at the$end—rather than drawing to the applet’s actual graphics
surface. Because all the work actually goes on behind the$scenes, there’s no opportunity for
interim parts of the$drawing process to appear accidentally and disrupt the smoothness of the
animation.

Double-buffering isn’t always the best solution. If your applet is suffering from flicker, try
overriding update and drawing only portions of the screen first; that may solve your problem.
Double-buffering is less efficient than regular buffering, and also takes up more memory and
space, so if you can avoid it, make an effort to do so. In terms of nearly eliminating animation
flicker, however, double-buffering works exceptionally well.

Creating Applets with Double-Buffering
To execute double-buffering, you need two things: an image to draw on and a graphics context
for that image. Those two together mimic the$effect of the applet’s drawing surface: the$graphics
context (an instance of Graphics) to provide the$drawing methods, such as drawImage and
drawString, and the Image to hold the dots that get drawn.

There are four major steps to adding double-buffering to your applet. First, your offscreen image
and graphics context need to be stored in instance variables so that you can pass them to the
paint() method. Declare the following instance variables in your class definition:

Image offscreenImage;
Graphics offscreenGraphics;

Second, during the initialization of the$applet, you’ll create an Image and a Graphics object and
assign them to these variables (you have to wait until initialization so you know how big they’re
going to be). The createImage method gives you an instance of Image, which you can then send
the$getGraphics() method in$order to get a new graphics context for that image:

NEW
TERM

☛

030-4s CH11.i 1/29/96, 10:04 PM212

213

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

offscreenImage = createImage(this.size().width,
 this.size().height);
offscreenGraphics = offscreenImage.getGraphics();

Now, whenever you have to draw to the screen (usually in your paint method), rather than
drawing to paint’s graphics, draw to the offscreen graphics. For example, to draw an image called
img at position 10,10, use this line:

offscreenGraphics.drawImage(img,10,10,this);

Finally, at the end of your paint method, after all the drawing to the offscreen image is done,
add the following line to print the offscreen buffer to the real screen:

g.drawImage(offscreenImage, 0, 0, this);

Of course, you most likely will want to override update so that it doesn’t clear the screen between
paintings:

public void update(Graphics g) {
 paint(g);
}

Let’s review those four steps:

■■ Add instance variables to hold the image and graphics contexts for the offscreen
buffer.

■■ Create an image and a graphics context when your applet is initialized.

■■ Do all your applet painting to the offscreen buffer, not the applet’s drawing surface.

■■ At the end of your paint method, draw the offscreen buffer to the real screen.

An Example: Checkers Revisited
Yesterday’s example featured the animated moving red oval to demonstrate animation flicker
and how to reduce it. Even with the operations you did yesterday, however, the Checkers applet
still flashed occasionally. Let’s revise that applet to include double-buffering.

First, add the instance variables for the offscreen image and its graphics context:

Image offscreenImg;
Graphics offscreenG;

Second, add an init method to initialize the offscreen buffer:

public void init() {
 offscreenImg = createImage(this.size().width,
 this.size().height);
 offscreenG = offscreenImg.getGraphics();
}

030-4s CH11.i 1/29/96, 10:05 PM213

214

More Animation, Images, and Sound
M

T W
R

F S S

DAYDAY

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

Third, modify the paint method to draw to the offscreen buffer instead of to the main graphics
buffer:

public void paint(Graphics g) {
 // Draw background
 offscreenG.setColor(Color.black);
 offscreenG.fillRect(0,0,100,100);
 offscreenG.setColor(Color.white);
 offscreenG.fillRect(100,0,100,100);

 // Draw checker
 offscreenG.setColor(Color.red);
 offscreenG.fillOval(xpos,5,90,90);

 g.drawImage(offscreenImg,0,0,this);
}

Note that you’re still clipping the main graphics rectangle in the update method, as you did
yesterday; you don’t have to change that part. The only part that is relevant is that final paint
method wherein everything is drawn offscreen before finally being displayed.

Summary
Three major topics were the focus of today’s lesson. First, you learned about using images in your
applets—locating them, loading them, and using the drawImage method to display them, either
at their normal size or scaled to different sizes. You also learned how to create animations using
images.

Secondly, you learned how to use sounds, which can be included in your applets any time you
need them—at specific moments, or as background sounds that can be repeated while the applet
executes. You learned how to locate, load, and play sounds both using the play() and the
getAudioClip() methods.

Finally, you learned about double-buffering, a technique that enables you virtually to eliminate
flicker in animations, at some expense of animation efficiency and speed. Using images and
graphics contexts, you can create an offscreen buffer to draw to, the result of which is then
displayed to the screen at the last possible moment.

030-4s CH11.i 1/29/96, 10:05 PM214

215

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 11 LP#3

Q&A
Q In the Neko program, you put the image loading into the init() method. It

seems to me that it might take Java a long time to load all those images, and
because init() isn’t in the main thread of the applet, there’s going to be a
distinct pause there. Why not put the image loading at the beginning of the run()
method instead?

A There are sneaky things going on behind the scenes. The getImage method doesn’t
actually load the image; in fact, it returns an Image object almost instantaneously, so it
isn’t taking up a large amount of processing time during initialization. The image data
that getImage points to isn’t actually loaded until the image is needed. This way, Java
doesn’t have to keep enormous images around in memory if the program is going to
use only a small piece. Instead, it can just keep a reference to that data and retrieve
what it needs later.

Q I wrote an applet to do a background sound using the getAudioClip() and loop()
methods. The sounds works great, but it won’t stop. I’ve tried suspending the
current thread and killing, but the sound goes on.

A I mentioned this as a small note in the section on sounds; background sounds don’t
run in the main thread of the applet, so if you stop the thread, the sound keeps going.
The solution is easy—in the same method where you stop the thread, also stop the
sound, like this:
runner.stop() //stop the thread
bgsound.stop() //also stop the sound

Q If I use double-buffering, do I still have to clip to a small region of the screen?
Because double-buffering eliminates flicker, it seems easier to draw the whole
frame every time.

A Easier, yes, but less efficient. Drawing only part of the screen not only reduces flicker,
it also limits the amount of work your applet has to do in the paint() method. The
faster the paint() method works, the faster and smoother your animation will run.
Using clip regions and drawing only what is necessary is a good practice to follow in
general—not just if you have a problem with flicker.

030-4s CH11.i 1/29/96, 10:06 PM215

217

12

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

M
T W

R
F S S

Managing Simple
Events and
Interactivity

by Laura Lemay

1212
WEEK

2

030-4s CH12.i 1/29/96, 10:08 PM217

218

Managing Simple Events and Interactivity
M

T W
R

F S S

DAYDAY

12

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

Java events are part of the Java AWT (Abstract Windowing Toolkit) package. An event is the
way that the AWT communicates to you, as the programmer, and to other Java AWT
components that something has happened. That something can be input from the user (mouse
movements or clicks, keypresses), changes in the system environment (a window opening or
closing, the window being scrolled up or down), or a host of other things that might, in some
way, be interesting to the operation of the program.

Note: Java’s Abstract Windowing Toolkit is a package of classes that implements
most common UI components, such as windows, buttons, menus, and so on. It is
also specifically the AWT, and not Java, that generates and manages events.

In other words, whenever just about anything happens to a Java AWT component, including
an applet, an event is generated. Some events are handled by the AWT or by the browser without
your needing to do anything. paint() methods, for example, are generated and handled by the
browser—all you have to do is tell the AWT what you want painted when it gets to your part
of the window. Some events, however—for example, a mouse click inside the boundaries of
your applet—you may need to know about. Writing your Java programs to handle these kinds
of events enables you to get input from the user and have your applet change its behavior based
on that input.

Today, you’ll learn about managing simple events, including the following basics:

■■ Mouse clicks

■■ Mouse movements, including mouse dragging

■■ Keyboard actions

You’ll also learn about the handleEvent() method, which is the basis for collecting, handling,
and passing on events of all kinds from your applet to other UI components in the window or
in your applet itself. Tomorrow, you’ll learn how to combine events with the AWT to create a
complete interface for your applet.

Mouse Clicks
Let’s start with the most common event you might be interested in: mouse clicks. Mouse-click
events occur when your user clicks the mouse somewhere in the body of your applet. You can
intercept mouse clicks to do very simple things—for example, to toggle the sound on and off
in your applet, to move to the next slide in a presentation, or to clear the screen and start over—
or you can use mouse clicks in conjunction with mouse movements to perform more complex
motions inside your applet.

030-4s CH12.i 1/29/96, 10:09 PM218

219

12

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

mouseDown and mouseUp
When you click the mouse once, the AWT generates two events: a mouseDown event when the
mouse button is pressed, and a mouseUp event when the button is released. Why two individual
events for a single mouse action? Because you may want to do different things for the “down”
and the “up.” For example, look at a pull-down menu. The mouseDown extends the menu, and
the mouseUp selects an item (with mouseDrags between—but you’ll learn about that one later).
If you have only one event for both actions (mouseUp and mouseDown), you cannot implement
that sort of user interaction.

Handling mouse events in your applet is easy—all you have to do is override the right method
definition in your applet. That method will be called when that particular event occurs. Here’s
an example of the method signature for a mouseDown event:

public boolean mouseDown(Event evt, int x, int y) {
...
}

The mouseDown() method (and the mouseUp() method as well) takes three parameters: the event
itself and the x and y coordinates where the mouseDown or mouseUp event occurred.

The event argument is an instance of the class Event. All system events generate an instance of
the Event class, which contains information about where and when the event took place, the kind
of event it is, and other information that you might want to know about this event. Sometimes
having a handle to that event object is useful, as you’ll discover later on in this section.

The x and the y coordinates of the event, as passed in through the x and y arguments, are
particularly nice to know because you can use them to determine precisely where the mouse click
took place.

For example, here’s a simple method that prints out information about a mouseDown when it
occurs:

public boolean mouseDown(Event evt, int x, int y) {
 System.out.println(“Mouse down at “ + x + “,” + y);
 return true;
}

By including this method in your applet, every time your user clicks the mouse inside your
applet, this message will get printed.

Note that this method, unlike the other system methods you’ve studied this far, returns a
boolean value instead of not returning anything (void). This will become important tomorrow
when you create user interfaces and then manage input to these interfaces; having an event
handler return true or false determines whether a given UI component can intercept an event
or whether it needs to pass it on to the enclosing component. The general rule is that if your
method deals with the event, it should return true, which for the focus of today’s lesson is almost
always the case.

030-4s CH12.i 1/29/96, 10:09 PM219

220

Managing Simple Events and Interactivity
M

T W
R

F S S

DAYDAY

12

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

The second half of the mouse click is the mouseUp() method, which is called when the mouse
button is released. To handle a mouseUp event, add the mouseUp() method to your applet.
mouseUp() looks just like mouseDown():

public boolean mouseUp(Event evt, int x, int y) {

}

An Example: Spots
In this section, you’ll create an example of an applet that uses mouse events—mouseDown events
in particular. The Spots applet starts with a blank screen and then sits and waits. When you click
the mouse on that screen, a blue dot is drawn. You can place up to ten dots on the screen. Figure
12.1 shows the Spots applet.

Let’s start from the beginning and build this applet, starting from the initial class definition:

import java.awt.Graphics;
import java.awt.Color;
import java.awt.Event;

public class Spots extends java.applet.Applet {

 final int MAXSPOTS = 10;
 int xspots[] = new int[MAXSPOTS];

Figure 12.1.
The Spots applet.

030-4s CH12.i 1/29/96, 10:10 PM220

221

12

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

 int yspots[] = new int[MAXSPOTS];
 int currspots = 0;

}

This class uses three other AWT classes: Graphics, Color, and Event. That last class, Event, needs
to be imported in any applets that use events. The class has four instance variables: a constant
to determine the maximum number of spots that can be drawn, two arrays to store the x and
y coordinates of the spots that have already been drawn, and an integer to keep track of the
number of the current spot.

Note: This class doesn’t include the implements Runnable words in its definition.
As you’ll see later on as you build this applet, it also doesn’t have a run() method.
Why not? Because it doesn’t actually do anything on its own—all it does is wait for
input and then do stuff when input happens. There’s no need for threads if your
applet isn’t actively doing something all the time.

Let’s start with the init() method, which has one line, to set the background to white:

public void init() {
 setBackground(Color.white);
}

Set the background here, instead of in paint(), because paint() is called repeatedly each time
a new spot is added. Because you really need to set the background only once, putting it in the
paint() method unnecessarily slows down that method. Putting it here is a much better idea.

The main action of this applet occurs on the mouseDown() method, so let’s add that one now:

public boolean mouseDown(Event evt, int x, int y) {
 if (currspots < MAXSPOTS)
 addspot(x,y);
 else System.out.println(“Too many spots.”);
 return true;
}

When the mouse click occurs, the mouseDown() method tests to see whether there are less than
ten spots. If so, it calls the addspot() method (which you’ll write soon). If not, it just prints an
error message. Finally, it returns true, because all the event methods have to return a boolean
value (usually true).

What does addspot() do? It adds the coordinates of the spot to the arrays that store the
coordinates, increments the currspots variable, and then calls repaint():

void addspot(int x,int y) {
 xspots[currspots] = x;
 yspots[currspots] = y;

030-4s CH12.i 1/29/96, 10:10 PM221

222

Managing Simple Events and Interactivity
M

T W
R

F S S

DAYDAY

12

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

Type

 currspots++;
 repaint();
 }

You may be wondering why you have to keep track of all the past spots in addition to the current
spot. The reason is because of repaint(): each time you paint the screen, you have to paint all
the old spots in addition to the newest spot. Otherwise, each time you painted a new spot, the
older spots would get erased. Now, on to the paint() method:

public void paint(Graphics g) {
 g.setColor(Color.blue);
 for (int i = 0; i < currspots; i++) {
 g.fillOval(xspots[i] -10, yspots[i] -10,20,20);
 }
 }

Inside paint, you just loop through the spots you’ve stored in the xspots and yspots arrays,
painting each one (actually, painting them a little to the right and upward so that the spot is
painted around the mouse pointer rather than below and to the right).

That’s it! That’s all you need to create an applet that handles mouse clicks. Everything else is
handled for you. You have to add the appropriate behavior to mouseDown() or mouseUp() to
intercept and handle that event. Listing 12.1 shows the full text for the Spots applet.

Listing 12.1. The Spots applet.
 1: import java.awt.Graphics;
 2: import java.awt.Color;
 3: import java.awt.Event;
 4:
 5: public class Spots extends java.applet.Applet {
 6:
 7: final int MAXSPOTS = 10;
 8: int xspots[] = new int[MAXSPOTS];
 9: int yspots[] = new int[MAXSPOTS];
10: int currspots = 0;
11:
12: public void init() {
13: setBackground(Color.white);
14: }
15:
16: public boolean mouseDown(Event evt, int x, int y) {
17: if (currspots < MAXSPOTS)
18: addspot(x,y);
19: else System.out.println(“Too many spots.”);
20: return true;
21: }
22:
23: void addspot(int x,int y) {
24: xspots[currspots] = x;
25: yspots[currspots] = y;
26: currspots++;
27: repaint();

030-4s CH12.i 1/29/96, 10:11 PM222

223

12

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

28: }
29:
30: public void paint(Graphics g) {
31: g.setColor(Color.blue);
32: for (int i = 0; i < currspots; i++) {
33: g.fillOval(xspots[i] -10, yspots[i] -10,20,20);
34: }
35: }
36: }

Mouse Movements
Every time the mouse is moved a single pixel in any direction, a mouse move event is generated.
There are two mouse movement events: mouse drags, where the movement occurs with the
mouse button pressed down, and plain mouse movements, where the mouse button isn’t
pressed.

To manage mouse movement events, use the mouseDrag() and mouseMove() methods.

mouseDrag and mouseMove
The mouseDrag() and mouseMove() methods, when included in your applet code, intercept and
handle mouse movement events. The mouseMove() method, for plain mouse pointer movements
without the mouse button pressed, looks much like the mouse-click methods:

public boolean mouseMove(Event evt, int x, int y) {
 ...
}

The mouseDrag() method handles mouse movements made with the mouse button pressed
down (a complete dragging movement consists of a mouseDown event, a series of mouseDrag events
for each pixel the mouse is moved, and a mouseUp even when the button is released). The
mouseDrag() method looks like this:

public boolean mouseDrag(Event evt, int x, int y) {
 ...
}

mouseEnter and mouseExit
Finally, there are the mouseEnter() and mouseExit() methods. These two methods are called
when the mouse pointer enters the applet or when it exits the applet. (In case you’re wondering
why you might need to know this, it’s more useful on components of user interfaces that you
might put inside an applet. You’ll learn more about UI tomorrow).

030-4s CH12.i 1/29/96, 10:12 PM223

224

Managing Simple Events and Interactivity
M

T W
R

F S S

DAYDAY

12

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

Type

Both mouseEnter() and mouseExit() have similar signatures—three arguments: the event object
and the x and y coordinates of the point where the mouse entered or exited the applet.

public boolean mouseEnter(Event evt, int x, int y) {
 ...
}

public boolean mouseExit(Event evt, int x, int y) {
 ...
}

An Example: Drawing Lines
Examples always help to make concepts more concrete. In this section you’ll create an applet that
enables you to draw straight lines on the screen by dragging from the startpoint to the endpoint.
Figure 12.2 shows the applet at work.

As with the Spots applet (on which this applet is based), let’s start with the basic definition and
work our way through it. Listing 12.2 shows the top of the Lines applet.

Listing 12.2. The top of the Lines applet.
 1: import java.awt.Graphics;
 2: import java.awt.Color;
 3: import java.awt.Event;

Figure 12.2.
Drawing Lines.

030-4s CH12.i 1/29/96, 10:13 PM224

225

12

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

 4: import java.awt.Point;
 5:
 6: public class Lines extends java.applet.Applet {
 7:
 8: final int MAXLINES = 10;
 9: Point starts[] = new Point[MAXLINES]; // starting points
10: Point ends[] = new Point[10]; // ending points
11: Point anchor; // start of current line
12: Point currentpoint; // current end of line
13: int currline = 0; // number of lines
14:
15: public void init() {
16: setBackground(Color.white);
17: }
18:

Compared to Spots, this applet added a few extra things. Unlike Spots, which keeps track
of individual integer coordinates, this one keeps track of Point objects. Points represent an
x and a y coordinate, encapsulated in a single object. To deal with points, you import the

Point class (line 4) and set up a bunch of instance variables that hold points:

■■ The starts array holds points representing the starts of lines already drawn.

■■ The ends array holds the endpoints of those same lines.

■■ anchor holds the starting point of the line currently being drawn.

■■ currentpoint holds the current endpoint of the line currently being drawn.

■■ currline holds the current number of lines (to make sure you don’t go over
MAXLINES).

Finally, the init() method (lines 15 through 17), as in the Spots applet, sets the background
of the applet to white.

The three main events this applet deals with are mouseDown(), to set the anchor point for the
current line, mouseDrag(), to animate the current line as it’s being drawn, and mouseUp(), to set
the ending point for the new line. Given that you have instance variables to hold each of these
values, it’s merely a matter of plugging the right variables into the right methods. Here’s
mouseDown(), which sets the anchor point:

public boolean mouseDown(Event evt, int x, int y) {
 anchor = new Point(x,y);
 return true;
}

While the mouse is being dragged to draw the line, the applet animates the line being drawn.
As you draw the mouse around, the new line moves with it from the anchor point to the tip of
the mouse. The mouseDrag event contains the current point each time the mouse moves, so use
that method to keep track of the current point (and to repaint for each movement so the line
“animates”):

Analysis

030-4s CH12.i 1/29/96, 10:14 PM225

226

Managing Simple Events and Interactivity
M

T W
R

F S S

DAYDAY

12

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

public boolean mouseDrag(Event evt, int x, int y) {
 currentpoint = new Point(x,y);
 repaint();
 return true;
}

The new line doesn’t get added to the arrays of old lines until the mouse button is released. Here’s
mouseUp(), which tests to make sure you haven’t exceeded the maximum number of lines before
calling the addline() method (described next):

public boolean mouseUp(Event evt, int x, int y) {
 if (currline < MAXLINES)
 addline(x,y);
 else System.out.println(“Too many lines.”);
 return true;
}

The addline() method is where the arrays of lines get updated and where the applet is repainted
to take the new line into effect:

void addline(int x,int y) {
 starts[currline] = anchor;
 ends[currline] = new Point(x,y);
 currline++;
 currentpoint = null;
 repaint();
}

Note that in this line you also set currentpoint to null. Why? Because the current line in
process is over. By setting currentpoint to null, you can test for that value in the paint()
method.

Painting the applet means drawing all the old lines stored in the starts and en68.6 arrays, as well
as drawing the current line in process (whose en6points are in anchor and currentpoint,
respectively). To show the animation of the current line, draw it in blue. Here’s the paint()
method for the Lines applet:

public void paint(Graphics g) {

 // Draw existing lines
 for (int i = 0; i < currline; i++) {
 g.drawLine(starts[i].x, starts[i].y,
 en6s[i].x, en6s[i].y);
 }

 // draw current line
 g.setColor(Color.blue);
 if (currentpoint != null)
 g.drawLine(anchor.x,anchor.y,
 currentpoint.x,currentpoint.y);
}

In paint, when you’re drawing the current line, you test first to see whether currentpoint is null.
If it is, the applet isn’t in the middle of drawing a line, so there’s no reason to try drawing a line

030-4s CH12.i 1/29/96, 10:14 PM226

227

12

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

Type

that doesn’t exist. By testing for currentpoint (and by setting currentpoint to null in the
addline() method), you can paint only what you need.

That’s it—just 60 lines of code and a few basic methods, and you have a very basic drawing
application in your Web browser. Listing 12.3 shows the full text of the Lines applet so that you
can put the pieces together.

Listing 12.3. The Lines applet.
 1: import java.awt.Graphics;
 2: import java.awt.Color;
 3: import java.awt.Event;
 4: import java.awt.Point;
 5:
 6: public class Lines extends java.applet.Applet {
 7:
 8: final int MAXLINES = ;
 9: Point starts[] = new Point[MAXLINES]; // starting points
10: Point ends[] = new Point[10]; // endingpoints
11: Point anchor; // start of current line
12: Point currentpoint; // current end of line
13: int currline = 0; // number of lines
14:
15: public void init() {
16: setBackground(Color.white);
17: }
18:
19: public boolean mouseDown(Event evt, int x, int y) {
20: anchor = new Point(x,y);
21: return true;
22: }
23:
24: public boolean mouseUp(Event evt, int x, int y) {
25: if (currline < MAXSPOTS)
26: addline(x,y);
27: else System.out.println(“Too many lines.”);
28: return true;
29: }
30:
31: public boolean mouseDrag(Event evt, int x, int y) {
32: currentpoint = new Point(x,y);
33: repaint();
34: return true;
35: }
36:
37: void addline(int x,int y) {
38: starts[currline] = anchor;
39: ends[currline] = new Point(x,y);
40: currline++;
41: currentpoint = null;
42: repaint();
43: }
44:
45: public void paint(Graphics g) {

030-4s CH12.i 1/29/96, 10:15 PM227

228

Managing Simple Events and Interactivity
M

T W
R

F S S

DAYDAY

12

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

46:
47: // Draw existing lines
48: for (int i = 0; i < currline; i++) {
49: g.drawLine(starts[i].x, starts[i].y,
50: ends[i].x, ends[i].y);
51: }
52:
53: // draw current line
54: g.setColor(Color.blue);
55: if (currentpoint != null)
56: g.drawLine(anchor.x,anchor.y,
57: currentpoint.x,currentpoint.y);
58: }
59: }

Keyboard Events
Keyboard events are generated whenever users press a key on the keyboard. By using key events,
you can get hold of the values of the keys they pressed to perform an action or merely to get
character input from the users of your applet.

The keyDown Method
To capture a keyboard event, use the keyDown() method:

public boolean keyDown(Event evt, int key) {
 ...
}

The keys generated by keyDown events (and passed into keyDown() as the key argument) are
integers representing ASCII character values, which include alphanumeric characters, function
keys, tabs, returns, and so on. To use them as characters (for example, to print them), you need
to cast them to characters:

currentchar = (char)key;

Here’s a simple example of a keyDown() method that does nothing but print the key you just
typed in both its ASCII and character representation:

public boolean keyDown(Event evt, int key) {
 System.out.println(“ASCII value: “ + key);
 System.out.println(“Character: “ + (char)key);
 return true;
}

Listing 12.3. continued

030-4s CH12.i 1/29/96, 10:16 PM228

229

12

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

Default Keys
The Event class provides a set of class variables that refer to several standard nonalphanumeric
keys, such as the arrow keys. If your interface uses these keys, you can provide more readable code
by testing for these names in your keyDown() method rather than testing for their numeric values.
For example, to test whether the up arrow was pressed, you might use the following snippet of
code:

if (key == Event.UP) {
 ...
}

Because the values these class variables hold are integers, you also can use the switch statement
to test for them.

Table 12.1 shows the standard event class variables for various keys and the actual keys they
represent.

Table 12.1. Standard keys defined by the event class.

Class Variable Represened Key

Event.HOME The Home key

Event.END The End key

Event.PGUP The Page Up key

Event.PGDN The Page Down key

Event.UP The up arrow

Event.DOWN The down arrow

Event.LEFT The left arrow

Event.RIGHT The right arrow

An Example: Entering, Displaying, and
Moving Characters

Let’s look at an applet that demonstrates keyboard events. This one enables you to type a
character, and it displays that character in the center of the applet window. You then can move
that character around on the screen by using the arrow keys. Typing another character at any
time changes the character as it’s currently displayed. Figure 12.3 shows an example.

030-4s CH12.i 1/29/96, 10:16 PM229

230

Managing Simple Events and Interactivity
M

T W
R

F S S

DAYDAY

12

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

This applet is actually less complicated than the previous applets you’ve used. This one has only
three methods: init(), keyDown(), and paint(). The instance variables are also simpler, because
the only things you need to keep track of are the x and y positions of the current character and
the values of that character itself. Here’s the top of this class definition:

import java.awt.Graphics;
import java.awt.Event;
import java.awt.Font;

public class Keys extends java.applet.Applet {

 char currkey;
 int currx;
 int curry;

The init() method is responsible for three things: setting the background color, setting the
applet’s font (here, 36 point Helvetica bold), and setting the beginning position for the character
(the middle of the screen, minus a few points to nudge it up and to the right):

 public void init() {
 currx = (this.size().width / 2) -8; // default
 curry = (this.size().height / 2) -16;
 setBackground(Color.white);
 setFont(new Font(“Helvetica”,Font.BOLD,36));
 }

Figure 12.3.
The Keys applet.

030-4s CH12.i 1/29/96, 10:17 PM230

231

12

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

Type

Because this applet’s behavior is based on keyboard input, the keyDown() method is where most
of the work of the applet takes place:

public boolean keyDown(Event evt, int key) {
 switch (key) {
 case Event.DOWN:
 curry += 5;
 break;
 case Event.UP:
 curry -= 5;
 break;
 case Event.LEFT:
 currx -= 5;
 break;
 case Event.RIGHT:
 currx += 5;
 break;
 default:
 currkey = (char)key;
 }
 repaint();
 return true;
 }

In the center of the keyDown() applet is a switch statement that tests for different key events. If
the event is an arrow key, the appropriate change is made to the character’s position. If the event
is any other key, the character itself is changed. The method finishes up with a repaint() and
returns true.

The paint() method here is almost trivial; just display the current character at the current
position. However, note that when the applet starts up, there’s no initial character and nothing
to draw, so you have to take that into account. The currkey variable is initialized to 0, so you
paint the applet only if currkey has an actual value:

 public void paint(Graphics g) {
 if (currkey != 0) {
 g.drawString(String.valueOf(currkey), currx,curry);
 }
 }

Listing 12.4 shows the complete source for the Keys applet:

Listing 12.4. The Keys applet.
 1: import java.awt.Graphics;
 2: import java.awt.Event;
 3: import java.awt.Font;
 4:
 5: public class Keys extends java.applet.Applet {
 6:
 7: char currkey;
 8: int currx;

continues

030-4s CH12.i 1/29/96, 10:18 PM231

232

Managing Simple Events and Interactivity
M

T W
R

F S S

DAYDAY

12

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

 9: int curry;
10:
11: public void init() {
12: currx = (this.size().width / 2) -8; // default
13: curry = (this.size().height / 2) -16;
14:
15: setBackground(Color.white);
16: setFont(new Font(“Helvetica”,Font.BOLD,36));
17: }
18:
19: public boolean keyDown(Event evt, int key) {
20: switch (key) {
21: case Event.DOWN:
22: curry += 5;
23: break;
24: case Event.UP:
25: curry -= 5;
26: break;
27: case Event.LEFT:
28: currx -= 5;
29: break;
30: case Event.RIGHT:
31: currx += 5;
32: break;
33: default:
34: currkey = (char)key;
35: }
36:
37: repaint();
38: return true;
39: }
40:
41: public void paint(Graphics g) {
42: if (currkey != 0) {
43: g.drawString(String.valueOf(currkey), currx,curry);
44: }
45: }
46: }

Testing for Modifier Keys
Shift, control, and meta are modifier keys. They don’t generate key events themselves, but when
you get an ordinary mouse or keyboard event, you can test to see whether those keys were held
down when the event occurred. Sometimes it may be obvious—shifted alphanumeric keys
produce different key events than unshifted ones, for example. For other events, however—
mouse events in particular—you may want to handle an event with a modifier key held down
differently from a regular version of that event.

Listing 12.4. continued

030-4s CH12.i 1/29/96, 10:18 PM232

233

12

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

The Event class provides three methods for testing whether or not a modifier key is held down:
shiftDown(), metaDown(), and controlDown(). All return boolean values based on whether that
modifier key is indeed held down. You can use these three methods in any of the event handling
methods (mouse or keyboard) by calling them on the event object passed into that method:

public boolean mouseDown(Event evt, int x, int y) {
 if (evt.shiftDown)
 // handle shift-click
 else // handle regular click
}

The AWT Event Handler
The default methods you’ve learned about today for handling basic events in applets are actually
called by a generic event handler method called handleEvent(). The handleEvent() method is
how the AWT generically deals with events that occur between application components and
events based on user input.

In the default handleEvent() method, basic events are processed and the methods you learned
about today are called. To handle events other than those mentioned here, to change the default
event handling behavior, or to create and pass around your own events, you need to override
handleEvent in your own Java programs. The handleEvent() method looks like this:

public boolean handleEvent(Event evt) {
 ...
}

To test for specific events, examine the ID instance variable of the Event object that gets passed
in. The event ID is an integer, but fortunately, the Event class defines a whole set of event IDs
as class variables that you can test for in the body of the handleEvent. Because these class variables
are integer constants, a switch statement works particularly well. For example, here’s a simple
handleEvent() method to print out debugging information about mouse events:

public boolean handleEvent(Event evt) {
 switch (evt.id) {
 case Event.MOUSE_DOWN:
 System.out.println(“MouseDown: “ +
 evt.x + “,” + evt.y);
 return true;
 case Event.MOUSE_UP:
 System.out.println(“MouseUp: “ +
 evt.x + “,” + evt.y);
 return true;
 case Event.MOUSE_MOVE:
 System.out.println(“MouseMove: “ +
 evt.x + “,” + evt.y);
 return true;
 case Event.MOUSE_DRAG:
 System.out.println(“MouseDown: “ +
 evt.x + “,” + evt.y);

030-4s CH12.i 1/29/96, 10:19 PM233

234

Managing Simple Events and Interactivity
M

T W
R

F S S

DAYDAY

12

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

 return true;
 default:
 return false;
 }
}

You can test for the following keyboard events:

■■ Event.KEYPRESS is generated when a key is pressed (the same as the keyDown()
method).

■■ Event.KEYRELEASE is generated when a key is released.

■■ Event.KEYACTION is generated when a key action (a press and a release) occurs.

You can test for these mouse events:

■■ Event.MOUSE_DOWN is generated when the mouse button is pressed (the same as the
mouseDown() method).

■■ Event.MOUSE_UP is generated when the mouse button is released (the same as the
mouseUp() method).

■■ Event.MOUSE_MOVE is generated when the mouse is moved (the same as the mouseMove()
method).

■■ Event.MOUSE_DRAG is generated when the mouse is moved with the button pressed (the
same as the mouseDrag() method).

■■ Event.MOUSE_ENTER is generated when the mouse enters the applet (or a component of
that applet). You can also use the mouseEnter() method.

■■ Event.MOUSE_EXIT is generated when the mouse exits the applet. You can also use the
mouseExit() method.

In addition to these events, the Event class has a whole suite of methods for handling UI
components. You’ll learn more about these events tomorrow.

Note that if you override handleEvent() in your class, none of the default event handling
methods you learned about today will get called unless you explicitly call them in the body of
handleEvent(), so be careful if you decide to do this. One way to get around this is to test for
the event you’re interested in, and if that event isn’t it, to call super.handleEvent() so that the
superclass that defines handleEvent() can process things. Here’s an example of how to do this:

public boolean handleEvent(Event evt) {
 if (evt.id == Event.MOUSE_DOWN) {
 // process the mouse down
 return true;
 } else {
 return super.handleEvent(evt);
 }
}

030-4s CH12.i 1/29/96, 10:19 PM234

235

12

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

Summary
Handling events in Java’s Abstract Windowing Toolkit (AWT) is easy. Most of the time, all you
need to do is stick the right method in your applet code, and your applet intercepts and handles
that method. Here are some of the basic events you can manage in this way:

■■ Mouse clicks—mouseUp() and mouseDown() methods for each part of a mouse click.

■■ Mouse movements—mouseMove() and mouseDrag() for mouse movement with the
mouse button released and pressed, respectively, as well as mouseEnter() and
mouseExit() for when the mouse enters and exits the applet area.

■■ keyDown for when a key on the keyboard is pressed.

All events in the AWT generate an Event object; inside that object, you can find out information
about the event, when it occurred, and its x and y coordinates (if applicable). You can also test
that event to see whether a modifier key was pressed when the event occurred, by using the
shiftDown(), controlDown(), and metaDown() methods.

Finally, there is the handleEvent(), the “parent” of the individual event methods. The
handleEvent() method is actually what the Java system calls to manage events; the default
implementation calls the individual method events where necessary. To override how methods
are managed in your applet, override handleEvent.

Q&A
Q In the Spots applet, the spot coordinates are stored in arrays, which have a

limited size. How can I modify this applet so that it will drawn an unlimited
number of spots?

A You can do one of a couple things:

The first thing to do is test, in your addspot() method, whether the number of spots
has exceeded MAXSPOTS. Then create a bigger array, copy the elements of the old array
into that bigger array (use the System.arraycopy() method to do that), and reassign
the x and y arrays to that new, bigger array.

The second thing to do is to use the Vector class. Vector, part of the java.util package,
implements an array that is automatically growable—sort of like a linked list is in
other languages. The disadvantage of Vector is that to put something into Vector, it
has to be an actual object. This means you’ll have to cast integers to Integer objects,
and then extract their values from Integer objects to treat them as integers again. The
Vector class enables you to add and remove objects to the end of Vector just as you
can in an array (by using method calls, rather than array syntax). Check it out.

030-4s CH12.i 1/29/96, 10:20 PM235

236

Managing Simple Events and Interactivity
M

T W
R

F S S

DAYDAY

12

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 12 LP#3

Q mouseDown() and mouseUp() seem to apply to only a single mouse button. How can
I determine which button on the mouse has been pressed?

A At the moment, you can’t. AWT assumes that you’re using only one mouse button, or
if you have a mouse with multiple buttons, that you’re using only the left one.
Although this provides some limitations on the kinds of actions you can perform in
your applet, it does provide a cross-platform solution. Remember— different systems
have different mice, so writing your applet to do something specific with the right
mouse button isn’t a good idea if the people running your applet are using
Macintoshes and have only one mouse button. If you really want to have different
mouse actions perform different things, test for modifier keys in your mouseDown() and
mouseUp() methods.

Q What’s a meta key?

A It’s popular in Unix systems, and often mapped to Alt on most keyboards. Because
Shift and Ctrl are much more popular and widespread, it’s probably a good idea to
base your interfaces on those modifier keys if you can.

Q How do I test to see whether the Return key has been pressed?

A Return (line feed) is character 10; Enter (carriage return) is character 13. Note that
different platforms may send different keys for the actual key marked Return. In
particular, Unix systems send line feeds, Macintoshes send carriage returns, and DOS
systems send both. So, to provide a cross-platform behavior, you may want to test for
both line feed and carriage return.

The word from the Java team is that a Return is a Return is a Return regardless of the
platform. However, at the time of this writing, it is questionable whether or not this is
currently true in the Java developer’s kit. You may want to check the API documenta-
tion for the Event class to see whether this has changed in the interim.

Q I looked at the API for the Event class, and there are many more event types
listed there than the ones you mention today.

A Yes. The Event class defines many different kinds of events, both for general user
input, such as the mouse and keyboard events you learned about here, and also events
for managing changes to the state of user interface components, such as windows and
scroll bars. Tomorrow, you’ll learn about those other events.

030-4s CH12.i 1/29/96, 10:21 PM236

237

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

M
T W

R
F S S

The Java Abstract
Windowing Toolkit

by Laura Lemay

WEEK

2

1313

030-4s CH13.i 1/29/96, 10:33 PM237

238

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

For the past five days you’ve concentrated on creating applets that do very simple things: display
text, play an animation or a sound, or enable very basic interactions with the user. Once you get
past that point, however, you may want to start creating more complex applets that behave like
real applications, embedded in a Web page—applets that start to look like real GUI applications
with buttons, menus, text fields and other elements of a real application.

It’s this sort of real work in Java applets and applications that Java’s Abstract Windowing
Toolkit, or AWT, was designed for. You’ve actually been using the AWT all along, as you might
have guessed from the classes you’ve been importing. The Applet class and most of the classes
you’ve been using this week are all integral parts of the AWT. In fact, the HotJava browser is
also written in Java and uses the AWT as well.

The AWT provides the following:

■■ A full set of UI widgets and other components, including windows, menus, buttons,
checkboxes, text fields, scrollbars, and scrolling lists

■■ Support for UI “containers,” which can contain other embedded containers or UI
widgets

■■ An event system for managing system and user events between and among parts of the
AWT

■■ Mechanisms for laying out components in a way that enables platform-independent
UI design

Today, you’ll learn about how to use all these things in your Java applets. Tomorrow, you’ll learn
about creating windows, menus, and dialogs, which enable you to pop up separate windows
from the browser window. In addition, you can use the AWT in stand-alone applications, so
everything you’ve learned so far this week can still be used. If you find the framework of the Web
browser too limiting, you can take your AWT background and start writing full-fledged Java
applications.

Today, however, you’ll continue focusing on applets.

Note: This is by far the most complex lesson so far. There’s a lot to cover and a lot
of code to go through today, so if it starts becoming overwhelming, you might
want to take two days (or more) for this one.

An AWT Overview
The basic idea behind the AWT is that a Java window is a set of nested components, starting
from the outermost window all the way down to the smallest UI component. Components can

030-4s CH13.i 1/29/96, 10:33 PM238

239

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

include things you can actually see on the screen, such as windows, menubars, buttons, and text
fields, and they can also include containers, which in turn can contain other components. Figure
13.1 shows how a sample page in a Java browser might include several different components,
all of which are managed through the AWT.

This nesting of components within containers within other components creates a hierarchy of
components, from the smallest checkbox inside an applet to the overall window on the screen.
The hierarchy of components determines the arrangement of items on the screen and inside
other items, the order in which they are painted, and how events are passed from one component
to another.

These are the major components you can work with in the AWT:

■■ Containers. Containers are generic AWT components that can contain other compo-
nents, including other containers. The most common form of container is the panel,
which represents a container that can be displayed on screen. Applets are a form of
panel (in fact, the Applet class is a subclass of the Panel class).

■■ Canvases. A canvas is a simple drawing surface. Although you can draw on panels (as
you’ve been doing all along), canvases are good for painting images or other graphics
operations.

■■ UI components. These can include buttons, lists, simple popup menus, checkboxes, test
fields, and other typical elements of a user interface.

Figure 13.1.
AWT components.

Label

Text field

More
panels

Panel

Canvas

Applet

Window

Menubar

030-4s CH13.i 1/29/96, 10:33 PM239

240

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

■■ Window construction components. These include windows, frames, menubars, and
dialogs. These are listed separately from the other UI components because you’ll use
these less often—particularly in applets. In applets, the browser provides the main
window and menubar, so you don’t have to use these. Your applet may create a new
window, however, or you may want to write your own Java application that uses these
components.

The classes inside the java.awt package are written and organized to mirror the abstract structure
of containers, components, and individual UI components. Figure 13.2 shows some of the class
hierarchy that makes up the main classes in the AWT. The root of most of the AWT components
is the class Component, which provides basic display and event handling features. The classes
Container, Canvas, TextComponent, and many of the other UI components inherit from
Component. Inheriting from the Container class are objects that can contain other AWT
components—the Panel and Window classes, in particular. Note that the java.applet.Applet
class, even though it lives in its own package, inherits from Panel, so your applets are an integral
part of the hierarchy of components in the AWT system.

Component

TextComponentContainerCanvas

Panel Window

Button

Frame DialogApplet

TextField

Figure 13.2.
A partial AWT class
hierarchy.

A graphical user interface-based application that you write by using the AWT can be as complex
as you like, with dozens of nested containers and components inside each other. AWT was
designed so that each component can play its part in the overall AWT system without needing
to duplicate or keep track of the behavior of other parts in the system.

The Basic User Interface Components
The simplest form of AWT component is the basic UI component. You can create and add these
to your applet without needing to know anything about creating containers or panels—your
applet, even before you start painting and drawing and handling events, is already an AWT
container. Because an applet is a container, you can put other AWT components—such as UI
components or other containers—into it.

030-4s CH13.i 1/29/96, 10:33 PM240

241

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

In this section, you’ll learn about the basic UI components: labels, buttons, checkboxes, choice
menus, and text fields. In each case, the procedure for creating the component is the same—you
first create the component, and then add it to the panel that holds it, at which point it is displayed
on the screen. To add a component to a panel (such as your applet, for example), use the add()
method:

public void init() {
 Button b = new Button(“OK”);
 add(b);
}

Note that where the component appears in the panel depends on the layout that panel is defined
to have. The default layout for panels such as applets is FlowLayout, with a centered alignment,
which means that components are added from left to right in rows, and then row by row as they
fit, with each row centered. This explains why some of the examples in this section look a little
funny. You’ll learn more about panels and layouts in the next section.

Note also that each of these components has an action associated with it—that is, something that
component does when it’s activated. Actions generally trigger events or other activities in your
applet (often called callbacks in other window toolkits). In this section, you’ll focus on creating
the components themselves; you’ll learn about adding actions to them later in today’s lesson.

On to the components!

Labels
The simplest form of UI component is the label.

Labels are, effectively, text strings that you can use to label other UI components.

The advantages that a label has over an ordinary text string is that it follows the layout of the given
panel, and you don’t have to worry about repainting it every time the panel is redrawn. Labels
also can be easily aligned within a panel, enabling you to attach labels to other UI components
without knowing exact pixel positions.

To create a label, use one of the following constructors:

■■ Label() creates an empty label, with its text aligned left.

■■ Label(String) creates a label with the given text string, also aligned left.

■■ Label(String, int) creates a label with the given text string and the given alignment.
The available alignments are stored in class variables in Label, making them easier to
remember: Label.RIGHT, Label.LEFT, and Label.CENTER.

The label’s font is determined by the overall font for the component (as set by the setFont()
method).

NEW
TERM

☛

030-4s CH13.i 1/29/96, 10:33 PM241

242

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Here’s some simple code to create a few labels. Figure 13.3 shows how this looks on screen:

add(new Label(“aligned left “));
add(new Label(“aligned center”, Label.CENTER));
add(new Label(“ aligned right”, Label.RIGHT));

Once you have a label object, you can use methods defined in the Label class to get and set the
values of the text as shown in Table 13.1.

Table 13.1. Label methods.

Method Action

getText() Returns a string containing this label’s text

setText(String) Changes the text of this label

getAlignment() Returns an integer representing the alignment of this label:
0 is Label.LEFT, 1 is Label.CENTER, 2 is Label.RIGHT

setAlignment(int) Changes the alignment of this label to the given integer or class
variable

Buttons
The second user interface component to explore is the button.

Buttons are simple UI components that trigger some action in your interface when they
are pressed. For example, a calculator applet might have buttons for each number and

operator, or a dialog box might have buttons for “OK” and “Cancel.”

To create a button, use one of the following constructors:

■■ Button() creates an empty button with no label.

■■ Button(String) creates a button with the given string object as a label.

Figure 13.3.
Labels.

NEW
TERM

☛

030-4s CH13.i 1/29/96, 10:33 PM242

243

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Once you have a button object, you can get the value of the button’s label by using the
getLabel() method and set the label using the setLabel(String) methods.

Figure 13.4 shows some simple buttons, created using the following code:

add(new Button(“Rewind”));
add(new Button(“Play”));
add(new Button(“Fast Forward”));
add(new Button(“Stop”));

Figure 13.4.
Buttons.

Checkboxes
Checkboxes can be selected or deselected to provide options.

Checkboxes are user interface components that have two states: on and off (or checked and
unchecked, selected and unselected, true and false, and so on). Unlike buttons, checkboxes

usually don’t trigger direct actions in a UI but, instead, are used to indicate optional features of
some other action.

Checkboxes can be used in two ways:

■■ Nonexclusive, meaning that given a series of checkboxes, any of them can be selected.

■■ Exclusive, meaning that within one series, only one checkbox can be selected at a time.

The latter kind of checkboxes are called radio buttons or checkbox groups, and are described in
the next section.

Nonexclusive checkboxes can be created by using the Checkbox class. You can create a checkbox
by using one of the following constructors:

■■ Checkbox() creates an empty checkbox, unselected.

■■ Checkbox(String) creates a checkbox with the given string as a label.

■■ Checkbox(String, null, boolean) creates a checkbox that is either selected or
unselected based on whether the boolean argument is true or false, respectively. (The
null is used as a placeholder for a group argument. Only radio buttons have groups, as
you’ll learn in the next section).

Table 13.2 lists the checkbox methods; Figure 13.5 shows a few simple checkboxes (only
Underwear is selected), generated using the following code:

NEW
TERM

☛

030-4s CH13.i 1/29/96, 10:34 PM243

244

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

add(new Checkbox(“Shoes”));
add(new Checkbox(“Socks”));
add(new Checkbox(“Pants”));
add(new Checkbox(“Underwear”, null, true));
add(new Checkbox(“Shirt”));

Figure 13.5.
Checkboxes.

Table 13.2. Checkbox methods.

Method Action

getLabel() Returns a string containing this checkbox’s label

setLabel(String) Changes the text of the checkbox’s label

getState() Returns true or false, based on whether the checkbox is selected
or not

setState(boolean) Changes the checkbox’s state to selected (true) or unselected
(false)

Radio Buttons
Radio buttons are a variation on the checkbox.

Radio buttons have the same appearance as checkboxes, but only one in a series can be
selected at a time.

To create a series of radio buttons, first create an instance of CheckboxGroup:

CheckboxGroup cbg = new CheckboxGroup();

NEW
TERM

☛

030-4s CH13.i 1/29/96, 10:34 PM244

245

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Then create and add the individual checkboxes, using the group as the second argument, and
whether or not that checkbox is selected (only one in the series can be selected):

add(new Checkbox(“Yes”, cbg, true);
add(new Checkbox(“no”, cbg, false);

Here’s a simple example (the results of which are shown in Figure 13.6):

CheckboxGroup cbg = new CheckboxGroup();

add(new Checkbox(“Red”, cbg, true));
add(new Checkbox(“Blue”, cbg, false));
add(new Checkbox(“Yellow”, cbg, false));
add(new Checkbox(“Green”, cbg, false));
add(new Checkbox(“Orange”, cbg, false));
add(new Checkbox(“Purple”, cbg, false));

All the checkbox methods defined in the previous section can be used with the checkboxes in
the group. In addition, you can use the getCheckboxGroup() and setCheckboxGroup() methods
to access and change the group of any given checkbox.

Finally, the getCurrent() and setCurrent(Checkbox) methods, defined in the checkbox group,
can be used to get or set the currently selected checkbox.

Choice Menus
The choice menu is a more complex UI component than labels, buttons, or checkboxes.

Choice menus are popup (or pulldown) menus that enable you to select an item from that
menu. The menu then displays that choice on the screen.

To create a choice menu, create an instance of the Choice class, and then use the addItem()
method to add individual items to it in the order in which they should appear:

Figure 13.6.
Radio buttons.

NEW
TERM

☛

030-4s CH13.i 1/29/96, 10:34 PM245

246

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Choice c = new Choice();

c.addItem(“Apples”);
c.addItem(“Oranges”);
c.addItem(“Strawberries”);
c.addItem(“Blueberries”);
c.addItem(“Bananas”);

Finally, add the entire choice menu to the panel in the usual way:

add(c);

Figure 13.7 shows a simple choice menu generated from code in the previous example:

Figure 13.7.
Choice menus.

Tip: Choice menus enable only one selection per menu. If you want to select
multiple items, use a scrolling list instead.

Once your choice menu is created, regardless of whether it’s added to a panel, you can continue
to add items to that menu by using the addItem() method. Table 13.3 shows some other
methods that may be useful in working with choice menus.

Table 13.3. Choice menu methods.

Method Action

getItem(int) Returns the string item at the given position (items inside a choice
begin at 0, same as arrays)

countItems() Returns the number of items in the menu

getSelectedIndex() Returns the index position of the item that’s selected

030-4s CH13.i 1/29/96, 10:34 PM246

247

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

getSelectedItem() Returns the currently selected item as a string

select(int) Selects the item at the given position

select(String) Selects the item with that string

Text Fields
Unlike the UI components up to this point, which enable you to select only among several
options to perform an action, text fields allow you to enter any values.

Text fields enable your reader to enter text.

To create a text field, use one of the following constructors:

■■ TextField() creates an empty TextField 0 characters wide.

■■ TextField(int) creates an empty text field with the given width in characters.

■■ TextField(String) creates a text field 0 characters wide, initialized with the given
string.

■■ TextField(String, int) creates a text field with the given width in characters and
containing the given string. If the string is longer than the width, you can select and
drag portions of the text within the field and the box will scroll left or right.

For example, the following line creates a text field 30 characters wide with the string “Enter Your
Name” as its initial contents.

TextField tf = new TextField(“Enter Your Name”,30);
add(tf);

Tip: Text fields include only the editable field itself. You usually need to include a
label with a text field to indicate what belongs in that text field.

Note: Text fields are different from text areas; text fields are limited in size and are
best used for one-line items, whereas text areas have scrollbars and are better for
larger text windows. Both can be edited and enable selections with the mouse.
You’ll learn about text areas later today.

Method Action

NEW
TERM

☛

030-4s CH13.i 1/29/96, 10:34 PM247

248

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

You can also create a text field that obscures the characters typed into it—for example, for
password fields. To do this, first create the text fields itself, and then use the setEchoCharacter()
method to set the character that is echoed on the screen. Here is an example:

TextField tf = new TextField(30);
tf.setEchoCharacter(’*’);

Figure 13.8 shows three text boxes (and labels) that were created by using the following code:

add(new Label(“Enter your Name”));
add(new TextField(“your name here”,45));
add(new Label(“Enter your phone number”));
add(new TextField(12));
add(new Label(“Enter your password”));
TextField t = new TextField(20);
t.setEchoCharacter(‘*’);
add(t);

Figure 13.8.
Text fields.

Text fields inherit from the class TextComponent and have a whole suite of methods, both
inherited from that class and defined in its own class, that may be useful to you in your Java
programs. Table 13.4 shows a selection of those methods.

Table 13.4. Text field methods.

Method Action

getText() Returns the text this text field contains (as a string)

setText(String) Puts the given text string into the field

getColumns() Returns the width of this text field

select(int, int) Selects the text between the two integer positions (positions
start from 0)

selectAll() Selects all the text in the field

030-4s CH13.i 1/29/96, 10:34 PM248

249

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

isEditable() Returns true or false based on whether the text is editable or
not

setEditable(boolean) True (the default) enables text to be edited; false freezes the text

getEchoChar() Returns the character used for masking input

echoCharIsSet() Returns true or false whether the field has a masking character
or not

Panels and Layout
You know at this point that an AWT panel can contain UI components or other panels. The
question now is how those components are actually arranged and displayed on the screen.

In other windowing systems, UI components are often arranged using hard-coded pixel
measurements—put text field tf at 10,30, for example—the same way you used the graphics
operations to paint squares and ovals on the screen. In the AWT, the window may be displayed
on many different windowing systems on many different screens and with many different kinds
of fonts with different font metrics. Therefore, you need a more flexible method of arranging
components on the screen so that a layout that looks nice on one platform isn’t a jumbled
unusable mess on another.

For just this purpose, Java has layout managers, insets, and hints that each component can
provide for helping lay out the screen.

Note that the nice thing about AWT components and user interface items is that you don’t have
to paint them—the AWT system manages all that for you. If you have graphical components
or images, or you want to create animations inside panels, you still have to do that by hand, but
for most of the basic components, all you have to do is put them on the screen and Java will
handle the rest.

Layout Managers
The actual appearance of the AWT components on the screen is determined by two things: the
order in which they are added to the panel that holds them, and the layout manager that panel
is currently using to lay out the screen. The layout manager determines how portions of the
screen will be sectioned and how components within that panel will be placed.

Note that each panel on the screen can have its own layout manager. By nesting panels within
panels, and using the appropriate layout manager for each one, you can often arrange your UI
to group and arrange components in a way that is both functionally useful and also looks good

Method Action

030-4s CH13.i 1/29/96, 10:34 PM249

250

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

on a variety of platforms and windowing systems. You’ll learn about nesting panels in a later
section.

The AWT provides four basic layout managers: FlowLayout, GridLayout, BorderLayout, and
CardLayout. To create a layout manager for a given panel, use the setLayout() method for that
panel:

public void init() {
 this.setLayout(new FlowLayout());
}

Setting the default layout manager, like defining the user interface components, is best done
during the applet or class’s initialization, which is why it’s included here.

Once the layout manager is set, you can start adding components to the panel. The order in
which components are added is often significant, depending on which layout manager is
currently active. Read on for information about the specific layout managers and how they
present components within the panel to which they apply.

The following sections describe the four basic Java AWT layout managers.

The FlowLayout Class
The FlowLayout class is the most basic of layouts. Using the flow layout, components are added
to the panel one at a time, row by row. If a component doesn’t fit onto a row, it’s wrapped onto
the next row. The flow layout also has an alignment, which determines the alignment of each
row. By default, each row is aligned centered. Figure 13.9 shows a flow layout at its best—a
simple row of buttons, centered on a line.

Figure 13.9.
Flow layout.

030-4s CH13.i 1/29/96, 10:35 PM250

251

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

To create a basic flow layout with a centered alignment, use the following line of code in your
panel’s initialization (because this is the default pane layout, you don’t need to include this line
if that is your intent):

setLayout(new FlowLayout());

To create a flow layout with an alignment other than centered, add the FlowLayout.RIGHT or
FlowLayout.LEFT class variable as an argument:

setLayout(new FlowLayout(FlowLayout.LEFT));

You can also set horizontal and vertical gap values by using flow layouts. The gap is the number
of pixels between components in a panel; by default, the horizontal and vertical gap values are
three pixels, which can be very close indeed. Horizontal gap spreads out components to the left
and to the right, vertical gap to the top and bottom of each component. Add integer arguments
to the flow layout constructor to increase the gap (a layout gap of 10 points in both the horizontal
and vertical directions is shown in Figure 13.10):

setLayout(new FlowLayout(FlowLayout.LEFT),10,10);

Grid Layouts
Grid layouts use a layout that offers more control over the placement of components inside a
panel. Using a grid layout, you portion off the area of the panel into rows and columns. Each
component you then add to the panel is placed in a “cell” of the grid, starting from the top row
and progressing through each row from left to right (here’s where the order of calls to the add()
method are very relevant to how the screen is laid out). By using grid layouts and nested grids,

Figure 13.10.
Flow layout with a gap of
10 points.

030-4s CH13.i 1/29/96, 10:35 PM251

252

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

you can often approximate the use of hard-coded pixel values to place your UI components
precisely where you want them. Figure 13.11 shows a grid layout with three columns and three
rows.

To create a grid layout, indicate the number of rows and columns you want the grid to have when
you create a new instance of the GridLayout class:

setLayout(new GridLayout(3,3));

Grid layouts can also have a horizontal and vertical gap between components; to create gaps, add
those pixel values:

setLayout(new GridLayout(3,3,10,15));

Figure 13.12 shows a grid layout with a 10-pixel horizontal gap and a 15-pixel vertical gap.

Grid bag layouts, as implemented by the GridBagLayout class, are variations on grid layouts. Grid
bag layouts also enable you to lay out your user interface elements in a rectangular grid, but with
grid bag layouts you have much more control over the presentation of each element in the grid.
Grid bag layouts use a helper class, GridBagConstraints, to indicate how each cell in the grid is
to be formatted.

Note: The GridBagLayout and GridBagConstraints classes were added to the Java
Developer’s Kit just before this book went to press. For a much better description
of grid bag layouts, see the API documentation for those classes that comes with
the JDK.

Figure 13.11.
Grid layout.

030-4s CH13.i 1/29/96, 10:35 PM252

253

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

To use a border layout, you create it as you do the other layouts:

setLayout(new BorderLayout());

Figure 13.12.
Grid layouts with horizontal
and vertical gap.

Border Layouts
Border layouts behave differently from flow and grid layouts. When you add a component to
a panel that uses a border layout, you indicate its placement as a geographic direction: north,
south, east, west, and center (see Figure 13.13). The components around all the edges are laid
out with as much size as they need; the component in the center, if any, gets any space left over.

Figure 13.13.
Border layout.

030-4s CH13.i 1/29/96, 10:35 PM253

254

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Then you add the individual components by using a special add() method: the first argument
to add() is a string indicating the position of the component within the layout:

add(“North”, new TextField(“Title”,50));
add(“South”, new TextField(“Status”,50));

You can also use this form of add() for the other layout managers; the string argument will just
be ignored if it’s not needed.

Border layouts can also have horizontal and vertical gaps. Note that the north and south
components extend all the way to the edge of the panel, so the gap will result in less space for
the east, right, and center components. To add gaps to a border layout, include those pixel values
as before:

setLayout(new BorderLayout(10,10));

Card Layouts
Card layouts are different from the other layouts. Unlike with the other three layouts, when you
add components to a card layout, they are not all displayed on the screen at once. Card layouts
are used to produce slide shows of components, one at a time. If you’ve ever used the HyperCard
program on the Macintosh, you’ve worked with the same basic idea.

Generally when you create a card layout, the components you add to it will be other container
components—usually panels. You can then use different layouts for those individual “cards” so
that each screen has its own look.

When you add each “card” to the panel, you can give it a name. Then you can use methods
defined on the CardLayout class to move back and forth between different cards in the layout.

For example, here’s how to create a card layout containing three cards:

setLayout(new CardLayout());
Panel one = new Panel()
add(“first”, one);
Panel two = new Panel()
add(“second”, two);
Panel three = new Panel()
add(“third”, three);
show(this, “second”);

Insets
Whereas horizontal gap and vertical gap are used to determine the amount of space between
components in a panel, insets are used to determine the amount of space around the panel itself.
The insets class provides values for the top, bottom, left, and right insets, which are then used
when the panel itself is drawn. Figure 13.14 shows an inset in a GridLayout.

030-4s CH13.i 1/29/96, 10:35 PM254

255

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

To include an inset, override the insets() method in your class (your Applet class or other class
that serves as a panel):

public Insets insets() {
 return new Insets(10,10,10,10);
}

The arguments to the Insets constructor provide pixel insets for the top, bottom, left, and right
edges of the panel. This particular example provides an inset of 10 pixels on all four sides of the
panel.

Handling UI Actions and Events
If you stopped reading today’s lesson right now, you could go out and create an applet that had
lots of little UI components, nicely laid out on the screen with the proper layout manager, gap,
and insets. If you did stop right here, however, your applet would be really dull, because none
of your UI components would actually do anything when they were pressed or typed into or
selected.

For your UI components to do something when they are activated, you need to hook up the UI’s
action with an operation.

Testing for an action by a UI component is a form of event management—the things you learned
yesterday about events will come in handy here. In particular, UI components produce the
special kind of event called an action. To intercept an action by any UI component, you define
an action() method in your applet or class:

Figure 13.14.
Insets.

Insets

030-4s CH13.i 1/29/96, 10:35 PM255

256

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

public boolean action(Event evt, Object arg) {
 ...
}

The action() method should look familiar to the basic mouse and keyboard event methods.
Like those methods, it gets passed the event object that represents this event. It also gets an extra
object, which can be of any type of object. What’s that second argument for?

The second argument to the action method depends on the UI component that’s generating the
event. The basic definition is that it’s any arbitrary argument—when a component generates an
event, it can pass along any extra information that might later be needed. Because that extra
information may be useful for you, it’s passed on through the action() method.

All the basic UI components (except for labels, which have no action) have different actions and
arguments:

■■ Buttons create actions when they are selected, and a button’s argument is the label of
the button.

■■ Checkboxes, both exclusive and nonexclusive, generate actions when a box is checked.
The argument is always true.

■■ Choice menus generate an action when a menu item is selected, and the argument is
that item.

■■ Text fields create actions when the user presses Return inside that text field. Note that
if the user tabs to a different text field or uses the mouse to change the input focus, an
action is not generated. Only a Return triggers the action.

Note that with actions, unlike with ordinary events, you can have many different kinds of objects
generating the event, as opposed to a single event such as a mouseDown. To deal with those
different UI components and the actions they generate, you have to test for the type of object
that called the event in the first place inside the body of your action() method. That object is
stored in the event’s target instance variable, and you can use the instanceof operator to find
out what kind of UI component sent it:

public boolean action(Event evt, Object arg) {
 if (evt.target instanceof TextField)
 handleText(evt.target);
 else if (evt.target instanceof Choice)
 handleChoice(arg);
...
}

Although you can handle UI actions in the body of the action() method, it’s much more
common simply to define a handler method and call that method from action() instead. Here,
there are two handler methods: one to handle the action on the text field (handleText()) and
one to handle the action on the choice menu (handleChoice()). Depending on the action you
want to handle, you may also want to pass on the argument from the action, the UI component
that sent it, or any other information that the event might contain.

030-4s CH13.i 1/29/96, 10:36 PM256

257

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Here’s a simple applet that has five buttons labeled with colors. The action() method tests for
a button action and then passes off the word to a method called changeColor(), which changes
the background color of the applet based on which button was pressed (see Figure 13.15 to see
the applet in action):

import java.awt.*;

public class ButtonActionsTest extends java.applet.Applet {

 public void init() {
 setBackground(Color.white);

 add(new Button(“Red”));
 add(new Button(“Blue”));
 add(new Button(“Green”));
 add(new Button(“White”));
 add(new Button(“Black”));
 }

 public boolean action(Event evt, Object arg) {
 if (evt.target instanceof Button)
 changeColor((String)arg);
 return true;
 }

 void changeColor(String bname) {
 if (bname.equals(“Red”)) setBackground(Color.red);
 else if (bname.equals(“Blue”)) setBackground(Color.blue);
 else if (bname.equals(“Green”)) setBackground(Color.green);
 else if (bname.equals(“White”)) setBackground(Color.white);
 else setBackground(Color.black);
 }
}

Figure 13.15.
The ButtonAction applet.

030-4s CH13.i 1/29/96, 10:36 PM257

258

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Nesting Panels and Components
Adding UI components to individual applets is fun, but applets begin to turn into lots of fun
when you begin working with nested panels. By nesting different panels inside your applet, and
panels inside those panels, you can create different layouts for different parts of the overall applet
area, isolate background and foreground colors and fonts to individual parts of an applet, and
manage the design of your UI components much more cleanly and simply. The more complex
the layout of your applet, the more likely you’re going to want to use nested panels.

Nested Panels
Panels, as you’ve already learned, are components that can be actually displayed on screen;
Panel’s superclass Container provides the generic behavior for holding other components inside
it. The Applet class, which your applets all inherit from, is a subclass of Panel. To nest other
panels inside an applet, you merely create a new panel and add it to the applet, just as you would
add any other UI component:

setLayout(new GridLayout(1,2,10,10));
Panel panel1 = new Panel();
Panel panel2 = new Panel();
add(panel1);
add(panel2);

You can then set up an independent layout for those subpanels and add AWT components to
them (including still more subpanels) by calling the add() method in the appropriate panel:

panel1.setLayout(new FlowLayout());
panel1.add(new Button(“Up”));
panel1.add(new Button(“Down”));

Although you can do all this in a single class, it’s common in applets that make heavy use of the
panels to factor out the layout and behavior of the subpanels into separate classes, and to
communicate between the panels by using method calls. You’ll look at an extensive example of
this later on in today’s lesson.

Events and Nested Panels
When you create applets with nested panels, those panels form a hierarchy from the outermost
panel (the applet, usually), to the innermost UI component. This hierarchy is important to how
each component in an applet interacts with the other components in the applet or with the
browser that contains that applet; in particular, the component hierarchy determines the order
in which components are painted to the screen.

More importantly, the hierarchy also affects event handling, particularly for user input events
such as mouse and keyboard events.

030-4s CH13.i 1/29/96, 10:36 PM258

259

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Events are received by the innermost component in the component hierarchy and passed up the
chain to the root. Suppose, for example, that you have an applet with a subpanel that can handle
mouse events (using the mouseDown() and mouseUp() methods) and that panel contains a button.
Clicking on the button means that the button receives the event before the panel does; if the
button isn’t interested in that mouseDown(), the event gets passed to the panel, which can then
process it or pass it further up the hierarchy.

Remember the discussion about the basic event methods yesterday? You learned that the basic
event methods all return boolean values. Those boolean values become important when you’re
talking about handling events or passing them on.

An event handling method, whether it is the set of basic event methods or the more generic
handleEvent(), can do one of three things, given any random event:

■■ Not be interested in the event (this is usually true only for handleEvent(), which
receives all the events generated by the system). If this is the case, the event is passed
on up the hierarchy until a component processes it (or it is ignored altogether). In this
case, the event handling method should return false.

■■ Intercept the event, process it, and return true. In this case, the event stops with that
event method. Recall that this is the case with the basic mouseDown() and keyDown()
methods that you learned about yesterday.

■■ Intercept the method, process it, and pass it on to the next event handler. This is a
more unusual case, but you may create a user interface by using nested components
that will want to do this. In this case, the event method should return false to pass
the event on to the next handler in the chain.

More UI Components
Once you master the basic UI components and how to add them to panels and manage their
events, you can add more UI components. In this section, you’ll learn about text areas, scrolling
lists, scrollbars, and canvases.

Note that the UI components in this section do not produce actions, so you can’t use the
action() method to handle their behavior. Instead, you have to use a generic handleEvent()
method to test for specific events that these UI components generate. You’ll learn more about
this in the next section.

Text Areas
Text areas are like text fields, except they have more functionality for handling large amounts
of text. Because text fields are limited in size and don’t scroll, they are better for one-line

030-4s CH13.i 1/29/96, 10:36 PM259

260

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

responses and text entry; text areas can be any given width and height and have scrollbars in
default, so you can deal with larger amounts of text more easily.

To create a text area, use one of the following constructors:

■■ TextArea() creates an empty text area 0 rows long and 0 characters wide. Given that a
text area with no dimensions can’t be displayed, you should make sure you change the
dimensions of this new text area before adding it to a panel (or just use the next
constructor instead).

■■ TextArea(int, int) creates an empty text area with the given rows and columns
(characters).

■■ TextArea(String) creates a text area displaying the given string, 0 rows by 0 columns.

■■ TextArea(String, int, int) creates a text area by displaying the given string and with
the given dimensions.

Figure 13.16 shows a simple text area generated from the following code:

String str = “Once upon a midnight dreary, while I pondered, weak and weary,\n” +
 “Over many a quaint and curious volume of forgotten lore,\n” +
 “While I nodded, nearly napping, suddenly there came a tapping,\n” +
 “As of some one gently rapping, rapping at my chamber door.\n” +
 “\”’Tis some visitor,\” I muttered, \”tapping at my chamber door-\n”;

add(new TextArea(str,10,60));

Figure 13.16.
A text area.

Both text areas and text fields inherit from the TextComponent class, so a lot of the behavior for
text fields (particularly getting and setting text and selections) is usable on text areas as well (refer
to Table 13.4). Text areas also have a number of their own methods that you may find useful.
Table 13.5 shows a sampling of those methods.

030-4s CH13.i 1/29/96, 10:36 PM260

261

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Table 13.5. Text area methods.

Method Action

getColumns() Returns the width of the text area, in characters or
columns

getRows() Returns the number of rows in the text area (not the
number of rows of text that the text area contains)

insertText(String, int) Inserts the string at the given position in the text (text
positions start at 0)

replaceText(String, int, int) Replace the text between the given integer positions
with the new string

Scrolling Lists
Remember the choice menu, which enables you to choose one of several different options? A
scrolling list is functionally similar to a choice menu in that it lets you pick several options from
a list. Scrolling lists differ in two significant ways:

■■ Scrolling lists are not popup menus. They’re lists of items in which you can choose
one or more items from a list. If the number of items is larger than the list box, a
scrollbar is automatically provided so that you can see the other items.

■■ A scrolling list can be defined to accept only one item at a time (exclusive), or multiple
items (nonexclusive).

To create a scrolling list, create an instance of the List class and then add individual items to
that list. The List class has two constructors:

■■ List() creates an empty scrolling list that enables only one selection at a time.

■■ List(int, boolean) creates a scrolling list with the given number of visible lines on
the screen (you’re unlimited as to the number of actual items you can add to the list).
The boolean argument indicates whether this list enables multiple selections (true) or
not (false).

After creating a List object, add items to it using the addItem() method and then add the list
itself to the panel that contains it. Here’s an example, the result of which is shown in Figure
13.17:

List lst = new List(5, true);

lst.addItem(“Hamlet”);
lst.addItem(“Claudius”);

030-4s CH13.i 1/29/96, 10:36 PM261

262

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

lst.addItem(“Gertrude”);
lst.addItem(“Polonius”);
lst.addItem(“Horatio”);
lst.addItem(“Laertes”);
lst.addItem(“Ophelia”);

add(lst);

Figure 13.17.
A scrolling list.

Table 13.6 shows some of the methods available to scrolling lists. See the API documentation
for a complete set.

Table 13.6. Scrolling list methods.

Method Action

getItem(int) Returns the string item at the given position

countItems() Returns the number of items in the menu

getSelectedIndex() Returns the index position of the item that’s selected (used for
lists that enable only single selections)

getSelectedIndexes() Returns an array of index positions (used for lists that enable
multiple selections)

getSelectedItem() Returns the currently selected item as a string

getSelectedItems() Returns an array of strings containing all the selected items

select(int) Selects the item at the given position

select(String) Selects the item with that string

Scrollbars and Sliders
Text areas and scrolling lists come with their own scrollbars, which are built into those UI
components and enable you to manage both the body of the area or the list and its scrollbar as
a single unit. You can also create individual scrollbars, or sliders, to manipulate a range of values.

030-4s CH13.i 1/29/96, 10:36 PM262

263

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Scrollbars are used to select a value between a maximum and a minimum value. To change the
current value of that scrollbar, you can use three different parts of the scrollbar (see Figure
13.18):

■■ Arrows on either end, which increment or decrement the values by some small unit (1
by default).

■■ A range in the middle, which increments or decrements the value by a larger amount
(10 by default).

■■ A box in the middle, often called an elevator or thumb, whose position shows where in
the range of values the current value is located. Moving this box with the mouse
causes an absolute change in the value, based on the position of the box within the
scrollbar.

Choosing any of these visual elements causes a change in the scrollbar’s value; you don’t have
to update anything or handle any events. All you have to do is give the scrollbar a maximum and
minimum, and Java will handle the rest.

To create a scrollbar, you can use one of three constructors:

■■ Scrollbar() creates a scrollbar with 0, 0 as its initial maximum and initial minimum
values, in a vertical orientation.

■■ Scrollbar(int) creates a scrollbar with 0, 0 as its initial maximum and initial mini-
mum values. The argument represents an orientation, for which you can use the class
variables Scrollbar.HORIZONTAL and Scrollbar.VERTICAL.

■■ Scrollbar(int, int, int, int, int) creates a scrollbar with the following arguments
(each one is an integer, and must be presented in this order):

The first argument is the orientation of the scrollbar: Scrollbar.HORIZONTAL and
Scrollbar.VERTICAL.

Figure 13.18.
Scrollbar parts.

Arrow (±1)

Box (elevator, thumb)

Range (±10)

030-4s CH13.i 1/29/96, 10:37 PM263

264

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

The second argument is the initial value of the scrollbar, which should be a value
between the scrollbar’s maximum and minimum values.

The third argument is the the overall width (or height, depending on the orientation)
of the scrollbar’s box. In user interface design, a larger box implies that a larger
amount of the total range is currently showing (applies best to things such as windows
and text areas).

The fourth and fifth arguments are the minimum and maximum values for the
scrollbar.

Here’s a simple example of a scrollbar that increments a single value (see Figure 13.19). The label
to the left of the scrollbar is updated each time the scrollbar’s value changes:

import java.awt.*;

public class SliderTest extends java.applet.Applet {
 Label l;

 public void init() {
 l = new Label(“0”);
 add(l);
 add(new Scrollbar(Scrollbar.HORIZONTAL, 1, 0, 1, 100));
 }

 public boolean handleEvent(Event evt) {
 if (evt.target instanceof Scrollbar) {
 int v = ((Scrollbar)evt.target).getValue();
 l.setText(String.valueOf(v));
 }
 return true;
 }
}

The Scrollbar class provides several methods for managing the values within scrollbars (see
Table 13.7).

Table 13.7. Scrollbar methods.

Method Action

getMaximum() Returns the maximum value

getMinimum() Returns the minimum value

Figure 13.19.
A scrollbar.

030-4s CH13.i 1/29/96, 10:37 PM264

265

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

getOrientation() Returns the orientation of this scrollbar:
0 for vertical, 1 for horizontal

getValue() Returns the scrollbar’s current value

setValue(int) Sets the current value of the scrollbar

Canvases
Although you can draw on most AWT components, such as panels, canvases do little except let
you draw on them. They can’t contain other components, but they can accept events, and you
can create animations and display images on them. Canvases, in other words, should be used for
much of the stuff you learned about earlier this week.

A canvas is a component that you can draw on.

To create a canvas, use the Canvas class and add it to a panel as you would any other component:

Canvas can = new Canvas();
add(can);

More UI Events
Yesterday, you learned about some basic event types that are generated from user input to the
mouse or the keyboard. These event types are stored in the Event object as the event ID, and can
be tested for in the body of a handleEvent() method by using class variables defined in Event.
For many basic events, such as mouseDown() and keyDown(), you can define methods for those
events to handle the event directly. You learned a similar mechanism today for UI actions where
creating an action() method handled a specific action generated by a UI component.

The most general way of managing events, however, continues to be the handleEvent() method.
For events relating to scrollbars and scrolling lists, the only way to intercept these events is to
override handleEvent().

To intercept a specific event, test for that event’s ID. The available IDs are defined as class
variables in the Event class, so you can test them by name. You learned about some of the basic
events yesterday; Table 13.8 shows additonal events that may be useful to you for the
components you’ve learned about today (or that you might find useful in general).

Method Action

NEW
TERM

☛

030-4s CH13.i 1/29/96, 10:37 PM265

266

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Table 13.8. Additional events.

Event ID What It Represents

ACTION_EVENT Generated when a UI component action occurs

KEY_ACTION Generated when text field action occurs

LIST_DESELECT Generated when an item in a scrolling list is deselected

LIST_SELECT Generated when an item in a scrolling list is selected

SCROLL_ABSOLUTE Generated when a scrollbar’s box has been moved

SCROLL_LINE_DOWN Generated when a scrollbar’s bottom endpoint (or left endpoint) is
selected

SCROLL_LINE_UP Generated when a scrollbar’s top endpoint (or right endpoint) is
selected

SCROLL_PAGE_DOWN Generated when the scrollbar’s field below (or to the left of) the
box is selected

SCROLL_PAGE_UP Generated when the scrollbar’s field above (or to the right of) the
box is selected

A Complete Example:
RGB to HSB Converter

Let’s take a break here from theory and smaller examples to create a larger, more complex
example that puts together much of what you’ve learned so far. The following applet example
demonstrates layouts, nesting panels, creating user interface components, and catching and
handling actions, as well as using multiple classes to put together a single applet. In short, it’s
probably the most complex applet you’ll create so far.

Figure 13.20 shows the applet you’ll be creating in this example. The ColorTest applet enables
you to pick colors based on RGB (red, green, and blue) and HSB (hue, saturation, and
brightness) values.

Figure 13.20.
The ColorTest applet.

030-4s CH13.i 1/29/96, 10:37 PM266

267

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

The ColorTest applet has three main parts: a colored box on the left side and two groups of text
fields on the right. The first group indicates RGB values, the right, HSB. By changing any of
the values in any of the text boxes, the colored box is updated to the new color, as are the values
in the other group of text boxes.

This applet uses two classes:

■■ ColorTest, which inherits from Applet. This is the controlling class for the applet
itself.

■■ ColorControls, which inherits from Panel. You’ll create this class to represent a group
of three text fields and to handle actions from those text fields. Two instances of this
class, one for the RGB values and one for the HSB ones, will be created and added to
the applet.

Let’s work through this step by step, because it’s very complicated and can get confusing. All the
code for this applet will be shown at the end of this section.

Create the Applet Layout
The best way to start creating an applet that uses AWT components is to worry about the layout
first and then worry about the functionality. When dealing with the layout, you also should start
with the outermost panel first and work inward.

Making a sketch of your UI design can help you figure out how to organize the panels inside your
applet or window to best take advantage of layout and space. Figure 13.21 shows the ColorTest
applet with a grid drawn over it so that you can get an idea of how the panels and embedded
panels work.

Figure 13.21.
The ColorTest applet panels
and components.

Create the Panel Layout
Let’s start with the outermost panel—the applet itself. This panel has three parts: the color box
on the left, the RGB text fields in the middle, and the HSB fields on the right.

Because this is the applet, your ColorTest class will be the applet class and inherit from Applet.
You’ll also import the AWT classes here (note that because you use so many of them in this
program, it’s easiest to just import the entire package):

030-4s CH13.i 1/29/96, 10:38 PM267

268

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

import java.awt.*;

public class ColorTest extends java.applet.Applet {
...
}

Let’s start with the init() method, where all the basic initialization and layout takes place. There
are four major steps:

1. Set the layout for the big parts of the panel. Although a flow layout would work, a
grid layout with one row and three columns is a much better idea.

2. Create the three components of this applet: a canvas for the color box and two
subpanels for the text fields.

3. Add those components to the applet.

4. Finally, initialize the default color and update all the panels to reflect that default
color.

Before you do any of that, let’s set up instance variables to hold the three major components of
this applet. You need to keep hold of these objects so you can update things when a value changes.

The color box is easy—it’s just a canvas. Call it swatch.

Canvas swatch;

Now onto the subpanels. There are two of them, and although they have different labels and
values, they’re essentially the same panel. You could just create code for each one here, but you’d
end up duplicating a lot of the same code. This is a perfect opportunity, therefore, to create
another class to represent the subpanels with the text fields on them. Call them ColorControls
(you’ll get around to creating the class later) and define two variables, RGBcontrols and
HSBcontrols, to hold them:

ColorControls RGBcontrols, HSBcontrols;

Back to the init() method. Step one is the layout. Let’s use a grid layout and a gap of ten points
to separate each of the components:

setLayout(new GridLayout(1,3,10,10));

Step two is creating the components, the canvas first. You have an instance variable to hold that
one:

swatch = new Canvas();

You need to create two instances of your as-of-yet nonexistent ColorControls panels here as well,
but you don’t know exactly what you need to create them yet, so let’s put in some basic
constructors and fill in the details later:

RGBcontrols = new ColorControls()
HSBcontrols = new ColorControls();

030-4s CH13.i 1/29/96, 10:38 PM268

269

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Step three is adding them to the panel.

add(swatch);
add(RGBcontrols);
add(HSBcontrols);

While you’re working on layout, add an inset just for fun—ten points along all the edges:

public Insets insets() {
 return new Insets(10,10,10,10);
}

Got it so far? Now you have a skeleton init() method and an insets() method in your
ColorTest class. Let’s move on now to creating the subpanel layout—to creating that ColorControls
class.

Define the Subpanels
The ColorControls class will have behavior for laying out and handling the subpanels that
represent the RGB and HSB values for the color. ColorControls doesn’t need to be a subclass
of Applet because it isn’t actually an applet, it’s just a panel. Define it to inherit from Panel:

class ColorControls extends Panel {
 ...
}

Note: You can put the ColorControls class in the same file as the ColorTest class.
You haven’t been doing this so far because the applets and applications you’ve been
creating had only one class. If you remember way back to Day 1, however, you
learned that you can have multiple class definitions in a single file as long as only
one of those definitions is declared public. In this case, the ColorTest class is
public (it’s an applet, so it has to be), but the ColorControls class doesn’t need to
be, so everything works out fine.

You need a couple of instance variables in this class. The first thing you need is a hook back up
to the applet class that contains this panel. Why? The applet class is the class that oversees how
the subcomponents work, so it’s going to be the class that updates everything. Eventually, you’re
going to have to call a method in that class to indicate that something in this panel has changed.
Without an actual reference to that outer class, there’s no way to do this. So, instance variable
number one is a reference to the class ColorTest:

ColorTest outerparent;

If you figure that the applet class is the one that’s going to be updating everything, that class is
going to need a way to get hold of the pieces inside this class. In particular, it’s going to be

030-4s CH13.i 1/29/96, 10:38 PM269

270

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

interested in the individual text fields, so you’re going to need instance variables to hold those.
This creates three of them:

TextField f1, f2, f3;

Now for the constructor for this class. Again, this isn’t an applet, so you don’t use init(); all
you need is a constructor method.

What do you need inside that constructor? You need to set the layout for the subpanel, create
the text fields, and add them to the panel. The goal here is to make the ColorControls class
generic enough so that you can use it for both the RGB fields and the HSB fields.

The two different panels differ in two respects: the labels for the text fields, and the initial values
for the text fields. That’s six values to get before you can create the object. You can pass those
six values in through the constructors in ColorTest. You also need one more. Because you need
that hook back to the applet class, you should also pass in a reference to that object as part of
the constructor.

You now have seven arguments to the basic constructor for the ColorControls class. Here’s the
signature for that constructor:

ColorControls(ColorTest target,
 String l1, String l2, String l3,
 int v1, int v2, int v3) {
}

Given those arguments, you can assign the right values to your instance variables:

outerparent = target;

f1 = new TextField(String.valueOf(v1),10);
f2 = new TextField(String.valueOf(v2),10);
f3 = new TextField(String.valueOf(v3),10);

Note that because the first argument to the TextField constructor is a string, and the values that
you passed in were integers, you have to use the valueOf() class method (defined in String) to
convert the integer to a string before creating each text field.

Next, you create the layout for this panel. You also use a grid layout for these subpanels, as you
did for the applet panel, but this time the grid will have three rows (one for each of the text field
and label pairs) and two columns (one for the labels and one for the fields).

Given the 3-by-2 grid, you can now add the text fields and labels to that panel. Note that by
separating the labels and the text fields into separate cells in the grid, you can align the labels,
creating a nice aligned layout.

add(new Label(l1, Label.RIGHT));
add(f1);
add(new Label(l2, Label.RIGHT));
add(f2);

030-4s CH13.i 1/29/96, 10:38 PM270

271

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

add(new Label(l3, Label.RIGHT));
add(f3);

Finally (because I like insets), you’ll inset the contents of the subpanel a bit—only on the top
and bottom edges—by including an insets() method:

public Insets insets() {
 return new Insets(10,10,0,0);
 }

You’re almost there. You have 98 percent of the layout in place and ready to go, but you’re
missing two things: creating the ColorControls objects in ColorTest, and initializing everything
so that all the components have the right values.

For both, you need to go back to the ColorTest class and the init() method you defined there.
Let’s start with the initialization part, because that’s easy. The default color is black. Set up a local
variable to hold that color object:

Color theColor = new Color(0,0,0);

To set the initial color of the color box, all you need to do is set its background:

swatch.setBackground(theColor);

Now, let’s finally tackle initializing those subpanels. The constructor for ColorControls has
seven arguments: the ColorTest object, three labels (strings), and three initial values for the text
fields (integers). Let’s do the RGB controls first, because you can easily extract the initial red,
green, and blue values out of the Color object:

RGBcontrols = new ColorControls(this, “Red”, “Green”, “Blue”,
 theColor.getRed(), theColor.getGreen(),
 theColor.getBlue());

Things get complicated on the HSB side of the panel. The Color class provides you with a
method to get the HSB values out of a Color object, but there are two problems:

■■ The RGBtoHSB() method is a single class method that insists on returning an array of
the three values.

■■ The HSB values are measured in floating-point values. I prefer to think of HSB as
integers, wherein the hue is a degree value around a color wheel (0 through 360), and
saturation and brightness are percentages from 0 to 100. Having HSB as integer values
also enables you to have a generic subpanel, as was the intent.

Initializing the HSB subpanel is going to be a little difficult.

First, let’s extract those HSB values. Given that the method takes three RGB arguments—an
array of three floats—and returns an array of three floats, you have to go through this process
to get those values:

float[] HSB = Color.RGBtoHSB(theColor.getRed(),

 theColor.getGreen(), theColor.getBlue(),(new float[3]));

030-4s CH13.i 1/29/96, 10:38 PM271

272

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Now you have an array of floats, where HSB[0] is the hue, HSB[1] is the saturation, and HSB[2]
is the brightness. You can now (finally!) initialize the HSB side of the applet, making sure that
when you pass those HSB values into the subpanel, you multiply them by the right values (360
for the hues, 100 for the saturation and the brightness) and convert them to integers:

HSBcontrols = new ColorControls(this,
 “Hue”, “Saturation”, “Brightness”,
 (int)(HSB[0] * 360), (int)(HSB[1] * 100),
 (int)(HSB[2] * 100));

Ready to give up? Fear not—you’ve done the hard part. From here, it’s (mostly) easy. Once you
have your layout working, you can compile your Java program and see how it looks. None of
your UI components actually does anything, but perfecting the layout is half the battle.

Handle the Actions
After creating the layout, you set up actions with the UI components so that when the user
interacts with the applet, the applet can respond.

The action of this applet occurs when the user changes a value in any of the text fields. By causing
an action in a text field, the color changes, the color box updates to the new color, and the values
of the fields in the opposite subpanel change to reflect the new color.

The ColorTest class is responsible for actually doing the updating, because it keeps track of all
the subpanels. You should be tracking and intercepting events in the subpanel in which they
occur, however. Because the action of the applet is an actual text action, you can use an action()
method to intercept it:

public boolean action(Event evt, Object arg) {
 if (evt.target instanceof TextField) {
 this.outerparent.update(this);
 return true;
 }
 else return false;
 }

In the action() method, you test to make sure the action was indeed generated by a text field
(because there are only text fields available, that’s the only action you’ll get, but it’s a good idea
to test for it anyhow). If so, call the update() method, defined in ColorTest, to update the applet
to reflect all the new values. Because the outer applet is responsible for doing all the updating,
this is precisely why you need that hook back to the applet—so you can call the right method
at the right time.

Update the Result
The only part left now is to update all the values and the color swatch if one of the values changes.
For this, you define the update() method in the ColorTest class. This update() method takes

030-4s CH13.i 1/29/96, 10:39 PM272

273

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

a single argument—the ColorControls instance that contains the changed value (you get that
argument from the action() method in the subpanel).

Note: Won’t this update() method interfere with the system’s update() method?
Nope. Remember, methods can have the same names, but different signatures and
definitions. Because this update() has a single argument of type ColorControls, it
doesn’t interfere with the other version of update().

The update() method is responsible for updating all the panels in the applet. To know which
panel to update, you need to know which panel changed. You can find out by testing to see
whether the argument you got passed is the same as the subpanels you have stored in the
RGBcontrols and HSBcontrols instance variables:

void update(ColorControls in) {

 if (in == RGBcontrols) { // the change was in RGB
 ...
 }
 else { // change was in HSB
}

This test is the heart of the update() method. Let’s start with that first case—a number has been
changed in the RGB text fields. So now, based on those new RGB values, you have to generate
a new color object and update the values on the HSB panel. To reduce some typing, you create
a few local variables to hold some basic values. In particular, the values of the text fields are
strings, and you get into them by accessing the text field instance variables for the ColorControls
panel (f1, f2, f3) and then using the getText() method to extract the actual values. Extract those
values and store them in string variables so that you don’t have to keep typing:

String v1 = in.f1.getText();
String v2 = in.f2.getText();
String v3 = in.f3.getText();

Given those string values for RGB, you now create a color object by converting those strings to
integers:

Color c;
c = new Color(Integer.parseInt(v1),Integer.parseInt(v2),
 Integer.parseInt(v3));

Note: This part of the example isn’t very robust; it assumes that the user has indeed
entered real numbers into the text fields. A better version of this would test to make
sure that no parsing errors had occurred (I was trying to keep this example small).

030-4s CH13.i 1/29/96, 10:39 PM273

274

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

When you have a color object, you can update the color swatch:

swatch.setBackground(c);

The next step is to update the HSB panel to the new HSB values. Doing this in the init()
method is no fun at all, and it’s even less fun here. To do this, you call RGBtoHSB to get the floating-
point values, convert them to integers with the right values, convert them to strings, and then
put them back into the text fields for the HSB subpanel. Got all that? Here’s the code:

float[] HSB = Color.RGBtoHSB(c.getRed(),c.getGreen(),
 c.getBlue(), (new float[3]));
HSB[0] *= 360;
HSB[1] *= 100;
HSB[2] *= 100;
HSBcontrols.f1.setText(String.valueOf((int)HSB[0]));
HSBcontrols.f2.setText(String.valueOf((int)HSB[1]));
HSBcontrols.f3.setText(String.valueOf((int)HSB[2]));

The second part of the update() method is called when a value on the HSB side of the panel is
changed. This is the “else” in the if-else that determines what to update, given a change.

Believe it or not, it’s easier to update RGB values given HSB than it is to do it the other way
around. First, convert the string values from the HSB text fields to integers by using these lines:

int f1 = Integer.parseInt(v1);
int f2 = Integer.parseInt(v2);
int f3 = Integer.parseInt(v3);

There’s a class method in the Color class that creates a new color object when given three HSB
values. The catch is that those values are floats, and they’re not the values you currently have.
To call getHSBColor() (that’s the name of the method), convert the integers to floats and divide
by the right amounts:

c = Color.getHSBColor((float)f1 / 360, (float)f2 / 100, (float)f3/100);

Now that you have a color object, the rest is easy. Set the color swatch:

swatch.setBackground(c);

Then update the RGB text fields with the new RGB values from the color object:

RGBcontrols.f1.setText(String.valueOf(c.getRed()));
RGBcontrols.f2.setText(String.valueOf(c.getGreen()));
RGBcontrols.f3.setText(String.valueOf(c.getBlue()));

The Complete Source Code
Listing 13.1 shows the complete source code; often it’s easier to figure out what’s going on in
this applet when it’s all in one place and you can follow the method calls and how values are
passed back and forth. Start with the init() method in applet, and go from there.

030-4s CH13.i 1/29/96, 10:39 PM274

275

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Type Listing 13.1. The ColorTest applet.
import java.awt.*;

public class ColorTest extends java.applet.Applet {
 ColorControls RGBcontrols, HSBcontrols;
 Canvas swatch;

 public void init() {
 Color theColor = new Color(0,0,0);
 float[] HSB = Color.RGBtoHSB(theColor.getRed(),
 theColor.getGreen(), theColor.getBlue(),
 (new float[3]));

 setLayout(new GridLayout(1,3,10,10));

 // The color swatch
 swatch = new Canvas();
 swatch.setBackground(theColor);

 // the control panels
 RGBcontrols = new ColorControls(this,
 “Red”, “Green”, “Blue”,
 theColor.getRed(), theColor.getGreen(),
 theColor.getBlue());

 HSBcontrols = new ColorControls(this,
 “Hue”, “Saturation”, “Brightness”,
 (int)(HSB[0] * 360), (int)(HSB[1] * 100),
 (int)(HSB[2] * 100));

 add(swatch);
 add(RGBcontrols);
 add(HSBcontrols);

 }

 public Insets insets() {
 return new Insets(10,10,10,10);
 }

 void update(ColorControls in) {
 Color c;
 String v1 = in.f1.getText();
 String v2 = in.f2.getText();
 String v3 = in.f3.getText();

 if (in == RGBcontrols) { // change to RGB
 c = new Color(Integer.parseInt(v1),
 Integer.parseInt(v2),
 Integer.parseInt(v3));
 swatch.setBackground(c);

continues

030-4s CH13.i 1/29/96, 10:39 PM275

276

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Listing 13.1. continued
 float[] HSB = Color.RGBtoHSB(c.getRed(),c.getGreen(),
 c.getBlue(), (new float[3]));
 HSB[0] *= 360;
 HSB[1] *= 100;
 HSB[2] *= 100;
 HSBcontrols.f1.setText(String.valueOf((int)HSB[0]));
 HSBcontrols.f2.setText(String.valueOf((int)HSB[1]));
 HSBcontrols.f3.setText(String.valueOf((int)HSB[2]));
 }
 else { // change to HSB
 int f1 = Integer.parseInt(v1);
 int f2 = Integer.parseInt(v2);
 int f3 = Integer.parseInt(v3);
 c = Color.getHSBColor((float)f1 / 360,
 (float)f2 / 100, (float)f3/100);
 swatch.setBackground(c);
 RGBcontrols.f1.setText(String.valueOf(c.getRed()));
 RGBcontrols.f2.setText(String.valueOf(
 c.getGreen()));
 RGBcontrols.f3.setText(String.valueOf(c.getBlue()));
 }
 }
}

class ColorControls extends Panel {
 TextField f1, f2, f3;
 ColorTest outerparent;

 ColorControls(ColorTest target,
 String l1, String l2, String l3,
 int v1, int v2, int v3) {

 this.outerparent = target;
 setLayout(new GridLayout(3,4,10,10));

 f1 = new TextField(String.valueOf(v1),10);
 f2 = new TextField(String.valueOf(v2),10);
 f3 = new TextField(String.valueOf(v3),10);

 add(new Label(l1, Label.RIGHT));
 add(f1);
 add(new Label(l2, Label.RIGHT));
 add(f2);
 add(new Label(l3, Label.RIGHT));
 add(f3);
 }

 public Insets insets() {
 return new Insets(10,10,0,0);
 }

 public boolean action(Event evt, Object arg) {
 if (evt.target instanceof TextField) {

030-4s CH13.i 1/29/96, 10:39 PM276

277

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

 this.outerparent.update(this);
 retrue true;
 }
 else return false;
 }
}

Summary
The Java AWT, or Abstract Windowing Toolkit, is a package of Java classes and interfaces for
creating full-fledged access to a window-based graphical user interface system, with mechanisms
for graphics display, event management, text and graphics primitives, user interface compo-
nents, and cross-platform layout. The AWT is used by the HotJava browser itself for all its
functionality. Applets are also an integral part of the AWT toolkit.

Today has been a big day; the lesson has brought together everything you’ve learned up to this
point about simple applet management and added a lot more about creating applets, panels, and
user interface components and managing the interactions between all of them. With the
information you got today and the few bits that you’ll learn tomorrow, you can create cross-
platform Java applications that do just about anything you want.

Q&A
Q You’ve mentioned a lot about the Component and Container classes, but it looks

like the only Container objects that ever get created are Panels. What do the
Component and Container classes give me?

A Those classes factor out the behavior for components (generic AWT components) and
containers (components that can contain other components). Although you don’t
necessarily create direct instances of these classes, you can create subclasses of them if
you want to add behavior to the AWT that the default classes do not provide. As with
most of the Java classes, any time you need a superclass’s behavior, don’t hesitate to
extend that class by using your own subclass.

Q Can I put a UI component at a specific x and y position on the screen?

A By using the existing layout managers supplied with the AWT toolkit, no. This is
actually a good thing because you don’t know what kind of display environment your
applet will be run under, what kind of fonts are installed, or what kind of fonts are
being currently used. By using the layout managers provided with the AWT, you can
be sure that every portion of your window will be viewable and readable and usable.
You can’t guarantee that with hard-coded layouts.

030-4s CH13.i 1/29/96, 10:40 PM277

278

The Java Abstract Windowing Toolkit
M

T W
R

F S S

DAYDAY

13

P2/V4sqc 7 TY Java in 21 Days 030-4 sdv 12.22.95 Ch 13 LP#3

Q I was exploring the AWT package, and I saw this subpackage called peer. There’s
also references to the peer classes sprinkled throughout the API documentation.
What do peers do?

A Peers are responsible for the platform-specific parts of the AWT. For example, when
you create a Java AWT window, you have an instance of the Window class that provides
generic Window behavior, and then you have an instance of WindowPeer that creates
the very specific window for that platform—a motif window under X windows, a
Macintosh-style window under the Macintosh, or a Windows 95 window under
Windows 95. The peers also handle communication between the window system and
the Java window itself. By separating the generic component behavior (the AWT
classes) from the actual system implementation and appearance (the peer classes), you
can focus on providing behavior in your Java application and let the Java implementa-
tion deal with the platform-specific details.

Q There’s a whole lot of functionality in the AWT that you haven’t talked about
here. Why?

A Given that even a basic introduction took this long, I figured that if I put in even
more detail than I already have that this book would turn into Teach Yourself Java in
21 Days Plus a Few Extra for the AWT Stuff.

As it is, I’ve left windows, menus, and dialog until tomorrow, so you’ll have to wait
for those. But you can find out about a lot of the other features of AWT merely by
exploring the API documentation. Start with the Applet class and examine the sorts of
methods you can call. Then look at Panel, from which applet inherits—you have all
that class’s functionality as well. The superclass of Panel is Container, which provides
still more interesting detail. Component comes next. Explore the API and see what you
can do with it. You might find something interesting.

030-4s CH13.i 1/29/96, 10:40 PM278

279

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

M
T W

R
F S S

Windows,
Networking, and
Other Tidbits

WEEK

2

1414
by Laura Lemay

030-4s CH14.i 1/29/96, 10:41 PM279

280

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

Here you are on the last day of the second week, and you’re just about finished with applets and
the AWT. With the information you’ll learn today, you can create a wide variety of applets and
applications using Java. Next week’s lessons provide more of the advanced stuff that you’ll need
if you start doing really serious work in Java.

Today, to finish up this week, there are three very different topics:

■■ Windows, menus, and dialog boxes—the last of the AWT classes that enable you to
pop up real windows from applets, and to create stand-alone Java applications that
have their own windows

■■ Networking—how to load new HTML files from an applet-capable browser, how to
retrieve files from Web sites, and some basics on how to work with generic sockets in
Java

■■ Extra tidbits—the smaller stuff that didn’t fit in anywhere else, but that might be
useful to you as you write your Java applets and applications

Windows, Menus, and Dialog Boxes
Today, you’ll finish up the last bits of the AWT that didn’t fit into yesterday’s lesson. In addition
to all the graphics, events, UI, and layout mechanisms that the AWT provides, it also provides
windows, menus, and dialog boxes, enabling to you create fully featured applications either as
part of your applet or independently for stand-alone Java applications.

Frames
The AWT Window class enables you to create windows that are independent of the browser
window containing the applet—that is, separate popup windows with their own titles, resize
handles, and menubars.

The Window class provides basic behavior for windows. Most commonly, instead of using the
Window class, you’ll use Window’s subclasses, Frame and Dialog. The Frame class enables you to
create a fully functioning window with a menubar. Dialog is a more limited window for dialog
boxes. You’ll learn more about dialog boxes later on in this section.

To create a frame, use one of the following constructors:

■■ new Frame() creates a basic frame without a title.

■■ new Frame(String) creates a basic frame with the given title.

Frames are containers, just like panels are, so you can add other components to them just as you
would regular panels, using the add() method. The default layout for windows is BorderLayout:

win = new Frame(“My Cool Window”);
win.setLayout(new BorderLayout(10,20));

030-4s CH14.i 1/29/96, 10:41 PM280

281

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

Type

win.add(“North”, new Button(“start”));
win.add(“Center”, new Button(“Move”));

To set a size for the new window, use the resize() method. To set a location for where the
window appears, use the move() method. Note that the location() method can tell you where
the applet window is on the screen so that you can pop up the extra window in a relative position
to that window (all these methods are defined for all containers, so you can use them for applets,
windows, and the components inside them, subject to the current layout):

win.resize(100,200);
Dimension d = location();
win.move(d.width + 50, d.height + 50);

When you initially create a window, it’s invisible. You need to use the show() method to make
the window appear on the screen (you can use hide() to hide it again):

win.show();

Listing 14.1 shows an example of a simple applet with a popup window (both the applet and
the window are shown in Figure 14.1). The applet has two buttons: one to show the window,
and one to hide the window. The window itself, created from a subclass called MyFrame has a
single label: “This is a Window.” You’ll use this basic window and applet all through this section,
so the more you understand what’s going on here the easier it will be later.

Listing 14.1. A popup window.
public class GUI extends java.applet.Applet {
 Frame window;

 public void init() {
 add(new Button(“Open Window”));
 add(new Button(“Close Window”));

 window = new MyFrame(“A Popup Window”);
 window.resize(150,150);
 window.show();
 }

 public boolean action(Event evt, Object arg) {
 if (evt.target instanceof Button) {
 String label = (String)arg;
 if (label.equals(“Open Window”)) {
 if (!window.isShowing())
 window.show();
 }
 else if (label == “Close Window”) {
 if (window.isShowing())
 window.hide();
 }
 return true;
 }

continues

030-4s CH14.i 1/29/96, 10:41 PM281

282

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

 else return false;
 }
}

class MyFrame extends Frame {
 Label l;

 MyFrame(String title) {
 super(title);
 setLayout(new GridLayout(1,1));
 l = new Label(“This is a Window”, Label.CENTER);
 add(l);
}

Listing 14.1. continued

Menus
Each new window you create can have its own menubar along the top of the screen. Each
menubar can have a number of menus, and each menu, in turn, can have menu items. The AWT
provides classes for all these things called, respectively, MenuBar, Menu, and MenuItem.

Menus and Menubars
To create a menubar for a given window, create a new instance of the class MenuBar:

MenuBar mb = new MenuBar();

To set this menubar as the default menu for the window, use the setMenuBar() method on the
window:

window.setMenuBar(mb);

Figure 14.1.
Windows.

030-4s CH14.i 1/29/96, 10:42 PM282

283

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

Add individual menus (File, Edit, and so on) to the menubar by creating them and then adding
them to the menubar:

Menu m = new Menu(“File”);
mb.add(m);

Some systems enable you to indicate a special help menu, which may be drawn on the right side
of the menubar. You can indicate that a specific menu is the help menu by using the
setHelpMenu() method. The given menu should already be added to the menu itself:

Menu hm = new Menu(“Help”);
mb.add(hm);
mb.setHelpMenu(hm);

If, for any reason, you want to prevent a user from selecting a menu, you can use the disable()
command on that menu (and the enable() command to make it available again):

m.disable();

Menu Items
There are four kinds of items you can add to individual menus:

■■ Instances of the class MenuItem, for regular menu items

■■ Instances of the class CheckBoxMenuItem, for toggled menu items

■■ Other menus, with their own menu items

■■ Separators, for lines that separate groups of items on menus

Regular menu items are added by using the MenuItem class. Add them to a menu using the add()
method:

Menu m = new Menu(“Tools”);
m.add(new MenuItem(“Info”));
m.add(new MenuItem(“Colors”));
m.add(new MenuItem(“Sizes”));

Submenus can be added simply by creating a new instance of Menu and adding it to the first menu.
You can then add items to that menu:

Menu sb = new Menu(“Sizes”);
m.add(sb);
sb.add(new MenuItem(“Small”));
sb.add(new MenuItem(“Medium”));
sb.add(new MenuItem(“Large”));

The CheckBoxMenuItem class creates a menu item with a checkbox on it, enabling the menu state
to be toggled on and off (selecting it once makes the checkbox appear selected; selecting it again
unselects the checkbox). Create and add a checkbox menu item the same way you create and add
regular menu items:

030-4s CH14.i 1/29/96, 10:42 PM283

284

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

CheckboxMenuItem coords =
 new CheckboxMenuItem(“Show Coordinates”);
m.add(coords);

Finally, to add a separator to a menu (a line used to separate groups of items in a menu), create
and add a menu item with the label “-”.

MenuItem msep = new MenuItem(“-”);
m.add(msep);

Any menu item can be disabled by using the disable() method and enabled again using
enable(). Disabled menu items cannot be selected:

MenuItem mi = new MenuItem(“Fill”);
m.addItem(mi);
mi.disable();

Menu Actions
The act of selecting a menu item causes an action event to be generated. You can handle that
action the same way you handle other action methods—by overriding action(). Both regular
menu items and checkbox menu items have actions that generate an extra argument representing
the label for that menu. You can use that label to determine which action to take. Note, also,
that because CheckBoxMenuItem is a subclass of MenuItem, you don’t have to treat that menu item
as a special case:

public boolean action(Event evt, Object arg) {
 if (evt.target instanceof MenuItem) {
 String label = (String)arg;
 if (label.equals(“Show Coordinates”)) toggleCoords();
 else if (label.equals(“Fill”)) fillcurrentArea();
 return true;
 }
 else return false;
}

An Example
Let’s add a menu to the window you created in the previous section. Add it to the constructor
method in the MyFrame class (Figure 14.2 shows the resulting menu):

MyFrame(String title) {
 super(title);
 MenuBar mb = new MenuBar();
 Menu m = new Menu(“Colors”);
 m.add(new MenuItem(“Red”));
 m.add(new MenuItem(“Blue”));
 m.add(new MenuItem(“Green”));
 m.add(new MenuItem(“-”));
 m.add(new CheckboxMenuItem(“Reverse Text”));
 mb.add(m);

030-4s CH14.i 1/29/96, 10:43 PM284

285

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

 mb.setHelpMenu(m);
 setMenuBar(mb);
...
}

This menu has four items: one each for the colors red, blue, and green (which, when selected,
change the background of the window), and one checkbox menu item for reversing the color
of the text (to white). To handle these menu items, you need an action() method:

public boolean action(Event evt, Object arg) {
 if (evt.target instanceof MenuItem) {
 String label = (String)arg;
 if (label.equals(“Red”)) setBackground(Color.red);
 else if (label.equals(“Blue”)) setBackground(Color.blue);
 else if (label.equals(“Green”)) setBackground(Color.green);
 else if (label.equals(“Reverse Text”)) {
 if (getForeground() == Color.black)
 setForeground(Color.white);
 else setForeground(Color.black);
 }
 return true;
 }
 else return false;
}

Dialog Boxes
Dialog boxes are functionally similar to frames in that they pop up new windows on the screen.
However, dialog boxes are intended to be used for transient windows—for example, windows
that let you know about warnings, windows that ask you for specific information, and so on.
Dialogs don’t usually have titlebars or many of the more general features that windows have
(although you can create one with a titlebar), and they can be made nonresizable or modal.

Figure 14.2.
A menu.

030-4s CH14.i 1/29/96, 10:43 PM285

286

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

A modal dialog prevents input to any of the other windows on the screen until that dialog
is dismissed.

The AWT provides two kinds of dialog boxes: the Dialog class, which provides a generic dialog,
and FileDialog, which produces a platform-specific dialog to choose files to save or open.

To create a generic dialog, use one of these constructors:

■■ Dialog(Frame, boolean) creates an initially invisible dialog, attached to the current
frame, which is either modal (true) or not (false).

■■ Dialog(Frame, String, boolean) is the same as the previous constructor, with the
addition of a titlebar and a title indicated by the string argument.

Note that because you have to give a dialog a Frame argument, you can attach dialogs only to
windows that already exist independently of the applet itself.

The dialog window, like the frame window, is a panel on which you can lay out and draw UI
components and perform graphics operations, just as you would any other panel. Like other
windows, the dialog is initially invisible, but you can show it with show() and hide it with hide().

Let’s add a dialog to that same example with the popup window. You’ll add a menu item for
changing the text of the window, which brings up the Enter Text dialog box (see Figure 14.3).

NEW
TERM

☛

To add this dialog, first add a menu item to that window (the constructor method for the MyFrame
class) to change the text the popup window displays:

m.add(new MenuItem(“Set Text...”));

In that same method, you can create the dialog and lay out the parts of it (it’s invisible by default,
so you can do whatever you want to it and it won’t appear on screen until you show it):

dl = new Dialog(this, “Enter Text”,true);
dl.setLayout(new GridLayout(2,1,30,30));

Figure 14.3.
The Enter Text dialog.

030-4s CH14.i 1/29/96, 10:43 PM286

287

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

tf = new TextField(l.getText(),20);
dl.add(tf);
dl.add(new Button(“OK”));
dl.resize(150,75);

The action of choosing the menu item you just added brings up the dialog; choosing the OK
button dismisses it. So you need to add behavior to this class’s action method so that the dialog
works right. To the menu item tests, add a line for the new menu item:

if (evt.target instanceof MenuItem) {
 if (label.equals(“Red”)) setBackground(Color.red);
 if (label.equals(“Blue”)) setBackground(Color.blue);
 if (label.equals(“Green”)) setBackground(Color.green);
 if (label.equals(“Set Text...”)) dl.show();
}

Then, because OK is a button, you have to add a special case for that button separate from the
menu items. In this special case, set the text of the window to the text that was typed into the
text field, and then hide the dialog again:

if (evt.target instanceof Button) {
 if (label.equals(“OK”)) {
 l.setText(tf.getText());
 dl.hide();
 }
}

File Dialogs
FileDialog provides a basic file open/save dialog box that enables you to access the file system.
The FileDialog class is system-independent, but depending on the platform, the standard Open
File dialog is brought up.

Note: For applets, you can bring up the file dialog, but due to security restrictions
you can’t do anything with it (or, if you can, access to any files on the local system
is severely restricted). FileDialog is much more useful in stand-alone applications.

To create a file dialog, use the following constructors:

■■ FileDialog(Frame, String) creates an Open File dialog, attached to the given frame,
with the given title. This form creates a dialog to load a file.

■■ FileDialog(Frame, String, int) also creates a file dialog, but that integer argument is
used to determine whether the dialog is for loading a file or saving a file (the only
difference is the labels on the buttons; the file dialog does not actually open or save
anything). The possible options for the mode argument are FileDialog.LOAD and
FileDialog.SAVE.

030-4s CH14.i 1/29/96, 10:44 PM287

288

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

After you create a FileDialog instance, use show() to display it:

FileDialog fd = new FileDialog(this, “FileDialog”);
fd.show();

When the reader chooses a file in the file dialog and dismisses it, you can then get to the file they
chose by using the getDirectory() and getFile() methods; both return strings indicating the
values the reader chose. You can then open that file by using the stream and file handling
methods (which you’ll learn about next week) and then read from or write to that file.

Window Events
Yesterday, you learned about writing your own event handler methods, and you noted that the
Event class defines many standard events for which you can test. Window events are part of that
list, so if you use windows, these events may be of interest to you. Table 14.1 shows those events.

Table 14.1: Window Events from the Event Class.

WINDOW_DESTROY Generated when a window is destroyed (for example, when the
browser or applet viewer has quit)

WINDOW_EXPOSE Generated when the window is brought forward from behind other
windows

WINDOW_ICONIFY Generated when the window is iconified

WINDOW_DEICONIFY Generated when the window is restored from an icon

WINDOW_MOVED Generated when the window is moved

Using AWT Windows
in Stand-Alone Applications

Because frames are general-purpose mechanisms for creating AWT windows with panels, you
can use them in your stand-alone Java applications and easily take advantage of all the applet
capabilities you learned about this week. To do this, write your application as if it were an applet
(inheriting from the Applet class and using threads, graphics, and UI components as necessary),
and then add a main() method. Here’s one for a class called MyAWTClass:

public static void main(String args[]) {
 Frame f = new Frame(“My Window”);
 MyAWTClass mac = new MyAWTClass();
 mac.init();
 mac.start();

 f.add(“Center”, mac);

030-4s CH14.i 1/29/96, 10:44 PM288

289

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

 f.resize(300, 300);
 f.show();
}

This main() method does five things:

■■ It creates a new frame to hold the applet.

■■ It creates an instance of the class that defines that method.

■■ It duplicates the applet environment calls to init() and start().

■■ It adds the applet to the frame and resizes the frame to be 300 pixels square.

■■ It shows the frame on the screen.

By using this mechanism, you can create a Java program that can function equally well as an
applet or an application—just include init() for applets and main() for applications.

If you do create an application that uses this mechanism, be careful of your init() methods that
get parameters from an HTML file. When you run an applet as an application, you don’t have
the HTML parameters passed into the init() method. Pass them in as command-line
arguments, instead, and handle them in your main() method. Then set a flag so that the init()
method doesn’t try to read parameters that don’t exist.

Networking in Java
Networking is the capability of making connections from your applet or application to a system
over the network. Networking in Java involves classes in the java.net package, which provide
cross-platform abstractions for simple networking operations, including connecting and
retrieving files by using common Web protocols and creating basic Unix-like sockets. Used in
conjunction with input and output streams (which you’ll learn much more about next week),
reading and writing files over the network becomes as easy as reading or writing to files on the
local disk.

There are restrictions, of course. Java applets cannot read or write from the disk on the machine
that’s running them. Depending on the browser, Java applets may not be able to connect to
systems other than the one upon which they were originally stored. Even given these restrictions,
you can still accomplish a great deal and take advantage of the Web to read and process
information over the net.

This section describes three ways you can communicate with systems on the net:

■■ showDocument(), which enables an applet to tell the browser to load and link to
another page on the Web

■■ openStream(), a method that opens a connection to a URL and enables you to extract
data from that connection

030-4s CH14.i 1/29/96, 10:45 PM289

290

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

■■ The socket classes, Socket and ServerSocket, which enable you to open standard
socket connections to hosts and read to and write from those connections

Creating Links Inside Applets
Probably the easiest way to use networking inside an applet is to tell the browser running that
applet to load a new page. You can use this, for example, to create animated image maps that,
when clicked, load a new page.

To link to a new page, you create a new instance of the class URL. You saw some of this when
you worked with images, but let’s go over it a little more thoroughly here.

The URL class represents a uniform resource locator. To create a new URL, you can use one of
four different forms:

■■ URL(String, String, int, String) creates a new URL object, given a protocol (http,
ftp, gopher, file), a host name (www.lne.com, ftp.netcom.com), a port number (80 for
http), and a filename or pathname.

■■ URL(String, String, String) does the same thing as the previous form, minus the
port number.

■■ URL(URL, String) creates a URL, given a base path and a relative path. For the base,
you can use getDocumentBase() for the URL of the current HTML file, or
getCodeBase for the URL of the Java class file. The relative path will be tacked onto
the last directory in those base URLs (just like with images and sounds).

■■ URL(String) creates a URL object from a URL string (which should include the
protocol, hostname, and filename).

For that last one (creating a URL from a string), you have to catch a malformed URL exception,
so surround the URL constructor with a try...catch:

String url = “http://www.yahoo.com/”;
try { theURL = new URL(url); }
catch (MalformedURLException e) {
 System.out.println(“Bad URL: “ + theURL);
}

Getting a URL object is the hard part. Once you have one, all you have to do is pass it to the
browser. Do this by using this single line of code, where theURL is the URL object to link to:

getAppletContext().showDocument(theURL);

The browser that contains your URL will then load and display the document at that URL.

Listing 14.2 shows a simple applet that displays three buttons that represent important Web
locations (the buttons are shown in Figure 14.4). Clicking on the buttons causes the document
to be loaded to the locations to which those buttons refer.

030-4s CH14.i 1/29/96, 10:45 PM290

291

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

Type Listing 14.2. Bookmark buttons.
import java.awt.*;
import java.net.URL;
import java.net.MalformedURLException;

public class ButtonLink extends java.applet.Applet {

 Bookmark bmlist[] = new Bookmark[3];

 public void init() {
 bmlist[0] = new Bookmark(“Laura’s Home Page”,
 “http://www.lne.com/lemay/”);
 bmlist[1] = new Bookmark(“Yahoo”,
 “http://www.yahoo.com”);
 bmlist[2]= new Bookmark(“Java Home Page”,
 “http://java.sun.com”);

 setLayout(new GridLayout(bmlist.length,1,10,10));
 for (int i = 0; i < bmlist.length; i++) {
 add(new Button(bmlist[i].name));
 }
 }

 public boolean action(Event evt, Object arg) {
 if (evt.target instanceof Button) {
 LinkTo((String)arg);
 return true;
 }
 else retrurn false;
 }

 void LinkTo(String name) {
 URL theURL = null;
 for (int i = 0; i < bmlist.length; i++) {
 if (name.equals(bmlist[i].name))
 theURL = bmlist[i].url;
 }
 if (theURL != null)
 getAppletContext().showDocument(theURL);
 }
}

class Bookmark {
 String name;
 URL url;

 Bookmark(String name, String theURL) {
 this.name = name;
 try { this.url = new URL(theURL); }
 catch (MalformedURLException e) {
 System.out.println(“Bad URL: “ + theURL);
 }
 }
}

030-4s CH14.i 1/29/96, 10:46 PM291

292

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

Two classes make up this applet: the first implements the actual applet itself, the second
is a class representing a bookmark. Bookmarks have two parts: a name and a URL.

This particular applet creates three bookmark instances and stores them in an array of
bookmarks (this applet could be easily modified to make bookmarks as parameters from an
HTML file). For each bookmark, a button is created whose label is the value of the bookmark’s
name.

When the buttons are pressed, the linkTo() method is called, which tells the browser to load
the URL referenced by that bookmark.

Opening Web Connections
Rather than asking the browser to just load the contents of a file, sometimes you might want to
get hold of that file’s contents so that your applet can use them. If the file you want to grab is
stored on the Web, and can be accessed using the more common URL forms (http, ftp, and so
on), your applet can use the URL class to get it.

Note that for security reasons, applets can connect back only to the same host from which they
originally loaded. This means that if you have your applets stored on a system called
www.myhost.com, the only machine your applet can open a connection to will be that same host
(and that same host name, so be careful with host aliases). If the file the applet wants to retrieve
is on that same system, using URL connections is the easiest way to get it.

Figure 14.4.
Bookmark buttons.

Analysis

030-4s CH14.i 1/29/96, 10:46 PM292

293

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

Type

openStream()
URL defines a method called openStream(), which opens a network connection using the given
URL and returns an instance of the class InputStream (part of the java.io package). If you
convert that stream to a DataInputStream (with a BufferedInputStream in the middle for better
performance), you can then read characters and lines from that stream (you’ll learn all about
streams on Day 19). For example, these lines open a connection to the URL stored in the variable
theURL, and then read and echo each line of the file to the standard output:

try {
 InputStream in = theURL.openStream();
 DataInputStream data = new DataInputStream(
 new BufferedInputStream(in);

 String line;
 while ((line = data.readLine()) != null) {
 System.out.println(“line”);
 }
}
catch (IOException e) {
 System.out.println(“IO Error: “ + e.getMessage());
}

Note: You need to wrap all those lines in a try...catch statement to catch
IOException exceptions.

Here’s an example of an applet that uses the openStream() method to open a connection to a
Web site, reads a file from that connection (Edgar Allen Poe’s poem “The Raven”), and displays
the result in a text area. Listing 14.3 shows the code; Figure 14.5 shows the result after the file
has been read.

Listing 14.3. The GetRaven class.
 1: import java.awt.*;
 2: import java.io.DataInputStream;
 3: import java.io.BufferedInputStream;
 4: import java.io.IOException;
 5: import java.net.URL;
 6: import java.net.URLConnection;
 7: import java.net.MalformedURLException;
 8:
 9: public class GetRaven extends java.applet.Applet
10: implements Runnable {

continues

030-4s CH14.i 1/29/96, 10:47 PM293

294

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

11:
12: URL theURL;
13: Thread runner;
14: TextArea ta = new TextArea(“Getting text...”,30,70);
15:
16: public void init() {
17:
18: String url = “http://www.lne.com/Web/Java/raven.txt”;
19: try { this.theURL = new URL(url); }
20: catch (MalformedURLException e) {
21: System.out.println(“Bad URL: “ + theURL);
22: }
23: add(ta);
24: }
25:
26: public Insets insets() {
27: return new Insets(10,10,10,10);
28: }
29:
30: public void start() {
31: if (runner == null) {
32: runner = new Thread(this);
33: runner.start();
34: }
35: }
36:
37: public void stop() {
38: if (runner != null) {
39: runner.stop();
40: runner = null;
41: }
42: }
43:
44: public void run() {
45: InputStream conn = null;
46: DataInputStream data = null;
47: String line;
48: StringBuffer buf = new StringBuffer();
49:
50: try {
51: conn = this.theURL.openStream();
52: data = new DataInputStream(new BufferedInputStream(
53: conn));
54:
55: while ((line = data.readLine()) != null) {
56: buf.append(line + “\n”);
57: }
58:
59: ta.setText(buf.toString());
60: }
61: catch (IOException e) {
62: System.out.println(“IO Error:” + e.getMessage());
63: }
64: }
65: }

Listing 14.3. continued

030-4s CH14.i 1/29/96, 10:47 PM294

295

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

The init() method (lines 16 to 24) sets up the URL and the text area in which that file
will be displayed. The URL could be easily passed into the applet via an HTML parameter;
here, it’s just hard-coded for simplicity.

Because it might take some time to load the file over the network, you put that routine into its
own thread and use the familiar start(), stop(), and run() methods to control that thread.

Inside run() (lines 44 to 64), the work takes place. Here, you initialize a bunch of variables
and then open the connection to the URL (using the openStream() method in line 51). Once
the connection is open, you set up an input stream in lines 52 to 56 and read from it, line by
line, putting the result into an instance of StringBuffer (a string buffer is a modifiable string).

Once all the data has been read, line 59 converts the StringBuffer object into a real string and
then puts that result in the text area.

One other thing to note about this example is that the part of the code that opened a network
connection, read from the file, and created a string is surrounded by a try and catch statement.
If any errors occur while you’re trying to read or process the file, these statements enable you to
recover from them without the entire program crashing (in this case, the program exits with an
error, because there’s little else to be done if the applet can’t read the file). try and catch give
you the capability of handling and recovering from errors. You’ll learn more about exceptions
on Day 18.

Figure 14.5.
The GetRaven class.

Analysis

030-4s CH14.i 1/29/96, 10:47 PM295

296

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

The URLconnection Class
URL’s openStream() method is actually a simplified use of the URLconnection class. URLconnection
provides a way to retrieve files by using URLs—on Web or FTP sites, for example. URLconnection
also enables you to create output streams if the protocol allows it.

To use a URL connection, you first create a new instance of the class URLconnection, set its
parameters (whether it enables writing, for example), and then use the connect() method to
open the connection. Keep in mind that, with a URL connection, the class handles the protocol
for you based on the first part of the URL, so you don’t have to make specific requests to retrieve
a file; all you have to do is read it.

Sockets
For networking applications beyond what the URL and URLconnection classes offer (for example,
for other protocols or for more general networking applications), Java provides the Socket and
ServerSocket classes as an abstraction of standard socket programming techniques.

Note: I don’t have the space to give you a full explanation of how socket program-
ming works. If you haven’t worked with sockets before, see whether openStream()
will meet your needs. If you really need to do more, any book that discusses socket
programming will give you the background you need to work with Java’s sockets.

The Socket class provides a client-side socket interface similar to standard Unix sockets. To open
a connection, create a new instance of Socket (where hostname is the host to connect to, and
portnum is the port number):

Socket connection = new Socket(hostname, portnum);

Note: If you use sockets in an applet, you are still subject to the security restrictions
about where you can connect.

Once the socket is open, you can use input and output streams to read and write from that socket
(you’ll learn all about input and output streams on Day 19):

DataInputStream in = new DataInputStream(
 new BufferedInputStream(connection.getInputStream()));
DataOutputStream out= new DataOutputStream(
 new BufferedOutputStream(connection.getOutputStream()));

030-4s CH14.i 1/29/96, 10:48 PM296

297

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

Once you’re done with the socket, don’t forget to close it (this also closes all the input and ouput
streams you may have set up for that socket):

connection.close();

Server-side sockets work similarly, with the exception of the accept() method. A server socket
listens on a TCP port for a connection for a client; when a client connects to that port, the
accept() method accepts a connection from that client. By using both client and server sockets,
you can create applications that communicate with each other over the network.

To create a server socket and bind it to a port, create a new instance of ServerSocket with the
port number:

ServerSocket sconnection = new ServerSocket(8888);

To listen on that port (and to accept a connection from any clients if one is made), use the
accept() method:

sconnection.accept();

Once the socket connection is made, you can use input and output streams to read to and write
from the client.

See the java.net package for more information about Java sockets.

Other Applet Hints
On this, the last section of the last day of the second week, let’s finish up with some small hints
that didn’t fit in anywhere else: using showStatus() to print messages in the browser’ status
window, providing applet information, and communicating between multiple applets on the
same page.

The showStatus Method
The showStatus() method, available in the applet class, enables you to display a string in the
status bar of the browser, which contains the applet. You can use this for printing error, link,
help, or other status messages:

getAppletContext().showStatus(“Change the color”);

The getAppletContext() method enables your applet to access features of the browser that
contains it. You already saw a use of this with links, wherein you could use the showDocument()
method to tell the browser to load a page. showStatus() uses that same mechanism to print status
messages.

030-4s CH14.i 1/29/96, 10:49 PM297

298

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

Note: showStatus() may not be supported in all browsers, so do not depend on it
for your applet’s functionality or interface. It is a useful way of communicating
optional information to your user—if you need a more reliable method of commu-
nication, set up a label in your applet and update it to reflect changes in its message.

Applet Information
The AWT gives you a mechanism for associating information with your applet. Usually, there
is a mechanism in the browser viewing the applet to view display information. You can use this
mechanism to sign your name or your organization to your applet, or to provide contact
information so that users can get hold of you if they want.

To provide information about your applet, override the getAppletInfo() method:

public String getAppletInfo() {
 return “GetRaven copyright 1995 Laura Lemay”;
}

Communicating Between Applets
Sometimes you want to have an HTML page that has several different applets on it. To do this,
all you have to do is include several different iterations of the applet tag—the browser will create
different instances of your applet for each one that appears on the HTML page.

What if you want to communicate between those applets? What if you want a change in one
applet to affect the other applets in some way?

The best way to do this is to use the applet context to get to different applets on the same page.
You’ve already seen the use of the getAppletContext() method for several other uses; you can
also use it to get hold of the other applets on the page. For example, to call a method in all the
applets on a page (including the current applet), use the getApplets() method and a for loop
that looks something like this:

for (Enumeration e = getAppletContext().getApplets();
 e.hasMoreElements();) {
 Applet current = (Applet)(e.nextElement());
 sendMessage(current);
}

The getApplets() method returns an Enumeration object with a list of the applets on the page.
Iterating over the Enumeration object in this way enables you to access each element in the
Enumeration in turn.

030-4s CH14.i 1/29/96, 10:49 PM298

299

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

If you want to call a method in a specific applet, it’s slightly more complicated. To do this, you
give your applets a name and then refer to them by name inside the body of code for that applet.

To give an applet a name, use the NAME parameter in your HTML file:

<P>This applet sends information:
<APPLET CODE=”MyApplet.class” WIDTH=100 HEIGHT=150
 NAME=”sender”> </APPLET>
<P>This applet receives information from the sender:
<APPLET CODE=”MyApplet.class” WIDTH=100 HEIGHT=150
 NAME=”receiver”> </APPLET>

To get a reference to another applet on the same page, use the getApplet() method from the
applet context with the name of that applet. This gives you a reference to the applet of that name.
You can then refer to that applet as if it were just another object: call methods, set its instance
variables, and so on:

// get ahold of the receiver applet
Applet receiver = getAppletContext().getApplet(“receiver”);
// tell it to update itself.
reciever.update(text, value);

In this example, you use the getApplet() method to get a reference to the applet with the name
receiver. Given that reference, you can then call methods in that applet as if it were just another
object in your own environment. Here, for example, if both applets have an update() method,
you can tell receiver to update itself by using the information the current applet has.

Naming your applets and then referring to them by using the methods described in this section
enables your applets to communicate and stay in sync with each other, providing uniform
behavior for all the applets on your page.

Summary
Congratulations! Take a deep breath—you’re finished with Week 2. This week has been full of
useful information about creating applets and using the Java AWT classes to display, draw,
animate, process input, and create fully fledged interfaces in your applets.

Today, you finished exploring applets and the AWT by learning about three concepts.

First, you learned about windows, frames, menus, and dialogs, which enable you to create a
framework for your applets—or enable your Java applications to take advantage of applet
features.

Second, you head a brief introduction to Java networking through some of the classes in the
java.net package. Applet networking includes things as simple as pointing the browser to
another page from inside your applet, but can also include retrieving files from the Web by using

030-4s CH14.i 1/29/96, 10:49 PM299

300

Windows, Networking, and Other Tidbits
M

T W
R

F S S

DAYDAY

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

standard Web protocols (http, ftp, and so on). For more advanced networking capabilities, Java
provides basic socket interfaces that can be used to implement many basic network-oriented
applets—client-server interactions, chat sessions, and so on.

Finally, you finished up with the tidbits—small features of the Java AWT and of applets that
didn’t fit anywhere else, including showStatus(), producing information for your applet, and
communicating between multiple applets on a single page.

Q&A
Q When I create popup windows using the appletviewer, they all show up with this

big red bar that says Warning: applet window. What does this mean?

A The warning is to tell you (and the users of your applet) that the window being
displayed was generated by an applet, and not by the browser itself. This is a security
feature to keep an applet programmer from popping up a window that masquerades as
a browser window and, for example, asks users for their passwords.

There’s nothing you can do to hide or obscure the warning.

Q What good is having a file dialog box if you can’t read or write files from the
local file system?

A Applets can’t read or write from the local file system, but because you can use AWT
components in Java applications as well as applets, the file dialog box is very useful for
that purpose.

Q How can I mimic an HTML form submission in a Java applet?

A Currently, applets make it difficult to do this. The best (and easiest way) is to use GET
notation to get the browser to submit the form contents for you.

HTML forms can be submitted in two ways: by using the GET request, or by using
POST. If you use GET, your form information is encoded in the URL itself, something
like this:

http://www.blah.com/cgi-bin/myscript?foo=1&bar=2&name=Laura

Because the form input is encoded in the URL, you can write a Java applet to mimic a
form, get input from the user, and then construct a new URL object with the form
data included on the end. Then just pass that URL to the browser by using
getAppletContext().showDocument(), and the browser will submit the form results
itself. For simple forms, this is all you need.

030-4s CH14.i 1/29/96, 10:50 PM300

301

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P2/V4sqc 5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 14 LP#4

Q How can I do POST form submissions?

A You’ll have to mimic what a browser does to send forms using POST: open a socket to
the server and send the data, which looks something like this (the exact format is
determined by the HTTP protocol; this is only a subset of it):
POST /cgi-bin/mailto.cgi HTTP/1.0
Content-type: application/x-www-form-urlencoded
Content-length: 36

{your encoded form data here}

If you’ve done it right, you get the CGI form output back from the server. It’s then up
to your applet to handle that output properly. Note that if the output is in HTML,
there really isn’t a way to pass that output to the browser that is running your applet.
If you get back a URL, however, you can redirect the browser to that URL.

Q showStatus doesn’t work in my browser. How can I give my readers status
information?

A As you learned in the section on showStatus(), whether or not a browser supports
showStatus() is up to that browser. If you must have status-like behavior in your
applet, consider creating a status label in the applet itself that is updated with the
information you need to present.

030-4s CH14.i 1/29/96, 10:50 PM301

303

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc8 TY Java in 21 Days 030-4 Everly 12.11.95 AAG 3 LP#2

M
T W

R
F S S

■■ Modifiers

Method and variable access control

■■ Packages and Interfaces

Hiding classes

Design versus implementation inheritance

■■ Exceptions

Proper throw statements

Using the finally clause

■■ Multithreading

Synchronization problems

More about Point

■■ Java Streams

Input and output, flush() and close()

■■ Native Methods and Libraries

Built-in optimizations

Generating header and stub files

WEEK

AT
 A

 G
LA

N
C

E

16

17

18

19

20

21

153

030-4s AAG 03 1/29/96, 8:17 PM303

304

Week 3 at a Glance
M

T W
R

F S S

WEEKWEEK

3

P2/V4/sqc8 TY Java in 21 Days 030-4 Everly 12.11.95 AAG 3 LP#2

■■ Under the Hood

Java bytecodes

Security and consistency checking

Garbage collection

030-4s AAG 03 1/29/96, 8:17 PM304

305

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

M
T W

R
F S S1515

Modifiers

by Charles L. Perkins

WEEK

3

030-4s CH15.i 1/29/96, 10:58 AM305

306

Modifiers
M

T W
R

F S S

DAYDAY

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

Once you begin to program Java for a while, you’ll discover that making all your classes,
methods, and variables public can become quite annoying. The larger your program becomes,
and the more you reuse your classes for new projects, the more you will want some sort of control
over their visibility. One of the large-scale solutions to this problem, packages, must wait until
tomorrow, but today you’ll explore what you can do within a class.

Today, you’ll learn how to create and use the following:

■■ Methods and variables that control their access by other classes

■■ Class variables and methods

■■ Constant variables, classes that cannot be subclassed, and methods that cannot be
overridden

■■ Abstract classes and methods

Modifiers are prefixes that can be applied in various combinations to the methods and
variables within a class and, some, to the class itself.

There is a long and varied list of modifiers. The order of modifiers is irrelevant to their
meaning—your order can vary and is really a matter of taste. Pick a style and then be consistent
with it throughout all your classes. Here is the recommended order:

<access> static abstract synchronized <unusual> final native

where <access> can be public, protected, or private, and <unusual> includes volatile and
transient.

Note: As of the beta release, threadsafe has been replaced by volatile. Both have
to do with multithreading; no more will be said about them here (see Day 18).
transient is a special modifier used to declare a variable to be outside the persistent
part of an object. This makes persistent object storage systems easier to implement
in Java, and though the compiler supports it, it is not used by the current Java
system. Several reserved keywords (byvalue, future, and generic, for example) may
end up being <unusual> modifiers in later releases of Java. In the beta system, none
of these unusual modifiers appears in the source code for the standard Java library
classes.

All the modifiers are essentially optional; none have to appear in a declaration. Good style
suggests adding as many as are needed to best describe the intended use of, and restrictions on,
what you’re declaring. In some special situations (inside an interface, for example, as described
tomorrow), certain modifiers are implicitly defined for you, and you needn’t type them—they
will be assumed to be there.

NEW
TERM

☛

030-4s CH15.i 1/29/96, 10:58 AM306

307

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

The synchronized modifier is covered on Day 18; it has to do with multithreaded methods. The
native modifier is covered on Day 20; it specifies that a method is implemented in the native
language of your computer (usually C), rather than in Java. How <access> modifiers apply to
classes is covered tomorrow.

Method and Variable Access Control
Access control is about controlling visibility. When a method or variable is visible to another
class, its methods can reference (call or modify) that method or variable. To “protect” a method
or variable from such references, you use the four levels of visibility described in the next
sections. Each, in turn, is more restrictive, and thus provides more protection than the one
before it.

The Four P’s of Protection
Learning your four P’s (public, package, protected, and private) comes down to understanding
the fundamental relationships that a method or variable within a class can have to the other
classes in the system.

public
Because any class is an island unto itself, the first of these relationships builds on the distinction
between the inside and the outside of the class. Any method or variable is visible to the class in
which it is defined, but what if you want to make it visible to all the classes outside this class?

The answer is obvious: simply declare the method or variable to have public access. Almost every
method and variable defined in the rest of this book has been declared, for simplicity’s sake,
public. When you use any of the examples provided in your own code, you’ll probably decide
to restrict this access further. Because you’re just learning now, it’s not a bad idea to begin with
the widest possible access you can imagine and then narrow it down as you gain design
experience, until the access that each of your variables and methods should have becomes second
nature. Here are some examples of public declarations:

public class APublicClass {
 public int aPublicInt;
 public String aPublicString;

 public float aPublicMethod() {
 . . .
 }
}

030-4s CH15.i 1/29/96, 10:59 AM307

308

Modifiers
M

T W
R

F S S

DAYDAY

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

Note: The two (or more) spaces after the prefix of modifiers and type in these
declarations are intentional. They make finding the variable or method name
within each line a little easier. Further in the book, you’ll see that the type and the
name are sometimes separately lined up in a column to make it even more evident
what is what. When you get enough modifiers on a line, you’ll begin to appreciate
these small touches.

A variable or method with public access has the widest possible visibility. Anyone can see it.
Anyone can use it. Of course, this may not always be what you want—which brings us to the
next level of protection.

package
In C, there is the notion of hiding a name so that only the functions within a given source file
can see it. In Java, source files are replaced by the more explicit notion of packages, which can
group classes (you learn about these tomorrow). For now, all you need to know is that the
relationship you want to support is of a class to its fellow implementors of one piece of a system,
library, or program (or to any other grouping of related classes). This defines the next level of
increased protection and narrowed visibility.

Due to an idiosyncrasy of the Java language, this next level of access has no precise name. It is
indicated by the lack of any access modifier in a declaration. Historically, it has been called
various suggestive names, including “friendly” and “package.” The latter usage seems most
appropriate and is the one used here. Perhaps in a later release of the system, it will be possible
to say package explicitly, but for now it is simply the default protection when none has been
specified.

Note: Why would anyone want to make more typing for themselves and explicitly
say package? It is a matter of consistency and clarity. If you have a pattern of
declarations with varying access modifier prefixes, you may always want the
modifier to be stated explicitly, both for the reader’s benefit and because, in some
contexts, different “default” levels of protection are being assumed, and you want
the compiler to notice your intentions and warn you of any conflicts.

030-4s CH15.i 1/29/96, 10:59 AM308

309

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

Most of the declarations you’ve seen in the past two weeks have used this default level of
protection. Here’s a reminder of what they look like:

public class ALessPublicClass {
 int aPackageInt = 2;
 String aPackageString = “a 1 and a “;

 float aPackageMethod() { // no access modifier means “package”
 . . .
 }
}

public class AClassInTheSamePackage {
 public void testUse() {
 ALessPublicClass aLPC = new ALessPublicClass();

 System.out.println(aLPC.aPackageString + aLPC.aPackageInt);
 aLPC.aPackageMethod(); // all of these are A.O.K.
 }
}

Note: If a class from any other package tried to access aLPC the way that
AClassInTheSamePackage does in this example, it would generate compile-time
errors. (You’ll learn how to create such classes tomorrow.)

Why was package made a default? When you’re designing a large system and you partition your
classes into work groups to implement smaller pieces of that system, the classes often need to
share a lot more with one another than with the outside world. The need for this level of sharing
is common enough that it was made the default level of protection.

What if you have some details of your implementation that you don’t want to share with these
“friends”? The answer to this question leads us naturally to the next level of protection.

protected
The third relationship is between a class and its present and future subclasses. These subclasses
are much closer to a parent class than to any other “outside” classes for the following reasons:

■■ Subclasses are usually more intimately aware of the internals of a parent class.

■■ Subclasses are often written by you or by someone to whom you’ve given your source
code.

■■ Subclasses frequently need to modify or enhance the representation of the data within
a parent class.

030-4s CH15.i 1/29/96, 10:59 AM309

310

Modifiers
M

T W
R

F S S

DAYDAY

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

No one else is allowed the privilege of this level of access; they must be content with the public
face that the class presents.

To support the level of intimacy reserved for subclasses, modern programming languages have
invented an intermediate level of access between the previous two levels and full privacy. This
level gives more protection and narrows visibility still further, but still allows subclasses full
access. In Java, this level of protection is called, appropriately enough, protected:

public class AProtectedClass {
 protected int aProtectedInt = 4;
 protected String aProtectedString = “and a 3 and a “;

 protected float aProtectedMethod() {
 . . .
 }
}

public class AProtectedClassSubclass extends AProtectedClass {
 public void testUse() {
 AProtectedClass aPC = new AProtectedClass();

 System.out.println(aPC.aProtectedString + aPC.aProtectedInt);
 aPC.aProtectedMethod(); // all of these are A.O.K.
 }
}

public class AnyClassInTheSamePackage {
 public void testUse() {
 AProtectedClass aPC = new AProtectedClass();

 System.out.println(aPC.aProtectedString + aPC.aProtectedInt);
 aPC.aProtectedMethod(); // NONE of these are legal
 }
}

Even though AnyClassInTheSamePackage is in the same package as AProtectedClass, it is not a
subclass of it (it’s a subclass of Object). Only subclasses are allowed to see, and use, protected
variables and methods.

One of the most striking examples of the need for this special level of access is when you are
supporting a public abstraction with your class. As far as the outside world is concerned, you have
a simple, public interface (via methods) to whatever abstraction you’ve built for your users. A
more complex representation, and the implementation that depends on it, is hidden inside.
When subclasses extend and modify this representation, or even just your implementation of
it, they need to get to the underlying, concrete representation and not simply to the abstraction:

public class SortedList {
 protected BinaryTree theBinaryTree;

 . . .
 public Object[] theList() {
 return theBinaryTree.asArray();

030-4s CH15.i 1/29/96, 10:59 AM310

311

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

 }

 public void add(Object o) {
 theBinaryTree.addObject(o);
 }
}

public class InsertSortedList extends SortedList {
 public void insert(Object o, int position) {
 theBinaryTree.insertObject(o, position);
 }
}

Without being able to access theBinaryTree directly, the insert() method has to get the list as
an array of Objects, via the public method theList(), allocate a new, bigger array, and insert the
new object by hand. By “seeing” that its parent is using a BinaryTree to implement the sorted
list, it can call upon BinaryTree’s built-in method insertObject() to get the job done.

Some languages, such as CLU, have experimented with more explicit ways of “raising” and
“lowering” your level of abstraction to solve this same problem in a more general way. In Java,
protected solves only a part of the problem, by allowing you to separate the concrete from the
abstract; the rest is up to you.

private
The final relationship comes full circle, back to the distinction between the inside and outside
of the class. private is the most narrowly visible, highest level of protection that you can get—
the diametric opposite of public. private methods and variables cannot be seen by any class
other than the one in which they are defined:

public class APrivateClass {
 private int aPrivateInt;
 private String aPrivateString;

 private float aPrivateMethod() {
 . . .
 }
}

This may seem extremely restrictive, but it is, in fact, a commonly used level of protection. Any
private data, internal state, or representations unique to your implementation—anything that
shouldn’t be directly shared with subclasses—is private. Remember that an an object’s primary
job is to encapsulate its data—to hide it from the world’s sight and limit its manipulation. The
best way to do that is to make as much data as private as possible. Your methods can always be
less restrictive, as you’ll see below, but keeping a tight rein on your internal representation is
important. It separates design from implementation, minimizes the amount of information one
class needs to know about another to get its job done, and reduces the extent of the code changes
you need when your representation changes.

030-4s CH15.i 1/29/96, 10:59 AM311

312

Modifiers
M

T W
R

F S S

DAYDAY

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

The Conventions
for Instance Variable Access

A good rule of thumb is that unless an instance variable is constant (you’ll soon see how to specify
this), it should almost certainly be private. If you don’t do this, you have the following problem:

public class AFoolishClass {
 public String aUsefulString;
 . . . // set up the useful value of the string
}

This class may have thought of setting up aUsefulString for the use of other classes, expecting
them to (only) read it. Because it isn’t private, however, they can say:

AFoolishClass aFC = new AFoolishClass();

aFC.aUsefulString = “oops!”;

Because there is no way to specify separately the level of protection for reading from and writing
to instance variables, they should almost always be private.

Note: The careful reader may notice that this rule is violated in many examples in
this book. Most of these were just for clarity’s sake and to make the examples
shorter and pithier. (You’ll see soon that it takes more space to do the right thing.)
One use cannot be avoided: the System.out.print() calls scattered throughout the
book must use the public variable out directly. You cannot change this final
system class (which you might have written differently). You can imagine the
disastrous results if anyone accidentally modifies the contents of this (global)
public variable!

Accessor Methods
If instance variables are private, how do you give access to them to the outside world? The
answer is to write “accessor” methods:

public class ACorrectClass {
 private String aUsefulString;

 public String aUsefulString() { // “get” the value
 return aUsefulString;
 }

 protected void aUsefulString(String s) { // “set” the value
 aUsefulString = s;
 }
}

030-4s CH15.i 1/29/96, 11:00 AM312

313

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

Using methods to access an instance variable is one of the most frequently used idioms in object-
oriented programs. Applying it liberally throughout all your classes repays you numerous times
over with more robust and reusable programs. Notice how separating the reading and writing
of the instance variable allows you to specify a public method to return its value and a protected
method to set it. This is often a useful pattern of protections, because everyone probably needs
to be able to ask for the value, but only you (and your subclasses) should be able to change it.
If it is a particularly private piece of data, you could make its “set” method private and its “get”
method protected, or any other combination that suits the data’s sensitivity to the light of the
outside world.

!! Warning: According to the beta language specification, it is not legal to have an
instance variable and method by the same name. However, the beta compiler allows
it! Because it is unclear what the final ruling on this conflict will be, use the simple
naming scheme used previously for your programs. In a later release, if the compiler
begins complaining, you can always change the method names to something less
clear.

One of the alternate conventions for the naming of accessor methods is to prepend
the variable name with the prefixes get and set. Besides making you type more—
for a little less clarity—this style forces you (by the capitalization conventions of
Java) to write methods names such as setAnnoyingFirstCapitalLetter(). All this is,
of course, a matter of taste—just be consistent in using whatever convention you
adopt.

Whenever you want to append to your own instance variable, try writing this:

aUsefulString(aUsefulString() + “ some appended text”);

Just like someone outside the class, you’re using accessor methods to change aUsefulString.
Why do this?

You protected the variable in the first place so that changes to your representation would not
affect the use of your class by others, but it still will affect the use of your class by you! As in the
abstract versus concrete discussion earlier, you should be protected from knowing too much
about your own representation, except in those few places that actually need to know about it.
Then, if you must change something about aUsefulString, it will not affect every use of that
variable in your class (as it would without accessor methods); rather, it affects only the
implementations of its accessor.

030-4s CH15.i 1/29/96, 11:00 AM313

314

Modifiers
M

T W
R

F S S

DAYDAY

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

One of the powerful side effects of maintaining this level of indirection in accessing your own
instance variables is that if, at some later date, some special code needs to be performed each time
aUsefulString is accessed, you can put that code in one place, and all the other methods in your
class (and in everyone else’s) will correctly call that special code. Here’s an example:

protected void aUsefulString(String s) { // the “set” method
 aUsefulString = s;
 performSomeImportantBookkeepingOn(s);
}

It may seem a little difficult to get used to saying this:

x(12 + 5 * x());

rather than this:

x = 12 + 5 * x;

but the minor inconvenience will reward you with a rosy future of reusability and easy
maintenance.

Class Variables and Methods
What if you want to create a shared variable that all your instances can see and use? If you use
an instance variable, each instance has its own copy of the variable, defeating its whole purpose.
If you place it in the class itself, however, there is only one copy, and all the instances of the class
share it. This is called a class variable:

public class Circle {
 public static float pi = 3.14159265F;

 public float area(float r) {
 return pi * r * r;
 }
}

Tip: Because of its historical ties, Java uses the word static to declare class vari-
ables and methods. Whenever you see the word static, remember to substitute
mentally the word “class.”

Instances can refer to their own class variables as though they were instance variables, as in the
last example. Because it’s public, methods in other classes can also refer to pi:

float circumference = 2 * Circle.pi * r;

030-4s CH15.i 1/29/96, 11:00 AM314

315

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

Note: Instances of Circle can also use this form of access. In most cases, for clarity,
this is the preferred form, even for instances. It clarifies that a class variable is being
used, and helps the reader to know instantly where it’s used and that the variable is
global to all instances. This may seem pedantic, but if you try it yourself, you’ll see
that it can make things clearer.

By the way, if you might change your mind later about how a class variable is
accessed, created, and so forth, you should create instance (or even class) accessor
methods to hide any uses of it from these changes.

Class methods are defined analogously. They can be accessed in the same two ways by instances
of their class, but only via the full class name by instances of other classes. Here’s a class that
defines class methods to help it count its own instances:

public class InstanceCounter {
 private static int instanceCount = 0; // a class variable

 protected static int instanceCount() { // a class method
 return instanceCount;
 }

 private static void incrementCount() {
 ++instanceCount;
 }

 InstanceCounter() {
 InstanceCounter.incrementCount();
 }
}

In this example, an explicit use of the class name calls the method incrementCount(). Though
this may seem verbose, in a larger program it immediately tells the reader which object (the class,
rather than the instance) is expected to handle the method. This is especially useful if the reader
needs to find where that method is declared in a large class that places all its class methods at the
top (the recommended practice, by the way).

Note the initialization of instanceCount to 0. Just as an instance variable is initialized when its
instance is created, a class variable is initialized when its class is created. This class initialization
happens essentially before anything else can happen to that class, or its instances, so the class in
the example will work as planned.

Finally, the conventions you learned for accessing an instance variable are applied in this example
to access a class variable. The accessor methods are therefore class methods. (There is no “set”
method here, just an increment method, because no one is allowed to set instanceCount

030-4s CH15.i 1/29/96, 11:01 AM315

316

Modifiers
M

T W
R

F S S

DAYDAY

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

directly.) Note that only subclasses are allowed to ask what the instanceCount is, because that
is a (relatively) intimate detail. Here’s a test of InstanceCounter in action:

public class InstanceCounterTester extends InstanceCounter {
 public static void main(String args[]) {
 for (int i = 0; i < 10; ++i)
 new InstanceCounter();
 System.out.println(“made “ + InstanceCounter.instanceCount());
 }
}

Not shockingly, this example prints the following:

made 10

The final Modifier
Although it’s not the final modifier discussed, the final modifier is very versatile:

■■ When the final modifier is applied to a class, it means that the class cannot be
subclassed.

■■ When it is applied to a variable, it means that the variable is constant.

■■ When it is applied to a method, it means that the method cannot be overridden by
subclasses.

final Classes
Here’s a final class declaration:

public final class AFinalClass {
 . . .
}

You declare a class final for only two reasons. The first is security. You expect to use its instances
as unforgeable capabilities, and you don’t want anyone else to be able to subclass and create new
and different instances of them. The second is efficiency. You want to count on instances of only
that one class (and no subclasses) being around in the system so that you can optimize for them.

Note: The Java class library uses final classes extensively. You can flip through the
class hierarchy diagrams in Appendix B to see them (final classes are shaded darker
than public classes). Examples of the first reason to use final are the classes:
java.lang.System and, from the package java.net, InetAddress and Socket. A
good example of the second reason is java.lang.String. Strings are so common in
Java, and so central to it, that the run-time handles them specially.

030-4s CH15.i 1/29/96, 11:01 AM316

317

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

It will be a rare event for you to create a final class yourself, although you’ll have plenty of
opportunity to be upset at certain system classes being final (thus making extending them
annoyingly difficult). Oh well, such is the price of security and efficiency. Let’s hope that
efficiency will be less of an issue soon, and some of these classes will become public once again.

final Variables
To declare constants in Java, use final variables:

public class AnotherFinalClass {
 public static final int aConstantInt = 123;
 public final String aConstantString = “Hello world!”;
}

Note: The unusual spacing in the last line of the example makes it clearer that the
top variable is a class variable and the bottom isn’t, but that both are public and
final.

final class and instance variables can be used in expressions just like normal class and instance
variables, but they cannot be modified. As a result, final variables must be given their (constant)
value at the time of declaration. These variables function like a better, typed version of the
#define constants of C. Classes can provide useful constants to other classes via final class
variables such as the one discussed previously. Other classes reference them just as before:
AnotherFinalClass.aConstantInt.

Local variables (those inside blocks of code surrounded by braces, for example, in while or for
loops) can’t be declared final. (This would be just a convenience, really, because final instance
variables work almost as well in this case.) In fact, local variables can have no modifiers in front
of them at all:

{
 int aLocalVariable; // I’m so sad without my modifiers...
 . . .
}

final Methods
Here’s an example of using final methods:

public class MyPenultimateFinalClass {
 public static final void aUniqueAndReallyUsefulMethod() {
 . . .
 }

030-4s CH15.i 1/29/96, 11:01 AM317

318

Modifiers
M

T W
R

F S S

DAYDAY

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

 public final void noOneGetsToDoThisButMe() {
 . . .
 }
}

final methods cannot be overridden by subclasses. It is a rare thing that a method truly wants
to declare itself the final word on its own implementation, so why does this modifier apply to
methods?

The answer is efficiency. If you declare a method final, the compiler can then “in-line” it right
in the middle of methods that call it, because it “knows” that no one else can ever subclass and
override the method to change its meaning. Although you might not use final right away when
writing a class, as you tune the system later, you may discover that a few methods have to be final
to make your class fast enough. Almost all your methods will be fine, however, just as they are.

The Java class library declares a lot of commonly used methods final so that you’ll benefit from
the speed-up. In the case of classes that are already final, this makes perfect sense and is a wise
choice. The few final methods declared in non-final classes will annoy you—your subclasses
can no longer override them. When efficiency becomes less of an issue for the Java environment,
many of these final methods can be “unfrozen” again, restoring this lost flexibility to the system.

Note: private methods are effectively final, as are all methods declared in a final
class. Marking these latter methods final (as the Java library sometimes does) is
legal, but redundant; the current compiler already treats them as final.

It’s possible to use final methods for some of the same security reasons you use
final classes, but it’s a much rarer event.

If you use accessor methods a lot (as recommended) and are worried about efficiency, here’s a
rewrite of ACorrectClass that’s much faster:

public class ACorrectFinalClass {
 private String aUsefulString;

 public final String aUsefulString() { // now faster to use
 return aUsefulString;
 }

 protected final void aUsefulString(String s) { // also faster
 aUsefulString = s;
 }
}

030-4s CH15.i 1/29/96, 11:02 AM318

319

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

Note: Future Java compilers will almost certainly be smart enough to “in-line”
simple methods automatically, so you probably won’t need to use final in such
cases for much longer.

abstract Methods and Classes
Whenever you arrange classes into an inheritance hierarchy, the presumption is that “higher”
classes are more abstract and general, whereas “lower” subclasses are more concrete and specific.
Often, as you design a set of classes, you factor out common design and implementation into
a shared superclass. If the primary reason that a superclass exists is to act as this common, shared
repository, and if only its subclasses expect to be used, that superclass is called an abstract class.

abstract classes can create no instances, but they can contain anything a normal class can
contain and, in addition, are allowed to prefix any of their methods with the modifier abstract.
Non-abstract classes are not allowed to use this modifier; using it on even one of your methods
requires that your whole class be declared abstract. Here’s an example:

public abstract class MyFirstAbstractClass {
 int anInstanceVariable;

 public abstract int aMethodMyNonAbstractSubclassesMustImplement();

 public void doSomething() {
 . . . // a normal method
 }
}

public class AConcreteSubClass extends MyFirstAbstractClass {
 public int aMethodMyNonAbstractSubclassesMustImplement() {
 . . . // we *must* implement this method
 }
}

and some attempted uses of these classes:

Object a = new MyFirstAbstractClass(); // illegal, is abstract
Object c = new AConcreteSubClass(); // OK, a concrete subclass

Notice that abstract methods need no implementation; it is required that non-abstract
subclasses provide an implementation. The abstract class simply provides the template for the
methods, which are implemented by others later. In fact, in the Java class library, there are several
abstract classes that have no documented subclasses in the system, but simply provide a base
from which you can subclass in your own programs. If you look at the diagrams in Appendix
B, abstract classes are shaded even darker than final classes and are quite common in the
library.

030-4s CH15.i 1/29/96, 11:02 AM319

320

Modifiers
M

T W
R

F S S

DAYDAY

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

Using an abstract class to embody a pure design—that is, nothing but abstract methods—is
better accomplished in Java by using an interface (discussed tomorrow). Whenever a design calls
for an abstraction that includes instance state and/or a partial implementation, however, an
abstract class is your only choice. In previous object-oriented languages, abstract classes were
simply a convention. They proved so valuable that Java supports them not only in the form
described here, but in the purer, richer form of interfaces, which will be described tomorrow.

Summary
Today, you learned how variables and methods can control their visibility and access by other
classes via the four P’s of protection: public, package, protected, and private. You also learned
that, although instance variables are most often declared private, declaring accessor methods
allows you to control the reading and writing of them separately. Protection levels allow you,
for example, to separate cleanly your public abstractions from their concrete representations.

You also learned how to create class variables and methods, which are associated with the class
itself, and how to declare final variables, methods, and classes to represent constants, fast or
secure methods, and classes, respectively.

Finally, you discovered how to declare and use abstract classes, which cannot be instantiated,
and abstract methods, which have no implementation and must be overridden in subclasses.
Together, they provide a template for subclasses to fill in and act as a variant of the powerful
interfaces of Java that you’ll study tomorrow.

Q&A
Q Why are there so many different levels of protection in Java?

A Each level of protection, or visibility, provides a different view of your class to the
outside world. One view is tailored for everyone, one for classes in your own package,
another for your class and its subclasses only, and the final one for just within your
class. Each is a logically well-defined and useful separation that Java supports directly
in the language (as opposed to, for example, accessor methods, which are a convention
you must follow).

Q Won’t using accessor methods everywhere slow down my Java code?

A Not always. Soon, Java compilers will be smart enough to make them fast automati-
cally, but if you’re concerned about speed, you can always declare accessor methods to
be final, and they’ll be just as fast as direct instance variable accesses.

030-4s CH15.i 1/29/96, 11:02 AM320

321

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

15

P2/V4 /SQC5 TY Java in 21 Days 030-4 colleen 12.27.95 Ch 15 LP#3

Q Are class (static) methods inherited just like instance methods?

A Yes, and no. The beta compiler still allows you to inherit them, but according to one
of the oddest changes in the beta language specifications, static (class) methods are
now final by default. How, then, can you ever declare a non-final class method? The
answer is that you can’t! Inheritance of class methods is not allowed, breaking the
symmetry with instance methods. Because this goes against a part of Java’s philosophy
(of making everything as simple as possible) perhaps it will be reversed in a later
release. For now, follow the compiler and assume that class methods are inherited
normally.

Q Based on what I’ve learned, it seems like final abstract or private abstract
methods or classes don’t make sense. Are they legal?

A Nope, they’re compile-time errors, as you have guessed. To be useful, abstract
methods must be overridden, and abstract classes must be subclassed, but neither of
those two operations would be legal if they were also public or final.

Q What about static transient or final transient?

A Those are also compile-time errors. Because a “transient” part of an object’s state is
assumed to be changing within each instance, it can not be static or final. This
restriction matters only in the future, though, when transient is actually used by Java.

030-4s CH15.i 1/29/96, 11:02 AM321

323

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

M
T W

R
F S S

Packages and
Interfaces

by Charles L. Perkins

16
WEEK

3

16

030-4s CH16.i 1/29/96, 11:09 AM323

324

Packages and Interfaces
M

T W
R

F S S

DAYDAY

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

When you examine a new language feature, you should ask yourself two questions:

1. How can I use it to better organize the methods and classes of my Java program?

2. How can I use it while writing the Java code in my methods?

The first is often called programming in the large, and the second, programming in the small.
Bill Joy, a founder of Sun Microsystems, likes to say that Java feels like C when programming
in the small and like Smalltalk when programming in the large. What he means by that is that
Java is familiar and powerful like any C-like language while you’re coding, but has the
extensibility and expressive power of a pure object-oriented language like Smalltalk while you’re
designing.

The separation of “designing” from “coding” was one of the most fundamental advances in
programming in the past few decades, and object-oriented languages such as Java implement a
strong form of this separation. The first part of this separation has already been described on
previous days: when you develop a Java program, first you design the classes and decide on the
relationships between these classes, and then you implement the Java code needed for each of
the methods in your design. If you are careful enough with both these processes, you can change
your mind about aspects of the design without affecting anything but small, local pieces of your
Java code, and you can change the implementation of any method without affecting the rest of
the design.

As you begin to explore more advanced Java programming, however, you’ll find that this simple
model becomes too limiting. Today, you’ll explore these limitations, for programming in the
large and in the small, to motivate the need for packages and interfaces. Let’s start with packages.

Packages
Packages are Java’s way of doing large-scale design and organization. They are used both to
categorize and group classes. Let’s explore why you might need to use packages.

Programming in the Large
When you begin to develop Java programs that use a large number of classes, you will quickly
discover some limitations in the model presented thus far for designing and building them.

For one thing, as the number of classes you build grows, the likelihood of your wanting to reuse
the short, simple name of some class increases. If you use classes that you’ve built in the past,
or that someone else has built for you (such as the classes in the Java library), you may not
remember—or even know—that these class names are in conflict. Being able to “hide” a class
inside a package becomes useful.

030-4s CH16.i 1/29/96, 11:09 AM324

325

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

Here’s a simple example of the creation of a package in a Java source file:

package myFirstPackage;

public class MyPublicClass extends ItsSuperclass {
 . . .
}

Note: If a package statement appears in a Java source file, it must be the first thing
in that file (except for comments and white space, of course).

You first declare the name of the package by using a package statement. Then you define a class,
just as you would normally. That class, and any other classes also declared inside this same
package name, are grouped together. (These other classes are usually located in other, separate
source files.)

Packages can be further organized into a hierarchy somewhat analogous to the inheritance
hierarchy, where each “level” usually represents a smaller, more specific grouping of classes. The
Java class library itself is organized along these lines (see the diagrams in Appendix B). The top
level is called java; the next level includes names such as io, net, util, and awt. The last has an
even lower level, which includes the package image. The ColorModel class, located in the package
image, can be uniquely referred to anywhere in your Java code as java.awt.image.ColorModel.

Note: By convention, the first level of the hierarchy specifies the (globally unique)
name of the company that developed the Java package(s). For example, Sun
Microsystem’s classes, which are not part of the standard Java environment, all
begin with the prefix sun. The standard package, java, is an exception to this rule
because it is so fundamental and because it might someday be implemented by
multiple companies.

Starting with the beta release, Sun has specified a more formal procedure for
package naming to be followed in the future. The top-level package name space
now reserves, for the use of this procedure, all the uppercase abbreviations used for
top-level domains on the Internet (EDU, COM, GOV, FR, US, and so on). These
reserved names form the first part of all new package names, which are prefixed by
a reversed version of your domain name. By this procedure, the sun packages would
be called COM.sun. If you’re further down in your company’s or university’s domain
tree, you can keep reversing to your heart’s content:
EDU.harvard.cs.projects.ai.learning.myPackage. Because domain names are
already guaranteed to be unique globally, this nicely solves that thorny problem,

030-4s CH16.i 1/29/96, 11:09 AM325

326

Packages and Interfaces
M

T W
R

F S S

DAYDAY

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

and as a bonus, the applets and packages from the potentially millions of Java
programmers out there will automatically be stored into a growing hierarchy below
your classes directory, giving you a way to find and categorize them all in a
comprehensible manner.

Because each Java class should be located in a separate source file, the grouping of classes
provided by a hierarchy of packages is analogous to the grouping of files into a hierarchy of
directories on your file system. The Java compiler reinforces this analogy by requiring you to
create a directory hierarchy under your classes directory that exactly matches the hierarchy of the
packages you have created, and to place a class into the directory with the same name (and level)
as the package in which it’s defined.

For example, the directory hierarchy for the Java class library exactly mirrors its package
hierarchy. On UNIX, for example, the class referenced as java.awt.image.ColorModel is stored
in a file named ColorModel.class in the directory named .../classes/java/awt/image (the ... is the
path where Java was installed on your computer). In particular, if you have created a package
within myFirstPackage called mySecondPackage, by declaring a class:

package myFirstPackage.mySecondPackage;

public class AnotherPublicClass extends AnotherSuperclass {
 . . .
}

the Java source file (called AnotherPublicClass.java) must be located in a directory below the
current directory called classes/myFirstPackage/mySecondPackage for the compiler (javac) to
find it. When the compiler generates the file AnotherPublicClass.class, it places it into this same
directory so that the java interpreter can find it. Both the compiler and the interpreter expect
(and enforce) the hierarchy.

Note: This also means that, for today’s first example, the source file would be
named APublicClass.java and located in the directory called classes/
myFirstPackage. What happens when, as in earlier examples in the book, classes are
defined without a package statement? The compiler places such classes in a default,
unnamed package, and their .java and .class files can be located in the current
directory or in the classes directory below it.

To be more precise, any occurrence of the phrase “the current directory” in this
section should be replaced by “any of the directories listed in the class path.” The
compiler and interpreter both search this list of paths to find any classes you
reference.

030-4s CH16.i 1/29/96, 11:09 AM326

327

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

You can specify a class path on the command line when running javac or java, or
more permanently, by changing a special environment variable called
CLASSPATH. (For more details, read the documentation in your Java release.)

Programming in the Small
When you refer to a class by name in your Java code, you are using a package. Most of the time
you aren’t aware of it because many of the most commonly used classes in the system are in a
package that the Java compiler automatically imports for you, called java.lang. So whenever
you saw this, for example:

String aString;

something more interesting than you might have thought was occurring. What if you want to
refer to the class you created at the start of this section, the one in the package myFirstPackage?
If you try this:

MyPublicClass someName;

the compiler complains—the class MyPublicClass is not defined in the package java.lang. To
solve this problem, Java allows any class name to be prefixed by the name of the package in which
it was defined to form a unique reference to the class:

myFirstPackage.MyPublicClass someName;

Note: Recall that by convention, package names tend to begin with a lowercase
letter to distinguish them from class names. Thus, for example, in the full name of
the built-in String class, java.lang.String, it’s easier to separate the package name
from the class name visually.

Suppose you want to use a lot of classes from a package, a package with a long name, or both.
You don’t want to have to refer to your classes as that.really.long.package.name.ClassName.
Java allows you to “import” the names of those classes into your program. They then act just as
java.lang classes do, and you can refer to them without a prefix. For example, to use the really
long class name in the last example more easily, you can write the following:

import that.really.long.package.name.ClassName;

ClassName anObject;
// and you can use ClassName directly as many times as you like

030-4s CH16.i 1/29/96, 11:10 AM327

328

Packages and Interfaces
M

T W
R

F S S

DAYDAY

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

Note: All import statements must appear after any package statement but before
any class definitions. Thus, they are “stuck” at the top of your source file.

What if you want to use several classes from that same package? Here’s an attempt from a (soon-
to-be-tired) programmer:

that.really.long.package.name.ClassOne first;
that.really.long.package.name.ClassTwo second;
that.really.long.package.name.ClassThree andSoOn;

Here’s one from a more savvy programmer, who knows how to import a whole package of public
classes:

import that.really.long.package.name.*;

ClassOne first;
ClassTwo second;
ClassThree andSoOn;

!! Warning: The asterisk (*) in this example is not exactly the one you might use at a
command prompt to specify the contents of a directory. For example, if you ask to
list the contents of the directory classes/java/awt/*, that list includes all the .class
files and subdirectories such as image and peer. Writing import java.awt.* does not
import subpackages such as image and peer. To import all the classes in a complex
package hierarchy, you must explicitly import each level of the hierarchy by hand.

If you plan to use a class or a package only a few times in your source file, it’s probably not worth
importing it. The rule of thumb is to ask yourself: “Does the loss in clarity I’d introduce by
referring to just the class name outweigh the convenience of not having to type the extra
characters?” If it does, don’t use import. Remember that the package name lets the reader know
where to find more information about the class right at the place you’re using it, rather than at
the top of the file, where the import statements are located.

What if you have the following in class A’s source file?

package packageA;

public class ClassName {
 . . .
}

public class ClassA {
 . . .
}

030-4s CH16.i 1/29/96, 11:10 AM328

329

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

and in class B’s source file you have this:

package packageB;

public class ClassName {
 . . .
}

public class ClassB {
 . . .
}

Then you the write the following, somewhere else:

import packageA;
import packageB;

ClassName anObject; // which ClassName did you mean?

There are two possible interpretations for the class you intended, one in packageA and one in
packageB. Because this is ambiguous, what should the poor compiler do? It generates an error,
of course, and you have to be more explicit about which one you intended. Here’s an example:

import packageA.*;
import packageB.*;

packageA.ClassName anObject; // now OK
packageB.ClassName anotherObject; // also OK

ClassA anAObject; // was never a problem
ClassB aBObject; // ditto

Note: You may wonder about the numerous declarations that appear as examples
in today’s lesson. Declarations are good examples because they’re the simplest
possible way of referencing a class name. Any use of a class name (in your extends
clause, for example, or in new ClassName()) obeys the same rules.

Hiding Classes
The astute reader may have noticed that the discussion of importing with an asterisk (*) stated
that it imported a whole package of public classes. Why would you want to have classes of any
other kind? Take a look at this:

package collections;

public class LinkedList {
 private Node root;

030-4s CH16.i 1/29/96, 11:11 AM329

330

Packages and Interfaces
M

T W
R

F S S

DAYDAY

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

 public void add(Object o) {
 root = new Node(o, root);
 }
 . . .
}

class Node { // not public
 private Object contents;
 private Node next;

 Node(Object o, Node n) {
 contents = o;
 next = n;
 }
 . . .
}

Note: If this were all in one file, you might be violating one of the compiler’s
conventions: only one class should be located in each Java source file. Actually, the
compiler cares only about every public class being in a separate file (although it still
is good style to use separate files for each class).

The goal of the LinkedList class is to provide a set of useful public methods (such as add()) to
any other classes that might want to use them. These other classes could care less about any
support classes LinkedList needs to get its job done, and would prefer to not “see” them when
using LinkedList. In addition, LinkedList may feel that the Node class is local to its implemen-
tation and should not be seen by any other classes.

For methods and variables, this would be addressed by the four Ps of protection discussed
yesterday: private, protected, package, and public, listed in order of increasing visibility.
You’ve already explored many public classes, and because both private and protected really
make sense only when you’re inside a class definition, you cannot put them outside of one as
part of defining a new class. LinkedList might really like to say “only classes in my source file
can see this class,” but because, by convention, each class is located in a separate source file, this
would be a little-needed, over-narrow approach.

Instead, LinkedList declares no protection modifier, which is equivalent to saying package. Now
the class can be seen and used only by other classes in the same package in which it was defined.
In this case, it’s the collections package. You might use LinkedList as follows:

import collections.*; // only imports public classes

LinkedList aLinkedList;
/* Node n; */ // would generate a compile-time error

aLinkedList.add(new Integer(1138));
aLinkedList.add(“THX-”);
. . .

030-4s CH16.i 1/29/96, 11:11 AM330

331

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

Note: You also can import or declare a LinkedList as collections.LinkedList in
this example. Because LinkedList refers to Node, that class is automatically loaded
and used, and the compiler verifies that LinkedList (as part of package collec-
tions) has the right to create and use the Node class. You still do not have that right,
though, just as in the example.

One of the great powers of hidden classes is that even if you use them to introduce a great deal
of complexity into the implementation of some public class, all the complexity is hidden when
that class is imported. Thus, creating a good package consists of defining a small, clean set of
public classes and methods for other classes to use, and then implementing them by using any
number of hidden (package) support classes. You’ll see another use for hidden classes later today.

Interfaces
Interfaces, like the abstract classes and methods you saw yesterday, provide templates of behavior
that other classes are expected to implement, but they are much more powerful. Let’s see why
you might need such power.

Programming in the Large
When you first begin to design object-oriented programs, the class hierarchy seems almost
miraculous. Within that single tree you can express a hierarchy of numeric types (number,
complex, float, rational, integer), many simple-to-moderately-complex relationships between
objects and processes in the world, and any number of points along the axis from abstract/general
to concrete/specific. After some deeper thought or more complex design experience, this
wonderful tree begins to feel restrictive—at times, like a straitjacket. The very power and
discipline you’ve achieved by carefully placing only one copy of each idea somewhere in the tree
can come back to haunt you whenever you need to cross-fertilize disparate parts of that tree.

Some languages address these problems by introducing more flexible run-time power, such as
the code block and the perform: method of Smalltalk; others choose to provide more complex
inheritance hierarchies, such as multiple-inheritance. With the latter complexity comes a host
of confusing and error-prone ambiguities and misunderstandings, and with the former, a harder
time implementing safety and security and a harder language to explain and teach. Java has
chosen to take neither of these paths but, in the spirit of objective-C’s protocols, has adopted
a separate hierarchy altogether to gain the expressive power needed to loosen the straitjacket.

This new hierarchy is a hierarchy of interfaces. Interfaces are not limited to a single superclass,
so they allow a form of multiple-inheritance. But they pass on only method descriptions to their

030-4s CH16.i 1/29/96, 11:12 AM331

332

Packages and Interfaces
M

T W
R

F S S

DAYDAY

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

children, not method implementations nor instance variables, which helps to eliminate many
of the complexities of full multiple-inheritance.

Interfaces, like classes, are declared in source files, one interface to a file. Like classes, they also
are compiled into .class files. In fact, almost everywhere that this book has a class name in any
of its examples or discussions, you can substitute an interface name. Java programmers often say
“class” when they actually mean “class or interface.” Interfaces complement and extend the
power of classes, and the two can be treated almost exactly the same. One of the few differences
between them is that an interface cannot be instantiated: new can create only an instance of a class.
Here’s the declaration of an interface:

package myFirstPackage;

public interface MyFirstInterface extends Interface1, Interface2, ... {
 . . .
 // all methods in here will be public and abstract
 // all variables will be public, static, and final
}

This example is a rewritten version of the first example in today’s lesson. It now adds a new
public interface to the package myFirstPackage, instead of a new public class. Note that
multiple parents can be listed in an interface’s extends clause.

Note: If no extends clause is given, interfaces do not default to inheriting from
Object, because Object is a class. In fact, interfaces have no “topmost” interface
from which they are all guaranteed to descend.

Any variables or methods defined in a public interface are implicitly prefixed by the modifiers
listed in the comments. Exactly those modifiers can (optionally) appear, but no others:

public interface MySecondInterface {
 public static final int theAnswer = 42; // both lines OK
 public abstract int lifeTheUniverseAndEverything();

 long bingBangCounter = 0; // OK, becomes public, static, final
 long ageOfTheUniverse(); // OK, becomes public and abstract

 protected int aConstant; // not OK
 private int getAnInt(); // not OK
}

Note: If an interface is declared non-public (that is, package), no public modifiers
are implicitly prefixed. If you say public inside such an interface, you’re making a
real statement of public-ness, not simply a redundant statement. It’s not often,

030-4s CH16.i 1/29/96, 11:12 AM332

333

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

though, that an interface is shared only by the classes inside a package, and not by
the classes using that package as well.

Design Versus Implementation Revisited
One of the most powerful things interfaces add to Java is the capability of separating design
inheritance from implementation inheritance. In the single-class inheritance tree, these two are
inextricably bound. Sometimes, you want to be able to describe an interface to a class of objects
abstractly, without having to implement a particular implementation of it yourself. You could
create an abstract class, such as those described yesterday. In order for a new class to use this
type of “interface,” however, it has to become a subclass of the abstract class and accept its
position in the tree. If this new class also needs to be a subclass of some other class in the tree,
for implementation reasons, what could it do? What if it wants to use two such “interfaces” at
once? Watch this:

class FirstImplementor extends SomeClass implements MySecondInterface {
 . . .
}

class SecondImplementor implements MyFirstInterface, MySecondInterface {
 . . .
}

The first class above is “stuck” in the single inheritance tree just below the class SomeClass but
is free to implement an interface as well. The second class is stuck just below Object but has
implemented two interfaces (it could have implemented any number of them). Implementing
an interface means promising to implement all the methods specified in it.

Note: Although an abstract class is allowed to ignore this strict requirement, and
can implement any subset of the methods (or even none of them), all its non-
abstract subclasses must still obey it.

Because interfaces are in a separate hierarchy, they can be “mixed-in” to the classes in the single
inheritance tree, allowing the designer to sprinkle an interface anywhere it is needed throughout
the tree. The single-inheritance class tree can thus be viewed as containing only the implemen-
tation hierarchy; the design hierarchy (full of abstract methods, mostly) is contained in the
multiple-inheritance interface tree. This is a powerful way of thinking about the organization
of your program, and though it takes a little getting used to, it’s also a highly recommended one.

Let’s examine one simple example of this separation—creating the new class Orange. Suppose
you already have a good implementation of the class Fruit, and an interface, Fruitlike, that

030-4s CH16.i 1/29/96, 11:13 AM333

334

Packages and Interfaces
M

T W
R

F S S

DAYDAY

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

represents what Fruits are expected to be able to do. You want an orange to be a fruit, but you
also want it to be a spherical object that can be tossed, rotated, and so on. Here’s how to express
it all:

interface Fruitlike extends Foodlike {
 void decay();
 void squish();
 . . .
}

class Fruit extends Food implements Fruitlike {
 private Color myColor;
 private int daysTilIRot;
 . . .
}

interface Spherelike {
 void toss();
 void rotate();
 . . .
}

class Orange extends Fruit implements Spherelike {
 . . . // toss()ing may squish() me (unique to me)
}

You’ll use this example again later today. For now, notice that class Orange doesn’t have to say
implements Fruitlike because, by extending Fruit, it already has!

Note: The reverse is not true, however. Implementing an interface implies nothing
about the implementation hierarchy of a class. By the way, if you had used a more
traditional way of designing classes (though not necessarily better), the class Fruit
would be the interface description, as well as being the implementation.

One of the nice things about this structure is that you can change your mind about what class
Orange extends (if a really great Sphere class is suddenly implemented, for example), yet class
Orange will still understand the same two interfaces:

class Sphere implements Spherelike { // extends Object
 private float radius;
 . . .
}

class Orange extends Sphere implements Fruitlike {
 . . . // users of Orange never need know about the change!
}

The canonical use of the “mix-in” capability of interfaces is to allow several classes, scattered
across the single-inheritance tree, to implement the same set of methods (or even just one).

030-4s CH16.i 1/29/96, 11:13 AM334

335

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

Although these classes share a common superclass (at worst, Object), it is likely that below this
common parent are many subclasses that are not interested in this set of methods. Adding the
methods to the parent class, or even creating a new abstract class to hold them and inserting
it into the hierarchy above the parent, is not an ideal solution.

Instead, use an interface to specify the method(s). It can be implemented by every class that
shares the need and by none of the other classes that would have been forced to “understand”
them in the single-inheritance tree. (Design is applied only where needed.) Users of the interface
can now specify variables and arguments to be of a new interface type that can refer to any of
the classes that implement the interface (as you’ll see below)—a powerful abstraction. Some
examples of “mix-in” facilities are object persistence (via read() and write() methods),
producing or consuming something (the Java library does this for images), and providing
generally useful constants. The last of these might look like this:

public interface PresumablyUsefulConstants {
 public static final int oneOfThem = 1234;
 public static final float another = 1.234F;
 public static final String yetAnother = “1234”;
 . . .
}

public class AnyClass implements PresumablyUsefulConstants {
 public static void main(String argV[]) {
 double calculation = oneOfThem * another;

 System.out.println(“hello “ + yetAnother + calculation);
 . . .
 }
}

This outputs the thoroughly meaningless hello 12341522.756, but in the process demonstrates
that the class AnyClass can refer directly to all the variables defined in the interface
PresumablyUsefulConstants. Normally, you refer to such variables and constants via the class,
as for the constant Integer.MIN_VALUE, which is provided by the Integer class. If a set of
constants is large or is widely used, the shortcut of being able to refer to them directly (as
oneOfThem rather than as PresumablyUsefulConstants.oneOfThem) makes it worth placing them
into an interface and implementing it widely.

Programming in the Small
How do you actually use these interfaces? Remember that almost everywhere that you can use
a class, you can use an interface instead. Let’s try to make use of the interface MySecondInterface
defined previously:

MySecondInterface anObject = getTheRightObjectSomehow();

long age = anObject.ageOfTheUniverse();

030-4s CH16.i 1/29/96, 11:13 AM335

336

Packages and Interfaces
M

T W
R

F S S

DAYDAY

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

Once you declare anObject to be of type MySecondInterface, you can use anObject as the receiver
of any message that the interface defines (or inherits). What does the previous declaration really
mean?

When a variable is declared to be of an interface type, it simply means that any object the variable
refers to is expected to have implemented that interface—that is, it is expected to understand
all the methods that interface specifies. It assumes that a promise made between the designer of
the interface and its eventual implementors has been kept. Although this is a rather abstract
notion, it allows, for example, the previous code to be written long before any classes that qualify
are actually implemented (or even created!). In traditional object-oriented programming, you
are forced to create a class with “stub” implementations to get the same effect.

Here’s a more complicated example:

Orange anOrange = getAnOrange();
Fruit aFruit = (Fruit) getAnOrange();
Fruitlike aFruitlike = (Fruitlike) getAnOrange();
Spherelike aSpherelike = (Spherelike) getAnOrange();

aFruit.decay(); // fruits decay
aFruitlike.squish(); // and squish

aFruitlike.toss(); // not OK
aSpherelike.toss(); // OK

anOrange.decay(); // oranges can do it all
anOrange.squish();
anOrange.toss();
anOrange.rotate();

Declarations and casts are used in this example to restrict an orange to act more like a mere fruit
or sphere, simply to demonstrate the flexibility of the structure built previously. If the second
structure built (the one with the new Sphere class) were being used instead, most of this code
would still work. (In the line bearing Fruit, all instances of Fruit need to be replaced by Sphere.
The later use of aFruit.decay() could be replaced by, for example, aSphere.rotate().
Everything else is the same.)

Note: The direct use of (implementation) class names is for demonstration pur-
poses only. Normally, you would use only interface names in those declarations
and casts so that none of the code in the example would have to change to support
the new structure.

030-4s CH16.i 1/29/96, 11:13 AM336

337

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

Interfaces are implemented and used throughout the Java class library, whenever a behavior is
expected to be implemented by a number of disparate classes. In Appendix B you’ll find, for
example, the interfaces java.lang.Runnable, java.util.Enumeration, java.util.Observable,
java.awt.image.ImageConsumer, and java.awt.image.ImageProducer. Let’s use one of these
interfaces, Enumeration, to revisit the LinkedList example—and to tie together today’s lesson—
by demonstrating a good use of packages and interfaces together:

package collections;

public class LinkedList {
 private Node root;

 . . .
 public Enumeration enumerate() {
 return new LinkedListEnumerator(root);
 }
}

class Node {
 private Object contents;
 private Node next;

 . . .
 public Object contents() {
 return contents;
 }

 public Node next() {
 return next;
 }
}

class LinkedListEnumerator implements Enumeration {
 private Node currentNode;

 LinkedListEnumerator(Node root) {
 currentNode = root;
 }

 public boolean hasMoreElements() {
 return currentNode != null;
 }

 public Object nextElement() {
 Object anObject = currentNode.contents();

 currentNode = currentNode.next();
 return anObject;
 }
}

030-4s CH16.i 1/29/96, 11:14 AM337

338

Packages and Interfaces
M

T W
R

F S S

DAYDAY

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

Here is a typical use of the enumerator:

collections.LinkedList aLinkedList = createLinkedList();
java.util.Enumeration e = aLinkedList.enumerate();

while (e.hasMoreElements()) {
 Object anObject = e.nextElement();
 // do something useful with anObject
}

Notice that although you are using the Enumeration e as though you know what it is, you actually
do not. In fact, it is an instance of a hidden class (LinkedListEnumerator) that you cannot see
or use directly. By a combination of packages and interfaces, the LinkedList class has managed
to provide a transparent public interface to some of its most important behavior (via the already
defined interface java.util.Enumeration) while still encapsulating (hiding) its two implemen-
tation (support) classes.

Handing out an object like this is sometime called vending. Often, the “vendor” gives out an
object that a receiver can’t create itself, but that it knows how to use. By giving it back to the
vendor, the receiver can prove it has a certain capability, authenticate itself, or do any number
of useful tasks—all without knowing much about the vended object. This is a powerful
metaphor that can be applied in a broad range of situations.

Summary
Today, you learned how packages can be used to collect and categorize classes into meaningful
groups. Packages are arranged in a hierarchy, which not only better organizes your programs,
but allows you and the millions of Java programmers out on the Net to name and share their
projects uniquely with one another.

You also learned how to use packages, both your own and the many preexisting ones in the Java
class library.

You then discovered how to declare and use interfaces, a powerful mechanism for extending the
traditional single-inheritance of Java’s classes and for separating the design inheritance from the
implementation inheritance in your programs. Interfaces are often used to call shared methods
when the exact class involved is not known. You’ll see further uses of interfaces tomorrow and
the day after.

Finally, packages and interfaces can be combined to provide useful abstractions, such as
Enumeration, that appear simple yet are actually hiding almost all their (complex) implementa-
tion from their users. This is a powerful technique.

030-4s CH16.i 1/29/96, 11:14 AM338

339

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

Q&A
Q What will happen to package/directory hierarchies when some sort of archiving

is added to Java?

A Being able to download over the Net a whole archive of packages, classes, and re-
sources is something that Java systems may soon be able to do. When this happens,
the simple mapping between directory hierarchy and package hierarchy will break
down, and you will not be able to tell as easily where each class is stored (that is, in
which archive). Presumably these new, advanced Java systems will provide tools that
make this task (and compiling and linking your program in general) much easier.

Q Can you say import some.package.B* to import all the classes in that package that
begin with B?

A No, the import asterisk (*) does not act like a command-line asterisk.

Q Then what exactly does import-ing with an * mean?

A Combining everything said previously, this precise definition emerges: it imports all
the public classes that are directly inside the package named, and not inside one of its
subpackages. (You can only import exactly this set of classes, or exactly one explicitly
named class, from a given package.) By the way, Java only “loads” the information for
a class when you actually refer to that class in your code, so the * form of import is no
less efficient than naming each class individually.

Q Is there any way that a hidden (package) class can somehow be forced out of
hiding?

A A bizarre case in which a hidden class can be forced into visibility occurs if it has a
public superclass and someone casts an instance of it to the superclass. Any public
methods of that superclass can now be called via your hidden class instance, even if
those methods were not thought of by you as public when overridden in the hidden
class. Usually, these public methods are ones you don’t mind having your instances
perform, or you wouldn’t have declared them to have that public superclass. This isn’t
always the case. Many of the system’s built-in classes are public—you may have no
choice. Luckily, this is a rare event.

Q Why is full multiple-inheritance so complex that Java abandoned it?

A It’s not so much that it is too complex, but that it makes the language overly compli-
cated—and as you’ll learn on the final day, this can cause larger systems to be less
trustworthy and thus less secure. For example, if you were to inherit from two
different parents, each having an instance variable with the same name, you would be
forced to allow the conflict and explain how the exact same references to that variable
name in each of your superclasses, and in you (all three), are now different. Instead of

030-4s CH16.i 1/29/96, 11:15 AM339

340

Packages and Interfaces
M

T W
R

F S S

DAYDAY

16

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12/28/95 Ch 16 LP#3

being able to call “super” methods to get more abstract behavior accomplished, you
would always need to worry about which of the (possibly many) identical methods
you actually wished to call in which parent. Java’s run-time method dispatching would
have to be more complex as well. Finally, because so many people would be providing
classes for reuse on the Net, the normally manageable conflicts that would arise in
your own program would be confounded by millions of users mixing and matching
these fully multi-inherited classes at will. In the future, if all these issues are resolved,
more powerful inheritance may be added to Java, but its current capabilities are
already sufficient for 99 percent of your programs.

Q abstract classes don’t have to implement all the methods in an interface them-
selves, but do all their subclasses have to?

A Actually, no. Because of inheritance, the precise rule is that an implementation must
be provided by some class for each method, but it doesn’t have to be your class. This is
analogous to when you are the subclass of a class that implements an interface for you.
Whatever the abstract class doesn’t implement, the first nonabstract class below it
must implement. Then, any further subclasses need do nothing further.

Q You didn’t mention callbacks. Aren’t they an important use of interfaces?

A Yes, but I didn’t mention them because a good example would be too bulky in the
text. These callbacks are often used in user interfaces (such as window systems) to
specify what set of methods are going to be sent whenever the user does a certain set of
things (such as clicking the mouse somewhere, typing, and so forth). Because the user
interface classes should not “know” anything about the classes using them, an
interface’s ability to specify a set of methods separate from the class tree is crucial in
this case. Callbacks using interfaces are not as general as using, for example, the
perform: method of Smalltalk, however, because a given object can request that a user
interface object “call it back” only by using a single method name. Suppose that object
wanted two user interfaces objects of the same class to call it back, using different
names to tell them apart? It cannot do this in Java, and it is forced to use special state
and tests to tell them apart. (I warned you that it was complicated!). So, although
interfaces are quite valuable in this case, they are not the ideal callback facility.

030-4s CH16.i 1/29/96, 11:15 AM340

341

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

17

M
T W

R
F S S

Exceptions

by Charles L. Perkins

WEEK

3

1717

030-4s CH17.i 1/29/96, 11:18 AM341

342

Exceptions
M

T W
R

F S S

DAYDAY

17

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

Today, you’ll learn about exceptional conditions in Java:

■■ How to declare when you are expecting one

■■ How to handle them in your code

■■ How to create them

■■ How your code is limited, yet made more robust by them

Let’s begin by motivating why new ways of handling exceptions were invented.

Programming languages have long labored to solve the following common problem:

int status = callSomethingThatAlmostAlwaysWorks();

if (status == FUNNY_RETURN_VALUE) {
 . . . // something unusual happened, handle it
 switch(someGlobalErrorIndicator) {
 . . . // handle more specific problems
 }
} else {
 . . . // all is well, go your merry way
}

Somehow this seems like a lot of work to do to handle a rare case. What’s worse, if the function
called returns an int as part of its normal answer, you must distinguish one special integer
(FUNNY_RETURN_VALUE) to indicate an error. What if that function really needs all the integers?
You must do something even more ugly.

Even if you manage to find a distinguished value (such as NULL in C for pointers, -1 for integers,
and so forth), what if there are multiple errors that must be produced by the same function?
Often, some global variable is used as an error indicator. The function stores a value in it and
prays that no one else changes it before the caller gets to handle the error. Multiple errors
propagate badly, if at all, and there are numerous problems with generalizing this to large
programs, complex errors, and so forth.

Luckily, there is an alternative: using exceptions to help you handle exceptional conditions in
your program, making the normal, nonexceptional code cleaner and easier to read.

An exception is any object that is an instance of the class Throwable (or any of
its subclasses).

Programming in the Large
When you begin to build complex programs in Java, you discover that after designing the classes
and interfaces, and their methods descriptions, you still have not defined all the behavior of your
objects. After all, an interface describes the normal way to use an object and doesn’t include any

NEW
TERM

☛

030-4s CH17.i 1/29/96, 11:18 AM342

343

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

17

strange, exceptional cases. In many systems, the documentation takes care of this problem by
explicitly listing the distinguished values used in “hacks” like the previous example. Because the
system knows nothing about these hacks, it cannot check them for consistency. In fact, the
compiler can do nothing at all to help you with these exceptional conditions, in contrast to the
helpful warnings and errors it produces if a method is used incorrectly.

More importantly, you have not captured in your design this important aspect of your program.
Instead, you are forced to make up a way to describe it in the documentation and hope you have
not made any mistakes when you implement it later. What’s worse, everyone else makes up a
different way of describing the same thing. Clearly, you need some uniform way of declaring the
intentions of classes and methods with respect to these exceptional conditions. Java provides just
such a way:

public class MyFirstExceptionalClass {
 public void anExceptionalMethod() throws MyFirstException {
 . . .
 }
}

Here, you warn the reader (and the compiler) that the code . . . may throw an exception called
MyFirstException.

You can think of a method’s description as a contract between the designer of that method (or
class) and you, the caller of the method. Usually, this description tells the types of a method’s
arguments, what it returns, and the general semantics of what it normally does. You are now
being told, as well, what abnormal things it can do. This is a promise, just like the method
promises to return a value of a certain type, and you can count on it when writing your code.
These new promises help to tease apart and make explicit all the places where exceptional
conditions should be handled in your program, and that makes large-scale design easier.

Because exceptions are instances of classes, they can be put into a hierarchy that can naturally
describe the relationships among the different types of exceptions. In fact, if you take a moment
to glance in Appendix B at the diagrams for java.lang-errors and java.lang-exceptions, you’ll
see that the class Throwable actually has two large hierarchies of classes beneath it. The roots of
these two hierarchies are subclasses of Throwable called Exception and Error. These hierarchies
embody the rich set of relationships that exist between exceptions and errors in the Java run-time
environment.

When you know that a particular kind of error or exception can occur in your method, you are
supposed to either handle it yourself or explicitly warn potential callers about the possibility via
the throws clause. Not all errors and exceptions must be listed; instances of either class Error or
RuntimeException (or any of their subclasses) do not have to be listed in your throws clause. They
get special treatment because they can occur anywhere within a Java program and are usually
conditions that you, as the programmer, did not directly cause. One good example is the
OutOfMemoryError, which can happen anywhere, at any time, and for any number of reasons.

030-4s CH17.i 1/29/96, 11:19 AM343

344

Exceptions
M

T W
R

F S S

DAYDAY

17

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

Note: You can, of course, choose to list these errors and run-time exceptions if you
like, and the callers of your methods will be forced to handle them, just like a non-
run-time exception.

Whenever you see the word “exception” by itself, it almost always means “excep-
tion or error” (that is, an instance of Throwable). The previous discussion makes it
clear that Exceptions and Errors actually form two separate hierarchies, but except
for the throws clause rule, they act exactly the same.

If you examine the diagrams in Appendix B more carefully, you’ll notice that there are only five
types of exceptions (in java.lang) that must be listed in a throws clause (remember that all
Errors and RuntimeExceptions are exempt):

■■ ClassNotFoundException

■■ IllegalAccessException

■■ InstantiationException

■■ InterrupedException

■■ NoSuchMethodException

Each of these names suggests something that is explicitly caused by the programmer, not some
behind-the-scenes event such as OutOfMemoryError.

If you look further in Appendix B, near the bottom of the diagrams for java.util and java.io,
you’ll see that each package adds some new exceptions. The former is adding two exceptions
somewhat akin to ArrayStoreException and IndexOutOfBoundsException, and so decides to
place them under RuntimeException. The latter is adding a whole new tree of IOExceptions,
which are more explicitly caused by the programmer, and so they are rooted under Exception.
Thus, IOExceptions must be described in throws clauses. Finally, package java.awt defines one
of each style, implicit and explicit.

The Java class library uses exceptions everywhere, and to good effect. If you examine the detailed
API documentation in your Java release, you see that many of the methods in the library have
throws clauses, and some of them even document (when they believe it will make something
clearer to the reader) when they may throw one of the implicit errors or exceptions. This is just
a nicety on the documenter’s part, because you are not required to catch conditions like that.
If it wasn’t obvious that such a condition could happen there, and for some reason you really
cared about catching it, this would be useful information.

030-4s CH17.i 1/29/96, 11:19 AM344

345

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

17

Programming in the Small
Now that you have a feeling for how exceptions can help you design a program and a class library
better, how do you actually use exceptions? Let’s try to use anExceptionalMethod() defined in
today’s first example:

public void anotherExceptionalMethod() throws MyFirstException {
 MyFirstExceptionalClass aMFEC = new MyFirstExceptionalClass();

 aMFEC.anExceptionalMethod();
}

Let’s examine this example more closely. If you assume that MyFirstException is a subclass of
Exception, it means that if you don’t handle it in anotherExceptionalMethod()’s code, you must
warn your callers about it. Because your code simply calls anExceptionalMethod() without doing
anything about the fact that it may throw MyFirstException, you must add that exception to
your throws clause. This is perfectly legal, but it does defer to your caller something that perhaps
you should be responsible for doing yourself. (It depends on the circumstances, of course.)

Suppose that that you feel responsible today and decide to handle the exception. Because you’re
now declaring a method without a throws clause, you must “catch” the expected exception and
do something useful with it:

public void responsibleMethod() {
 MyFirstExceptionalClass aMFEC = new MyFirstExceptionalClass();

 try {
 aMFEC.anExceptionalMethod();
 } catch (MyFirstException m) {
 . . . // do something terribly significant and responsible
 }
}

The try statement says basically: “Try running the code inside these braces, and if there are
exceptions thrown, I will attach handlers to take care of them.” (You first heard about these on
Day 10.) You can have as many catch clauses at the end of a try as you need. Each allows you
to handle any and all exceptions that are instances: of the class listed in parentheses, of any of
its subclasses, or of a class that implements the interface listed in parentheses. In the catch in this
example, exceptions of the class MyFirstException (or any of its subclasses) are being handled.

What if you want to combine both the approaches shown so far? You’d like to handle the
exception yourself, but also reflect it up to your caller. This can be done, by explicitly rethrowing
the exception:

public void responsibleExceptionalMethod() throws MyFirstException {
 MyFirstExceptionalClass aMFEC = new MyFirstExceptionalClass();

 try {
 aMFEC.anExceptionalMethod();

030-4s CH17.i 1/29/96, 11:19 AM345

346

Exceptions
M

T W
R

F S S

DAYDAY

17

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

 } catch (MyFirstException m) {
 . . . // do something responsible
 throw m; // re-throw the exception
 }
}

This works because exception handlers can be nested. You handle the exception by doing
something responsible with it, but decide that it is too important to not give an exception
handler that might be in your caller a chance to handle it as well. Exceptions float all the way
up the chain of method callers this way (usually not being handled by most of them) until at last,
the system itself handles any uncaught ones by aborting your program and printing an error
message. In a stand-alone program, this is not such a bad idea; but in an applet, it can cause the
browser to crash. Most browsers protect themselves from this disaster by catching all exceptions
themselves whenever they run an applet, but you can never tell. If it’s possible for you to catch
an exception and do something intelligent with it, you should.

Let’s see what throwing a new exception looks like. How about fleshing out today’s first example:

public class MyFirstExceptionalClass {
 public void anExceptionalMethod() throws MyFirstException {
 . . .
 if (someThingUnusualHasHappened()) {
 throw new MyFirstException();
 // execution never reaches here
 }
 }
}

Note: throw is a little like a break statement—nothing “beyond it” is executed.

This is the fundamental way that all exceptions are generated; someone, somewhere, had to
create an exception object and throw it. In fact, the whole hierarchy under the class Throwable
would be worth much less if there were not throw statements scattered throughout the code in
the Java library at just the right places. Because exceptions propagate up from any depth down
inside methods, any method call you make might generate a plethora of possible errors and
exceptions. Luckily, only the ones listed in the throws clause of that method need be thought
about; the rest travel silently past on their way to becoming an error message (or being caught
and handled higher in the system).

Here’s an unusual demonstration of this, where the throw, and the handler that catches it, are
very close together:

System.out.print(“Now “);
try {
 System.out.print(“is “);
 throw new MyFirstException();

030-4s CH17.i 1/29/96, 11:20 AM346

347

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

17

 System.out.print(“a “);
} catch (MyFirstException m) {
 System.out.print(“the “);
}
System.out.print(“time.”);

It prints out Now is the time.

Exceptions are really a quite powerful way of partitioning the space of all possible error
conditions into manageable pieces. Because the first catch clause that matches is executed, you
can build chains such as the following:

try {
 someReallyExceptionalMethod();
} catch (NullPointerException n) { // a subclass of RuntimeException
 . . .
} catch (RuntimeException r) { // a subclass of Exception
 . . .
} catch (IOException i) { // a subclass of Exception
 . . .
} catch (MyFirstException m) { // our subclass of Exception
 . . .
} catch (Exception e) { // a subclass of Throwable
 . . .
} catch (Throwable t) {
 . . . // Errors, plus anything not caught above are caught here
}

By listing subclasses before their parent classes, the parent catches anything it would normally
catch that’s also not one of the subclasses above it. By juggling chains like these, you can express
almost any combination of tests. If there’s some really obscure case you can’t handle, perhaps
you can use an interface to catch it instead. That allows you to design your (peculiar) exceptions
hierarchy using multiple inheritance. Catching an interface rather than a class can also be used
to test for a property that many exceptions share but that cannot be expressed in the single-
inheritance tree alone.

Suppose, for example, that a scattered set of your exception classes require a reboot after being
thrown. You create an interface called NeedsReboot, and all these classes implement the interface.
(None of them needs to have a common parent exception class.) Then, the highest level of
exception handler simply catches classes that implement NeedsReboot and performs a reboot:

public interface NeedsReboot { } // needs no contents at all

try {
 someMethodThatGeneratesExceptionsThatImplementNeedsReboot();
} catch (NeedsReboot n) { // catch an interface
 . . . // cleanup
 SystemClass.reboot(); // reboot using a made-up system class
}

By the way, if you need really unusual behavior during an exception, you can place the behavior
into the exception class itself! Remember that an exception is also a normal class, so it can contain

030-4s CH17.i 1/29/96, 11:20 AM347

348

Exceptions
M

T W
R

F S S

DAYDAY

17

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

instance variables and methods. Although using them is a little peculiar, it might be valuable on
a few bizarre occasions. Here’s what this might look like:

try {
 someExceptionallyStrangeMethod();
} catch (ComplexException e) {
 switch (e.internalState()) { // probably an instance variable value
 case e.COMPLEX_CASE: // a class variable of the exception
 e.performComplexBehavior(myState, theContext, etc);
 break;
 . . .
 }
}

The Limitations Placed
on the Programmer

As powerful as all this sounds, isn’t it a little limiting, too? For example, suppose you want to
override one of the standard methods of the Object class, toString(), to be smarter about how
you print yourself:

public class MyIllegalClass {
 public String toString() {
 someReallyExceptionalMethod();
 . . . // returns some String
 }
}

Because the superclass (Object) defined the method declaration for toString() without a throws
clause, any implementation of it in any subclass must obey this restriction. In particular, you
cannot just call someReallyExceptionalMethod(), as you did previously, because it will generate
a host of errors and exceptions, some of which are not exempt from being listed in a throws clause
(such as IOException and MyFirstException). If all the exceptions thrown were exempt, you
would have no problem, but because some are not, you have to catch at least those few exceptions
for this to be legal Java:

public class MyLegalClass {
 public String toString() {
 try {
 someReallyExceptionalMethod();
 } catch (IOException e) {
 } catch (MyFirstException m) {
 }
 . . . // returns some String
 }
}

In both cases, you elect to catch the exceptions and do absolutely nothing with them. Although
this is legal, it is not always the right thing to do. You may need to think for a while to come up
with the best, nontrivial behavior for any particular catch clause. This extra thought and care

030-4s CH17.i 1/29/96, 11:20 AM348

349

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

17

makes your program more robust, better able to handle unusual input, and more likely to work
correctly when used by multiple threads (you’ll see this tomorrow).

MyIllegalClass’s toString() method produces a compiler error to remind you to reflect on
these issues. This extra care will richly reward you as you reuse your classes in later projects and
in larger and larger programs. Of course, the Java class library has been written with exactly this
degree of care, and that’s one of the reasons it’s robust enough to be used in constructing all your
Java projects.

The finally Clause
Finally, for finally. Suppose there is some action that you absolutely must do, no matter what
happens. Usually, this is to free some external resource after acquiring it, to close a file after
opening it, or so forth. To be sure that “no matter what” includes exceptions as well, you use
a clause of the try statement designed for exactly this sort of thing, finally:

SomeFileClass f = new SomeFileClass();

if (f.open(“/a/file/name/path”)) {
 try {
 someReallyExceptionalMethod();
 } finally {
 f.close();
 }
}

This use of finally behaves very much like the following:

SomeFileClass f = new SomeFileClass();

if (f.open(“/a/file/name/path”)) {
 try {
 someReallyExceptionalMethod();
 } catch (Throwable t) {
 f.close();
 throw t;
 }
}

except that finally can also be used to clean up not only after exceptions but after return, break,
and continue statements as well. Here’s a complex demonstration:

public class MyFinalExceptionalClass extends ContextClass {
 public static void main(String argv[]) {
 int mysteriousState = getContext();

 while (true) {
 System.out.print(“Who “);
 try {
 System.out.print(“is “);
 if (mysteriousState == 1)

030-4s CH17.i 1/29/96, 11:21 AM349

350

Exceptions
M

T W
R

F S S

DAYDAY

17

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

 return;
 System.out.print(“that “);
 if (mysteriousState == 2)
 break;
 System.out.print(“strange “);
 if (mysteriousState == 3)
 continue;
 System.out.print(“but kindly “);
 if (mysteriousState == 4)
 throw new UncaughtException();
 System.out.print(“not at all “);
 } finally {
 System.out.print(“amusing “);
 }
 System.out.print(“yet compelling “);
 }
 System.out.print(“man?”);
 }
}

Here is the output produced depending on the value of mysteriousState:

1 Who is amusing
2 Who is that amusing man?
3 Who is that strange amusing Who is that strange amusing . . .
4 Who is that strange but kindly amusing
5 Who is that strange but kindly not at all amusing yet compelling man?

Note: In case 3, the output never ends until you press Ctrl+C. In 4, an error
message generated by the UncaughtException is also printed.

Summary
Today, you learned about how exceptions aid your program’s design, robustness, and
multithreading capability (more on this tomorrow).

You also learned about the vast array of exceptions defined and thrown in the Java class library,
and how to try methods while catch-ing any of a hierarchically ordered set of possible exceptions
and errors. Java’s reliance on strict exception handling does place some restrictions on the
programmer, but you learned that these restrictions are light compared to the rewards.

Finally, the finally clause was discussed, which provides a fool-proof way to be certain that
something is accomplished, no matter what.

030-4s CH17.i 1/29/96, 11:21 AM350

351

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

17

Q&A
Q I’d like to test the last example you gave, but where does getContext() come

from?

A That example wasn’t meant to be an executable program as it stands, but you can turn
it into one as follows. First, remove the clause extends ContextClass from line one.
Then, replace getContext() in the third line with
Integer.parseInt(args[0]). You can now compile, then run, the example via the
following:

java MyFinalExceptionClass N

where N is the mysterious state you want.

Q I’m still not sure I understand the differences between Exceptions, Errors, and
RuntimeExceptions. Is there another way of looking at them?

A Errors are caused by dynamic linking, or virtual machine problems, and are thus too
low-level for most programs to care about (although sophisticated development
libraries and environments probably care a great deal about them).
RuntimeExceptions are generated by the normal execution of Java code, and though
they occasionally reflect a condition you will want to handle explicitly, more often
they reflect a coding mistake by the programmer and simply need to print an error to
help flag that mistake. Exceptions that are not RuntimeExceptions (IOExceptions, for
example) are conditions that, because of their nature, should be explicitly handled by
any robust and well-thought-out code. The Java class library has been written using
only a few of these, but they are extremely important to using the system safely and
correctly. The compiler helps you handle these exceptions properly via its throws
clause checks and restrictions.

Q Is there any way to “get around” the strict restrictions placed on methods by the
throws clause?

A Yes. Suppose you thought long and hard and have decided that you need to circum-
vent this restriction. This is almost never the case, because the right solution is to go
back and redesign your methods to reflect the exceptions that you need to throw.
Imagine, however, that for some reason a system class has you in a straitjacket. Your
first solution is to subclass RuntimeException to make up a new, exempt exception of
your own. Now you can throw it to your heart’s content, because the throws clause
that was annoying you does not need to include this new exception. If you need a lot
of such exceptions, an elegant approach is to mix in some novel exception interfaces to
your new Runtime classes. You’re free to choose whatever subset of these new interfaces
you want to catch (none of the normal Runtime exceptions need be caught), while any
leftover (new) Runtime exceptions are (legally) allowed to go through that otherwise
annoying standard method in the library.

030-4s CH17.i 1/29/96, 11:22 AM351

352

Exceptions
M

T W
R

F S S

DAYDAY

17

P2/V4/SQC 4 TY Java in 21 Days 030-4 Casey 12.28.95 Ch17 LP#3

Q I’m still a little confused by long chains of catch clauses. Can you label the
previous example with which exceptions are handled by each line of code?

A Certainly, here it is:
try {
 someReallyExceptionalMethod();
} catch (NullPointerException n) {
 . . . // handles NullPointerExceptions
} catch (RuntimeException r) {
 . . . // handles RuntimeExceptions that are not NullPointerExceptions
} catch (IOException i) {
 . . . // handles IOExceptions
} catch (MyFirstException m) {
 . . . // handles MyFirstExceptions
} catch (Exception e) { // handles Exceptions that are not RuntimeExceptions
 . . . // nor IOExceptions nor MyFirstExceptions
} catch (Throwable t) {
 . . . // handles Throwables that are not Exceptions (i.e., Errors)
}

Q Given how annoying it can sometimes be to handle exceptional conditions
properly, what’s stopping me from surrounding any method with a throws clause
as follows:

try { thatAnnoyingMethod(); } catch (Throwable t) { }

and simply ignoring all exceptions?

A Nothing, other than your own conscience. In some cases, you should do nothing,
because it is the correct thing to do for your method’s implementation. Otherwise,
you should struggle through the annoyance and gain experience. Good style is a
struggle even for the best programmer, but the rewards are rich indeed.

030-4s CH17.i 1/29/96, 11:22 AM352

353

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

M
T W

R
F S S1818

Multithreading

by Charles L. Perkins

WEEK

3

030-4s CH18.i 1/29/96, 11:46 AM353

354

Multithreading
M

T W
R

F S S

DAYDAY

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Today, you’ll learn more about the threads mentioned briefly in Week 2:

■■ How to “think multithreaded”

■■ How to protect your methods and variables from unintended thread conflicts

■■ How to create, start, and stop threads and threaded classes

■■ How the scheduler works in Java

First, let’s begin by motivating the need for threads.

Threads are a relatively recent invention in the computer science world. Although processes,
their larger parent, have been around for decades, threads have only recently been accepted into
the mainstream. What’s odd about this is that they are very valuable, and programs written with
them are noticeably better, even to the casual user. In fact, some of the best individual, Herculean
efforts over the years have involved implementing a threads-like facility by hand to give a
program a more friendly feel to its users.

Imagine that you’re using your favorite text editor on a large file. When it starts up, does it need
to examine the entire file before it lets you edit? Does it need to make a copy of the file? If the
file is huge, this can be a nightmare. Wouldn’t it be nicer for it to show you the first page, enabling
you to begin editing, and somehow (in the background) complete the slower tasks necessary for
initialization? Threads allow exactly this kind of within-the-program parallelism.

Perhaps the best example of threading (or lack of it) is a WWW browser. Can your browser
download an indefinite number of files and Web pages at once while still enabling you to
continue browsing? While these pages are downloading, can your browser download all the
pictures, sounds, and so forth in parallel, interleaving the fast and slow download times of
multiple Internet servers? HotJava can do all of these things—and more—by using the built-
in threading of the Java language.

The Problem with Parallelism
If threading is so wonderful, why doesn’t every system have it? Many modern operating systems
have the basic primitives needed to create and run threads, but they are missing a key ingredient.
The rest of their environment is not thread-safe. Imagine that you are in a thread, one of many,
and each of you is sharing some important data managed by the system. If you were managing
that data, you could take steps to protect it (as you’ll see later today), but the system is managing
it. Now visualize a piece of code in the system that reads some crucial value, thinks about it for
a while, and then adds 1 to the value:

if (crucialValue > 0) {
 . . . // think about what to do
 crucialValue += 1;
}

030-4s CH18.i 1/29/96, 11:47 AM354

355

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Remember that any number of threads may be calling upon this part of the system at once. The
disaster occurs when two threads have both executed the if test before either has incremented
the crucialValue. In that case, the value is clobbered by them both with the same crucialValue
+ 1, and one of the increments has been lost. This may not seem so bad to you, but imagine
instead that the crucial value affects the state of the screen as it is being displayed. Now,
unfortunate ordering of the threads can cause the screen to be updated incorrectly. In the same
way, mouse or keyboard events can be lost, databases can be inaccurately updated, and so forth.

This disaster is inescapable if any significant part of the system has not been written with threads
in mind. Therein lies the barrier to a mainstream threaded environment—the large effort
required to rewrite existing libraries for thread safety. Luckily, Java was written from scratch with
this is mind, and every Java class in its library is thread-safe. Thus, you now have to worry only
about your own synchronization and thread-ordering problems, because you can assume that
the Java system will do the right thing.

Atomic operations are operations that appear to happen “all at once”—exactly
at the same time—to other threads.

Note: Some readers may wonder what the fundamental problem really is. Can’t
you just make the … area in the example smaller and smaller to reduce or eliminate
the problem? Without atomic operations, the answer is no. Even if the
… took zero time, you must first look at the value of some variable to make any
decision and then change something to reflect that decision. These two steps can
never be made to happen at the same time without an atomic operation. Unless
you’re given one by the system, it’s literally impossible to create your own.

Even the one line crucialValue += 1 involves three steps: get the current value, add
one to it, and store it back. (Using ++crucialValue doesn’t help either.) All three
steps need to happen “all at once” (atomically) to be safe. Special Java primitives, at
the lowest levels of the language, provide you with the basic atomic operations you
need to build safe, threaded programs.

Thinking Multithreaded
Getting used to threads takes a little while and a new way of thinking. Rather than imagining
that you always know exactly what’s happening when you look at a method you’ve written, you
have to ask yourself some additional questions. What will happen if more than one thread calls

NEW
TERM

☛

030-4s CH18.i 1/29/96, 11:47 AM355

356

Multithreading
M

T W
R

F S S

DAYDAY

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

into this method at the same time? Do you need to protect it in some way? What about your
class as a whole? Are you assuming that only one of its methods is running at the same time?

Often you make such assumptions, and a local instance variable will be messed up as a result.
Let’s make a few mistakes and then try to correct them. First, the simplest case:

public class ThreadCounter {
 int crucialValue;

 public void countMe() {
 crucialValue += 1;
 }

 public int howMany() {
 return crucialValue;
 }
}

This code suffers from the most pure form of the “synchronization problem:” the += takes more
than one step, and you may miscount the number of threads as a result. (Don’t worry about how
threads are created yet, just imagine that a whole bunch of them are able to call countMe(), at
once, at slightly different times.) Java allows you to fix this:

public class SafeThreadCounter {
 int crucialValue;

 public synchronized void countMe() {
 crucialValue += 1;
 }

 public int howMany() {
 return crucialValue;
 }
}

The synchronized keyword tells Java to make the block of code in the method thread safe. Only
one thread will be allowed inside this method at once, and others have to wait until the currently
running thread is finished with it before they can begin running it. This implies that
synchronizing a large, long-running method is almost always a bad idea. All your threads would
end up stuck at this bottleneck, waiting in single file to get their turn at this one slow method.

It’s even worse than you might think for most unsynchronized variables. Because the compiler
can keep them around in registers during computations, and a thread’s registers can’t be seen
by other threads (especially if they’re on another processor in a true multiprocessor computer),
a variable can be updated in such a way that no possible order of thread updates could have
produced the result. This is completely incomprehensible to the programmer. To avoid this
bizarre case, you can label a variable volatile, meaning that you know it will be updated
asynchronously by multiprocessor-like threads. Java then loads and stores it each time it’s
needed and does not use registers.

030-4s CH18.i 1/29/96, 11:48 AM356

357

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Note: In earlier releases, variables that were safe from these bizarre effects were
labeled threadsafe. Because most variables are safe to use, however, they are now
assumed to be thread-safe unless you mark them volatile. Using volatile is an
extremely rare event. In fact, in the beta release, the Java library does not use
volatile anywhere.

Points About Points
The method howMany() in the last example doesn’t need to be synchronized, because it simply
returns the current value of an instance variable. Someone higher in the call chain may need to
be synchronized, though—someone who uses the value returned from the method. Here’s an
example:

public class Point {
 private float x, y;

 public float x() { // needs no synchronization
 return x;
 }

 public float y() { // ditto
 return y;
 }
 . . . // methods to set and change x and y
}

public class UnsafePointPrinter {
 public void print(Point p) {
 System.out.println(“The point’s x is “ + p.x()
 + “ and y is “ + p.y() + “.”);
 }
}

The analogous methods to howMany() are x() and y(). They need no synchronization, because
they just return the values of instance variables. It is the responsibility of the caller of x() and
y() to decide whether it needs to synchronize itself—and in this case, it does. Although the
method print() simply reads values and prints them out, it reads two values. This means that
there is a chance that some other thread, running between the call to p.x() and the call to p.y(),
could have changed the value of x and y stored inside the Point p. Remember, you don’t know
how many other threads have a way to reach and call methods in this Point object! “Thinking
multithreaded” comes down to being careful any time you make an assumption that something
has not happened between two parts of your program (even two parts of the same line, or the
same expression, such as the string + expression in this example).

030-4s CH18.i 1/29/96, 11:49 AM357

358

Multithreading
M

T W
R

F S S

DAYDAY

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

TryAgainPointPrinter
You could try to make a safe version of print() by simply adding the synchronized keyword
modifier to it, but instead, let’s try a slightly different approach:

public class TryAgainPointPrinter {
 public void print(Point p) {
 float safeX, safeY;

 synchronized(this) {
 safeX = p.x(); // these two lines now
 safeY = p.y(); // happen atomically
 }
 System.out.print(“The point’s x is “ + safeX
 + “ y is “ + safeY);
 }
}

The synchronized statement takes an argument that says what object you would like to lock to
prevent more than one thread from executing the enclosed block of code at the same time. Here,
you use this (the instance itself), which is exactly the object that would have been locked by the
synchronized method as a whole if you had changed print() to be like your safe countMe()
method. You have an added bonus with this new form of synchronization: you can specify
exactly what part of a method needs to be safe, and the rest can be left unsafe.

Notice how you took advantage of this freedom to make the protected part of the method as
small as possible, while leaving the String creations, concatenations, and printing (which
together take a small but nonzero amount of time) outside the “protected” area. This is both
good style (as a guide to the reader of your code) and more efficient, because fewer threads get
stuck waiting to get into protected areas.

SafePointPrinter
The astute reader, though, may still be worried by the last example. It seems as if you made sure
that no one executes your calls to x() and y() out of order, but have you prevented the Point p
from changing out from under you? The answer is no, you still have not solved the problem. You
really do need the full power of the synchronized statement:

public class SafePointPrinter {
 public void print(Point p) {
 float safeX, safeY;

 synchronized(p) { // no one can change p
 safeX = p.x(); // while these two lines
 safeY = p.y(); // are happening atomically
 }
 System.out.print(“The point’s x is “ + safeX
 + “ y is “ + safeY);
 }
}

030-4s CH18.i 1/29/96, 11:49 AM358

359

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Now you’ve got it. You actually needed to protect the Point p to protect from changes, so you
lock it by giving it as the argument to your synchronized statement. Now when x() and y()
happen together, they can be sure to get the current x and y of the Point p, without any other
thread being able to call a modifying method between. You’re still assuming, however, that the
Point p has properly protected itself. (You can always assume this about system classes—but you
wrote this Point class.) You can make sure by writing the only method that can change x and
y inside p yourself:

public class Point {
 private float x, y;

 . . . // the x() and y() methods

 public synchronized void setXAndY(float newX, float newY) {
 x = newX;
 y = newY;
 }
}

By making the only “set” method in Point synchronized, you guarantee that any other thread
trying to grab the Point p and change it out from under you has to wait: you’ve locked the Point
p with your synchronized(p) statement, and any other thread has to try to lock the same Point
p via the implicit synchronized(this) statement p now executes when entering setXAndY().
Thus, at last, you are thread-safe.

Note: By the way, if Java had some way of returning more than one value at once,
you could write a synchronized getXAndY() method for Points that returns both
values safely. In the current Java language, such a method could return a new,
unique Point to guarantee to its callers that no one else has a copy that might be
changed. This sort of trick can be used to minimize the parts of the system that
need to worry about synchronization.

ReallySafePoint
An added benefit of the use of the synchronized modifier on methods (or of synchronized(this)
{. . .}) is that only one of these methods (or blocks of code) can run at once. You can use that
knowledge to guarantee that only one of several crucial methods in a class will run at once:

public class ReallySafePoint {
 private float x, y;

 public synchronized Point getUniquePoint() {
 return new Point(x, y); // can be a less safe Point
 } // because only the caller has it

030-4s CH18.i 1/29/96, 11:50 AM359

360

Multithreading
M

T W
R

F S S

DAYDAY

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

 public synchronized void setXAndY(float newX, float newY) {
 x = newX;
 y = newY;
 }

 public synchronized void scale(float scaleX, float scaleY) {
 x *= scaleX;
 y *= scaleY;
 }

 public synchronized void add(ReallySafePoint aRSP) {
 Point p = aRSP.getUniquePoint();

 x += p.x();
 y += p.y();
 } // Point p is soon thrown away by GC; no one else ever saw it
}

This example combines several of the ideas mentioned previously. To avoid a caller’s having to
synchronize(p) whenever getting your x and y, you give them a synchronized way to get a
unique Point (like returning multiple values). Each method that modifies the object’s instance
variables is also synchronized to prevent it from running between the x and y references in
getUniquePoint() and from stepping on the others as they each modify the local x and y. Note
that add() itself uses getUniquePoint() to avoid having to say synchronized(aRSP).

Classes that are this safe are a little unusual; it is more often your responsibility to protect yourself
from other threads’ use of commonly held objects (such as Points). Only when you know for
certain that you’re the only one that knows about an object, can you fully relax. Of course, if
you created the object and gave it to no one else, you can be that certain.

Protecting a Class Variable
Finally, suppose you want a class variable to collect some information across all a class’s instances:

public class StaticCounter {
 private static int crucialValue;

 public synchronized void countMe() {
 crucialValue += 1;
 }
}

Is this safe? If crucialValue were an instance variable, it would be. Because it’s a class variable,
however, and there is only one copy of it for all instances, you can still have multiple threads
modifying it by using different instances of the class. (Remember, the synchronized modifier
locks the object this—an instance.) Luckily, you already know the tools you need to solve this:

public class StaticCounter {
 private static int crucialValue;

030-4s CH18.i 1/29/96, 11:51 AM360

361

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

 public void countMe() {
 synchronized(getClass()) { // can’t directly reference StaticCounter
 crucialValue += 1; // the (shared) class is now locked
 }
 }
}

The trick is to “lock” on a different object—not on an instance of the class, but on the class itself.
Because a class variable is “inside” a class, just as an instance variable is inside an instance, this
shouldn’t be all that unexpected. In a similar way, classes can provide global resources that any
instance (or other class) can access directly by using the class name, and lock by using that same
class name. In this example, crucialValue is used from within an instance of StaticCounter, but
if crucialValue were declared public instead, from anywhere in the program, it would be safe
to say the following:

synchronized(new StaticCounter().getClass()) {
 StaticCounter.crucialValue += 1;
}

Note: The direct use of another object’s variable is really bad style—it’s used here
simply to demonstrate a point quickly. StaticCounter normally provides a
countMe()-like class method of its own to do this sort of dirty work.

You can appreciate how much work the Java team has done for you by thinking all these hard
thoughts for each and every class (and method!) in the Java class library.

Creating and Using Threads
Now that you understand the power (and the dangers) of having many threads running at once,
how are those threads actually created?

!! Warning: The system itself always has a few so-called daemon threads running, one
of which is constantly doing the tedious task of garbage collection for you in the
background. There is also a main user thread that listens for events from your
mouse and keyboard. If you’re not careful, you can sometimes lock out this main
thread. If you do, no events are sent to your program and it appears to be dead. A
good rule of thumb is that whenever you’re doing something that can be done in a
separate thread, it probably should be. Threads in Java are relatively cheap to create,
run, and destroy, so don’t use them too sparingly.

030-4s CH18.i 1/29/96, 11:51 AM361

362

Multithreading
M

T W
R

F S S

DAYDAY

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Because there is a class java.lang.Thread, you might guess that you could create a thread of your
own by subclassing it—and you are right:

public class MyFirstThread extends Thread { // a.k.a., java.lang.Thread
 public void run() {
 . . . // do something useful
 }
}

You now have a new type of Thread called MyFirstThread, which does something useful
(unspecified) when its run() method is called. Of course, no one has created this thread or called
its run() method, so it does absolutely nothing at the moment. To actually create and run an
instance of your new thread class, you write the following:

MyFirstThread aMFT = new MyFirstThread();

aMFT.start(); // calls our run() method

What could be simpler? You create a new instance of your thread class and then ask it to start
running. Whenever you want to stop the thread, you use this:

aMFT.stop();

Besides responding to start() and stop(), a thread can also be temporarily suspended and later
resumed:

Thread t = new Thread();

t.suspend();
. . . // do something special while t isn’t running
t.resume();

A thread will automatically suspend() and then resume() when it’s first blocked at a synchro-
nized point and then later unblocked (when it’s that thread’s “turn” to run).

The Runnable Interface
This is all well and good if every time you want to create a Thread you have the luxury of being
able to place it under the Thread class in the single-inheritance class tree. What if it more naturally
belongs under some other class, from which it needs to get most of its implementation? The
interfaces of Day 16 come to the rescue:

public class MySecondThread extends ImportantClass implements Runnable {
 public void run() {
 . . . // do something useful
 }
}

By implementing the interface Runnable, you declare your intention to run in a separate thread.
In fact, the class Thread itself implements this interface, as you might expect from the design
discussions on Day 16. As you also might guess from the example, the interface Runnable

030-4s CH18.i 1/29/96, 11:52 AM362

363

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

specifies only one method: run(). As in MyFirstThread, you expect someone to create an instance
of a thread and somehow call your run() method. Here’s how this is accomplished:

MySecondThread aMST = new MySecondThread();
Thread aThread = new Thread(aMST);

aThread.start(); // calls our run() method, indirectly

First, you create an instance of MySecondThread. Then, by passing this instance to the constructor
making the new Thread, you make it the target of that Thread. Whenever that new Thread starts
up, its run() method calls the run() method of the target it was given (assumed by the Thread
to be an object that implements the Runnable interface). When start() is called, aThread
(indirectly) calls your run() method. You can stop aThread with stop(). If you don’t need to talk
to the Thread explicitly or to the instance of MySecondThread, here’s a one line shortcut:

new Thread(new MySecondThread()).start();

Note: As you can see, the class name, MySecondThread, is a bit of a misnomer—it
does not descend from Thread, nor is it actually the thread that you start() and
stop(). It probably should have been called MySecondThreadedClass or
ImportantRunnableClass.

ThreadTester
Here’s a longer example:

public class SimpleRunnable implements Runnable {
 public void run() {
 System.out.println(“in thread named ‘“
 + Thread.currentThread().getName() + “‘“);
 } // any other methods run() calls are in current thread as well
}

public class ThreadTester {
 public static void main(String argv[]) {
 SimpleRunnable aSR = new SimpleRunnable();

 while (true) {
 Thread t = new Thread(aSR);

 System.out.println(“new Thread() “ + (t == null ?
 “fail” : “succeed”) + “ed.”);
 t.start();
 try { t.join(); } catch (InterruptedException ignored) { }
 // waits for thread to finish its run() method
 }
 }
}

030-4s CH18.i 1/29/96, 11:53 AM363

364

Multithreading
M

T W
R

F S S

DAYDAY

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Note: You may be worried that only one instance of the class SimpleRunnable is
created, but many new Threads are using it. Don’t they get confused? Remember to
separate in your mind the aSR instance (and the methods it understands) from the
various threads of execution that can pass through it. aSR’s methods provide a
template for execution, and the multiple threads created are sharing that template.
Each remembers where it is executing and whatever else it needs to make it distinct
from the other running threads. They all share the same instance and the same
methods. That’s why you need to be so careful, when adding synchronization, to
imagine numerous threads running rampant over each of your methods.

The class method currentThread() can be called to get the thread in which a method is currently
executing. If the SimpleRunnable class were a subclass of Thread, its methods would know the
answer already (it is the thread running). Because SimpleRunnable simply implements the
interface Runnable, however, and counts on someone else (ThreadTester’s main()) to create the
thread, its run() method needs another way to get its hands on that thread. Often, you’ll be deep
inside methods called by your run() method when suddenly you need to get the current thread.
The class method shown in the example works, no matter where you are.

!! Warning: You can do some reasonably disastrous things with your knowledge of
threads. For example, if you’re running in the main thread of the system and,
because you think you are in a different thread, you accidentally say the following:

Thread.currentThread().stop();

it has unfortunate consequences for your (soon-to-be-dead) program!

The example then calls on getName(), the current thread to get the thread’s name (usually
something helpful, such as Thread-23) so it can tell the world in which thread run() is running.
The final thing to note is the use of the method join(), which, when sent to a thread, means
“I’m planning to wait forever for you to finish your run() method.” You don’t want to do this
lightly: if you have anything else important you need to get done in your thread any time soon,
you can’t count on how long the join()ed thread may take to finish. In the example, its run()
method is short and finishes quickly, so each loop can safely wait for the previous thread to die
before creating the next one. (Of course, in this example, you didn’t have anything else you
wanted to do while waiting for join() anyway.) Here’s the output produced:

new Thread() succeeded.

030-4s CH18.i 1/29/96, 11:53 AM364

365

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

in thread named ‘Thread-1’
new Thread() succeeded.
in thread named ‘Thread-2’
new Thread() succeeded.
in thread named ‘Thread-3’
^C

Ctrl+C was pressed to interrupt the program, because it otherwise would continue forever.

NamedThreadTester
If you want your threads to have particular names, you can assign them yourself by using a two-
argument form of Thread’s constructor:

public class NamedThreadTester {
 public static void main(String argv[]) {
 SimpleRunnable aSR = new SimpleRunnable();

 for (int i = 1; true; ++i) {
 Thread t = new Thread(aSR, “” + (100 - i)
 + “ threads on the wall...”);

 System.out.println(“new Thread() “ + (t == null ?
 “fail” : “succeed”) + “ed.”);
 t.start();
 try { t.join(); } catch (InterruptedException ignored) { }
 }
 }
}

which takes a target object, as before, and a String, which names the new thread. Here’s the
output:

new Thread() succeeded.
in thread named ’99 threads on the wall...’
new Thread() succeeded.
in thread named ’98 threads on the wall...’
new Thread() succeeded.
in thread named ’97 threads on the wall...’
^C

Naming a thread is one easy way to pass it some information. This information flows from the
parent thread to its new child. It’s also useful, for debugging purposes, to give threads meaningful
names (such as network input) so that when they appear during an error—in a stack trace, for
example—you can easily identify which thread caused the problem. You might also think of
using names to help group or organize your threads, but Java actually provides you with a
ThreadGroup class to perform this function. A ThreadGroup allows you to group threads, to
control them all as a unit, and to keep them from being able to affect other threads (useful for
security).

030-4s CH18.i 1/29/96, 11:54 AM365

366

Multithreading
M

T W
R

F S S

DAYDAY

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Knowing When a Thread has Stopped
Let’s imagine a different version of the last example, one that creates a thread and then hands
the thread off to other parts of the program. Suppose it would then like to know when that thread
dies so that it can perform some cleanup operation. If SimpleRunnable were a subclass of Thread,
you might try to catch stop() whenever it’s sent—but look at Thread’s declaration of the stop()
method:

public final void stop(); { . . . }

The final here means that you can’t override this method in a subclass. In any case,
SimpleRunnable is not a subclass of Thread, so how can this imagined example possibly catch the
death of its thread? The answer is to use the following magic:

public class SingleThreadTester {
 public static void main(String argv[]) {
 Thread t = new Thread(new SimpleRunnable());

 try {
 t.start();
 someMethodThatMightStopTheThread(t);
 } catch (ThreadDeath aTD) {
 . . . // do some required cleanup
 throw aTD; // re-throw the error
 }
 }
}

You understand most of this magic from yesterday’s lesson. All you need to know is that if the
thread created in the example dies, it throws an error of class ThreadDeath. The code catches that
error and performs the required cleanup. It then rethrows the error, allowing the thread to die.
The cleanup code is not called if the thread exits normally (its run() method completes), but
that’s fine; you posited that the cleanup was needed only when stop() was used on the thread.

Note: Threads can die in other ways—for example, by throwing exceptions that no
one catches. In these cases, stop() is never called, and the previous code is not
sufficient. (If the cleanup always has to occur, even at the normal end of a thread’s
life, you can put it in a finally clause.) Because unexpected exceptions can come
out of nowhere to kill a thread, multithreaded programs that carefully catch and
handle all their exceptions are more predictable, robust, and easier to debug.

030-4s CH18.i 1/29/96, 11:55 AM366

367

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Thread Scheduling
You might wonder exactly what order your threads will be run in, and how you can control that
order. Unfortunately, the current implementations of the Java system cannot precisely answer
the former, though with a lot of work, you can always do the latter.

The part of the system that decides the real-time ordering of threads is called the
scheduler.

Preemptive Versus Nonpreemptive
Normally, any scheduler has two fundamentally different ways of looking at its job: non-
preemptive scheduling and preemptive time-slicing.

With non-preemptive scheduling, the scheduler runs the current thread forever,
requiring that thread explicitly to tell it when it is safe to start a different thread.

With preemptive time-slicing, the scheduler runs the current thread until it has used up a certain
tiny fraction of a second, and then “preempts” it, suspend()s it, and resume()s another thread
for the next tiny fraction of a second.

Non-preemptive scheduling is very courtly, always asking for permission to schedule, and is
quite valuable in extremely time-critical, real-time applications where being interrupted at the
wrong moment, or for too long, could mean crashing an airplane.

Most modern schedulers use preemptive time-slicing, because, except for a few time-critical
cases, it has turned out to make writing multithreaded programs much easier. For one thing, it
does not force each thread to decide exactly when it should “yield” control to another thread.
Instead, every thread can just run blindly on, knowing that the scheduler will be fair about giving
all the other threads their chance to run.

It turns out that this approach is still not the ideal way to schedule threads. You’ve given a little
too much control to the scheduler. The final touch many modern schedulers add is to allow you
to assign each thread a priority. This creates a total ordering of all threads, making some threads
more “important” than others. Being higher priority often means that a thread gets run more
often (or gets more total running time), but it always means that it can interrupt other, lower-
priority threads, even before their “time-slice” has expired.

The current Java release does not precisely specify the behavior of its scheduler. Threads can be
assigned priorities, and when a choice is made between several threads that all want to run, the
highest-priority thread wins. However, among threads that are all the same priority, the behavior
is not well-defined. In fact, the different platforms on which Java currently runs have different
behaviors—some behaving more like a preemptive scheduler, and some more like a non-
preemptive scheduler.

NEW
TERM

☛

NEW
TERM

☛

030-4s CH18.i 1/29/96, 11:55 AM367

368

Multithreading
M

T W
R

F S S

DAYDAY

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Note: This incomplete specification of the scheduler is terribly annoying and,
presumably, will be corrected in later releases. Not knowing the fine details of how
scheduling occurs is perfectly all right, but not knowing whether equal priority
threads must explicitly yield or face running forever, is not all right. For example,
all the threads you have created so far are equal priority threads, so you don’t know
their basic scheduling behavior!

Testing Your Scheduler
To find out what kind of scheduler you have on your system, try the following:

public class RunnablePotato implements Runnable {
 public void run() {
 while (true)
 System.out.println(Thread.currentThread().getName());
 }
}

public class PotatoThreadTester {
 public static void main(String argv[]) {
 RunnablePotato aRP = new RunnablePotato();

 new Thread(aRP, “one potato”).start();
 new Thread(aRP, “two potato”).start();
 }
}

For a non-preemptive scheduler, this prints the following:

one potato
one potato
one potato
. . .

forever, until you interrupt the program. For a preemptive scheduler that time-slices, it repeats
the line one potato a few times, followed by the same number of two potato lines, over and over:

one potato
one potato
...
one potato
two potato
two potato
...
two potato
. . .

030-4s CH18.i 1/29/96, 11:56 AM368

369

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

until you interrupt the program. What if you want to be sure the two threads will take turns,
no matter what the system scheduler wants to do? You rewrite RunnablePotato as follows:

public class RunnablePotato implements Runnable {
 public void run() {
 while (true) {
 System.out.println(Thread.currentThread().getName());
 Thread.yield(); // let another thread run for a while
 }
 }
}

Tip: Normally you have to say Thread.currentThread().yield() to get your hands
on the current thread, and then call yield(). Because this pattern is so common,
however, the Thread class provides a shortcut.

The yield() method explicitly gives any other threads that want to run a chance to begin
running. (If there are no threads waiting to run, the thread that made the yield() simply
continues.) In our example, there’s another thread that’s just dying to run, so when you now run
the class ThreadTester, it should output the following:

one potato
two potato
one potato
two potato
one potato
two potato
. . .

even if your system scheduler is non-preemptive, and would never normally run the second
thread.

PriorityThreadTester
To see whether priorities are working on your system, try this:

public class PriorityThreadTester {
 public static void main(String argv[]) {
 RunnablePotato aRP = new RunnablePotato();
 Thread t1 = new Thread(aRP, “one potato”);
 Thread t2 = new Thread(aRP, “two potato”);

 t2.setPriority(t1.getPriority() + 1);
 t1.start();
 t2.start(); // at priority Thread.NORM_PRIORITY + 1
 }
}

030-4s CH18.i 1/29/96, 11:57 AM369

370

Multithreading
M

T W
R

F S S

DAYDAY

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Tip: The values representing the lowest, normal, and highest priorities that threads
can be assigned are stored in class variables of the Thread class:
Thread.MIN_PRIORITY, Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY. The
system assigns new threads, by default, the priority Thread.NORM_PRIORITY. Priori-
ties in Java are currently defined in a range from 1 to 10, with 5 being normal, but
you shouldn’t depend on these values; use the class variables, or tricks like the one
shown in this example.

If one potato is the first line of output, your system does not preempt using priorities.

Why? Imagine that the first thread (t1) has just begun to run. Even before it has a chance to print
anything, along comes a higher-priority thread (t2) that wants to run right away. That higher-
priority thread should preempt (interrupt) the first, and get a chance to print two potato before
t1 finishes printing anything. In fact, if you use the RunnablePotato class that never yield()s,
t2 stays in control forever, printing two potato lines, because it’s a higher priority than t1 and
it never yields control. If you use the latest RunnablePotato class (with yield()), the output is
alternating lines of one potato and two potato as before, but starting with two potato.

Here’s a good, illustrative example of how complex threads behave:

public class ComplexThread extends Thread {
 private int delay;

 ComplexThread(String name, float seconds) {
 super(name);
 delay = (int) seconds * 1000; // delays are in milliseconds
 start(); // start up ourself!
 }

 public void run() {
 while (true) {
 System.out.println(Thread.currentThread().getName());
 try {
 Thread.sleep(delay);
 } catch (InterruptedException ignored) {
 return;
 }
 }
 }

 public static void main(String argv[]) {
 new ComplexThread(“one potato”, 1.1F);
 new ComplexThread(“two potato”, 0.3F);
 new ComplexThread(“three potato”, 0.5F);
 new ComplexThread(“four”, 0.7F);
 }
}

030-4s CH18.i 1/29/96, 11:57 AM370

371

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

This example combines the thread and its tester into a single class. Its constructor takes care of
naming (itself) and of starting (itself), because it is now a Thread. The main() method creates new
instances of its own class, because that class is a subclass of Thread. run() is also more
complicated, because it now uses, for the first time, a method that can throw an unexpected
exception.

The Thread.sleep() method forces the current thread to yield() and then waits for at least the
specified amount of time to elapse before allowing the thread to run again. It might be
interrupted, however, while sleeping by another thread. In such a case, it throws an
InterruptedException. Now, because run() is not defined as throwing this exception, you must
“hide” the fact by catching and handling it yourself. Because interruptions are usually requests
to stop, you should exit the thread, which you can do by simply returning from the run()
method.

This program should output a repeating but complex pattern of four different lines, where every
once in a while you see the following:

. . .
one potato
two potato
three potato
four
. . .

You should study the pattern output to prove to yourself that true parallelism is going on inside
Java programs. You may also begin to appreciate that, if even this simple set of four threads can
produce such complex behavior, many more threads must be capable of producing near chaos
if not carefully controlled. Luckily, Java provides the synchronization and thread-safe libraries
you need to control that chaos.

Summary
Today, you learned that parallelism is desirable and powerful, but introduces many new
problems—methods and variables now need to be protected from thread conflicts—that can
lead to chaos if not carefully controlled.

By “thinking multithreaded,” you can detect the places in your programs that require
synchronized statements (or modifiers) to make them thread-safe. A series of Point examples

demonstrated the various levels of safety you can achieve and showed how subclasses of Thread,
or classes that implement the Runnable interface, are created and run() to generate multithreaded
programs.

You also learned how to yield(), how to start(), stop(), suspend(), and resume() your threads,
and how to catch ThreadDeath whenever it happens.

030-4s CH18.i 1/29/96, 11:58 AM371

372

Multithreading
M

T W
R

F S S

DAYDAY

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Finally, you learned about preemptive and non-preemptive scheduling, both with and without
priorities, and how to test your Java system to see which of them your scheduler is using.

This wraps up the description of threads. You now know enough to write the most complex of
programs: multithreaded ones. As you get more comfortable with threads, you may begin to use
the ThreadGroup class or to use the enumeration methods of Thread to get your hands on all the
threads in the system and manipulate them. Don’t be afraid to experiment; you can’t
permanently break anything, and you learn only by trying.

Q&A
Q If they’re so important to Java, why haven’t threads appeared throughout the

entire book?

A Actually, they have. Every stand-alone program written so far has “created” at least
one thread, the one in which it is running. (Of course the system created that Thread
for it automatically.)

Q How exactly do these threads get created and run? What about applets?

A When a simple, stand-alone Java program starts up, the system creates a main thread,
and its run() method calls your main() method to start your program—you do
nothing to get that Thread. Likewise, when a simple applet loads into a Java-aware
browser, a Thread has already been created by the browser, and its run() method calls
your init() and start() methods to start your program. In either case, a new Thread()
of some kind was done somewhere, by the Java environment itself.

Q The ThreadTester class had an infinite loop that created Threads and then
join()ed with them. Is it really infinite?

A In theory, yes. In actuality, how far the loop runs determines the resource limits of
(and tests the stability of) the threads package and garbage collector in your Java
release. Over time, all Java releases will converge on making the loop truly infinite.

Q I know Java releases are still a little fuzzy about the scheduler’s behavior, but
what’s the current story?

A Here are the gruesome details for the beta release, relayed by Arthur van Hoff at Sun:
the way Java schedules threads “...depends on the platform. It is usually preemptive,
but not always time-sliced. Priorities are not always observed, depending on the
underlying implementation.” This final clause gives you a hint that all this confusion
is an implementation problem, and that someday soon, the design and implementa-
tion will both be clear about scheduling behavior.

030-4s CH18.i 1/29/96, 11:59 AM372

373

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

18

P2/V4/SQC5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch 18 LP#3

Q Does Java support more complex multithreaded concepts, such as semaphores?

A The class Object in Java provides methods that can be used to build up condition
variables, semaphores, and any higher-level parallel construct you might need. The
method wait() (and its two variants with a timeout) causes the current thread to wait
until some condition has been satisfied. The method notify() (or notifyAll()),
which must be called from within a synchronized method or block, tells the thread (or
all threads) to wake up and check that condition again, because something has
changed. By careful combinations of these two primitive methods, any data structure
can be manipulated safely by a set of threads, and all the classical parallel primitives
needed to implement published parallel algorithms can be built.

Q My parallel friends tell me I should worry about something called “deadlock.”
Should I?

A Not for simple multithreaded programs. However, in more complicated programs,
one of the biggest worries does become one of avoiding a situation in which one
thread has locked an object and is waiting for another thread to finish, while that
other thread is waiting for the first thread to release that same object before it can
finish. That’s a deadlock—both threads will be stuck forever. Mutual dependencies
like this involving more than two threads can be quite intricate, convoluted, and
difficult to locate, much less rectify. They are one of the main challenges in writing
complex multithreaded programs.

030-4s CH18.i 1/29/96, 11:59 AM373

375

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

M
T W

R
F S S

Streams

by Charles L. Perkins

WEEK

3

1919

030-4s CH19.i 1/29/96, 12:04 PM375

376

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

Today, you’ll explore Java’s streams:

■■ Input streams—and how to create, use, and detect the end of them—and filtered
input streams, which can be nested to great effect

■■ Output streams, that are mostly analogous to (but the inverse of) input streams

You’ll also learn about two stream interfaces that make the reading and writing of typed streams
much easier (as well as about several utility classes used to access the file system). Let’s begin with
a little history behind the invention of streams.

One of the early inventions of the UNIX operating system was the pipe. By unifying all these
disparate ways of communicating into a single metaphor, UNIX paved the way for a whole series
of related inventions, culminating in the abstraction known as streams.

A pipe is an uninterpreted stream of bytes that can be used for communicating between
programs (or other “forked” copies of your own program) or for reading and writing to

peripheral devices and files.

A stream is a path of communication between the source of some information and its destination.

That information, an uninterpreted byte stream, can come from any “pipe source,” the
computer’s memory, or even from the Internet. In fact, the source and destination of a stream
are completely arbitrary producers and consumers of bytes, respectively. Therein lies the power
of the abstraction. You don’t need to know about the source of the information when reading
from a stream, and you don’t need to know about the final destination when writing to one.

General-purpose methods that can read from any source accept a stream argument to specify
that source; general methods for writing accept a stream to specify the destination. Arbitrary
processors (or filters) of data have two stream arguments. They read from the first, process the data,
and write the results to the second. These processors have no idea of either the source or the
destination of the data they are processing. Sources and destinations can vary widely: from two
memory buffers on the same local computer, to the ELF transmissions to and from a submarine
at sea, to the real-time data streams of a NASA probe in deep space.

By decoupling the consuming, processing, or producing of data from the sources and
destinations of that data, you can mix and match any combination of them at will as you write
your program. In the future, when new, previously nonexistent forms of source or destination
(or consumer, processor, or producer) appear, they can be used within the same framework, with
no changes to your classes. New stream abstractions, supporting higher levels of interpretation
“on top of” the bytes, can be written completely independently of the underlying transport
mechanisms for the bytes themselves.

NEW
TERM

☛

030-4s CH19.i 1/29/96, 12:04 PM376

377

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

At the pinnacle of this stream framework are the two abstract classes, InputStream and
OutputStream. If you turn briefly to the diagram for java.io in Appendix B, you’ll see that below
these classes is a virtual cornucopia of categorized classes, demonstrating the wide range of
streams in the system, but also demonstrating an extremely well-designed hierarchy of
relationships between these streams, one well worth learning from. Let’s begin with the parents
and then work our way down this bushy tree.

Input Streams
All the methods you will explore today are declared to throw IOExceptions. This new subclass
of Exception conceptually embodies all the possible I/O errors that might occur while using
streams. Several subclasses of it define a few, more specific exceptions that can be thrown as well.
For now, it is enough to know that you must either catch an IOException, or be in a method
that can “pass it along,” to be a well-behaved user of streams.

The abstract Class InputStream
InputStream is an abstract class that defines the fundamental ways in which a destination
consumer reads a stream of bytes from some source. The identity of the source, and the manner
of the creation and transport of the bytes, is irrelevant. When using an input stream, you are the
destination of those bytes, and that’s all you need to know.

read()
The most important method to the consumer of an input stream is the one that reads bytes from
the source. This method, read(), comes in many flavors, and each is demonstrated in an example
in today’s lesson.

Each of these read() methods is defined to “block” (wait) until all the input requested becomes
available. Don’t worry about this limitation; because of multithreading, you can do as many
other things as you like while this one thread is waiting for input. In fact, it is a common idiom
to assign a thread to each stream of input (and for each stream of output) that is solely responsible
for reading from it (or writing to it). These input threads might then “hand off” the information
to other threads for processing. This naturally overlaps the I/O time of your program with its
compute time.

Here’s the first form of read():

InputStream s = getAnInputStreamFromSomewhere();
byte[] buffer = new byte[1024]; // any size will do

if (s.read(buffer) != buffer.length)
 System.out.println(“I got less than I expected.”);

030-4s CH19.i 1/29/96, 12:05 PM377

378

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

Note: Here, and throughout the rest of today’s lesson, assume that either an import
java.io appears before all the examples or that you mentally prefix all references to
java.io classes with the prefix java.io.

This form of read() attempts to fill the entire buffer given. If it cannot (usually due to reaching
the end of the input stream), it returns the actual number of bytes that were read into the buffer.
After that, any further calls to read() return -1, indicating that you are at the end of the stream.
Note that the if statement still works even in this case, because -1 != 1024 (this corresponds
to an input stream with no bytes in it all).

Note: Don’t forget that, unlike in C, the -1 case in Java is not used to indicate an
error. Any I/O errors throw instances of IOException (which you’re not catching
yet). You learned on Day 17 that all uses of distinguished values can be replaced by
the use of exceptions, and so they should. The -1 in the last example is a bit of a
historical anachronism. You’ll soon see a better approach to indicating end of the
stream using the class DataInputStream.

You can also read into a “slice” of your buffer by specifying the offset into the buffer, and the
length desired, as arguments to read():

s.read(buffer, 100, 300);

This example tries to fill in bytes 100 through 399 and behaves otherwise exactly the same as the
previous read() method. In fact, in the current release, the default implementation of the former
version of read() uses the latter:

public int read(byte[] buffer) throws IOException {
 return read(buffer, 0, buffer.length);
}

Finally, you can read in bytes one at a time:

InputStream s = getAnInputStreamFromSomewhere();
byte b;
int byteOrMinus1;

while ((byteOrMinus1 = s.read()) != -1) {
b = (byte) byteOrMinus1;
. . . // process the byte b
}
. . . // reached end of stream

030-4s CH19.i 1/29/96, 12:05 PM378

379

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

Note: Because of the nature of integer promotion in Java in general, and because in
this case the read() method returns an int, using the byte type in your code may
be a little frustrating. You’ll find yourself constantly having explicitly to cast the
result of arithmetic expressions, or of int return values, back to your size. Because
read() really should be returning a byte in this case, I feel justified in declaring and
using it as such (despite the pain)—it makes the size of the data being read clearer.
In cases wherein you feel the range of a variable is naturally limited to a byte (or a
short) rather than an int, please take the time to declare it that way and pay the
small price necessary to gain the added clarity. By the way, a lot of the Java class
library code simply stores the result of read() in an int. This proves that even the
Java team is human—everyone makes style mistakes.

skip()
What if you want to skip over some of the bytes in a stream, or start reading a stream from other
than its beginning? A method similar to read() does the trick:

if (s.skip(1024) != 1024)
 System.out.println(“I skipped less than I expected.”);

This skips over the next 1024 bytes in the input stream. skip() takes and returns a long integer,
because streams are not required to be limited to any particular size. The default implementation
of skip in this release simply uses read():

public long skip(long n) throws IOException {
 byte[] buffer = new byte[(int) n];

 return read(buffer);
}

Note: This implementation does not support large skips correctly, because its long
argument is cast to an int. Subclasses must override this default implementation if
they want to handle this more properly. This won’t be as easy as you might think,
because the current release of the Java system does not allow integer types larger
than int to act as array subscripts.

030-4s CH19.i 1/29/96, 12:06 PM379

380

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

available()
If for some reason you would like to know how many bytes are in the stream right now, you can
ask:

if (s.available() < 1024)
 System.out.println(“Too little is available right now.”);

This tells you the number of bytes that you can read() without blocking. Because of the abstract
nature of the source of these bytes, streams may or may not be able to tell you a reasonable answer
to this question. For example, some streams always return 0. Unless you use specific subclasses
of InputStream that you know provide a reasonable answer to this question, it’s not a good idea
to rely upon this method. Remember, multithreading eliminates many of the problems
associated with blocking while waiting for a stream to fill again. Thus, one of the strongest
rationales for the use of available() goes away.

mark() and reset()
Some streams support the notion of marking a position in the stream, and then later resetting
the stream to that position to reread the bytes there. Clearly, the stream would have to
“remember” all those bytes, so there is a limitation on how far apart in a stream the mark and
its subsequent reset can occur. There’s also a method that asks whether or not the stream
supports the notion of marking at all. Here’s an example:

InputStream s = getAnInputStreamFromSomewhere();

if (s.markSupported()) { // does s support the notion?
 . . . // read the stream for a while
 s.mark(1024);
 . . . // read less than 1024 more bytes
 s.reset();
 . . . // we can now re-read those bytes
} else {
 . . . // no, perform some alternative
}

When marking a stream, you specify the maximum number of bytes you intend to allow to pass
before resetting it. This allows the stream to limit the size of its byte “memory.” If this number
of bytes goes by and you have not yet reset(), the mark becomes invalid, and attempting to
reset() will throw an exception.

Marking and resetting a stream is most valuable when you are attempting to identify the type
of the stream (or the next part of the stream), but to do so, you must consume a significant piece
of it in the process. Often, this is because you have several black-box parsers that you can hand
the stream to, but they will consume some (unknown to you) number of bytes before making
up their mind about whether the stream is of their type. Set a large size for the read limit above,
and let each parser run until it either throws an error or completes a successful parse. If an error
is thrown, reset() and try the next parser.

030-4s CH19.i 1/29/96, 12:07 PM380

381

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

close()
Because you don’t know what 531sources an open stream rep531sents, nor how to deal with them
p5operly when you’re finished reading the stream, you must usually explicitly close down a
stream so that it can release these 531sources. Of course, garbage collection and a finalization
method can do this for you, but what if you need to reopen that stream or those resources before
they have been freed by this asynchronous p5ocess? At best, this is annoying or confusing; at
worst, it introduces an unexpected, obscure, and difficult-to-track-down bug. Because you’re
interacting with the outside world of external 531sources, it’s safer to be explicit about when you’re
finished using them:

InputStream s = alwaysMakesANewInputStream();

try {
 . . . // use s to your heart’s content
} finally {
 s.close();
}

Get used to this idiom (using finally); it’s a useful way to be sure something (such as closing
the stream) always gets done. Of course, you’re assuming that the stream is always successfully
created. If this is not always the case, and null is sometimes returned instead, here’s the correct
way to be safe:

InputStream s = tryToMakeANewInputStream();

if (s != null) {
 try {
 . . .
 } finally {
 s.close();
 }
}

All input streams descend from the abstract class InputStream. All share in common the few
methods described so far. Thus, stream s in the previous examples could have been any of the
more complex input streams described in the next few sections.

ByteArrayInputStream
The “inverse” of some of the previous examples would be to create an input stream from an array
of bytes. This is exactly what ByteArrayInputStream does:

byte[] buffer = new byte[1024];

fillWithUsefulData(buffer);

InputStream s = new ByteArrayInputStream(buffer);

030-4s CH19.i 1/29/96, 12:08 PM381

382

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

Readers of the new stream s see a stream 1024 bytes long, containing the bytes in the array buffer.
Just as read() has a form that takes an offset and a length, so does this class’s constructor:

InputStream s = new ByteArrayInputStream(buffer, 100, 300);

Here, the stream is 300 bytes long and consists of bytes 100-399 from the array buffer.

Note: Finally, you’ve seen your first examples of the creation of a stream. These
new streams are attached to the simplest of all possible sources of data, an array of
bytes in the memory of the local computer.

ByteArrayInputStreams only implement the standard set of methods that all input streams do.
Here, however, the available() method has a particularly simple job—it returns 1024 and 300,
respectively, for the two instances of ByteArrayInputStream you created previously, because it
knows exactly how many bytes are available. Finally, calling reset() on a ByteArrayInputStream
resets it to the beginning of the stream (buffer), no matter where the mark is set.

FileInputStream
One of the most common uses of streams, and historically the earliest, is to attach them to files
in the file system. Here, for example, is the creation of such an input stream on a UNIX system:

InputStream s = new FileInputStream(“/some/path/and/fileName”);

!! Caution: Applets attempting to open, read, or write streams based on files in the
file system can cause security violations (depending on the paranoia level set by the
user of the browser). Try to create applets that do not depend on files at all, by
using servers to hold shared information. If that’s impossible, limit your applet’s
I/O to a single file or directory to which the user can easily assign file access permis-
sion. (Stand-alone Java programs have none of these problems, of course.)

You also can create the stream from a previously opened file descriptor:

int fd = openInputFileInTraditionalUNIXWays();
InputStream s = new FileInputStream(fd);

In either case, because it’s based on an actual (finite length) file, the input stream created can
implement available() precisely and can skip() like a champ (just as ByteArrayInputStream
can, by the way). In addition, FileInputStream knows a few more tricks:

030-4s CH19.i 1/29/96, 12:09 PM382

383

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

FileInputStream aFIS = new FileInputStream(“aFileName”);

int myFD = aFIS.getFD();

/* aFIS.finalize(); */ // will call close() when automatically called by GC

Tip: To call the new methods, you must declare the stream variable aFIS to be of
type FileInputStream, because plain InputStreams don’t know about them.

The first is obvious: getFD() returns the file descriptor of the file on which the stream is based.
The second, though, is an interesting shortcut that allows you to create FileInputStreams
without worrying about closing them later. FileInputStream’s implementation of finalize(),
a protected method, closes the stream. Unlike in the previous contrived example in comments,
you almost never can nor should call a finalize() method directly. The garbage collector calls
it after noticing that the stream is no longer in use, but before actually destroying the stream.
Thus, you can go merrily along using the stream, never closing it, and all will be well. The system
takes care of closing it (eventually).

You can get away with this because streams based on files tie up very few resources, and these
resources cannot be accidentally reused before garbage collection (these were the things worried
about in the previous discussion of finalization and close()). Of course, if you were also writing
to the file, you would have to be more careful. (Reopening the file too soon after writing might
make it appear in an inconsistent state because the finalize()—and thus the close()—
might not have happened yet). Just because you don’t have to close the stream doesn’t mean
you might not want to do so anyway. For clarity, or if you don’t know precisely what type of
an InputStream you were handed, you might choose to call close() yourself.

FilterInputStream
This “abstract” class simply provides a “pass-through” for all the standard methods of
InputStream. It holds inside itself another stream, by definition one further “down” the chain
of filters, to which it forwards all method calls. It implements nothing new but allows itself to
be nested:

InputStream s = getAnInputStreamFromSomewhere();
FilterInputStream s1 = new FilterInputStream(s);
FilterInputStream s2 = new FilterInputStream(s1);
FilterInputStream s3 = new FilterInputStream(s2);

... s3.read() ...

030-4s CH19.i 1/29/96, 12:10 PM383

384

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

Whenever a read is performed on the filtered stream s3, it passes along the request to s2; then
s2 does the same to s1, and finally s is asked to provide the bytes. Subclasses of FilterInputStream
will, of course, do some nontrivial processing of the bytes as they flow past. The rather verbose
form of “chaining” in the previous example can be made more elegant:

s3 = new FilterInputStream(new FilterInputStream(new FilterInputStream(s)));

You should use this idiom in your code whenever you can. It clearly expresses the nesting of
chained filters, and can easily be parsed and “read aloud” by starting at the innermost stream s
and reading outward—each filter stream applying to the one within—until you reach the
outermost stream s3.

Note: FilterInputStream is called “abstract,” rather than abstract, because it is not
actually declared to be abstract. This means that, as useless as they are, you can
create instances of FilterInputStream directly. The same will hold for its output
stream “brother” class, described later today.

Now let’s examine each of the subclasses of FilterInputStream in turn.

BufferedInputStream
This is one of the most valuable of all streams. It implements the full complement of
InputStream’s methods, but it does so by using a buffered array of bytes that acts as a cache for
future reading. This decouples the rate and the size of the “chunks” you’re reading from the more
regular, larger block sizes in which streams are most efficiently read (from, for example,
peripheral devices, files in the file system, or the network). It also allows smart streams to read
ahead when they expect that you will want more data soon.

Because the buffering of BufferedInputStream is so valuable, and it’s also the only class to handle
mark() and reset() properly, you might wish that every input stream could somehow share its
valuable capabilities. Normally, because those stream classes do not implement them, you would
be out of luck. Fortunately, you already saw a way that filter streams can wrap themselves
“around” other streams. Suppose that you would like a buffered FileInputStream that can
handle marking and resetting correctly. Et voilà:

InputStream s = new BufferedInputStream(new FileInputStream(“foo”));

You have a buffered input stream based on the file “foo” that can mark() and reset().

Now you can begin to see the power of nesting streams. Any capability provided by a filter input
stream (or output stream, as you’ll see soon) can be used by any other, basic stream via nesting.
Of course, any combination of these capabilities, and in any order, can be as easily accomplished
by nesting the filter streams themselves.

030-4s CH19.i 1/29/96, 12:11 PM384

385

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

DataInputStream
All the methods that instances of this class understand are defined in a separate interface, which
both DataInputStream and RandomAccessFile (another class in java.io) implement. This
interface is general-purpose enough that you might want to use it yourself in the classes you
create. It is called DataInput.

The DataInput Interface
When you begin using streams to any degree, you’ll quickly discover that byte streams are not
a really helpful format into which to force all data. In particular, the primitive types of the Java
language embody a rather nice way of looking at data, but with the streams you’ve been defining
thus far in this book, you could not read data of these types. The DataInput interface specifies
a higher-level set of methods that, when used for both reading and writing, can support a more
complex, typed stream of data. Here are the set of methods this interface defines:

void readFully(byte[] buffer) throws IOException;
void readFully(byte[] buffer, int offset, int length) throws IOException;
int skipBytes(int n) throws IOException;

boolean readBoolean() throws IOException;
byte readByte() throws IOException;
int readUnsignedByte() throws IOException;
short readShort() throws IOException;
int readUnsignedShort() throws IOException;
char readChar() throws IOException;
int readInt() throws IOException;
long readLong() throws IOException;
float readFloat() throws IOException;
double readDouble() throws IOException;

String readLine() throws IOException;
String readUTF() throws IOException;

The first three methods are simply new names for skip() and the two forms of read() you’ve
seen previously. Each of the next ten methods reads in a primitive type, or its unsigned
counterpart (useful for using every bit efficiently in a binary stream). These latter methods must
return an integer of a wider size than you might think; because integers are signed in Java, the
unsigned value does not fit in anything smaller. The final two methods read a newline (‘\r’,
‘\n’, or “\r\n”) terminated string of characters from the stream—the first in ASCII, and the
second in Unicode.

Now that you know what the interface that DataInputStream implements looks like, let’s see it
in action:

DataInputStream s = new DataInputStream(getNumericInputStream());

long size = s.readLong(); // the number of items in the stream

while (size-- > 0) {
 if (s.readBoolean()) { // should I process this item?

030-4s CH19.i 1/29/96, 12:11 PM385

386

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

 int anInteger = s.readInt();
 int magicBitFlags = s.readUnsignedShort();
 double aDouble = s.readDouble();

 if ((magicBitFlags & 0100000) != 0) {
 . . . // high bit set, do something special
 }
 . . . // process anInteger and aDouble
 }
}

Because the class implements an interface for all its methods, you can also use the following
interface:

DataInput d = new DataInputStream(new FileInputStream(“anything”));
String line;

while ((line = d.readLine()) != null) {
 . . . // process the line
}

The EOFException
One final point about most of DataInputStream’s methods: when the end of the stream is
reached, they throw an EOFException. This is tremendously useful and, in fact, allows you to
rewrite all the kludgy uses of -1 you saw earlier today in a much nicer fashion:

DataInputStream s = new DataInputStream(getAnInputStreamFromSomewhere());

try {
 while (true) {
 byte b = (byte) s.readByte();
 . . . // process the byte b
 }
} catch (EOFException e) {
 . . . // reached end of stream
}

This works just as well for all but the last two of the read methods of DataInputStream.

!! Caution: skipBytes() does nothing at all on end of stream, readLine() returns
null, and readUTF() might throw a UTFDataFormatException, if it notices the
problem at all.

LineNumberInputStream
In an editor or a debugger, line numbering is crucial. To add this valuable capability to your
programs, use the filter stream LineNumberInputStream, which keeps track of line numbers as its

030-4s CH19.i 1/29/96, 12:12 PM386

387

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

stream “flows through” it. It’s even smart enough to remember a line number and later restore
it, during a mark() and reset(). You might use this class as follows:

LineNumberInputStream aLNIS;
aLNIS = new LineNumberInputStream(new FileInputStream(“source”));

DataInputStream s = new DataInputStream(aLNIS);
String line;

while ((line = s.readLine()) != null) {
 . . . // process the line
 System.out.println(“Did line number: “ + aLNIS.getLineNumber());
}

Here, two filter streams are nested around the FileInputStream actually providing the data—
the first to read lines one at a time and the second to keep track of the line numbers of these lines
as they go by. You must explicitly name the intermediate filter stream, aLNIS, because if you did
not, you couldn’t call getLineNumber() later. Note that if you invert the order of the nested
streams, reading from the DataInputStream does not cause the LineNumberInputStream to “see”
the lines.

You must put any filter streams acting as “monitors” in the middle of the chain and “pull” the
data from the outermost filter stream so that the data will pass through each of the monitors in
turn. In the same way, buffering should occur as far inside the chain as possible, because it won’t
be able to do its job properly unless most of the streams that need buffering come after it in the
flow. For example, here’s a doubly silly order:

new BufferedInputStream(new LineNumberInputStream(
 ➥new DataInputStream(new FileInputStream(“foo”));

and here’s a much better order:

new DataInputStream(new LineNumberInputStream(
 ➥new BufferedInputStream(new FileInputStream(“foo”));

LineNumberInputStreams can also be told to setLineNumber(), for those few times when you
know more than they do.

PushbackInputStream
The filter stream class PushbackInputStream is commonly used in parsers, to “push back” a single
character in the input (after reading it) while trying to determine what to do next—a simplified
version of the mark() and reset() utility you learned about earlier. Its only addition to the
standard set of InputStream methods is unread(), which as you might guess, pretends that it
never read the byte passed in as its argument, and then gives that byte back as the return value
of the next read().

The following is a simple implementation of readLine() using this class:

public class SimpleLineReader {
 private FilterInputStream s;

030-4s CH19.i 1/29/96, 12:13 PM387

388

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

 public SimpleLineReader(InputStream anIS) {
 s = new DataInputStream(anIS);
 }

 . . . // other read() methods using stream s

 public String readLine() throws IOException {
 char[] buffer = new char[100];
 int offset = 0;
 byte thisByte;

 try {
loop: while (offset < buffer.length) {
 switch (thisByte = (byte) s.read()) {
 case ‘\n’:
 break loop;
 case ‘\r’:
 byte nextByte = (byte) s.read();

 if (nextByte != ‘\n’) {
 if (!(s instanceof PushbackInputStream)) {
 s = new PushbackInputStream(s);
 }
 ((PushbackInputStream) s).unread(nextByte);
 }
 break loop;
 default:
 buffer[offset++] = (char) thisByte;
 break;
 }
 }
 } catch (EOFException e) {
 if (offset == 0)
 return null;
 }
 return String.copyValueOf(buffer, 0, offset);
 }
}

This demonstrates numerous things. For the purpose of this example, readLine() is restricted
to reading the first 100 characters of the line. In this respect, it demonstrates how not to write
a general-purpose line processor (you should be able to read any size line). It also reminds you
how to break out of an outer loop, and how to produce a String from an array of characters (in
this case, from a “slice” of the array of characters). This example also includes standard uses of
InputStream’s read() for reading bytes one at a time, and of determining the end of the stream
by enclosing it in a DataInputStream and catching EOFException.

One of the more unusual aspects of the example is the way PushbackInputStream is used. To be
sure that ‘\n’ is ignored following ‘\r’ you have to “look ahead” one character; but if it is not
a ‘\n’, you must push back that character. Look at the next two lines as if you didn’t know much
about the stream s. The general technique used is instructive. First, you see whether s is already
an instanceof some kind of PushbackInputStream. If so, you can simply use it. If not, you enclose

030-4s CH19.i 1/29/96, 12:13 PM388

389

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

the current stream (whatever it is) inside a new PushbackInputStream and use this new stream.
Now, let’s jump back into the context of the example.

The line following wants to call the method unread(). The problem is that s has a “compile-time
type” of FilterInputStream, and thus doesn’t understand that method. The previous two lines
have guaranteed, however, that the run-time type of the stream in s is PushbackInputStream, so
you can safely cast it to that type and then safely call unread().

Note: This example was done in an unusual way for demonstration purposes. You
could have simply declared a PushbackInputStream variable and always enclosed the
DataInputStream in it. (Conversely, SimpleLineReader’s constructor could have
checked whether its argument was already of the right class, the way
PushbackInputStream did, before creating a new DataInputStream.) The interesting
thing about this approach of “wrapping a class only when needed” is that it works
for any InputStream that you hand it, and it does additional work only if it needs
to. Both of these are good general design principles.

All the subclasses of FilterInputStream have now been described. It’s time to return to the direct
subclasses of InputStream.

PipedInputStream
This class, along with its “brother” class PipedOutputStream, are covered later today (they need
to be understood and demonstrated together). For now, all you need to know is that together
they create a simple, two-way communication conduit between threads.

SequenceInputStream
Suppose you have two separate streams, and you would like to make a composite stream that
consists of one stream followed by the other (like appending two Strings together). This is
exactly what SequenceInputStream was created for:

InputStream s1 = new FileInputStream(“theFirstPart”);
InputStream s2 = new FileInputStream(“theRest”);

InputStream s = new SequenceInputStream(s1, s2);

... s.read() ... // reads from each stream in turn

You could have “faked” this example by reading each file in turn—but what if you had to hand
the composite stream s to some other method that was expecting only a single InputStream?

030-4s CH19.i 1/29/96, 12:14 PM389

390

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

Here’s an example (using s) that line-numbers the two previous files with a common numbering
scheme:

LineNumberInputStream aLNIS = new LineNumberInputStream(s);

... aLNIS.getLineNumber() ...

Note: Stringing together streams this way is especially useful when the streams are
of unknown length and origin, and were just handed to you by someone else.

What if you want to string together more than two streams? You could try the following:

Vector v = new Vector();
. . . // set up all the streams and add each to the Vector
InputStream s1 = new SequenceInputStream(v.elementAt(0), v.elementAt(1));
InputStream s2 = new SequenceInputStream(s1, v.elementAt(2));
InputStream s3 = new SequenceInputStream(s2, v.elementAt(3));
. . .

Note: A Vector is a growable array of objects that can be filled, referenced (with
elementAt()) and enumerated.

However, it’s much easier to use a different constructor that SequenceInputStream provides:

InputStream s = new SequenceInputStream(v.elements());

It takes an enumeration of all the sequences you wish to combine and returns a single stream that
reads through the data of each in turn.

StringBufferInputStream
StringBufferInputStream is exactly like ByteArrayInputStream, but instead of being based on
a byte array, it’s based on an array of characters (a String):

String buffer = “Now is the time for all good men to come...”;
InputStream s = new StringBufferInputStream(buffer);

All comments that were made about ByteArrayInputStream apply here as well. (See the earlier
section on that class.)

030-4s CH19.i 1/29/96, 12:15 PM390

391

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

Note: StringBufferInputStream is a bit of a misnomer, because this input stream is
actually based on a String. It should really be called StringInputStream.

Output Streams
Output streams are, in almost every case, paired with a “brother” InputStream that you’ve
already learned. If an InputStream performs a certain operation, the “brother” OutputStream
performs the inverse operation. You’ll see more of what this means soon.

The abstract Class OutputStream
OutputStream is the abstract class that defines the fundamental ways in which a source
(producer) writes a stream of bytes to some destination. The identity of the destination, and the
manner of the transport and storage of the bytes, is irrelevant. When using an output stream,
you are the source of those bytes, and that’s all you need to know.

write()
The most important method to the producer of an output stream is the one that writes bytes
to the destination. This method, write(), comes in many flavors, each demonstrated in an
example below.

Note: Every one of these write() methods is defined to “block” (wait) until all
the output requested has been written. You don’t need to worry about this
limitation—see the note under InputStream’s read() method if you don’t
remember why.

OutputStream s = getAnOutputStreamFromSomewhere();
byte[] buffer = new byte[1024]; // any size will do

fillInData(buffer); // the data we want to output
s.write(buffer);

You also can write a “slice” of your buffer by specifying the offset into the buffer, and the length
desired, as arguments to write():

s.write(buffer, 100, 300);

030-4s CH19.i 1/29/96, 12:17 PM391

393

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

Note: You’ve just seen your first examples of the creation of an output stream.
These new streams were attached to the simplest of all possible destinations of data,
an array of bytes in the memory of the local computer.

Once the ByteArrayOutputStream s has been “filled,” it can be output to another output stream:

OutputStream anotherOutputStream = getTheOtherOutputStream();
ByteArrayOutputStream s = new ByteArrayOutputStream();

fillWithUsefulData(s);
s.writeTo(anotherOutputStream);

It also can be extracted as a byte array or converted to a String:

byte[] buffer = s.toByteArray();
String bufferString = s.toString();
String bufferUnicodeString = s.toString(upperByteValue);

Note: The last method allows you to “fake” Unicode (16-bit) characters by filling
in their lower bytes with ASCII and then specifying a common upper byte (usually
0) to create a Unicode String result.

ByteArrayOutputStreams have two utility methods: one simply returns the current number of
bytes stored in the internal byte array, and the other resets the array so that the stream can be
rewritten from the beginning:

int sizeOfMyByteArray = s.size();

s.reset(); // s.size() would now return 0
s.write(123);
. . .

FileOutputStream
One of the most common uses of streams is to attach them to files in the file system. Here, for
example, is the creation of such an output stream on a UNIX system:

OutputStream s = new FileOutputStream(“/some/path/and/fileName”);

!! Caution: Applets attempting to open, read, or write streams based on files in the
file system can cause security violations. See the note under FileInputStream for
more details.

030-4s CH19.i 1/29/96, 12:19 PM393

394

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

You also can create the stream from a previously opened file descriptor:

int fd = openOutputFileInTraditionalUNIXWays();
OutputStream s = new FileOutputStream(fd);

FileOutputStream is the inverse of FileInputStream, and it knows the same tricks:

FileOutputStream aFOS = new FileOutputStream(“aFileName”);

int myFD = aFOS.getFD();

/* aFOS.finalize(); */ // will call close() when automatically called by GC

Note: To call the new methods, you must declare the stream variable aFOS to be of
type FileOutputStream, because plain OutputStreams don’t know about them.

The first is obvious. getFD() simply returns the file descriptor for the file on which the stream
is based. The second, commented, contrived call to finalize() is there to remind you that you
don’t have to worry about closing the stream—it is done for you automatically. (See the
discussion under FileInputStream for more.)

FilterOutputStream
This “abstract” class simply provides a “pass-through” for all the standard methods of
OutputStream. It holds inside itself another stream, by definition one further “down” the chain
of filters, to which it forwards all method calls. It implements nothing new but allows itself to
be nested:

OutputStream s = getAnOutputStreamFromSomewhere();
FilterOutputStream s1 = new FilterOutputStream(s);
FilterOutputStream s2 = new FilterOutputStream(s1);
FilterOutputStream s3 = new FilterOutputStream(s2);

... s3.write(123) ...

Whenever a write is performed on the filtered stream s3, it passes along the request to s2. Then
s2 does the same to s1, and finally s is asked to output the bytes. Subclasses of FilterOutputStream,
of course, do some nontrivial processing of the bytes as they flow past. This chain can be tightly
nested—see its “brother” class, FilterInputStream for more.

Now let’s examine each of the subclasses of FilterOutputStream in turn.

BufferedOutputStream
BufferedOutputStream is one of the most valuable of all streams. All it does is implement the full
complement of OutputStream’s methods, but it does so by using a buffered array of bytes that

030-4s CH19.i 1/29/96, 12:20 PM394

395

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

acts as a cache for writing. This decouples the rate and the size of the “chunks” you’re writing
from the more regular, larger block sizes in which streams are most efficiently written (to
peripheral devices, files in the file system, or the network, for example).

BufferedOutputStream is one of two classes in the Java library to implement flush(), which
pushes the bytes you’ve written through the buffer and out the other side. Because buffering is
so valuable, you might wish that every output stream could somehow be buffered. Fortunately,
you can surround any output stream in such a way as to achieve just that:

OutputStream s = new BufferedOutputStream(new FileOutputStream(“foo”));

You now have a buffered output stream based on the file “foo” that can be flush()ed.

Just as for filter input streams, any capability provided by a filter output stream can be used by
any other basic stream via nesting and any combination of these capabilities, in any order, can
be as easily accomplished by nesting the filter streams themselves.

DataOutputStream
All the methods that instances of this class understand are defined in a separate interface, which
both DataOutputStream and RandomAccessFile implement. This interface is general-purpose
enough that you might want use it yourself in the classes you create. It is called DataOutput.

The DataOutput Interface
In cooperation with its “brother” inverse interface, DataInput, DataOutput provides a higher-
level, typed-stream approach to the reading and writing of data. Rather than dealing with bytes,
this interface deals with writing the primitive types of the Java language directly:

void write(int i) throws IOException;
void write(byte[] buffer) throws IOException;
void write(byte[] buffer, int offset, int length) throws IOException;

void writeBoolean(boolean b) throws IOException;
void writeByte(int i) throws IOException;
void writeShort(int i) throws IOException;
void writeChar(int i) throws IOException;
void writeInt(int i) throws IOException;
void writeLong(long l) throws IOException;
void writeFloat(float f) throws IOException;
void writeDouble(double d) throws IOException;

void writeBytes(String s) throws IOException;
void writeChars(String s) throws IOException;
void writeUTF(String s) throws IOException;

Most of these methods have counterparts in the interface DataInput.

The first three methods mirror the three forms of write() you saw previously. Each of the next
eight methods write out a primitive type. The final three methods write out a string of bytes or

030-4s CH19.i 1/29/96, 12:21 PM395

396

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

characters to the stream: the first one as 8-bit bytes; the second, as 16-bit Unicode characters;
and the last, as a special Unicode stream (readable by DataInput’s readUTF()).

Note: The unsigned read methods in DataInput have no counterparts here. You
can write out the data they need via DataOutput’s signed methods because they
accept int arguments and also because they write out the correct number of bits for
the unsigned integer of a given size as a side effect of writing out the signed integer
of that same size. It is the method that reads this integer that must interpret the
sign bit correctly; the writer’s job is easy.

Now that you know what the interface that DataOutputStream implements looks like, let’s see
it in action:

DataOutputStream s = new DataOutputStream(getNumericOutputStream());
long size = getNumberOfItemsInNumericStream();

s.writeLong(size);

for (int i = 0; i < size; ++i) {
 if (shouldProcessNumber(i)) {
 s.writeBoolean(true); // should process this item
 s.writeInt(theIntegerForItemNumber(i));
 s.writeShort(theMagicBitFlagsForItemNumber(i));
 s.writeDouble(theDoubleForItemNumber(i));
 } else
 s.writeBoolean(false);
}

This is the exact inverse of the example that was given for DataInput. Together, they form a pair
that can communicate a particular array of structured primitive types across any stream (or
“transport layer”). Use this pair as a jumping-off point whenever you need to do something
similar.

In addition to the interface above, the class itself implements one (self-explanatory) utility
method:

int theNumberOfBytesWrittenSoFar = s.size();

Processing a File
One of the most common idioms in file I/O is to open a file, read and process it line-by-line,
and output it again to another file. Here’s a prototypical example of how that would be done
in Java:

DataInput aDI = new DataInputStream(new FileInputStream(“source”));
DataOutput aDO = new DataOutputStream(new FileOutputStream(“dest”));
String line;

030-4s CH19.i 1/29/96, 12:22 PM396

397

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

while ((line = aDI.readLine()) != null) {
 StringBuffer modifiedLine = new StringBuffer(line);

 . . . // process modifiedLine in place
 aDO.writeBytes(modifiedLine.toString());
}
aDI.close();
aDO.close();

If you want to process it byte-by-byte, use this:

try {
 while (true) {
 byte b = (byte) aDI.readByte();

 . . . // process b in place
 aDO.writeByte(b);
 }
} finally {
 aDI.close();
 aDO.close();
}

Here’s a cute two-liner that just copies the file:

try { while (true) aDO.writeByte(aDI.readByte()); }
finally { aDI.close(); aDO.close(); }

!! Caution: Many of the examples in today’s lesson (and the last two) assume that
they appear inside a method that has IOException in its throws clause, so they don’t
have to “worry” about catching those exceptions and handling them more reason-
ably. Your code should be a little less cavalier.

PrintStream
You may not realize it, but you’re already intimately familiar with the use of two methods of the
PrintStream class. That’s because whenever you use these method calls:

System.out.print(. . .)
System.out.println(. . .)

you are actually using a PrintStream instance located in the System’s class variable out to perform
the output. System.err is also a PrintStream, and System.in is an InputStream.

Note: On UNIX systems, these three streams will be attached to standard output,
standard error, and standard input.

030-4s CH19.i 1/29/96, 12:23 PM397

398

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

PrintStream is uniquely an output stream class (it has no “brother”). Because it is usually
attached to a screen output device of some kind, it provides an implementation of flush(). It
also provides the familiar close() and write() methods, as well as a plethora of choices for
outputting the primitive types and Strings of Java:

public void write(int b);
public void write(byte[] buffer, int offset, int length);
public void flush();
public void close();

public void print(Object o);
public void print(String s);
public void print(char[] buffer);
public void print(char c);
public void print(int i);
public void print(long l);
public void print(float f);
public void print(double d);
public void print(boolean b);

public void println(Object o);
public void println(String s);
public void println(char[] buffer);
public void println(char c);
public void println(int i);
public void println(long l);
public void println(float f);
public void println(double d);
public void println(boolean b);

public void println(); // output a blank line

PrintStream can also be wrapped around any output stream, just like a filter class:

PrintStream s = PrintStream(new FileOutputStream(“foo”));

s.println(“Here’s the first line of text in the file foo.”);

If you provide a second argument to the constructor for PrintStream, it is a boolean that specifies
whether the stream should auto-flush. If true, a flush() is sent after each character is written
(or for the three-argument form of write(), after a whole group of characters has been written.)

Here’s a simple example program that operates like the UNIX command cat, taking the
standard input, line-by-line, and outputting it to the standard output:

import java.io.*; // the one time in the chapter we’ll say this

public class Cat {
 public static void main(String args[]) {
 DataInput d = new DataInputStream(System.in);
 String line;

 try { while ((line = d.readLine()) != null)
 System.out.println(line);

030-4s CH19.i 1/29/96, 12:23 PM398

399

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

 } catch (IOException ignored) { }
 }
}

PipedOutputStream
Along with PipedInputStream, this pair of classes supports a UNIX-pipe-like connection
between two threads, implementing all the careful synchronization that allows this sort of
“shared queue” to operate safely. To set up the connection:

PipedInputStream sIn = PipedInputStream();
PipedOutputStream sOut = PipedOutputStream(sIn);

One thread writes to sOut, and the other reads from sIn. By setting up two such pairs, the threads
can communicate safely in both directions.

Related Classes
The other classes and interfaces in java.io supplement the streams to provide a complete I/O
system.

The File class abstracts “file” in a platform-independent way. Given a filename, it can respond
to queries about the type, status, and properties of a file or directory in the file system.

A RandomAccessFile is created given a file, a filename, or a file descriptor. It combines in one class
implementations of the DataInput and DataOutput interfaces, both tuned for “random access”
to a file in the file system. In addition to these interfaces, RandomAccessFile provides certain
traditional UNIX-like facilities, such as seek()ing to a random point in the file.

Finally, the StreamTokenizer class takes an input stream and produces a sequence of tokens. By
overriding its various methods in your own subclasses, you can create powerful lexical parsers.

You can learn more about any and all of these classes from the full (online) API descriptions in
your Java release.

Summary
Today, you learned about the general idea of streams and met input streams based on byte arrays,
files, pipes, sequences of other streams, and string buffers, as well as input filters for buffering,
typing data, line numbering, and pushing-back characters.

You also met the analogous “brother” output streams for byte arrays, files, and pipes, and output
filters for buffering and typing data, and the unique output filter used for printing.

030-4s CH19.i 1/29/96, 12:24 PM399

400

Streams
M

T W
R

F S S

DAYDAY

19

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#4

Along the way, you became familiar with the fundamental methods all streams understand (such
as read() and write()), as well as the unique methods many streams add to this repertoire. You
learned about catching IOExceptions—especially the most useful of them, EOFException.

Finally, the twice-useful DataInput and DataOutput interfaces formed the heart of RandomAccessFile,
one of the several utility classes that round out Java’s I/O facilities.

Java streams provide a powerful base on which you can build multithreaded, streaming
interfaces of the most complex kinds, and the programs (such as HotJava) to interpret them. The
higher-level Internet protocols and services of the future that your applets can build upon this
base are really limited only by your imagination.

Q&A
Q In an early read() example, you did something with the variable byteOrMinus1

that seemed a little clumsy. Isn’t there a better way? If not, why recommend the
cast later?

A Yes, there is something a little odd about those statements. You might be tempted to
try something like this instead:
while ((b = (byte) s.read()) != -1) {
. . . // process the byte b
}

The problem with this short-cut occurs when read() returns the value 0xFF (0377).
Since this value is signed-extended before the test gets executed, it will appear to be
identical to the integer value -1 that indicates end of stream. Only saving that value in
a separate integer variable, and then casting it later, will accomplish the desired result.
The cast to byte is recommended in the note for orthogonal reasons—storing integer
values in correctly sized variables is always good style (and besides, read() really
should be returning something of byte size here and throwing an exception for end of
stream).

Q What input streams in java.io actually implement mark(), reset(), and
markSupported()?

A InputStream itself does—and in their default implementations, markSupported()
returns false, mark() does nothing, and reset() throws an exception. The only input
stream in the current release that correctly supports marking is BufferedInputStream,
which overrides these defaults. LineNumberInputStream actually implements mark()
and reset(), but in the current release, it doesn’t answer markSupported() correctly, so
it looks as if it does not.

030-4s CH19.i 1/29/96, 12:25 PM400

401

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc5 TY Java in 21 Days 030-4 Casey 12.28.95 Ch19 LP#3

Q Why is available() useful, if it sometimes gives the wrong answer?

A First, for many streams, it gives the right answer. Second, for some network streams,
its implementation might be sending a special query to discover some information you
couldn’t get any other way (for example, the size of a file being transferred by ftp). If
you were displaying a “progress bar” for network or file transfers, for example,
available() would often give you the total size of the transfer, and if it did not—
usually by returning 0—it would be obvious to you (and your users).

Q What’s a good example use of the DataInput/DataOutput pair of interfaces?

A One common use of such a pair is when objects want to “pickle” themselves for
storage or movement over a network. Each object implements read and write methods
using these interfaces, effectively converting itself to a stream that can later be recon-
stituted “on the other end” into a copy of the original object.

030-4s CH19.i 1/29/96, 12:26 PM401

403

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

M
T W

R
F S S

WEEK

3

2 02 0
Native Methods
and Libraries

by Charles L. Perkins

030-4s CH20.i 1/29/96, 12:29 PM403

404

Native Methods and Libraries
M

T W
R

F S S

DAYDAY

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

Today, you’ll learn all the reasons you might (or might not) want to write native methods in
Java, about all of Java’s built-in optimizations, and about the tricks you can use to make your
programs faster. You’ll also learn the procedure for creating, making headers and stubs for, and
linking native methods into a dynamically loadable library.

Let’s begin, however, with the reasons that you might want to implement native methods in
the first place.

There are only two reasons that you might need to declare some of your methods native, that
is, implemented by a language other than Java.

The first, and by far the best reason to do so, is because you need to utilize a special capability
of your computer or operating system that the Java class library does not already provide for you.
Such capabilities include interfacing to new peripheral devices or plug-in cards, accessing a
different type of networking, or using a unique, but valuable feature of your particular operating
system. Two more concrete examples are acquiring real-time audio input from a microphone
or using 3D “accelerator” hardware in a 3D library. Neither of these is provided to you by the
current Java environment, so you must implement them outside Java, in some other language
(currently C or any language that can link with C).

The second, and often illusory reason to implement native methods, is speed—illusory, because
you rarely need the raw speeds gained by this approach. It’s even more rare to not be able to gain
that speed-up in other ways (as you’ll see later today). Using native methods in this case takes
advantage of the fact that, at present, the Java release does not perform as well as, for example,
an optimized C program on many tasks. For those tasks, you can write the “needs to be fast” part
(critical, inner loops, for example) in C, and still use a larger Java shell of classes to hide this
“trick” from your users. In fact, the Java class library uses this approach for certain critical system
classes to raise the overall level of efficiency in the system. As a user of the Java environment, you
don’t even know (or see) any results of this (except, perhaps, a few classes or methods that are
final that might not be otherwise).

Disadvantages of native Methods
Once you decide you’d like to, or must, use native methods in your program, this choice costs
you dearly. Although you gain the advantages mentioned earlier, you lose the portability of your
Java code.

Before, you had a program (or applet) that could travel to any Java environment in the world,
now and forever. Any new architectures created—or new operating systems written—were
irrelevant to your code. All it required was that the (tiny) Java Virtual Machine (or a browser
that had one inside it) be available, and it could run anywhere, anytime—now and in the future.

030-4s CH20.i 1/29/96, 12:30 PM404

405

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

Now, however, you’ve created a library of native code that must be linked with your program
to make it work properly. The first thing you lose is the ability to “travel” as an applet; you simply
can’t be one! No Java-aware browser currently in existence allows native code to be loaded with
an applet, for security reasons (and these are good reasons). The Java team has struggled to place
as much as possible into the java packages because they are the only environment you can count
on as an applet. (The sun packages, shipped primarily for use with stand-alone Java programs,
are not always available to applets.)

Note: Actually, any classes that anyone writes without native code should be able to
be loaded with an applet, as long as they depend only on the java packages.
Unfortunately, many of the sun packages contain classes that must use native code
to provide crucial, missing functionality from the java packages. All these missing
pieces, and some additional multimedia and sound capabilities, will be added to the
java packages in the future. (This has been informally promised in discussions I’ve
had with the Java team.)

Losing the ability to travel anywhere across the Net, into any browser written now or in the
future, is bad enough. What’s worse, now that you can’t be an applet, you have further limited
yourself to only those machines that have had the Java Virtual Machine ported to their operating
system. (Applets automatically benefit from the wide number of machines and operating
systems that any Java-aware browser is ported to, but now you do not.)

Even worse, you have assumed something about that machine and operating system by the
implementation of your native methods. This often means that you have to write different
source code for some (or all) of the machines and operating systems on which you want to be able
to run. You’re already forced, by using native methods, to produce a separate binary library for
every machine and operating system pair in the world (or at least, wherever you plan to run),
and you must continue to do so forever. If changing the source is also necessary, you can see that
this is not a pleasant situation for you and your Java program.

The Illusion of Required Efficiency
If, even after the previous discussion, you must use native methods anyway, there’s help for you
later in today’s lesson—but what if you’re still thinking you need to use them for efficiency
reasons?

You are in a grand tradition of programmers throughout the (relatively few) ages of computing.
It is exciting, and intellectually challenging, to program with constraints. If you believe
efficiency is always required, it makes your job a little more interesting—you get to consider all

030-4s CH20.i 1/29/96, 12:32 PM405

406

Native Methods and Libraries
M

T W
R

F S S

DAYDAY

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

sorts of baroque ways to accomplish tasks, because it is the efficient way to do it. I myself was
caught up in this euphoria of creativity when I first began programming, but it is creativity
misapplied.

When you design your program, all that energy and creativity should be directed at the design
of a tight, concise, minimal set of classes and methods that are maximally general, abstract, and
reusable. (If you think that is easy, look around for a few years and see how bad most software
is.) If you spend most of your programming time on thinking and rethinking these fundamental
goals and how to achieve them, you are preparing for the future. A future where software is
assembled as needed from small components swimming in a sea of network facilities, and anyone
can write a component seen by millions (and reused in their programs) in minutes. If, instead,
you spend your energy worrying about the speed your software will run right now on some
computer, you will be irrelevant after the 18 to 36 months it will take hardware to be fast enough
to hide that minor inefficiency in your program.

Am I saying that you should ignore efficiency altogether? Of course not! Some of the great
algorithms of computer science deal with solving hard or “impossible” problems in reasonable
amounts of time—and writing your programs carelessly can lead to remarkably slow results.
This, however, can as easily lead to incorrect, fragile, or nonreusable results. If you achieve all
those other goals first, the resulting software will be clean, will naturally reflect the structure of
the problem you’re trying to solve, and thus will be amenable to “speeding up” later.

Note: There are always cases where you must be fanatical about efficiency in many
parts of a set of classes. The Java class library itself is such a case, as is anything that
must run in real-time for some critical real-world application (such as flying a
plane). Such applications are rare, however.

When speaking of a new kind of programming that must soon emerge, Bill Joy, a
founder at Sun, likes to invoke the four S’s of Java: small, simple, safe, and secure.
The “feel” of the Java language itself encourages the pursuit of clarity and the
reduction of complexity. The intense pursuit of efficiency, which increases com-
plexity and reduces clarity, is antithetical to these goals.

Once you build a solid foundation, debug your classes, and your program (or applet) works as
you’d like it to, then it’s time to begin optimizing it. If it’s just a user interface applet, you may
need to do nothing at all. The user is very slow compared to modern computers (and getting
relatively slower every 18 months). The odds are that your applet is already fast enough—but
suppose it isn’t.

030-4s CH20.i 1/29/96, 12:33 PM406

407

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

Built-In Optimizations
Your next job is to see whether your release supports turning on the “just-in-time” compiler, or
using the java2c tool.

The first of these is an experimental technology that, while a method’s bytecodes are running
in the Java Virtual Machine, translates each bytecode into the native binary code equivalent for
the local computer, and then keeps this native code around as a cache for the next time that
method is run. This trick is completely transparent to the Java code you write. You need know
nothing about whether or not it’s being done—your code can still “travel” anywhere, anytime.
On any system with “just-in-time” technology in place, however, it runs a lot faster. Experience
with experimental versions of this technology shows that, after paying a small cost the first time
a method is run, this technique can reach the speed of compiled C code.

Note: More details on this technique, and the java2c tool, will be presented
tomorrow. As of the beta release, neither of these tools are in the Java environment,
but both are expected in the final release.

The java2c translator takes a whole .class file full of the bytecodes for a class and translates them
(all at once) into a portable C source code version. This version can then be compiled by a
traditional C compiler on your computer to produce a native-method-like cached library of fast
code. This large cache of native code will be used whenever the class’s methods are called, but
only on the local computer. Your original Java code can still travel as bytecodes and run on any
other computer system. If the virtual machine automatically takes these steps whenever it makes
sense for a given class, this can be as transparent as the “just-in-time” technology. Experience
with an experimental version of this tool shows that fully optimized C performance is achievable.
(This is the best anyone can hope to do!)

So you see, even without taking any further steps to optimize your program, you may discover
that for your release of Java (or for releases elsewhere or coming in the near future), your code
is already fast enough. If it is not, remember that the world craves speed. Java will only get faster,
the tools will only get better. Your code is the only permanent thing in this new world—it should
be the best you can make it, with no compromises.

Simple Optimization Tricks
Suppose that these technologies aren’t available or don’t optimize your program far enough for
your taste. You can profile your applet or program as it runs, to see in which methods it spends
the most time. Once you know this crucial information, you can begin to make targeted changes
to your classes.

030-4s CH20.i 1/29/96, 12:34 PM407

408

Native Methods and Libraries
M

T W
R

F S S

DAYDAY

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

Tip: Use java -prof ... to produce this profile information. In an early release
(and, presumably, the final release) the javaprof tool can “pretty-print” this
information in a more readable format. (javaprof is not in the beta release—but try
the latest Java release’s documentation for details.)

Before you begin making optimizations, you also may want to save a copy of your
“clean” classes. As soon as computer speeds allow it (or a major rewrite necessitates
it), you can revert to these classes, which embody the “best” implementation of
your program.

First, identify the crucial few methods that take most of the time (there are almost always just
a few, and often just one, that take up the majority of your program’s time). If they contain loops,
examine the inner loops to see whether they: call methods that can be made final, call a group
of methods that can be collapsed into a single method, or create objects that can be reused rather
than created anew each loop.

If you notice that a long chain of, for example, four or more method calls is needed to reach a
destination method’s code, and this execution path is in one of the critical sections of the
program, you can “short-circuit” directly to that destination method in the topmost method.
This may require adding a new instance variable to reference the object for that method call
directly. This quite often violates layering or encapsulation constraints. This violation, and any
added complexity, is the price you pay for efficiency.

If, after all these tricks (and the numerous others you should try that have been collected over
the years into various programming books), your Java code is still just too slow, you will have
to use native methods after all.

Writing native Methods
For whatever reasons, you’ve decided to add native methods to your program. You’ve already
decided which methods need to be native, and in which classes, and you’re rarin’ to go.

First, on the Java side, all you do is delete the method bodies (all the code between the brackets
{ and } and the brackets themselves) of each method you picked and replace them with a single
semicolon (;). Then add the modifier native to the method’s existing modifiers. Finally, add
a static (class) initializer to each class that now contains native methods to load the native code
library you’re about to build. (You can pick any name you like for this library—details follow.)
You’re done!

030-4s CH20.i 1/29/96, 12:35 PM408

409

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

That’s all you need to do in Java to specify a native method. Subclasses of any class containing
your new native methods can still override them, and these new methods are called for instances
of the new subclasses (just as you’d expect).

Unfortunately, what needs to be done in your native language environment is not so simple.

Note: The following discussion assumes that C and UNIX are your language and
environment. This means that some of the steps may differ slightly on your actual
system, but such differences will be outlined in the notes surrounding the native
method documentation in your release (in the document called Implementing
Native Methods in the alpha, but folded into the programmer’s tutorial in the
beta). The following discussion is purposely parallel to this documentation.

The Example Class
Imagine a version of the Java environment that does not provide file I/O. Any Java program
needing to use the file system would first have to write native methods to get access to the
operating system primitives needed to do file I/O.

This example combines simplified versions of two actual Java library classes, java.io.File and
java.io.RandomAccessFile, into a single new class, SimpleFile:

public class SimpleFile {
 public static final char separatorChar = ‘>’;
 protected String path;
 protected int fd;

 public SimpleFile(String s) {
 path = s;
 }

 public String getFileName() {
 int index = path.lastIndexOf(separatorChar);

 return (index < 0) ? path : path.substring(index + 1);
 }

 public String getPath() {
 return path;
 }

 public native boolean open();
 public native void close();
 public native int read(byte[] buffer, int length);
 public native int write(byte[] buffer, int length);

030-4s CH20.i 1/29/96, 12:36 PM409

410

Native Methods and Libraries
M

T W
R

F S S

DAYDAY

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

 static {
 System.loadLibrary(“simple”); // runs when class first loaded
 }
}

Note: The unusual separatorChar (‘>’) is used simply to demonstrate what an
implementation might look like on some strange computer whose file system didn’t
use any of the more common path separator conventions. Early Xerox computers
used ‘>’ as a separator, and several existing computer systems still use strange
separators today, so this is not all that farfetched.

SimpleFiles can be created and used by other methods in the usual way:

SimpleFile f = new SimpleFile(“>some>path>and>fileName”);

f.open();
f.read(...);
f.write(...);
f.close();

The first thing you notice about SimpleFile’s implementation is how unremarkable the first
two-thirds of its Java code is! It looks just like any other class, with a class and an instance variable,
a constructor, and two normal method implementations. Then there are four native method
declarations. You’ll recognize these, from previous discussions, as being just a normal method
declaration with the code block replaced by a semicolon and the modifier native added. These
are the methods you have to implement in C code later.

Finally, there is a somewhat mysterious code fragment at the very end of the class. You should
recognize the general construct here as a static initializer. Any code between the brackets { and
} is executed exactly once, when the class is first loaded into the system. You take advantage of
that fact to run something you want to run only once—the loading of the native code library
you’ll create later today. This ties together the loading of the class itself with the loading of its
native code. If either fails for some reason, the other fails as well, guaranteeing that no “half-set-
up” version of the class can ever be created.

Generating Header and Stub Files
In order to get your hands on Java objects and data types, and to be able to manipulate them
in your C code, you need to include some special .h files. Most of these will be located in your
release directory under the subdirectory called include. (In particular, look at native.h in that
directory, and all the headers it points to, if you’re a glutton for detail punishment.)

030-4s CH20.i 1/29/96, 12:36 PM410

411

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

Some of the special forms you need must be tailored to fit your class’s methods precisely. That’s
where the javah tool comes in.

Using javah
To generate the headers you need for your native methods, first compile SimpleFile with javac,
just as you normally would. This produces a file named SimpleFile.class. This file must be fed
to the javah tool, which then generates the header file you need (SimpleFile.h).

Tip: If the class handed to javah is inside a package, it prepends the package name
to the header file name (and to the structure names it generates inside that file),
after replacing all the dots (.) with underscores (_) in the package’s full name.
Thus, if SimpleFile is contained in a hypothetical package called
acme.widgets.files, javah generates a header file named
acme_widgets_files_SimpleFile.h, and the various names within are renamed in a
similar manner.

When running javah, you should pass it only the class name itself, and not the
filename, which has .class on the end.

The Header File
Here’s the output of javah SimpleFile:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <native.h>
/* Header for class SimpleFile */

#ifndef _Included_SimpleFile
#define _Included_SimpleFile
struct Hjava_lang_String;

typedef struct ClassSimpleFile {
#define SimpleFile_separatorChar 62L
struct Hjava_lang_String *path;
long fd;
} ClassSimpleFile;
HandleTo(SimpleFile);

extern /*boolean*/ long SimpleFile_open(struct HSimpleFile *);
extern void SimpleFile_close(struct HSimpleFile *);
extern long SimpleFile_read(struct HSimpleFile *,HArrayOfByte *,long);
extern long SimpleFile_write(struct HSimpleFile *,HArrayOfByte *,long); #endif

030-4s CH20.i 1/29/96, 12:38 PM411

412

Native Methods and Libraries
M

T W
R

F S S

DAYDAY

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

Note: HandleTo() is a “magic” macro that uses the structures created at run-time by
the stubs you’ll generate later today.

The members of the struct generated above are in a one-to-one correspondence with the
variables of your class.

In order to “massage” an instance of your class gently into the land of C, use the macro unhand()
(as in “unhand that Object!”). For example, the this pseudo-variable in Java appears as a struct
HSimpleFile * in the land of C, and to use any variables inside this instance (you), you must
unhand() yourself first. You’ll see some examples of this in a later section today.

Using javah -stubs
To “run interference” between the Java world of Objects, arrays, and other high-level constructs
and the lower-level world of C, you need stubs.

Stubs are pieces of “glue” code that automatically translate arguments and return values
back and forth between the worlds of Java and C.

Stubs can be automatically generated by javah, just like the headers. There isn’t much you need
to know about the stubs file, just that it has to be compiled and linked with the C code you write
to allow it to interface with Java properly. A stubs file (SimpleFile.c) is created by running javah
on your class by using the option -stubs.

Note: One interesting side-effect of stub generation is the creation of method
signatures, informally called method descriptions elsewhere. These signatures are
quite useful—they can be passed to special C functions that allow you to call back
into the Java world from C. You can use stub generation to learn what these
signatures look like for different method arguments and return values, and then use
that knowledge to call arbitrary Java methods from within your C code. (Brief
descriptions of these special C functions, along with further details, appear later
today.)

The Stubs File
Here’s the result of running javah -stubs SimpleFile:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <StubPreamble.h>

NEW
TERM

☛

030-4s CH20.i 1/29/96, 12:39 PM412

413

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

/* Stubs for class SimpleFile */
/* SYMBOL: “SimpleFile/open()Z”, Java_SimpleFile_open_stub */
stack_item *Java_SimpleFile_open_stub(stack_item *_P_,struct execenv *_EE_) {
 extern long SimpleFile_open(void *);
 P[0].i = SimpleFile_open(_P_[0].p);
return _P_ + 1;
}
/* SYMBOL: “SimpleFile/close()V”, Java_SimpleFile_close_stub */
stack_item *Java_SimpleFile_close_stub(stack_item *_P_,struct execenv *_EE_) {
 extern void SimpleFile_close(void *);
 (void) SimpleFile_close(_P_[0].p);
 return _P_;
}
/* SYMBOL: “SimpleFile/read([BI)I”, Java_SimpleFile_read_stub */
stack_item *Java_SimpleFile_read_stub(stack_item *_P_,struct execenv *_EE_) {
 extern long SimpleFile_read(void *,void *,long);
 P[0].i = SimpleFile_read(_P_[0].p,((_P_[1].p)),((_P_[2].i)));
 return _P_ + 1;
}
/* SYMBOL: “SimpleFile/write([BI)I”, Java_SimpleFile_write_stub */
stack_item *Java_SimpleFile_write_stub(stack_item *_P_,struct execenv *_EE_) {
 extern long SimpleFile_write(void *,void *,long);
 P[0].i = SimpleFile_write(_P_[0].p,((_P_[1].p)),((_P_[2].i)));
 return _P_ + 1;
}

Each comment line contains the method signature for one of the four native methods you’re
implementing. You can use one of these signatures to call into Java and run, for example, a
subclass’s overriding implementation of one of your native methods. More often, you’d learn
and use a signature to call some useful Java method from within C to get something done in the
Java world.

You do this by calling a special C function in the Java run-time called
execute_java_dynamic_method(). Its arguments include the target object of the method call and
the method’s signature. The general form of a fully qualified method signature is any/package/
name/ClassName/methodName(...)X. (You can see several in the last example, where SimpleFile
is the class name and there is no package name.) The X is a letter (or string) that represents the
return type, and the ... contains a string that represents each of the argument’s types in turn.
Here are the letters (and strings) used, and the types they represent, in the example: [T is array
of type T, B is byte, I is int, V is void, and Z is boolean.

The method close(), which takes no arguments and returns void, is represented by the string
“SimpleFile/close()V” and its inverse, open(), that returns a boolean instead, is represented by
“SimpleFile/open()Z.” Finally, read(), which takes an array of bytes and an int as its two
arguments and returns an int, is “SimpleFile/read([BI)I.” (See the “Method Signatures”
section in tomorrow’s lesson for the full details.)

030-4s CH20.i 1/29/96, 12:40 PM413

414

Native Methods and Libraries
M

T W
R

F S S

DAYDAY

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

Creating SimpleFileNative.c
Now you can, at last, write the C code for your Java native methods.

The header file generated by javah, SimpleFile.h, gives you the prototypes of the four C
functions you need to implement to make your native code complete. You then write some C
code that provides the native facilities that your Java class needs (in this case, some low-level file
I/O routines). Finally, you assemble all the C code into a new file, include a bunch of required
(or useful) .h files, and name it SimpleFileNative.c. Here’s the result:

#include “SimpleFile.h” /* for unhand(), among other things */

#include <sys/param.h> /* for MAXPATHLEN */
#include <fcntl.h> /* for O_RDWR and O_CREAT */

#define LOCAL_PATH_SEPARATOR ‘/’ /* UNIX */

static void fixSeparators(char *p) {
 for (; *p != ‘\0’; ++p)
 if (*p == SimpleFile_separatorChar)
 *p = LOCAL_PATH_SEPARATOR;
}

long SimpleFile_open(struct HSimpleFile *this) {
 int fd;
 char buffer[MAXPATHLEN];

 javaString2CString(unhand(this)->path, buffer, sizeof(buffer));
 fixSeparators(buffer);
 if ((fd = open(buffer, O_RDWR | O_CREAT, 0664)) < 0) /* UNIX open */
 return(FALSE); /* or, SignalError() could throw an exception */
 unhand(this)->fd = fd; /* save fd in the Java world */
 return(TRUE);
}

void SimpleFile_close(struct HSimpleFile *this) {
 close(unhand(this)->fd);
 unhand(this)->fd = -1;
}

long SimpleFile_read(struct HSimpleFile *this, HArrayOfByte *buffer,
 ➥ long count) {
 char *data = unhand(buffer)->body; /* get array data */
 int len = obj_length(buffer); /* get array length */
 int numBytes = (len < count ? len : count);

 if ((numBytes = read(unhand(this)->fd, data, numBytes)) == 0)
 return(-1);
 return(numBytes); /* the number of bytes actually read */
}

030-4s CH20.i 1/29/96, 12:40 PM414

415

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

long SimpleFile_write(struct HSimpleFile *this, HArrayOfByte *buffer,
 ➥ long count) {
 char *data = unhand(buffer)->body;
 int len = obj_length(buffer);

 return(write(unhand(this)->fd, data, (len < count ? len : count)));
}

Once you finish writing your .c file, compile it by using your local C compiler (usually called
cc or gcc). On some systems, you may need to specify special compilation flags that mean “make
it relocatable and dynamically linkable.”

Note: If you don’t have a C compiler on your computer, you can always buy one.
You also could get a copy of the GNU C compiler (gcc), one of the best C compil-
ers in the world, which runs on almost every machine and operating system on the
planet. The best way to get gcc is to buy the “GNU release” on CD-ROM, the
profits of which go to support the Free Software Foundation. You can find both
the GNU CD-ROM and the Linux CD-ROM (which includes GNU) in select
places that sell software or technical books, or you can contact the F.S.F. directly.
The GNU CD-ROM is a bit pricey, and, though the Linux CD-ROM is very
inexpensive, if you can’t afford either, or want the latest version and already own a
CD-ROM, you can download the gzip file ftp://prep.ai.mit.edu/pub/gnu/gcc-
2.7.0.tar.gz, which contains all 7M of the latest gcc release. (If you’d like to make
a donation to, or buy gcc or its manual from, the F.S.F., you can e-mail them at
gnu@prep.ai.mit.edu or call 617.542.5942.)

Some Useful Functions
When writing the C code for native implementations, a whole set of useful (internal) macros
and functions are available for accessing Java run-time structures. (Several of them were used in
SimpleFileNative.c.)

Let’s take a brief digression to understand some of them a little better.

!! Warning: Don’t rely on the exact form given for any of the following macros and
functions. Because they’re all internal to the Java run-time, they’re subject to change
at any moment. Check to see what the latest versions of them look like in your Java
release before using them.

030-4s CH20.i 1/29/96, 12:41 PM415

416

Native Methods and Libraries
M

T W
R

F S S

DAYDAY

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

Note: The following brief descriptions are taken from an alpha release of Java,
because descriptions of them for the beta release were not available as of this
writing. How Java data types map into C types, and vice versa, is detailed in the
documentation there. Refer to it for more details on that or on any of the sparsely
documented items below. (Many are listed just to give you a taste of the capabilities
of the available functions.)

The following example:

Object *unhand(Handle *)
int obj_length(HArray *)

returns a pointer to the data portion of an object and returns the length of an array. The actual
pointer type returned is not always Object *, but varies, depending on the type of Handle (or
HArray).

This example:

ClassClass *FindClass(struct execenv *e, char *name, bool_t resolve)
HArrayOfChar *MakeString(char *string, long length)
Handle *ArrayAlloc(int type, int length)

finds a class (given its name), makes an array of characters of length length and allocates an array
of the given length and type.

Use the function:

long execute_java_dynamic_method(ExecEnv *e, HObject *obj, char *method_name,
 ➥char *signature, ...);

to call a Java method from C. e is NULL to use the current environment. The target of the method
call is obj. The method method_name has the given method signature. It can have any number
of arguments and returns a 32-bit value (int, Handle *, or any 32-bit C type).

Use the following:

HObject *execute_java_constructor(ExecEnv *e, char *classname, ClassClass *c,
 ➥char *signature, ...);

long execute_java_static_method(ExecEnv *e, ClassClass *c, char *method_name,
 ➥char *signature, ...);

to call a Java constructor from C and call a class method from C. c is the target class; the rest are
as in executemethod().

Calling this:

SignalError(0, JAVAPKG “ExceptionClassName”, “message”);

030-4s CH20.i 1/29/96, 12:42 PM416

417

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

posts a Java exception that will be thrown when your native method returns. It is somewhat like
the Java code:

throw new ExceptionClassName(“message”);

Finally, here are some useful string conversion functions:

void javaStringPrint(Hjava_lang_String *s)
int javaStringLength(Hjava_lang_String *s)

Hjava_lang_String *makeJavaString(char *string, int length)

char *makeCString(Hjava_lang_String *s)
char *allocCString(Hjava_lang_String *s)

unicode *javaString2unicode(Hjava_lang_String *s, unicode *buf, int len)
char *javaString2CString(Hjava_lang_String *s, char *buf, int len)

The first two methods print a Java String (like System.out.print()), and get its length,
respectively. The third makes a Java String out of a C string. The fourth and fifth do the reverse,
turning a Java String into a C string (allocated from temporary or heap storage, respectively).
The final two methods copy Java Strings into preexisting Unicode or ASCII C buffers.

Compiling the Stubs File
The final step you need to take in the C world is to compile the stubs file SimpleFile.c by using
the same compilation flags you used for SimpleFileNative.c.

Note: If you have several classes with native methods, you can include all their
stubs in the same .c file, if you like. Of course you might want to name it some-
thing else, such as Stubs.c, in that case.

You’re now finished with all the C code that must be written (and compiled) to make your
loadable native library.

A Native Library
Now you’ll finally be able to tie everything together and create the native library, simple, that
was assumed to exist at the beginning of today’s lesson.

030-4s CH20.i 1/29/96, 12:43 PM417

418

Native Methods and Libraries
M

T W
R

F S S

DAYDAY

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

Linking It All
It’s time to link everything you’ve done into a single library file. This looks a little different on
each system that Java runs on, but here’s the basic idea, in UNIX syntax:

cc -G SimpleFile.o SimpleFileNative.o -o simple

The -G flag tells the linker that you’re creating a dynamically linkable library; the details differ
from system to system.

Note: By naming the library simple, you’re disobeying a UNIX convention that
dynamic library names should have the prefix lib and the suffix .so (on your system,
these prefixes and suffixes may differ). You can call your library libsimple.so to
obey the convention, if you like, but just for the clarity of this example, the simpler
name is used.

Using Your Library
Now, when the Java class SimpleFile is first loaded into your program, the System class attempts
to load the library named simple, which (luckily) you just created. Look back at the Java code
for SimpleFile to remind yourself.

How does it locate it? It calls the dynamic linker, which consults an environment variable named
LD_LIBRARY_PATH that tells it which sequence of directories to search when loading new libraries
of native code. Because the current directory is in Java’s load path by default, you can leave
“simple” in the current directory, and it will work just fine.

Summary
Today, you learned about the numerous disadvantages of using native methods, about the
many ways that Java (and you) can make your programs run faster, and also about the often
illusory need for efficiency.

Finally, you learned the procedure for creating native methods, from both the Java and the C
sides, in detail—by generating header files and stubs, and by compiling and linking a full
example.

After working your way through today’s difficult material, you’ve mastered one of the most
complex parts of the Java language. You now know how the Java run-time environment itself
was created, and how to extend that powerful environment yourself, at its lowest levels.

030-4s CH20.i 1/29/96, 12:44 PM418

419

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

20

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.28.95 Ch20 LP#3

As a reward, tomorrow you look “under the hood” to see some of the hidden power of Java, and
you can just sit back and enjoy the ride.

Q&A
Q What can I use to supplement the “Implementing Native Methods” document

you recommended?

A Looking online is highly recommended. Nearby and within “Implementing Native
Methods” is a Makefile, other related build information, and a more detailed version
of both the next example in this book and its explanation. This following discussion
will be enough to get you started on your first native methods.

Q Does the Java class library need to call System.loadLibrary() to load the built-in
classes?

A No, you won’t see any loadLibrary() calls in the implementation of any classes in the
Java class library. That’s because the Java team had the luxury of being able to stati-
cally link most of their code into the Java environment, something that really makes
sense only when you’re in the unique position of providing an entire system, as they
are. Your classes must dynamically link their libraries into an already-running copy of
the Java system. This is, by the way, more flexible than static linking; it allows you to
unlink old and relink new versions of your classes at any time, making updating them
trivial.

Q Can I statically link my own classes into Java like the Java team did?

A Yes. You can, if you like, ask Sun Microsystems for the sources to the Java run-time
environment itself, and, as long as you obey the (relatively straightforward) legal
restrictions on using that code, you can relink the entire Java system plus your classes.
Your classes are then statically linked into the system, but you have to give everyone
who wants to use your program this special version of the Java environment. Some-
times, if you have strong enough requirements, this is the only way to go, but most of
the time, dynamic linking is not only good enough, but preferable.

Q My applet needs some key functionality, missing from the Java library. Given
their many disadvantages, I’d like to avoid using native methods. Do I have any
alternatives?

A Because it’s still early in the history of Java, a valid alternative to native methods is to
try to convince the Java team that your needed capability is of interest to a broad
range of future Java programmers; then they may include it directly into the java
packages. There are already plans to do this with certain “missing” pieces of function-
ality, so this may not be as hard a sell as you might think. Start by posting some
messages to the comp.lang.java newsgroup, to be sure no one else at Sun or elsewhere
is already doing it, and then see what happens. This is a young, vibrant community of
enthusiasts; you are not alone.

030-4s CH20.i 1/29/96, 12:46 PM419

421

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

M
T W

R
F S S

Under the Hood

by Charles L. Perkins

WEEK

3

2121

030-4s CH21.i 1/29/96, 12:47 PM421

422

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

On today, your final day, the inner workings of the Java system will be revealed.

You’ll find out all about Java’s vision, Java’s virtual machine, those bytecodes you’ve heard so
much about, that mysterious garbage collector, and why you might worry about security but
don’t have to.

Let’s begin, however, with the big picture.

The Big Picture
The Java team is very ambitious. Their ultimate goal is nothing less than to revolutionize the way
software is written and distributed. They’ve started with the Internet, where they believe much
of the interesting software of the future will live.

To achieve such an ambitious goal, a large fraction of the Internet programming community
itself must be marshalled behind a similar goal and given the tools to help achieve it. The Java
language, with its four S’s (small, simple, safe, secure), and its flexible, net-oriented environ-
ment, hopes to become the focal point for the rallying of this new legion of programmers.

To this end, Sun Microsystems has done something rather gutsy. What was originally a secret,
tens-of-millions-of-dollars research and development project, and 100 percent proprietary, has
become a free, open, and relatively unencumbered technology standard upon which anyone can
build. They are literally giving it away and reserving only the rights they need to maintain and
grow the standard.

Note: Actually, as Sun’s lawyers have more and more time to think, the original
intentions of the Java team get further obscured by legal details. It is still relatively
unencumbered, but its earlier releases were completely unencumbered. Let’s hope
that this is not a pattern that will continue.

Any truly open standard must be supported by at least one excellent, freely available “demon-
stration” implementation. Sun has already shipped an alpha, and now a beta, of one to the
Internet and plans on a final release soon. In parallel, several universities, companies, and
individuals have already expressed their intention to duplicate the Java environment, based on
the open API that Sun has created.

Several other languages are even contemplating compiling down to Java bytecodes, to help
support them in becoming a more robust and commonplace standard for moving executable
content around on the Net.

030-4s CH21.i 1/29/96, 12:48 PM422

423

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Why It’s a Powerful Vision
One of the reasons this brilliant move on Sun’s part has a real chance of success is the pent-up
frustration of literally a whole generation of programmers who desperately want to share their
code with one another. Right now, the computer science world is balkanized into factions at
universities and companies all over the world, with hundreds of languages, dozens of them
widely used, dividing and separating us all. It’s the worst sort of Tower of Babel. Java hopes to
build some bridges and help tear down that tower. Because it is so simple, because it’s so useful
for programming over the Internet, and because the Internet is so “hot” right now—this
confluence of forces should help propel Java onto centerstage.

It deserves to be there. It is the natural outgrowth of ideas that, since the early 1970s inside the
Smalltalk group at Xerox PARC, have lain relatively dormant in the mainstream. Smalltalk, in
fact, invented the first object-oriented bytecode interpreter and pioneered many of the deep
ideas that Java builds on today. Those efforts were not embraced over the intervening decades
as a solution to the general problems of software, however. Today, with those problems
becoming so much more obvious, and with the Net crying out for a new kind of programming,
the soil is fertile to grow something stronger from those old roots, something that just might
spread like wildfire. (Is it a coincidence that Java’s previous internal names were Green and
OAK?)

This new vision of software is one in which the Net becomes an ocean of objects, classes, and
the open APIs between them. Traditional applications have vanished, replaced by skeletal
frameworks like the Eiffel tower, into which can be fitted any parts from this ocean, on demand,
to suit any purpose. User interfaces will be mixed and matched, built in pieces and constructed
to taste, whenever the need arises, by their own users. Menus of choices will be filled by dynamic
lists of all the choices available for that function, at that exact moment, across the entire ocean
(of the Net).

In such a world, software distribution is no longer an issue. Software will be everywhere and will
be paid for via a plethora of new micro-accounting models, which charge tiny fractions of cents
for the parts as they are assembled and used. Frameworks will come into existence to support
entertainment, business, and the social (cyber-)spaces of the near future.

This is a dream that many of us have waited all our lives to be a part of. There are tremendous
challenges to making it all come true, but the powerful winds of change we all feel must stir us
into action, because, at last, there is a base on which to build that dream—Java.

The Java Virtual Machine
To make visions like this possible, Java must be ubiquitous. It must be able to run on any
computer and any operating system—now, and in the future. In order to achieve this level of
portability, Java must be very precise not only about the language itself, but about the

030-4s CH21.i 1/29/96, 12:49 PM423

424

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

environment in which the language lives. You can see, from earlier in the book and Appendix
B, that the Java environment includes a generally useful set of packages of classes and a freely
available implementation of them. This takes care of a part of what is needed, but it is crucial
also to specify exactly how the run-time environment of Java behaves.

This final requirement is what has stymied many attempts at ubiquity in the past. If you base
your system on any assumptions about what is “beneath” the run-time system, you lose. If you
depend in any way on the computer or operating system below, you lose. Java solves this problem
by inventing an abstract computer of its own and running on that.

This “virtual” machine runs a special set of “instructions” called bytecodes that are simply a
stream of formatted bytes, each of which has a precise specification of exactly what each bytecode
does to this virtual machine. The virtual machine is also responsible for certain fundamental
capabilities of Java, such as object creation and garbage collection.

Finally, in order to be able to move bytecodes safely across the Internet, you need a bulletproof
model of security—and how to maintain it—and a precise format for how this stream of
bytecodes can be sent from one virtual machine to another.

Each of these requirements is addressed in today’s lesson.

Note: This discussion blurs the distinction between the run-time and the virtual
machine of Java. This is intentional but a little unconventional. Think of the
virtual machine as providing all the capabilities, even those that are conventionally
assigned to the run-time. This book uses the words “run-time” and “virtual
machine” interchangeably. Equating the two highlights the single environment that
must be created to support Java.

Much of the following description is based closely on the alpha “Virtual Machine
Specifications” documents (and the beta bytecodes), so if you delve more deeply
into the details online, you will cover some familiar ground.

An Overview
It is worth quoting the introduction to the Java virtual machine documentation here, because
it is so relevant to the vision outlined earlier:

The Java virtual machine specification has a purpose that is both like and unlike
equivalent documents for other languages and abstract machines. It is intended to
present an abstract, logical machine design free from the distraction of inconsequential

030-4s CH21.i 1/29/96, 12:50 PM424

425

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

details of any implementation. It does not anticipate an implementation technology,
or an implementation host. At the same time it gives a reader sufficient information to
allow implementation of the abstract design in a range of technologies.

However, the intent of the [...] Java project is to create a language [...] that will allow
the interchange over the Internet of “executable content,” which will be embodied by
compiled Java code. The project specifically does not want Java to be a proprietary
language and does not want to be the sole purveyor of Java language implementations.
Rather, we hope to make documents like this one, and source code for our implemen-
tation, freely available for people to use as they choose.

This vision [...] can be achieved only if the executable content can be reliably shared
between different Java implementations. These intentions prohibit the definition of
the Java virtual machine from being fully abstract. Rather, relevant logical elements of
the design have to be made sufficiently concrete to allow the interchange of compiled
Java code. This does not collapse the Java virtual machine specification to a descrip-
tion of a Java implementation; elements of the design that do not play a part in the
interchange of executable content remain abstract. But it does force us to specify, in
addition to the abstract machine design, a concrete interchange format for compiled
Java code.

The Java virtual machine specification consists of the following:

■■ The bytecode syntax, including opcode and operand sizes, values, and types, and their
alignment and endian-ness

■■ The values of any identifiers (for example, type identifiers) in bytecodes or in support-
ing structures

■■ The layout of the supporting structures that appear in compiled Java code (for
example, the constant pool)

■■ The Java .class file format

Each of these is covered today.

Despite this degree of specificity, there are still several elements of the design that remain
(purposely) abstract, including the following:

■■ The layout and management of the run-time data areas

■■ The particular garbage-collection algorithms, strategies, and constraints used

■■ The compiler, development environment, and run-time extensions (apart from the
need to generate and read valid Java bytecodes)

■■ Any optimizations performed, once valid bytecodes are received

These places are where the creativity of a virtual machine implementor has full rein.

030-4s CH21.i 1/29/96, 12:50 PM425

426

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

The Fundamental Parts
The Java virtual machine can be deconstructed into five fundamental pieces:

■■ A bytecode instruction set

■■ A set of registers

■■ A stack

■■ A garbage-collected heap

■■ An area for storing methods

These might be implemented by using an interpreter, a native binary code compiler, or even a
hardware chip—but all these logical, abstract components of the virtual machine must be
supplied in some form in every Java system.

Note: The memory areas used by the Java virtual machine are not required to be at
any particular place in memory, to be in any particular order, or even to use
contiguous memory. However, all but the method area must be able to represent
32-bit values (for example, the Java stack is 32 bits wide).

The virtual machine, and its supporting code, is often referred to as the run-time environment,
and when this book refers to something being done at run-time, the virtual machine is what’s
doing it.

Java Bytecodes
The Java virtual machine instruction set is optimized to be small and compact. It is designed to
travel across the Net, and so has traded off speed-of-interpretation for space. (Given that both
Net bandwidth and mass storage speeds increase less rapidly than CPU speed, this seems like
an appropriate trade-off.)

As mentioned, Java source code is “compiled” into bytecodes and stored in a .class file. On Sun’s
Java system, this is performed using the javac tool. It is not exactly a traditional “compiler,”
because javac translates source code into bytecodes, a lower-level format that cannot be run
directly, but must be further interpreted by each computer. Of course, it is exactly this level of
“indirection” that buys you the power, flexibility, and extreme portability of Java code.

030-4s CH21.i 1/29/96, 12:51 PM426

427

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Note: Quotation marks are used around the word “compiler” when talking about
javac because later today you will also learn about the “just-in-time” compiler,
which acts more like the back end of a traditional compiler. The use of the same
word “compiler” for these two different pieces of Java technology is unfortunate,
but somewhat reasonable, because each is really one-half (either the front or the
back end) of a more traditional compiler.

A bytecode instruction consists of a one-byte opcode that serves to identify the instruction
involved and zero or more operands, each of which may be more than one byte long, that encode
the parameters the opcode requires.

Note: When operands are more than one byte long, they are stored in big-endian
order, high-order byte first. These operands must be assembled from the byte
stream at run-time. For example, a 16-bit parameter appears in the stream as two
bytes so that its value is first_byte * 256 + second_byte. The bytecode instruc-
tion stream is only byte-aligned, and alignment of any larger quantities is not
guaranteed (except for “within” the special bytecodes lookupswitch and
tableswitch, which have special alignment rules of their own).

Bytecodes interpret data in the run-time’s memory areas as belonging to a fixed set of types: the
primitive types you’ve seen several times before, consisting of several signed integer types (8-bit
byte, 16-bit short, 32-bit int, 64-bit long), one unsigned integer type (16-bit char), and two
signed floating-point types (32-bit float, 64-bit double), plus the type “reference to an object”
(a 32-bit pointer-like type). Some special bytecodes (for example, the dup instructions), treat
run-time memory areas as raw data, without regard to type. This is the exception, however, not
the rule.

These primitive types are distinguished and managed by the compiler, javac, not by the Java
run-time environment. These types are not “tagged” in memory, and thus cannot be distin-
guished at run-time. Different bytecodes are designed to handle each of the various primitive
types uniquely, and the compiler carefully chooses from this palette based on its knowledge of
the actual types stored in the various memory areas. For example, when adding two integers, the
compiler generates an iadd bytecode; for adding two floats, fadd is generated. (You’ll see all this
in gruesome detail later.)

030-4s CH21.i 1/29/96, 12:52 PM427

428

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

NEW
TERM

☛

Registers
The registers of the Java virtual machine are just like the registers inside a “real” computer.

Registers hold the machine’s state, affect its operation, and are updated after each
bytecode is executed.

The following are the Java registers:

■■ pc, the program counter, which indicates what bytecode is being executed

■■ optop, a pointer to the top of the operand stack, which is used to evaluate all arith-
metic expressions

■■ frame, a pointer to the execution environment of the current method, which includes
an activation record for this method call and any associated debugging information

■■ vars, a pointer to the first local variable of the currently executing method

The virtual machine defines these registers to be 32 bits wide.

Note: Because the virtual machine is primarily stack-based, it does not use any
registers for passing or receiving arguments. This is a conscious choice skewed
toward bytecode simplicity and compactness. It also aids efficient implementation
on register-poor architectures, which most of today’s computers, unfortunately, are.
Perhaps when the majority of CPUs out there are a little more sophisticated, this
choice will be reexamined, though simplicity and compactness may still be reason
enough!

By the way, the pc register is also used when the run-time handles exceptions; catch
clauses are (ultimately) associated with ranges of the pc within a method’s
bytecodes.

The Stack
The Java virtual machine is stack-based. A Java stack frame is similar to the stack frame of a
conventional programming language—it holds the state for a single method call. Frames for
nested method calls are stacked on top of this frame.

The stack is used to supply parameters to bytecodes and methods, and to
receive results back from them.

NEW
TERM

☛

030-4s CH21.i 1/29/96, 12:54 PM428

429

Sa
m

s.
ne

8
8

Le
a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Each stack frame contains three (possibly empty) se8s of data: the local variables for the me8hod
call, its execution environment, and its operand stack. The sizes of these first two are fixed at the
start of a method call, but the operand stack varies in size as bytecodes are executed in the
method.

Local variables are stored in an array of 32-bit slots, indexed by the register vars. Most types take
up one slot in the array, but the long and double types each take up two slots.

Note: long and double values, stored or referenced via an index N, take up the (32-
bit) slots N and N + 1. These 64-bit values are thus not guaranteed to be 64-bit-
aligned. Implementors are free to decide the appropriate way to divide these values
among the two slots.

The execution environment in a stack frame helps to maintain the stack itself. It contains a
pointer to the previous stack frame, a pointer to the local variables of the method call, and
pointers to the stack’s current “base” and “top.” Additional debugging information can also be
placed into the execution environment.

The operand stack, a 32-bit first-in-first-out (FIFO) stack, is used to store the parameters and
return values of most bytecode instructions. For example, the iadd bytecode expects two integers
to be stored on the top of the stack. It pops them, adds them together, and pushes the resulting
sum back onto the stack.

Each primitive data type has unique instructions that know how to extract, operate, and push
back operands of that type. For example, long and double operands take two “slots” on the stack,
and the special bytecodes that handle these operands take this into account. It is illegal for the
types on the stack and the instruction operating on them to be incompatible (javac outputs
bytecodes that always obey this rule).

Note: The top of the operand stack and the top of the overall Java stack are almost
always the same. Thus, “the stack,” refers to both stacks, collectively.

The Heap
The heap is that part of memory from which newly created instances (objects) are allocated.

In Java, the heap is often assigned a large, fixed size when the Java run-time system is started,
but on systems that support virtual memory, it can grow as needed, in a nearly unbounded
fashion.

030-4s CH21.i 1/29/96, 12:55 PM429

430

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Because objects are automatically garbage-collected in Java, programmers do not have to
(and, in fact, cannot) manually free the memory allocated to an object when they are finished
using it.

Java objects are referenced indirectly in the run-time, via handles, which are a kind of pointer
into the heap.

Because objects are never referenced directly, parallel garbage collectors can be written that
operate independently of your program, moving around objects in the heap at will. You’ll learn
more about garbage collection later.

The Method Area
Like the compiled code areas of conventional programming language environments, or the
TEXT segment in a UNIX process, the method area stores the Java bytecodes that implement
almost every method in the Java system. (Remember that some methods might be native, and
thus implemented, for example, in C.) The method area also stores the symbol tables needed
for dynamic linking, and any other additional information debuggers or development environ-
ments which might want to associate with each method’s implementation.

Because bytecodes are stored as byte streams, the method area is aligned on byte boundaries.
(The other areas are all aligned on 32-bit word boundaries.)

The Constant Pool
In the heap, each class has a constant pool “attached” to it. Usually created by javac, these
constants encode all the names (of variables, methods, and so forth) used by any method in a
class. The class contains a count of how many constants there are and an offset that specifies how
far into the class description itself the array of constants begins. These constants are typed by
using specially coded bytes and have a precisely defined format when they appear in the .class
file for a class. Later today, a little of this file format is covered, but everything is fully specified
by the virtual machine specifications in your Java release.

Limitations
The virtual machine, as currently defined, places some restrictions on legal Java programs by
virtue of the choices it has made (some were previously described, and more will be detailed later
today).

These limitations and their implications are

■■ 32-bit pointers, which imply that the virtual machine can address only 4G of memory
(this may be relaxed in later releases)

030-4s CH21.i 1/29/96, 12:56 PM430

431

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

■■ Unsigned 16-bit indicies into the exception, line number, and local variable tables,
which limit the size of a method’s bytecode implementation to 64K (this limitation
may be eliminated in the final release)

■■ Unsigned 16-bit indices into the constant pool, which limits the number of constants
in a class to 64K (a limit on the complexity of a class)

In addition, Sun’s implementation of the virtual machine uses so-called _quick bytecodes, which
further limit the system. Unsigned 8-bit offsets into objects may limit the number of methods
in a class to 256 (this limit may not exist in the final release), and unsigned 8-bit argument counts
limit the size of the argument list to 255 32-bit words. (Although this means that you can have
up to 255 arguments of most types, you can have only 127 of them if they’re all long or double.)

Bytecodes in More Detail
One of the main tasks of the virtual machine is the fast, efficient execution of the Java bytecodes
in methods. Unlike in the discussion yesterday about generality in Java programs, this is a case
where speed is of the upmost importance. Every Java program suffers from a slow implemen-
tation here, so the run-time must use as many “tricks” as possible to make bytecodes run fast.
The only other goal (or limitation) is that Java programmers must not be able to see these tricks
in the behavior of their programs.

A Java run-time implementer must be extremely clever to satisfy both these goals.

The Bytecode Interpreter
A bytecode interpreter examines each opcode byte (bytecode) in a method’s bytecode stream,
in turn, and executes a unique action for that bytecode. This might consume further bytes for
the operands of the bytecode and might affect which bytecode will be examined next. It operates
like the hardware CPU in a computer, which examines memory for instructions to carry out in
exactly the same manner. It is the software CPU of the Java virtual machine.

Your first, naive attempt to write such a bytecode interpreter will almost certainly be disastrously
slow. The inner loop, which dispatches one bytecode each time through the loop, is notoriously
difficult to optimize. In fact, smart people have been thinking about this problem, in one form
or another, for more than 20 years. Luckily, they’ve gotten results, all of which can be applied
to Java.

The final result is that the interpreter shipped in the current release of Java has an extremely fast
inner loop. In fact, on even a relatively slow computer, this interpreter can perform more than
330,000 bytecodes per second! This is really quite good, because the CPU in that computer does
only about 30 times better using hardware.

030-4s CH21.i 1/29/96, 12:56 PM431

432

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

This interpreter is fast enough for most Java programs (and for those requiring more speed, they
can always use native methods—see yesterday’s discussion)—but what if a smart implementor
wants to do better?

The “Just-in-Time” Compiler
About a decade ago, a really clever trick was discovered by Peter Deutsch while trying to make
Smalltalk run faster. He called it “dynamic translation” during interpretation. Sun calls it “just-
in-time” compiling.

The trick is to notice that the really fast interpreter you’ve just written—in C, for example—
already has a useful sequence of native binary code for each bytecode that it interprets: the binary
code that the interpreter itself is executing. Because the interpreter has already been compiled from
C into native binary code, for each bytecode that it interprets, it passes through a sequence of
native code instructions for the hardware CPU on which it is running. By saving a copy of each
binary instruction as it “goes by,” the interpreter can keep a running log of the binary code it
itself has run to interpret a bytecode. It can just as easily keep a log of the set of bytecodes
that it ran to interpret an entire method.

You take that log of instructions and “peephole-optimize” it, just as a smart compiler does. This
eliminates redundant or unnecessary instructions from the log, and makes it look just like the
optimized binary code that a good compiler might have produced.

Note: This is where the name compiler comes from, in “just-in-time” compiler,
but it’s really only the back end of a traditional compiler—the part that does code
generation. By the way, the front end here is javac.

Here’s where the trick comes in. The next time that method is run (in exactly the same way),
the interpreter can now simply execute directly the stored log of binary native code. Because this
optimizes out the inner-loop overhead of each bytecode, as well as any other redundancies
between the bytecodes in a method, it can gain a factor of 10 or more in speed. In fact, an
experimental version of this technology at Sun has shown that Java programs using it can run
as fast as compiled C programs.

030-4s CH21.i 1/29/96, 12:58 PM432

433

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Note: The parenthetical in the last paragraph is needed because if anything is
different about the input to the method, it takes a different path through the
interpreter and must be relogged. (There are sophisticated versions of this technol-
ogy that solve this, and other, difficulties.) The cache of native code for a method
must be invalidated whenever the method has changed, and the interpreter must
pay a small cost up front each time a method is run for the first time. However,
these small bookkeeping costs are far outweighed by the amazing gains in speed
possible.

The java2c Translator
Another, simpler, trick, which works well whenever you have a good, portable C compiler on
each system that runs your program, is to translate the bytecodes into C and then compile the
C into binary native code. If you wait until the first use of a method or class, and then perform
this as an “invisible” optimization, it gains you an additional speedup over the approach outlined
previously, without the Java programmer needing to know about it.

Of course, this does limit you to systems with a C compiler, but as you learned yesterday, there
are extremely good, freely available C compilers. In theory, your Java code might be able to travel
with its own C compiler, or know where to pull one from the Net as needed, for each new
computer and operating system it faced. (Because this violates some of the rules of normal Java
code movement over the Net, though, it should be used sparingly.)

If you’re using Java, for example, to write a server that lives only on your computer, it might be
appropriate to use Java for its flexibility in writing and maintaining the server (and for its
capability of dynamically linking new Java code on the fly), and then to run java2c by hand to
translate the basic server itself entirely into native code. You’d link the Java run-time
environment into that code so that your server remains a fully capable Java program, but it’s now
an extremely fast one.

In fact, an experimental version of the java2c translator inside Sun shows that it can reach the
speed of compiled and optimized C code. This is the best that you can hope to do!

Note: Unfortunately, as of the beta release, there is still no publicly available java2c
tool, and Sun’s virtual machine does not perform “just-in-time” compilation. Both
of these have been promised in a later release.

030-4s CH21.i 1/29/96, 12:59 PM433

434

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

The Bytecodes Themselves
Let’s look at a (progressively less and less) detailed description of each class of bytecodes.

For each bytecode, some brief text describes its function, and a textual “picture” of the stack,
both before and after the bytecode has been executed, is shown. This text picture will look like
the following:

..., value1, value2 => ..., value3

This means that the bytecode expects two operands—value1 and value2—to be on the top of
the stack, pops them both off the stack, operates on them to produce value3, and pushes value3
back onto the top of the stack. You should read each stack from right to left, with the rightmost
value being the top of the stack. The ... is read as “the rest of the stack below,” which is irrelevant
to the current bytecode. All operands on the stack are 32-bit wide.

Because most bytecodes take their arguments from the stack and place their results back there,
the brief text descriptions that follow only say something about the source or destination of
values if they are not on the stack. For example, the description Load integer from local
variable. means that the integer is loaded onto the stack, and Integer add. intends its integers
to be taken from—and the result returned to—the stack.

Bytecodes that don’t affect control flow simply move the pc onto the next bytecode that follows
in sequence. Those that do affect the pc say so explicitly. Whenever you see byte1, byte2, and
so forth, it refers to the first byte, second byte, and so on, that follow the opcode byte itself. After
such a bytecode is executed, the pc automatically advances over these operand bytes to start the
next bytecode in sequence.

Note: The next few sections are in “reference manual style,” presenting each
bytecode separately in all its (often redundant) detail. Later sections begin to
collapse and coalesce this verbose style into something shorter, and more readable.
The verbose form is shown at first because the online reference manuals will look
more like it, and because it drives home the point that each bytecode “function”
comes in many, nearly identical bytecodes, one for each primitive type in Java.

Pushing Constants onto the Stack
bipush ... => ..., value

Push one-byte signed integer. byte1 is interpreted as a signed 8-bit value. This value is expanded
to an int and pushed onto the operand stack.

030-4s CH21.i 1/29/96, 1:00 PM434

435

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

sipush ... => ..., value

Push two-byte signed integer. byte1 and byte2 are assembled into a signed 16-bit value. This
value is expanded to an int and pushed onto the operand stack.

ldc1 ... => ..., item

Push item from constant pool. byte1 is used as an unsigned 8-bit index into the constant pool
of the current class. The item at that index is resolved and pushed onto the stack.

ldc2 ... => ..., item

Push item from constant pool. byte1 and byte2 are used to construct an unsigned 16-bit index
into the constant pool of the current class. The item at that index is resolved and pushed onto
the stack.

ldc2w ... => ..., constant-word1, constant-word2

Push long or double from constant pool. byte1 and byte2 are used to construct an unsigned 16-
bit index into the constant pool of the current class. The two-word constant at that index is
resolved and pushed onto the stack.

aconst_null ... => ..., null

Push the null object reference onto the stack.

iconst_m1 ... => ..., -1

Push the int -1 onto the stack.

iconst_<I> ... => ..., <I>

Push the int <I> onto the stack. There are six of these bytecodes, one for each of the integers
0-5: iconst_0, iconst_1, iconst_2, iconst_3, iconst_4, and iconst_5.

lconst_<L> ... => ..., <L>-word1, <L>-word2

Push the long <L> onto the stack. There are two of these bytecodes, one for each of the integers
0 and 1: lconst_0, and lconst_1.

fconst_<F> ... => ..., <F>

Push the float <F> onto the stack. There are three of these bytecodes, one for each of the integers
0-2: fconst_0, fconst_1, and fconst_2.

dconst_<D> ... => ..., <D>-word1, <D>-word2

Push the double <D> onto the stack. There are two of these bytecodes, one for each of the integers
0 and 1: dconst_0, and dconst_1.

030-4s CH21.i 1/29/96, 1:01 PM435

436

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Loading Local Variables onto the Stack
iload ... => ..., value

Load int from local variable. Local variable byte1 in the current Java frame must contain an int.
The value of that variable is pushed onto the operand stack.

iload_<I> ... => ..., value

Load int from local variable. Local variable <I> in the current Java frame must contain an int.
The value of that variable is pushed onto the operand stack. There are four of these bytecodes,
one for each of the integers 0-3: iload_0, iload_1, iload_2, and iload_3.

lload ... => ..., value-word1, value-word2

Load long from local variable. Local variables byte1 and byte1 + 1 in the current Java frame must
together contain a long integer. The values contained in those variables are pushed onto the
operand stack.

lload_<L> ... => ..., value-word1, value-word2

Load long from local variable. Local variables <L> and <L> + 1 in the current Java frame must
together contain a long integer. The value contained in those variables is pushed onto the
operand stack. There are four of these bytecodes, one for each of the integers 0-3: lload_0,
lload_1, lload_2, and lload_3.

fload ... => ..., value

Load float from local variable. Local variable byte1 in the current Java frame must contain a
single precision floating-point number. The value of that variable is pushed onto the operand
stack.

fload_<F> ... => ..., value

Load float from local variable. Local variable <F> in the current Java frame must contain a single
precision floating-point number. The value of that variable is pushed onto the operand stack.
There are four of these bytecodes, one for each of the integers 0-3: fload_0, fload_1, fload_2,
and fload_3.

dload ... => ..., value-word1, value-word2

Load double from local variable. Local variables byte1 and byte1 + 1 in the current Java frame
must together contain a double precision floating-point number. The value contained in those
variables is pushed onto the operand stack.

030-4s CH21.i 1/29/96, 1:02 PM436

437

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

dload_<D> ... => ..., value-word1, value-word2

Load double from local variable. Local variables <D> and <D> + 1 in the current Java frame must
together contain a double precision floating-point number. The value contained in those
variables is pushed onto the operand stack There are four of these bytecodes, one for each of the
integers 0-3: dload_0, dload1, dload_2, and dload_3.

aload ... => ..., value

Load object reference from local variable. Local variable byte1 in the current Java frame must
contain a return address or reference to an object or array. The value of that variable is pushed
onto the operand stack.

aload_<A> ... => ..., value

Load object reference from local variable. Local variable <A> in the current Java frame must
contain a return address or reference to an object. The array value of that variable is pushed onto
the operand stack. There are four of these bytecodes, one for each of the integers 0-3: aload_0,
aload_1, aload_2, and aload_3.

Storing Stack Values into Local Variables
istore ..., value => ...

Store int into local variable. value must be an int. Local variable byte1 in the current Java frame
is set to value.

istore_<I> ..., value => ...

Store int into local variable. value must be an int. Local variable <I> in the current Java frame
is set to value. There are four of these bytecodes, one for each of the integers 0-3: istore_0,
istore_1, istore_2, and istore_3.

lstore ..., value-word1, value-word2 => ...

Store long into local variable. value must be a long integer. Local variables byte1 and byte1 +
1 in the current Java frame are set to value.

lstore_<L> ..., value-word1, value-word2 => ...

Store long into local variable. value must be a long integer. Local variables <L> and <L> + 1 in
the current Java frame are set to value. There are four of these bytecodes, one for each of the
integers 0-3: lstore_0, lstore_1, lstore_2, and lstore_3.

fstore ..., value => ...

Store float into local variable. value must be a single precision floating-point number. Local
variables byte1 and byte1 + 1 in the current Java frame are set to value.

030-4s CH21.i 1/29/96, 1:02 PM437

438

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

fstore_<F> ..., value => ...

Store float into local variable. value must be a single precision floating-point number. Local
variables <F> and <F> + 1 in the current Java frame are set to value. There are four of these
bytecodes, one for each of the integers 0-3: fstore_0, fstore_1, fstore_2, and fstore_3.

dstore ..., value-word1, value-word2 => ...

Store double into local variable. value must be a double precision floating-point number. Local
variables byte1 and byte1 + 1 in the current Java frame are set to value.

dstore_<D> ..., value-word1, value-word2 => ...

Store double into local variable. value must be a double precision floating-point number. Local
variables <D> and <D> + 1 in the current Java frame are set to value. There are four of these
bytecodes, one for each of the integers 0-3: dstore_0, dstore_1, dstore_2, and dstore_3.

astore ..., handle => ...

Store object reference into local variable. handle must be a return address or a reference to an
object. Local variable byte1 in the current Java frame is set to value.

astore_<A> ..., handle => ...

Store object reference into local variable. handle must be a return address or a reference to an
object. Local variable <A> in the current Java frame is set to value. There are four of these
bytecodes, one for each of the integers 0-3: astore_0, astore_1, astore_2, and astore_3.

iinc -no change-

Increment local variable by constant. Local variable byte1 in the current Java frame must contain
an int. Its value is incremented by the value byte2, where byte2 is treated as a signed 8-bit
quantity.

Managing Arrays
newarray ..., size => result

Allocate new array. size must be an int. It represents the number of elements in the new array.
byte1 is an internal code that indicates the type of array to allocate. Possible values for byte1 are
as follows: T_BOOLEAN (4), T_CHAR (5), T_FLOAT (6), T_DOUBLE (7), T_BYTE (8), T_SHORT (9), T_INT
(10), and T_LONG (11).

An attempt is made to allocate a new array of the indicated type, capable of holding size
elements. This will be the result. If size is less than zero, a NegativeArraySizeException is
thrown. If there is not enough memory to allocate the array, an OutOfMemoryError is thrown. All
elements of the array are initialized to their default values.

030-4s CH21.i 1/29/96, 1:03 PM438

439

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

anewarray ..., size => result

Allocate new array of objects. size must be an int. It represents the number of elements in the
new array. byte1 and byte2 are used to construct an index into the constant pool of the current
class. The item at that index is resolved. The resulting entry must be a class.

An attempt is made to allocate a new array of the indicated class type, capable of holding size
elements. This will be the result. If size is less than zero, a NegativeArraySizeException is
thrown. If there is not enough memory to allocate the array, an OutOfMemoryError is thrown. All
elements of the array are initialized to null.

Note: anewarray is used to create a single dimension of an array of objects. For
example, the request new Thread[7] generates the following bytecodes:

 bipush 7

 anewarray <Class “java.lang.Thread”>

anewarray can also be used to create the outermost dimension of a multidimen-
sional array. For example, the array declaration new int[6][] generates this:

 bipush 6

 anewarray <Class “[I”>

(See the section “Method Signatures” for more information on strings such as [I.)

multianewarray ..., size1 size2...sizeN => result

Allocate new multidimensional array. Each size<I> must be an int. Each represents the number
of elements in a dimension of the array. byte1 and byte2 are used to construct an index into the
constant pool of the current class. The item at that index is resolved. The resulting entry must
be an array class of one or more dimensions.

byte3 is a positive integer representing the number of dimensions being created. It must be less
than or equal to the number of dimensions of the array class. byte3 is also the number of elements
that are popped off the stack. All must be ints greater than or equal to zero. These are used as
the sizes of the dimensions. An attempt is made to allocate a new array of the indicated class type,
capable of holding size<1> * size<2> * ... * <sizeN> elements. This will be the result. If any
of the size<I> arguments on the stack is less than zero, a NegativeArraySizeException is thrown.
If there is not enough memory to allocate the array, an OutOfMemoryError is thrown.

030-4s CH21.i 1/29/96, 1:04 PM439

440

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Note: new int[6][3][] generates these bytecodes:

 bipush 6

 bipush 3

 multianewarray <Class “[[[I”> 2

It’s more efficient to use newarray or anewarray when creating arrays of single
dimension.

arraylength ..., array => ..., length

Get length of array. array must be a reference to an array object. The length of the array is
determined and replaces array on the top of the stack. If array is null, a NullPointerException
is thrown.

iaload ..., array, index => ..., value
laload ..., array, index => ..., value-word1, value-word2
faload ..., array, index => ..., value
daload ..., array, index => ..., value-word1, value-word2
aaload ..., array, index => ..., value
baload ..., array, index => ..., value
caload ..., array, index => ..., value
saload ..., array, index => ..., value

Load <type> from array. array must be an array of <type>s. index must be an int. The <type>
value at position number index in array is retrieved and pushed onto the top of the stack. If
array is null, a NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown. <type> is, in turn, int, long, float, double, object
reference, byte, char, and short. <type>s long and double have two word values, as you’ve seen
in previous load bytecodes.

iastore ..., array, index, value => ...
lastore ..., array, index, value-word1, value-word2 => ...
fastore ..., array, index, value => ...
dastore ..., array, index, value-word1, value-word2 => ...
aastore ..., array, index, value => ...
bastore ..., array, index, value => ...
castore ..., array, index, value => ...
sastore ..., array, index, value => ...

Store into <type> array. array must be an array of <type>s, index must be an integer, and value
a <type>. The <type> value is stored at position index in array. If array is null, a
NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown. <type> is, in turn, int, long, float, double, object
reference, byte, char, and short. <type>s long and double have two word values, as you’ve seen
in previous store bytecodes.

030-4s CH21.i 1/29/96, 1:07 PM440

441

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Stack Operations
nop -no change-

Do nothing.

pop ..., any => ...

Pop the top word from the stack.

pop2 ..., any2, any1 => ...

Pop the top two words from the stack.

dup ..., any => ..., any, any

Duplicate the top word on the stack.

dup2 ..., any2, any1 => ..., any2, any1, any2,any1

Duplicate the top two words on the stack.

dup_x1 ..., any2, any1 => ..., any1, any2,any1

Duplicate the top word on the stack and insert the copy two words down in the stack.

dup2_x1 ..., any3, any2, any1 => ..., any2, any1, any3,any2,any1

Duplicate the top two words on the stack and insert the copies two words down in the stack.

dup_x2 ..., any3, any2, any1 => ..., any1, any3,any2,any1

Duplicate the top word on the stack and insert the copy three words down in the stack.

dup2_x2 ..., any4, any3, any2, any1 => ..., any2, any1, any4,any3,any2,any1

Duplicate the top two words on the stack and insert the copies three words down in the stack.

swap ..., any2, any1 => ..., any1, any2

Swap the top two elements on the stack.

Arithmetic Operations
iadd ..., v1, v2 => ..., result
ladd ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
fadd ..., v1, v2 => ..., result
dadd ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

v1 and v2 must be <type>s. The vs are added and are replaced on the stack by their <type> sum.
<type> is, in turn, int, long, float, and double.

030-4s CH21.i 1/29/96, 1:09 PM441

442

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

isub ..., v1, v2 => ..., result
lsub ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
fsub ..., v1, v2 => ..., result
dsub ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

v1 and v2 must be <type>s. v2 is subtracted from v1, and both vs are replaced on the stack by
their <type> difference. <type> is, in turn, int, long, float, and double.

imul ..., v1, v2 => ..., result
lmul ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
fmul ..., v1, v2 => ..., result
dmul ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

v1 and v2 must be <type>s. Both vs are replaced on the stack by their <type> product. <type> is,
in turn, int, long, float, and double.

idiv ..., v1, v2 => ..., result
ldiv ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
fdiv ..., v1, v2 => ..., result
ddiv ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

v1 and v2 must be <type>s. v2 is divided by v1, and both vs are replaced on the stack by their
<type> quotient. An attempt to divide by zero results in an ArithmeticException being thrown.
<type> is, in turn, int, long, float, and double.

irem ..., v1, v2 => ..., result
lrem ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
frem ..., v1, v2 => ..., result
drem ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

v1 and v2 must be <type>s. v2 is divided by v1, and both vs are replaced on the stack by their
<type> remainder. An attempt to divide by zero results in an ArithmeticException being
thrown. <type> is, in turn, int, long, float, and double.

ineg ..., value => ..., result
lneg ..., value-word1, value-word2 => ..., result-word1, result-word2
fneg ..., value => ..., result
dneg ..., value-word1, value-word2 => ..., result-word1, result-word2

value must be a <type>. It is replaced on the stack by its arithmetic negation. <type> is, in turn,
int, long, float, and double.

Note: Now that you’re familiar with the look of the bytecodes, the summaries that
follow will become shorter and shorter (for space reasons). You can always get any
desired level of detail from the full virtual machine specification in the latest Java
release.

030-4s CH21.i 1/29/96, 1:13 PM442

443

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Logical Operations
ishl ..., v1, v2 => ..., result
lshl ..., v1-word1, v1-word2, v2 => ..., r-word1, r-word2
ishr ..., v1, v2 => ..., result
lshr ..., v1-word1, v1-word2, v2 => ..., r-word1, r-word2
iushr ..., v1, v2 => ..., result
lushr ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

For types int and long: arithmetic shift-left, shift-right, and logical shift-right.

iand ..., v1, v2 => ..., result
land ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
ior ..., v1, v2 => ..., result
lor ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
ixor ..., v1, v2 => ..., result
lxor ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

For types int and long: bitwise AND, OR, and XOR.

Conversion Operations
i2l ..., value => ..., result-word1, result-word2
i2f ..., value => ..., result
i2d ..., value => ..., result-word1, result-word2
l2i ..., value-word1, value-word2 => ..., result
l2f ..., value-word1, value-word2 => ..., result
l2d ..., value-word1, value-word2 => ..., result-word1, result-word2
f2i ..., value => ..., result
f2l ..., value => ..., result-word1, result-word2
f2d ..., value => ..., result-word1, result-word2
d2i ..., value-word1, value-word2 => ..., result
d2l ..., value-word1, value-word2 => ..., result-word1, result-word2
d2f ..., value-word1, value-word2 => ..., result

int2byte ..., value => ..., result
int2char ..., value => ..., result
int2short ..., value => ..., result

These bytecodes convert from a value of type <lhs> to a result of type <rhs>. <lhs> and <rhs>
can be any of i, l, f,and d, which represent int, long, float, and double, respectively. The final
three bytecodes have types that are self-explanatory.

Transfer of Control
ifeq ..., value => ...
ifne ..., value => ...
iflt ..., value => ...
ifgt ..., value => ...
ifle ..., value => ...
ifge ..., value => ...

if_icmpeq ..., value1, value2 => ...
if_icmpne ..., value1, value2 => ...
if_icmplt ..., value1, value2 => ...

030-4s CH21.i 1/29/96, 1:15 PM443

444

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

if_icmpgt ..., value1, value2 => ...
if_icmple ..., value1, value2 => ...
if_icmpge ..., value1, value2 => ...

ifnull ..., value => ...
ifnonnull ..., value => ...

When value <rel> 0 is true in the first set of bytecodes, value1 <rel> value2 is true in the second
set, or value is null (or not null) in the third, byte1 and byte2 are used to construct a signed
16-bit offset. Execution proceeds at that offset from the pc. Otherwise, execution proceeds at
the bytecode following. <rel> is one of eq, ne, lt, gt, le, and ge, which represent equal, not equal,
less than, greater than, less than or equal, and greater than or equal, respectively.

lcmp ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., result

fcmpl ..., v1, v2 => ..., result
dcmpl ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., result

fcmpg ..., v1, v2 => ..., result
dcmpg ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., result

v1 and v2 must be long, float, or double. They are both popped from the stack and compared.
If v1 is greater than v2, the int value 1 is pushed onto the stack. If v1 is equal to v2, 0 is pushed
onto the stack. If v1 is less than v2, -1 is pushed onto the stack. For floating-point, if either v1
or v2 is NaN, -1 is pushed onto the stack for the first pair of bytecodes, +1 for the second pair.

if_acmpeq ..., value1, value2 => ...
if_acmpne ..., value1, value2 => ...

Branch if object references are equal/not equal. value1 and value2 must be references to objects.
They are both popped from the stack. If value1 is equal/not equal to value2, byte1 and byte2
are used to construct a signed 16-bit offset. Execution proceeds at that offset from the pc.
Otherwise, execution proceeds at the bytecode following.

goto -no change-
goto_w -no change-

Branch always. byte1 and byte2 (plus byte3 and byte4 for goto_w) are used to construct a signed
16-bit (32-bit) offset. Execution proceeds at that offset from the pc.

jsr ... => ..., return-address
jsr–w ... => ..., return-address

Jump subroutine. The address of the bytecode immediately following the jsr is pushed onto the
stack. byte1 and byte2 (plus byte3 and byte4 for goto_w) are used to construct a signed 16-bit
(32-bit) offset. Execution proceeds at that offset from the pc.

ret -no change-
ret2_w -no change-

Return from subroutine. Local variable byte1 (plus byte2 are assembled into a 16-bit index for
ret_w) in the current Java frame must contain a return address. The contents of that local variable
are written into the pc.

030-4s CH21.i 1/29/96, 1:17 PM444

445

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Note: jsr pushes the address onto the stack, and ret gets it out of a local variable.
This asymmetry is intentional. The jsr and ret bytecodes are used in the imple-
mentation of Java’s finally keyword.

Method Return
return ... => [empty]

Return (void) from method. All values on the operand stack are discarded. The interpreter then
returns control to its caller.

ireturn ..., value => [empty]
lreturn ..., value-word1, value-word2 => [empty]
freturn ..., value => [empty]
dreturn ..., value-word1, value-word2 => [empty]
areturn ..., value => [empty]

Return <type> from method. value must be a <type>. The value is pushed onto the stack of the
previous execution environment. Any other values on the operand stack are discarded. The
interpreter then returns control to its caller. <type> is, in turn, int, long, float, double, and
object reference.

Note: The stack behavior of the “return” bytecodes may be confusing to anyone
expecting the Java operand stack to be just like the C stack. Java’s operand stack
actually consists of a number of discontiguous segments, each corresponding to a
method call. A return bytecode empties the Java operand stack segment corre-
sponding to the frame of the returning call, but does not affect the segment of any
parent calls.

Table Jumping
tableswitch ..., index => ...

tableswitch is a variable-length bytecode. Immediately after the tableswitch opcode, zero to
three 0 bytes are inserted as padding so that the next byte begins at an address that is a multiple
of four. After the padding are a series of signed 4-byte quantities: default-offset, low, high, and

030-4s CH21.i 1/29/96, 1:18 PM445

446

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

then (high - low + 1) further signed 4-byte offsets. These offsets are treated as a 0-based jump
table.

The index must be an int. If index is less than low or index is greater than high, default-offset
is added to the pc. Otherwise, the (index - low)’th element of the jump table is extracted and
added to the pc.

lookupswitch ..., key => ...

lookupswitch is a variable-length bytecode. Immediately after the lookupswitch opcode, zero to
three 0 bytes are inserted as padding so that the next byte begins at an address that is a multiple
of four. Immediately after the padding is a series of pairs of signed 4-byte quantities. The first
pair is special; it contains the default-offset and the number of pairs that follow. Each
subsequent pair consists of a match and an offset.

The key on the stack must be an int. This key is compared to each of the matches. If it is equal
to one of them, the corresponding offset is added to the pc. If the key does not match any of
the matches, the default-offset is added to the pc.

Manipulating Object Fields
putfield ..., handle, value => ...
putfield ..., handle, value-word1, value-word2 => ...

Set field in object. byte1 and byte2 are used to construct an index into the constant pool of the
current class. The constant pool item is a field reference to a class name and a field name. The
item is resolved to a field block pointer containing the field’s width and offset (both in bytes).

The field at that offset from the start of the instance pointed to by handle will be set to the value
on the top of the stack. The first stack picture is for 32-bit, and the second for 64-bit wide fields.
This bytecode handles both. If handle is null, a NullPointerException is thrown. If the specified
field is a static field, an IncompatibleClassChangeError is thrown.

getfield ..., handle => ..., value
getfield ..., handle => ..., value-word1, value-word2

Fetch field from object. byte1 and byte2 are used to construct an index into the constant pool
of the current class. The constant pool item will be a field reference to a class name and a field
name. The item is resolved to a field block pointer containing the field’s width and offset (both
in bytes).

handle must be a reference to an object. The value at offset into the object referenced by handle
replaces handle on the top of the stack. The first stack picture is for 32-bit, and the second for
64-bit wide fields. This bytecode handles both. If the specified field is a static field, an
IncompatibleClassChangeError is thrown.

030-4s CH21.i 1/29/96, 1:19 PM446

447

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

putstatic ..., value => ...
putstatic ..., value-word1, value-word2 => ...

Set static field in class. byte1 and byte2 are used to construct an index into the constant pool of
the current class. The constant pool item will be a field reference to a static field of a class. That
field will be set to have the value on the top of the stack. The first stack picture is for 32-bit, and
the second for 64-bit wide fields. This bytecode handles both. If the specified field is not a static
field, an IncompatibleClassChangeError is thrown.

getstatic ..., => ..., value_
getstatic ..., => ..., value-word1, value-word2

Get static field from class. byte1 and byte2 are used to construct an index into the constant pool
of the current class. The constant pool item will be a field reference to a static field of a class. The
value of that field is placed on the top of the stack. The first stack picture is for 32-bit, and the
second for 64-bit wide fields. This bytecode handles both. If the specified field is not a static
field, an IncompatibleClassChangeError is thrown.

Method Invocation
invokevirtual ..., handle, [arg1, arg2, ...]], ... => ...

Invoke instance method based on run/time. The operand stack must contain a reference to an
object and some number of arguments. byte1 and byte2 are used to construct an index into the
constant pool of the current class. The item at that index in the constant pool contains the
complete method signature. A pointer to the object’s method table is retrieved from the object
reference. The method signature is looked up in the method table. The method signature is
guaranteed to exactly match one of the method signatures in the table.

The result of the lookup is an index into the method table of the named class that’s used to look
in the method table of the object’s run/time type, where a pointer to the method block for the
matched method is found. The method block indicates the type of method (native, synchro-
nized, and so on) and the number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized, the monitor associated with handle is entered.

The base of the local variables array for the new Java stack frame is set to point to handle on the
stack, making handle and the supplied arguments (arg1, arg2, ...) the first nargs local variables
of the new frame. The total number of local variables used by the method is determined, and
the execution environment of the new frame is pushed after leaving sufficient room for the locals.
The base of the operand stack for this method invocation is set to the first word after the
execution environment. Finally, execution continues with the first bytecode of the matched
method.

If handle is null, a NullPointerException is thrown. If during the method invocation a stack
overflow is detected, a StackOverflowError is thrown.

030-4s CH21.i 1/29/96, 1:20 PM447

448

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

invokenonvirtual ..., handle, [arg1, arg2, ...]] ... => ...

Invoke instance method based on compile-time type. The operand stack must contain a
reference (handle) to an object and some number of arguments. byte1 and byte2 are used to
construct an index into the constant pool of the current class. The item at that index in the
constant pool contains the complete method signature and class. The method signature is
looked up in the method table of the class indicated. The method signature is guaranteed to
exactly match one of the method signatures in the table.

The result of the lookup is a method block. The method block indicates the type of method
(native, synchronized, and so on) and the number of arguments (nargs) expected on the
operand stack. (The last three paragraphs are identical to the previous bytecode.)

invokestatic ..., , [arg1, arg2, ...]] ... => ...

Invoke class (static) method. The operand stack must contain some number of arguments.
byte1 and byte2 are used to construct an index into the constant pool of the current class. The
item at that index in the constant pool contains the complete method signature and class. The
method signature is looked up in the method table of the class indicated. The method signature
is guaranteed to match one of the method signatures in the class’s method table exactly.

The result of the lookup is a method block. The method block indicates the type of method
(native, synchronized, and so on) and the number of arguments (nargs) expected on the
operand stack.

If the method is marked synchronized, the monitor associated with the class is entered. (The last
two paragraphs are identical to those in invokevirtual, except that no NullPointerException
can be thrown.)

invokeinterface ..., handle, [arg1, arg2, ...] => ...

Invoke interface method. The operand stack must contain a reference (handle) to an object and
some number of arguments. byte1 and byte2 are used to construct an index into the constant
pool of the current class. The item at that index in the constant pool contains the complete
method signature. A pointer to the object’s method table is retrieved from the object reference.
The method signature is looked up in the method table. The method signature is guaranteed
to exactly match one of the method signatures in the table.

The result of the lookup is a method block. The method block indicates the type of method
(native, synchronized, and so on) but, unlike the other “invoke” bytecodes, the number of
available arguments (nargs) is taken from byte3; byte4 is reserved for future use. (The last three
paragraphs are identical to those in invokevirtual.)

030-4s CH21.i 1/29/96, 1:20 PM448

449

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Exception Handling
athrow ..., handle => [undefined]

Throw exception. handle must be a handle to an exception object. That exception, which must
be a subclass of Throwable, is thrown. The current Java stack frame is searched for the most recent
catch clause that handles the exception. If a matching “catch-list” entry is found, the pc is reset
to the address indicated by the catch-list pointer, and execution continues there.

If no appropriate catch clause is found in the current stack frame, that frame is popped and the
exception is rethrown, starting the process all over again in the parent frame. If handle is null,
then a NullPointerException is thrown instead.

Miscellaneous Object Operations
new ... => ..., handle

Create new object. byte1 and byte2 are used to construct an index into the constant pool of the
current class. The item at that index should be a class name that can be resolved to a class pointer,
class. A new instance of that class is then created and a reference (handle) for the instance is placed
on the top of the stack.

checkcast ..., handle => ..., [handle|...]

Make sure object is of given type. handle must be a reference to an object. byte1 and byte2 are
used to construct an index into the constant pool of the current class. The string at that index
of the constant pool is presumed to be a class name that can be resolved to a class pointer, class.

checkcast determines whether handle can be cast to a reference to an object of that class. (A null
handle can be cast to any class.) If handle can be legally cast, execution proceeds at the next
bytecode, and the handle for handle remains on the stack. If not, a ClassCastException is
thrown.

instanceof ..., handle => ..., result

Determine whether object is of given type. handle must be a reference to an object. byte1 and
byte2 are used to construct an index into the constant pool of the current class. The string at that
index of the constant pool is presumed to be a class name that can be resolved to a class pointer,
class.

If handle is null, the result is (false). Otherwise, instanceof determines whether handle can
be cast to a reference to an object of that class. The result is 1 (true) if it can, and 0 (false)
otherwise.

030-4s CH21.i 1/29/96, 1:21 PM449

450

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Monitors
monitorenter ..., handle => ...

Enter monitored region of code. handle must be a reference to an object. The interpreter
attempts to obtain exclusive access via a lock mechanism to handle. If another thread already has
handle locked, the current thread waits until the handle is unlocked. If the current thread already
has handle locked, execution continues normally. If handle has no lock on it, this bytecode
obtains an exclusive lock.

monitorexit ..., handle => ...

Exit monitored region of code. handle must be a reference to an object. The lock on handle is
released. If this is the last lock that this thread has on that handle (one thread is allowed to have
multiple locks on a single handle), other threads that are waiting for handle are allowed to
proceed. (A null in either bytecode throws NullPointerException.)

Debugging
breakpoint -no change-

Call breakpoint handler. The breakpoint bytecode is used to overwrite a bytecode to force
control temporarily back to the debugger prior to the effect of the overwritten bytecode. The
original bytecode’s operands (if any) are not overwritten, and the original bytecode is restored
when the breakpoint bytecode is removed.

The _quick Bytecodes
The following discussion, straight out of the Java virtual machine documentation, shows you
an example of the cleverness mentioned earlier that’s needed to make a bytecode interpreter fast:

The following set of pseudo-bytecodes, suffixed by _quick, are all variants of standard
Java bytecodes. They are used by the run-time to improve the execution speed of the
bytecode interpreter. They aren’t officially part of the virtual machine specification
and are invisible outside a Java virtual machine implementation. However, inside that
implementation they have proven to be an effective optimization.

First, you should know that javac still generates only non-_quick bytecodes. Second,
all bytecodes that have a _quick variant reference the constant pool. When _quick
optimization is turned on, each non-_quick bytecode (that has a _quick variant)
resolves the specified item in the constant pool, signals an error if the item in the
constant pool could not be resolved for some reason, turns itself into the _quick
variant of itself, and then performs its intended operation.

030-4s CH21.i 1/29/96, 1:22 PM450

451

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

This is identical to the actions of the non-_quick bytecode, except for the step of
overwriting itself with its _quick variant. The _quick variant of a bytecode assumes
that the item in the constant pool has already been resolved, and that this resolution
did not produce any errors. It simply performs the intended operation on the resolved
item.

Thus, as your bytecodes are being interpreted, they are automatically getting faster and faster!
Here are all the _quick variants in the current Java run-time:

ldc1_quick
ldc2_quick
ldc2w_quick

anewarray_quick
multinewarray_quick

putfield_quick
putfield2_quick
getfield_quick
getfield2_quick
putstatic_quick
putstatic2_quick
getstatic_quick
getstatic2_quick

invokevirtual_quick
invokevirtualobject_quick
invokenonvirtual_quick
invokestatic_quick
invokeinterface_quick

new_quick
checkcast_quick
instanceof_quick

If you’d like to go back in today’s lesson and look at what each of these does, you can find the
name of the original bytecode on which a _quick variant is based by simply removing the _quick
from its name. The bytecodes putstatic, getstatic, putfield, and getfield have two _quick
variants each, one for each stack picture in their original descriptions. invokevirtual has two
variants: one for objects and one for arrays to do fast lookups in javala.Object).

Note: One last note on the _quick optimization, regarding the unusual handling of
the constant pool (for detail fanatics only):

When a class is read in, an array constant_pool[] of size nconstants is created and
assigned to a field in the class. constant_pool[0] is set to point to a dynamically
allocated array that indicates which fields in the constant_pool have already been
resolved. constant_pool[1] through constant_pool[nconstants - 1] are set to
point at the “type” field that corresponds to this constant item.

030-4s CH21.i 1/29/96, 1:23 PM451

452

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

When a bytecode is executed that references the constant pool, an index is gener-
ated, and constant_pool[0] is checked to see whether the index has already been
resolved. If so, the value of constant_pool[index] is returned. If not, the value of
constant_pool[index] is resolved to be the actual pointer or data, and overwrites
whatever value was already in constant_pool[index].

The .class File Format
You won’t be given the entire .class file format here, only a taste of what it’s like. (You can read
all about it in the release documentation.) It’s mentioned here because it is one of the parts of
Java that needs to be specified carefully if all Java implementations are to be compatible with one
another, and if Java bytes are expected to travel across arbitrary networks—to and from arbitrary
computers and operating systems—and yet arrive safely.

The rest of this section paraphrases, and extensively condenses, the latest (alpha) release of the
.class documentation.

.class files are used to hold the compiled versions of both Java classes and Java interfaces.
Compliant Java interpreters must be capable of dealing with all .class files that conform to the
following specification.

A Java .class file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are
constructed by reading in two or four 8-bit bytes, respectively. The bytes are joined together in
big-endian order. (Use java.io.DataInput and java.io.DataOutput to read and write class files.)

The class file format is presented below as a series of C-struct-like structures. However, unlike
a C struct, there is no padding or alignment between pieces of the structure, each field of the
structure may be of variable size, and an array may be of variable size (in this case, some field prior
to the array gives the array’s dimension). The types u1, u2, and u4 represent an unsigned
one-, two-, or four-byte quantity, respectively.

Attributes are used at several different places in the .class format. All attributes have the following
format:

GenericAttribute_info {
 u2 attribute_name;
 u4 attribute_length;
 u1 info[attribute_length];
}

The attribute_name is a 16-bit index into the class’s constant pool; the value of
constant_pool[attribute_name] is a string giving the name of the attribute. The field
attribute_length gives the length of the subsequent information in bytes. This length does not

030-4s CH21.i 1/29/96, 1:24 PM452

453

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

include the four bytes needed to store attribute_name and attribute_length. In the following
text, whenever an attribute is required, names of all the attributes that are currently understood
are listed. In the future, more attributes will be added. Class file readers are expected to skip over
and ignore the information in any attributes that they do not understand.

The following pseudo-structure gives a top-level description of the format of a class file:

ClassFile {
 u4 magic;
 u2 minor_version
 u2 major_version
 u2 constant_pool_count;
 cp_info constant_pool[constant_pool_count - 1];
 u2 access_flags;
 u2 this_class;
 u2 super_class;
 u2 interfaces_count;
 u2 interfaces[interfaces_count];
 u2 fields_count;
 field_info fields[fields_count];
 u2 methods_count;
 method_info methods[methods_count];
 u2 attributes_count;
 attribute_info attributes[attribute_count];
}

Here’s one of the smaller structures used:

method_info {
 u2 access_flags;
 u2 name_index;
 u2 signature_index;
 u2 attributes_count;
 attribute_info attributes[attribute_count];
}

Finally, here’s a sample of one of the later structures in the .class file description:

Code_attribute {
 u2 attribute_name_index;
 u2 attribute_length;
 u1 max_stack;
 u1 max_locals;
 u2 code_length;
 u1 code[code_length];
 u2 exception_table_length;
 { u2_ start_pc;
 u2_ end_pc;
 u2_ handler_pc;
 u2_ catch_type;
 } exception_table[exception_table_length];
 u2 attributes_count;
 attribute_info attributes[attribute_count];
}

030-4s CH21.i 1/29/96, 1:25 PM453

454

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

None of this is meant to be completely comprehensible (though you might be able to guess at
what a lot of the structure members are for), but just suggestive of the sort of structures that live
inside .class files. Because the compiler and run-time sources are available, you can always begin
with them if you actually have to read or write .class files yourself. Thus, you don’t need to have
a deep understanding of the details, even in that case.

Method Signatures
Because method signatures are used in .class files, now is an appropriate time to explore them
in the detail promised on earlier days—but they’re probably most useful to you when writing
the native methods of yesterday’s lesson.

A signature is a string representing the type of a method, field, or array.

A field signature represents the value of an argument to a method or the value of a variable and
is a series of bytes in the following grammar:

 <field signature> := <field_type>
 <field type> := <base_type> | <object_type> | <array_type>
 <base_type> := B | C | D | F | I | J | S | Z
 <object_type> := L <full.ClassName> ;
 <array_type> := [<optional_size> <field_type>
 <optional_size> := [0-9]*

Here are the meanings of the base types: B (byte), C (char), D (double), F (float), I (int), J (long),
S (short), and Z (boolean).

A return-type signature represents the return value from a method and is a series of bytes in the
following grammar:

 <return signature> := <field type> | V

The character V (void) indicates that the method returns no value. Otherwise, the signature
indicates the type of the return value. An argument signature represents an argument passed to
a method:

 <argument signature> := <field type>

Finally, a method signature represents the arguments that the method expects, and the value that
it returns:

 <method_signature> := (<arguments signature>) <return signature>
 <arguments signature> := <argument signature>*

NEW
TERM

☛

030-4s CH21.i 1/29/96, 1:26 PM454

455

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Let’s try out the new rules: a method called complexMethod() in the class
my.package.name.ComplexClass takes three arguments—a long, a boolean, and a two-
dimensional array of shorts—and returns this. Then, (JZ[[S)Lmy.package.name.ComplexClass;
is its method signature.

A method signature is often prefixed by the name of the method, or by its full package (using
an underscore in the place of dots) and its class name followed by a slash / and the name of the
method, to form a complete method signature. (You saw several of these generated in stub
comments yesterday.) Now, at last, you have the full story! Thus, the following:

my_package_name_ComplexClass/complexMethod(JZ[[S)Lmy.package.name.ComplexClass;

is the full, complete method signature of method complexMethod(). (Phew!)

The Garbage Collector
Decades ago, programmers in both the Lisp and the Smalltalk community realized how
extremely valuable it is to be able to ignore memory deallocation. They realized that, although
allocation is fundamental, deallocation is forced on the programmer by the laziness of the
system—it should be able to figure out what is no longer useful, and get rid of it. In relative
obscurity, these pioneering programmers developed a whole series of garbage collectors to
perform this job, each getting more sophisticated and efficient as the years went by. Finally, now
that the mainstream programming community has begun to recognize the value of this
automated technique, Java can become the first really widespread application of the technology
those pioneers developed.

The Problem
Imagine that you’re a programmer in a C-like language (probably not too difficult for you,
because these languages are the dominant ones right now). Each time you create something,
anything, dynamically in such a language, you are completely responsible for tracking the life of
this object throughout your program and mentally deciding when it will be safe to deallocate
it. This can be quite a difficult (sometime impossible) task, because any of the other libraries or
methods you’ve called might have “squirreled away” a pointer to the object, unbeknownst to
you. When it becomes impossible to know, you simply choose never to deallocate the object, or
at least to wait until every library and method call involved has completed, which could be nearly
as long.

The uneasy feeling you get when writing such code is a natural, healthy response to what is
inherently an unsafe and unreliable style of programming. If you have tremendous discipline—
and so does everyone who writes every library and method you call—you can, in principle,

030-4s CH21.i 1/29/96, 1:27 PM455

456

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

survive this responsibility without too many mishaps. But aren’t you human? Aren’t they? There
must be some small slips in this perfect discipline due to error. What’s worse, such errors are
virtually undetectable, as anyone who’s tried to hunt down a stray pointer problem in C will tell
you. What about the thousands of programmers who don’t have that sort of discipline?

Another way to ask this question is: Why should any programmers be forced to have this
discipline, when it is entirely possible for the system to remove this heavy burden from their
shoulders?

Software engineering estimates have recently shown that for every 55 lines of production C-like
code in the world, there is one bug. This means that your electric razor has about 80 bugs, and
your TV, 400. Soon they will have even more, because the size of this kind of embedded
computer software is growing exponentially. When you begin to think of how much C-like code
is in your car’s engine, it should give you pause.

Many of these errors are due to the misuse of pointers, by misunderstanding or by accident, and
to the early, incorrect freeing of allocated objects in memory. Java addresses both of these—the
former, by eliminating explicit pointers from the Java language altogether and the latter, by
including, in every Java system, a garbage collector that solves the problem.

The Solution
Imagine a run-time system that tracks each object you create, notices when the last reference to
it has vanished, and frees the object for you. How could such a thing actually work?

One brute-force approach, tried early in the days of garbage collecting, is to attach a reference
counter to every object. When the object is created, the counter is set to 1. Each time a new
reference to the object is made, the counter is incremented, and each time such a reference
disappears, the counter is decremented. Because all such references are controlled by the
language—as variables and assignments, for example—the compiler can tell whenever an object
reference might be created or destroyed, just as it does in handling the scoping of local variables,
and thus it can assist with this task. The system itself “holds onto” a set of root objects that are
considered too important to be freed. The class Object is one example of such a V.I.P. object.
(V.I.O.?) Finally, all that’s needed is to test, after each decrement, whether the counter has hit
0. If it has, the object is freed.

If you think carefully about this approach, you can soon convince yourself that it is definitely
correct when it decides to free anything. It is so simple that you can immediately tell that it will
work. The low-level hacker in you might also feel that if it’s that simple, it’s probably not fast
enough to run at the lowest level of the system—and you’d be right.

Think about all the stack frames, local variables, method arguments, return values, and local
variables created in the course of even a few hundred milliseconds of a program’s life. For each

030-4s CH21.i 1/29/96, 1:28 PM456

457

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

of these tiny, nano-steps in the program, an extra increment—at best—or decrement, test, and
deallocation—at worst—will be added to the running time of the program. In fact, the first
garbage collectors were slow enough that many predicted they could never be used at all!

Luckily, a whole generation of smart programmers has invented a big bag of tricks to solve these
overhead problems. One trick is to introduce special “transient object” areas that don’t need to
be reference counted. The best of these generational scavenging garbage collectors today can take
less than 3 percent of the total time of your program—a remarkable feat if you realize that many
other language features, such as loop overheads, can be as large or larger!

There are other problems with garbage collection. If you are constantly freeing and reclaiming
space in a program, won’t the heap of objects soon become fragmented, with small holes
everywhere and no room to create new, large objects? Because the programmer is now free from
the chains of manual deallocation, won’t they create even more objects than usual?

What’s worse, there is another way that this simple reference counting scheme is inefficient, in
space rather than time. If a long chain of object references eventually comes full circle, back to
the starting object, each object’s reference count remains at least 1 forever. None of these objects
will ever be freed!

Together, these problems imply that a good garbage collector must, every once in a while, step
back to compact or to clean up wasted memory.

Compaction occurs when a garbage collector steps back and reorganizes
memory, eliminating the holes created by fragmentation. Compacting
memory is simply a matter of repositioning objects one-by-one into a new,

compact grouping that places them all in a row, leaving all the free memory in the
heap in one big piece.

Cleaning up the circular garbage still lying around after reference counting is called
marking and sweeping. A mark-and-sweep of memory involves first marking every root
object in the system and then following all the object references inside those objects to
new objects to mark, and so on, recursively. Then, when you have no more references
to follow, you “sweep away” all the unmarked objects, and compact memory as
before.

The good news is that this solves the space problems you were having. The bad news is that when
the garbage collector “steps back” and does these operations, a nontrivial amount of time passes
during which your program is unable to run—all its objects are being marked, swept, rearranged,
and so forth, in what seems like an uninterruptible procedure. Your first hint to a solution is the
word “seems.”

NEW
TERM

☛

030-4s CH21.i 1/29/96, 1:29 PM457

458

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Garbage collecting can actually be done a little at a time, between or in parallel with normal
program execution, thus dividing up the large time needed to “step back” into numerous so-
small-you-don’t-notice-them chunks of time that happen between the cracks. (Of course, years
of smart thinking went into the abstruse algorithms that make all this possible!)

One final problem that might worry you a little has to do with these object references. Aren’t
these “pointers” scattered throughout your program and not just buried in objects? Even if
they’re only in objects, don’t they have to be changed whenever the object they point to is moved
by these procedures? The answer to both of these questions is a resounding yes, and overcoming
them is the final hurdle to making an efficient garbage collector.

There are really only two choices. The first, brute force, assumes that all the memory containing
object references needs to be searched on a regular basis, and whenever the object references
found by this search match objects that have moved, the old reference is changed. This assumes
that there are “hard” pointers in the heap’s memory—ones that point directly to other objects.
By introducing various kinds of “soft” pointers, including pointers that are like forwarding
addresses, the algorithm improves greatly. Although these brute-force approaches sound slow,
it turns out that modern computers can do them fast enough to be useful.

Note: You might wonder how the brute-force techniques identify object references.
In early systems, references were specially tagged with a “pointer bit,” so they could
be unambiguously located. Now, so-called conservative garbage collectors simply
assume that if it looks like an object reference, it is—at least for the purposes of the
mark and sweep. Later, when actually trying to update it, they can find out
whether it really is an object reference or not.

The final approach to handling object references, and the one Java currently uses, is also one of
the very first ones tried. It involves using 100 percent “soft” pointers. An object reference is
actually a handle, sometimes call an “OOP,” to the real pointer, and a large object table exists
to map these handles into the actual object reference. Although this does introduce extra
overhead on almost every object reference (some of which can be eliminated by clever tricks, as
you might guess), it’s not too high a price to pay for this incredibly valuable level of indirection.

This indirection allows the garbage collector, for example, to mark, sweep, move, or examine
one object at a time. Each object can be independently moved “out from under” a running Java
program by changing only the object table entries. This not only allows the “step back” phase
to happen in the tiniest steps, but it makes a garbage collector that runs literally in parallel with
your program much easier to write. This is what the Java garbage collector does.

030-4s CH21.i 1/29/96, 1:30 PM458

459

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

!! Warning: You need to be very careful about garbage collection when you’re doing
critical, real-time programs (such as those mentioned yesterday that legitimately
require native methods)—but how often will your Java code be flying a commercial
airliner in real-time, anyway?

Java’s Parallel Garbage Collector
Java applies almost all these advanced techniques to give you a fast, efficient, parallel garbage
collector. Running in a separate thread, it cleans up the Java environment of almost all trash (it
is conservative), silently and in the background, is efficient in both space and time, and never
steps back for more than an unnoticeably small amount of time. You should never need to know
it’s there.

By the way, if you want to force a full mark-and-sweep garbage collection to happen soon, you
can do so simply by calling the System.gc() method. You might want to do this if you just freed
up a majority of the heap’s memory in circular garbage, and want it all taken away quickly. You
might also call this whenever you’re idle, as a hint to the system about when it would be best to
come and collect the garbage. This “meta knowledge” is rarely needed by the system, however.

Ideally, you’ll never notice the garbage collector, and all those decades of programmers beating
their brains out on your behalf will simply let you sleep better at night—and what’s wrong with
that?

The Security Story
Speaking of sleeping well at night, if you haven’t stepped back yet and said, “You mean Java
programs will be running rampant on the Internet!?!” you better do so now, for it is a legitimate
concern. In fact, it is one of the major technical stumbling blocks (the others being mostly social
and economic) to achieving the dream of ubiquity and code sharing mentioned earlier in today’s
lesson.

Why You Should Worry
Any powerful, flexible technology can be abused. As the Net becomes mainstream and
widespread, it, too, will be abused. Already, there have been many blips on the security radar
screens of those of us who worry about such things, warning that (at least until today), not
enough attention has been paid by the computer industry (or the media) to solving some of the

030-4s CH21.i 1/29/96, 1:31 PM459

460

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

problems constructively that this new world brings with it. One of the benefits of solving security
once and for all will be a flowering unseen before in the virtual communities of the Net; whole
new economies based on people’s attention and creativity will spring to life, rapidly transforming
our world in new and positive ways.

The downside to all this new technology, is that we (or someone!) must worry long and hard
about how to make the playgrounds of the future safe for our children, and for us. Fortunately,
Java is a big part of the answer.

Why You Might Not Have To
What gives me any confidence that the Java language and environment will be safe, that it will
solve the technically dauntiarand extremely thorny problems inherent in any good form of
security, especially for networks?

One simple reason is the history of the people, and the company, that created Java. Many of them
are the very smart programmers referred to throughout the book, who helped pioneer many of
the ideas that make Java great and who have worked hard over the decades to make techniques
such as garbage collection a mainstream reality. They are technically capable of tackliarand
solving the hard problems that need to be solved. In particular, from discussions with Chuck
McManis, one of Java’s security gurus, I have confidence that he has thought through these hard
problems deeply, and that he knows what needs to be done.

Sun Microsystems, the company, has been pushing networks as the central theme of all its
software for more than a decade. Sun has the engineers and the commitment needed to solve
these hard problems, because these same problems are at the very center of both its future
business and its vision of the future, in which networking is the center of everything—and global
networks are nearly useless without good security. Just this year, Sun has advanced the state of
the art in easy-to-use Internet security with its new SunScreen products, and it has assigned
Whitfield Diffie to oversee them, who is the man who discovered the underlying ideas on which
essentially all interestiag forms of modern encryption are based.

Enough on “deep background.” What does the Java environment provide right now that helps
us feel secure?

Java’s Security Model
Java protects you against potential “nasty” Java code via a series of interlocking defenses that,
together, form an imposing barrier to any and all such attacks.

030-4s CH21.i 1/29/96, 1:32 PM460

461

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

!! Caution: Of course, no one can protect you from your own ignorance or careless-
ness. If you’re the kind of person who blindly downloads binary executables from
your Internet browser and runs them, you need read no further! You are already in
more danger than Java will ever pose.

As a user of this powerful new medium, the Internet, you should educate yourself to
the possible threats this new and exciting world entails. In particular, downloading
“auto running macros” or reading e-mail with “executable attachments” is just as
much a threat as downloading binaries from the Net and running them.

Java does not introduce any new dangers here, but by being the first mainstream use
of executable and mobile code on the Net, it is responsible for making people
suddenly aware of the dangers that have always been there. Java is already, as you
will soon see, much less dangerous than any of these common activities on the Net,
and can be made safer still over time. Most of these other (dangerous) activities can
never be made safe. So please, do not do them!

A good rule of thumb on the Net is: Don’t download anything that you plan to
execute (or that will be automatically executed for you) except from someone (or
some company) you know well and with whom you’ve had positive, personal
experience. If you don’t care about losing all the data on your hard drive, or about
your privacy, you can do anything you like, but for most of us, this rule should be
law.

Fortunately, Java allows you to relax that law. You can run Java applets from
anyone, anywhere, in complete safety.

Java’s powerful security mechanisms act at four different levels of the system architecture. First,
the Java language itself was designed to be safe, and the Java compiler ensures that source code
doesn’t violate these safety rules. Second, all bytecodes executed by the run-time are screened
to be sure that they also obey these rules. (This layer guards against having an altered compiler
produce code that violates the safety rules.) Third, the class loader ensures that classes don’t
violate name space or access restrictions when they are loaded into the system. Finally, API-
specific security prevents applets from doing destructive things. This final layer depends on the
security and integrity guarantees from the other three layers.

Let’s now examine each of these layers in turn.

030-4s CH21.i 1/29/96, 1:33 PM461

462

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

The Language and the Compiler
The Java language and its compiler are the first line of defense. Java was designed to be a safe
language.

Most other C-like languages have facilities to control access to “objects,” but also have ways to
“forge” access to objects (or to parts of objects), usually by (mis-)using pointers. This introduces
two fatal security flaws to any system built on these languages. One is that no object can protect
itself from outside modification, duplication, or “spoofing” (others pretending to be that
object). Another is that a language with powerful pointers is more likely to have serious bugs that
compromise security. These pointer bugs, where a “runaway pointer” starts modifying some
other object’s memory, were responsible for most of the public (and not-so-public) security
problems on the Internet this past decade.

Java eliminates these threats in one stroke by eliminating pointers from the language altogether.
There are still pointers of a kind—object references—but these are carefully controlled to be safe:
they are unforgeable, and all casts are checked for legality before being allowed. In addition,
powerful new array facilities in Java not only help to offset the loss of pointers, but add additional
safety by strictly enforcing array bounds, catching more bugs for the programmer (bugs that, in
other languages, might lead to unexpected and, thus, bad-guy-exploitable problems).

The language definition, and the compilers that enforce it, create a powerful barrier to any
“nasty” Java programmer.

Because an overwhelming majority of the “net-savvy” software on the Internet may soon be Java,
its safe language definition and compilers help to guarantee that most of this software has a solid,
secure base. With fewer bugs, Net software will be more predictable—a property that thwarts
attacks.

Verifying the Bytecodes
What if that “nasty” programmer gets a little more determined, and rewrites the Java compiler
to suit his nefarious purposes? The Java run-time, getting the lion’s share of its bytecodes from
the Net, can never tell whether those bytecodes were generated by a “trustworthy” compiler.
Therefore, it must verify that they meet all the safety requirements.

Before running any bytecodes, the run-time subjects them to a rigorous series of tests that vary
in complexity from simple format checks all the way to running a theorem prover, to make
certain that they are playing by the rules. These tests verify that the bytecodes do not forge
pointers, violate access restrictions, access objects as other than what they are (InputStreams are
always used as InputStreams, and never as anything else), call methods with inappropriate
argument values or types, nor overflow the stack.

030-4s CH21.i 1/29/96, 1:34 PM462

463

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Consider the following Java code sample:

public class VectorTest {
 public int array[];

 public int sum() {
 int[] localArray = array;
 int sum = 0;

 for (int i = localArray.length; --i >= 0;)
 sum += localArray[i];
 return sum;
 }
}

The bytecodes generated when this code is compiled look something like the following:

 aload_0 Load this

 getfield #10 Load this.array

 astore_1 Store in localArray

 iconst_0 Load 0

 istore_2 Store in sum

 aload_1 Load localArray

 arraylength Gets its length

 istore_3 Store in i

 A: iinc 3 -1 Subtract 1 from i

 iload_3 Load i

 iflt B Exit loop if < 0

 iload_2 Load sum

 aload_1 Load localArray

 iload_3 Load i

 iaload Load localArray[i]

 iadd Add sum

 istore_2 Store in sum

 goto A Do it again

 B: iload_2 Load sum

 ireturn Return it

030-4s CH21.i 1/29/96, 1:35 PM463

464

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Note: The excellent examples and descriptions in this section of the book are
paraphrased from the tremendously informative security paper in the (alpha) Java
release. I’d encourage you to read whatever the latest version of this document is in
newer releases, if you want to follow the ongoing Java security story.

Extra Type Information and Requirements
Java bytecodes encode more type information than is strictly necessary for the interpreter. Even
though, for example, the aload and iload opcodes do exactly the same thing, aload is always used
to load an object reference and iload used to load an integer. Some bytecodes (such as getfield)
include a symbol table reference—and that symbol table has even more type information. This
extra type information allows the run-time system to guarantee that Java objects and data aren’t
illegally manipulated.

Conceptually, before and after each bytecode is executed, every slot in the stack and every local
variable has some type. This collection of type information—all the slots and local variables—
is called the type state of the execution environment. An important requirement of the Java type
state is that it must be determinable statically by induction—that is, before any program code
is executed. As a result, as the run-time systems reads bytecodes, each is required to have the
following inductive property: given only the type state before the execution of the bytecode, the
type state afterward must be fully determined.

Given “straight-line” bytecodes (no branches), and starting with a known stack state, the state
of each slot in the stack is therefore always known. For example, starting with an empty stack:

iload_1 Load integer variable. Stack type state is I.

iconst 5 Load integer constant. Stack type state is II.

iadd Add two integers, producing an integer. Stack type state is I.

Note: Smalltalk and PostScript bytecodes do not have this restriction. Their more
dynamic type behavior does create additional flexibility in those systems, but Java
needs to provide a secure execution environment. It must therefore know all types
at all times, in order to guarantee a certain level of security.

030-4s CH21.i 1/29/96, 1:36 PM464

465

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Another requirement made by the Java run-time is that when a set of bytecodes can take more
than one path to arrive at the same point, all such paths must arrive there with exactly the same
type state. This is a strict requirement, and implies, for example, that compilers cannot generate
bytecodes that load all the elements of an array onto the stack. (Because each time through such
a loop the stack’s type state changes, the start of the loop—“the same point” in multiple paths—
would have more than one type state, which is not allowed).

The Verifier
Bytecodes are checked for compliance with all these requirements, using the extra type
information in a .class file, by a part of the run-time called the verifier. It examines each bytecode
in turn, constructing the full type state as it goes, and verifies that all the types of parameters,
arguments, and results are correct. Thus, the verifier acts as a gatekeeper to your run-time
environment, letting in only those bytecodes that pass muster.

!! Warning: The verifier is the crucial piece of Java’s security, and it depends on your
having a correctly implemented (no bugs, intentional or otherwise) run-time
system. As of this writing, only Sun is producing Java run-times, and theirs are
secure. In the future, however, you should be careful when downloading or buying
another company’s (or individual’s) version of the Java run-time environment.
Eventually, Sun will implement validation suites for run-times, compilers, and so
forth to be sure that they are safe and correct. In the meantime, caveat emptor ! Your
run-time is the base on which all the rest of Java’s security is built, so make sure it is
a good, solid, secure base.

When bytecodes have passed the verifier, they are guaranteed not to: cause any operand stack
under- or overflows; use parameter, argument, or return types incorrectly; illegally convert data
from one type to another (from an integer to a pointer, for example); nor access any object’s fields
illegally (that is, the verifier checks that the rules for public, private, package, and protected
are obeyed).

As an added bonus, because the interpreter can now count on all these facts being true, it can
run much faster than before. All the required checks for safety have been done up front, so it can
run at full throttle. In addition, object references can now be treated as capabilities, because they
are unforgeable—capabilities allow, for example, advanced security models for file I/O and
authentication to be safely built on top of Java.

030-4s CH21.i 1/29/96, 1:38 PM465

466

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Note: Because you can now trust that a private variable really is private, and that
no bytecode can perform some magic with casts to extract information from it
(such as your credit card number), many of the security problems that might arise
in other, less safe environments simply vanish! These guarantees also make erecting
barriers against destructive applets possible, and easier. Because the Java system
doesn’t have to worry about “nasty” bytecodes, it can get on with creating the other
levels of security it wants to provide to you.

The Class Loader
The class loader is another kind of gatekeeper, albeit a higher-level one. The verifier was the
security of last resort. The class loader is the security of first resort.

When a new class is loaded into the system, it must come from one of several different “realms.”
In the current release, there are three possible realms: your local computer, the firewall-guarded
local network on which your computer is located, and the Internet (the global Net). Each of
these realms is treated differently by the class loader.

Note: Actually, there can be as many realms as your desired level of security (or
paranoia) requires. This is because the class loader is under your control. As a
programmer, you can make your own class loader that implements your own
peculiar brand of security. (This is a radical step: you may have to give the users of
your program a whole bunch of classes—and they give you a whole lot of trust—to
accomplish this.)

As a user, you can tell your Java-aware browser, or Java system, what realm of
security (of the three) you’d like it to implement for you right now or from now
on.

As a system administrator, Java has global security policies that you can set up to
help guide your users to not “give away the store” (that is, set all their preferences
to be unrestricted, promiscuous, “hurt me please!”).

In particular, the class loader never allows a class from a “less protected” realm to replace a class
from a more protected realm. The file system’s I/O primitives, about which you should be very
worried (and rightly so), are all defined in a local Java class, which means that they all live in the
local-computer realm. Thus, no class from outside your computer (from either the supposedly
trustworthy local network or from the Internet) can take the place of these classes and “spoof”

030-4s CH21.i 1/29/96, 1:39 PM466

467

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Java code into using “nasty” versions of these primitives. In addition, classes in one realm cannot
call upon the methods of classes in other realms, unless those classes have explicitly declared those
methods public. This implies that classes from other than your local computer cannot even see
the file system I/O methods, much less call them, unless you or the system wants them to.

In addition, every new applet loaded from the network is placed into a separate package-like
namespace. This means that applets are protected even from each other! No applet can access
another’s methods (or variables) without its cooperation. Applets from inside the firewall can
even be treated differently from those outside the firewall, if you like.

Note: Actually, it’s all a little more complex than this. In the current release, an
applet is in a package “namespace” along with any other applets from that source.
This source, or origin, is most often a host (domain name) on the Internet. This
special “subrealm” is used extensively in the next section. Depending on where the
source is located, outside the firewall (or inside), further restrictions may apply (or
be removed entirely). This model is likely to be extended in future releases of Java,
providing an even finer degree of control over which classes get to do what.

The class loader essentially partitions the world of Java classes into small, protected little groups,
about which you can safely make assumptions that will always be true. This type of predictability
is the key to well-behaved and secure programs.

You’ve now seen the full lifetime of a method. It starts as source code on some computer, is
compiled into bytecodes on some (possibly different) computer, and can then travel (as a .class
file) into any file system or network anywhere in the world. When you run an applet in a Java-
aware browser (or download a class and run it by hand using java), the method’s bytecodes are
extracted from its .class file and carefully looked over by the verifier. Once they are declared safe,
the interpreter can execute them for you (or a code generator can generate native binary code
for them using either the “just-in-time” compiler or java2c, and then run that native code
directly).

At each stage, more and more security is added. The final level of that security is the Java class
library itself, which has several carefully designed classes and APIs that add the final touches to
the security of the system.

The Security Manager
SecurityManager is an abstract class that was recently added to the Java system to collect, in one
place, all the security policy decisions that the system has to make as bytecodes run. You learned
before that you can create your own class loader. In fact, you may not have to, because you can
subclass SecurityManager to perform most of the same customizations.

030-4s CH21.i 1/29/96, 1:41 PM467

468

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

An instance of some subclass of SecurityManager is always installed as the current security
manager. It has complete control over which of a well-defined set of “dangerous” methods are
allowed to be called by any given class. It takes the realms from the last section into account, the
source (origin) of the class, and the type of the class (stand-alone, or loaded by an applet). Each
of these can be separately configured to have the effect you (the programmer) like on your Java
system. For nonprogrammers, the system provides several levels of default security policies from
which you can choose.

What is this “well-defined set” of methods that are protected?

File I/O is a part of the set, for obvious reasons. Applets, by default, can open, read, or write files
only with the express permission of the user—and even then, only in certain restricted
directories. (Of course, users can always be stupid about this, but that’s what system adminis-
trators are for!)

Also in this protected set are the methods that create and use network connections, both
incoming and outgoing.

The final members of the set are those methods that allow one thread to access, control, and
manipulate other threads. (Of course, additional methods can be protected as well, by creating
a new subclass of SecurityManager that handles them.)

For both file and network access, the user of a Java-aware browser can choose between three
realms (and one subrealm) of protection:

■■ unrestricted (allows applets to do anything)

■■ firewall (allows applets within the firewall to do anything)

■■ source (allows applets to do things only with their origin {Internet} host, or with other
applets from there)

■■ local (disallows all file and network access)

For file access, the source subrealm is not meaningful, so it really has only three realms of
protection. (As a programmer, of course, you have full access to the security manager and can
set up your own peculiar criteria for granting and revoking privileges to your heart’s content.)

For network access, you can imagine wanting many more realms. For example, you might
specify different groups of trusted domains (companies), each of which is allowed added
privileges when applets from that group are loaded. Some groups can be more trusted than
others, and you might even allow groups to grow automatically by allowing existing members
to recommend new members for admission. (The Java seal of approval?)

In any case, the possibilities are endless, as long as there is a secure way of recognizing the original
creator of an applet.

030-4s CH21.i 1/29/96, 1:41 PM468

469

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

You might think this problem has already been solved, because classes are tagged with their
origin. In fact, the Java run-time goes far out of its way to be sure that that origin information
is never lost—any executing method can be dynamically restricted by this information anywhere
in the call chain. So why isn’t this enough?

Because what you’d really like to be able to do is permanently “tag” an applet with its original
creator (its true origin), and no matter where it has traveled, a browser could verify the integrity
and authenticate the creator of that applet. Just because you don’t know the company or
individual that operates a particular server machine doesn’t mean that you want to mistrust every
applet stored on that machine. It’s just that, currently, to be really safe, you should mistrust those
applets, however.

If somehow those applets were irrevocably tagged with a digital signature by their creator, and
that signature could also guarantee that the applet had not been tampered with, you’d be golden.

Note: Luckily, Sun is planning to do exactly that for Java, as soon as export
restrictions can be resolved.

Here’s a helpful hint of where the team would like to go, from the security docu-
mentation: “...a mechanism exists whereby public keys and cryptographic message
digests can be securely attached to code fragments that not only identify who
originated the code, but guarantee its integrity as well. This latter mechanism will
be implemented in future releases.”

Look for these sorts of features in every release of Java; they will be a key part of the
future of the Internet!

One final note about security. Despite the best efforts of the Java team, there is always a trade-
off between useful functionality and absolute security. For example, Java applets can create
windows, an extremely useful capability, but a “nasty” applet could use this to spoof the user into
typing private password information, by showing a familiar program (or operating system)
window and then asking an expected, legitimate-looking question in it. (The beta release adds
a special banner to applet-created windows to solve this problem.)

Flexibility and security can’t both be maximized. Thus far on the Net, people have chosen
maximum flexibility, and have lived with the minimal security the Net now provides. Let’s hope
that Java can help tip the scales a bit, enabling much better security, while sacrificing only a
minimal amount of the flexibility that has drawn so many to the Net.

030-4s CH21.i 1/29/96, 1:42 PM469

470

Under the Hood
M

T W
R

F S S

DAYDAY

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Summary
Today, you learned about the grand vision that some of us have for Java, and about the exciting
future it promises.

Under the hood, the inner workings of the virtual machine, the bytecode interpreter (and all its
bytecodes), the garbage collector, the class loader, the verifier, the security manager, and the
powerful security features of Java were all revealed.

You now know almost enough to write a Java run-time environment of your own—but luckily,
you don’t have to. You can simply download the latest release of Java—or use a Java-aware
browser to enjoy most of the benefits of Java right away.

I hope that Java ends up opening new roads in your mind, as it has in mine.

Q&A
Q I’m still a little unclear about why the Java language and compiler make the Net

safer. Can’t they just be “side-stepped” by nasty bytecodes?

A Yes, they can—but don’t forget that the whole point of using a safe language and
compiler was to make the Net as a whole safer as more Java code is written. An
overwhelming majority of this Java code will be written by “honest” Java program-
mers, who will produce safe bytecodes. This makes the Net more predictable over
time, and thus more secure.

Q I know you said that garbage collection is something I don’t have to worry
about, but what if I want (or need) to?

A So, you are planning to fly a plane with Java. Cool! For just such cases, there is a way
to ask the Java run-time, during startup (java -noasyncgc), not to run garbage
collection unless forced to, either by an explicit call (System.gc()) or by running out
of memory. (This can be quite useful if you have multiple threads that are messing
each other up and want to “get the gc thread out of the way” while testing them.)
Don’t forget that turning garbage collection off means that any object you create will
live a long, long time. If you’re real-time, you never want to “step back” for a full gc—
so be sure to reuse objects often, and don’t create too many of them!

Q I like the control above; is there anything else I can do to the garbage collector?

A You can also force the finalize() methods of any recently freed objects to be called
immediately via System.runFinalization(). You might want to do this if you’re about
to ask for some resources that you suspect might still be tied up by objects that are
“gone but not forgotten” (waiting for finalize()). This is even rarer than starting a gc
by hand, but it’s mentioned here for completeness.

030-4s CH21.i 1/29/96, 1:45 PM470

471

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

21

P2/V4 /sqc7 TY Java in 21 Days 030-4 Casey 12.29.95 Ch21 LP#4

Q What’s the last word on Java?

A Java adds much more than it can ever take away. It has always done so for me, and
now, I hope it will for you, as well.

The future of the Net is filled with as-yet-undreamt horizons, and the road is long and
hard, but Java is a great traveling companion.

030-4s CH21.i 1/29/96, 1:46 PM471

473

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

A

P2/V4 /sqc6 TY Java in 21 Days 030-4 al 12.28.95 App A LP#3

M
T W

R
F S S

Language
Summary

by Laura Lemay

AA

030-4s App A.i 1/29/96, 8:18 PM473

474

Language Summary

P2/V4 /sqc6 TY Java in 21 Days 030-4 al 12.28.95 App A LP#3

M
T W

R
F S S

A

This appendix contains a summary or quick reference for the Java language, as described in this
book.

Technical Note: This is not a grammar overview, nor is it a technical overview of
the language itself. It’s a quick reference to be used after you already know the
basics of how the language works. If you need a technical description of the
language, your best bet is to visit the Java Web Site (http://java.sun.com) and
download the actual specification, which includes a full BNF grammar.

Language keywords and symbols are shown in a monospace font. Arguments and other parts to
be substituted are in italic monospace.

Optional parts are indicated by brackets (except in the array syntax section). If there are several
options that are mutually exclusive, they are shown separated by pipes ([|]) like this:

[public | private | protected] type varname

Reserved Words
The following words are reserved for use by the Java language itself (some of them are reserved
but not currently used). You cannot use these words to refer to classes, methods, or variable
names:

abstract do implements package throw

boolean double import private throws

break else inner protected transient

byte extends instanceof public try

case final int rest var

cast finally interface return void

catch float long short volatile

char for native static while

class future new sure

const generic null switch

continue goto operator synchronized

default if outer this

030-4s App A.i 1/29/96, 8:18 PM474

475

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

A

P2/V4 /sqc6 TY Java in 21 Days 030-4 al 12.28.95 App A LP#3

Comments
/* this is a multiline comment */

// this is a single-line comment

/** Javadoc comment */

Literals
number Type int

number[l [|] L] Type long

0xhex Hex integer

0Xhex Hex integer

0octal Octal integer

[number].number Type double

number[f [|] f] Type float

number[d [|] D] Type double

[+ [|] -] number Signed

numberenumber Exponent

numberEnumber Exponent

‘character’ Single character

“characters” String

“” Empty string

\b Backspace

\t Tab

\n Line feed

\f Form feed

\r Carriage return

\” Double quote

\’ Single quote

\\ Backslash

\uNNNN Unicode escape (NNNN is hex)

true Boolean

false Boolean

030-4s App A.i 1/29/96, 8:19 PM475

476

Language Summary

P2/V4 /sqc6 TY Java in 21 Days 030-4 al 12.28.95 App A LP#3

M
T W

R
F S S

A

Variable Declaration
[byte | short | int | long] varname Integers (pick one type)

[float | double] varname Floats (pick one type)

char varname; Characters

boolean varname Boolean

classname varname; Class types

interfacename varname Interface types

type varname, varname, varname; Multiple variables

The following options are available only for class and instance variables. Any of these options
can be used with a variable declaration

[static] variableDeclaration Class variable

[final] variableDeclaration Constants

[public | private | protected] variableDeclaration Access control

[volatile] varname Modified asynchro-
nously

[transient] varname Not persistent
(not yet implemented)

Variable Assignment
variable = value Assignment

variable++ Postfix Increment

++variable Prefix Increment

variable–– Postfix Decrement

––variable Prefix Decrement

variable += value Add and assign

variable –= value Subtract and assign

variable *= value Multiply and assign

variable ÷= value Divide and assign

variable %= value Modulus and assign

variable &= value AND and assign

variable |= value OR and assign

030-4s App A.i 1/29/96, 8:19 PM476

477

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

A

P2/V4 /sqc6 TY Java in 21 Days 030-4 al 12.28.95 App A LP#3

variable ^= value XOR and assign

variable <<= value Left-shift and assign

variable >>= value Right-shift and assign

variable >>>= value Zero-fill right-shift and assign

Operators
arg + arg Addition

arg – arg Subtraction

arg * arg Multiplication

arg ÷ arg Division

arg % arg Modulus

arg < arg Less than

arg > arg Greater than

arg ≤ arg Less than or equal to

arg ≥ arg Greater than or equal to

arg == arg Equal

arg ≠ arg Not equal

arg && arg Logical AND

arg || arg Logical OR

! arg Logical NOT

arg & arg AND

arg | arg OR

arg ^ arg XOR

arg << arg Left-shift

arg >> arg Right-shift

arg >>> arg Zero-fill right-shift

~ arg Complement

(type)thing Casting

arg instanceof class Instance of

test ? trueOp : falseOp Tenary (if) operator

030-4s App A.i 1/29/96, 8:20 PM477

478

Language Summary

P2/V4 /sqc6 TY Java in 21 Days 030-4 al 12.28.95 App A LP#3

M
T W

R
F S S

A

Objects
new class() Create new instance

new class(arg,arg,arg...) New instance with parameters

object.variable Instance variable

object.classvar Class variable

Class.classvar Class variable

object.method() Instance method (no args)

object.method(arg,arg,arg...) Instance method

object.classmethod() Class method (no args)

object.classmethod(arg,arg,arg...) Class method

Class.classmethod() Class method (no args)

Class.classmethod(arg,arg,arg...) Class method

Arrays

Note: The brackets in this section are parts of the array creation or access
statements. They do not denote optional parts as they do in other parts of this
appendix.

type varname[] Array variable

type[] varname Array variable

new type[numElements] New array object

array[index] Element access

array.length Length of array

Loops and Conditionals
if (test) block Conditional

if (test) block

030-4s App A.i 1/29/96, 8:21 PM478

479

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

A

P2/V4 /sqc6 TY Java in 21 Days 030-4 al 12.28.95 App A LP#3

else block Conditional with else

switch (test) { switch (only with integer or char types)

 case value : statement

 case value : statement

 ...

 default : statement

}

for (initializer, test, change) block for loop

while (test) block while loop

do block do loop

while (test)

break [label] break from loop or switch

continue [label] continue loops

label: Labeled loops

Class Definitions
class classname block Simple Class definition

Any of the following optional modifiers can be added to the class definition:

[final] class classname block Cannot be subclassed

[abstract] class classname block Cannot be instantiated

[public] class classname block Accessible outside
package

class classname [extends Superclass] block Define superclass

class classname [implements interfaces] block Implement one or more
interfaces

Method and Constructor Definitions
The basic method looks like this, where returnType is a type name, a class name, or void.

returnType methodName() block Basic method

returnType methodName(parameter, parameter, ...) block Method with parameters

030-4s App A.i 1/29/96, 8:21 PM479

480

Language Summary

P2/V4 /sqc6 TY Java in 21 Days 030-4 al 12.28.95 App A LP#3

M
T W

R
F S S

A

Method parameters look like this:

type parameterName

Method variations can include any of the following optional keywords:

[abstract] returnType methodName() block Abstract method

[static] returnType methodName() block Class method

[native] returnType methodName() block Native method

[final] returnType methodName() block final method

[synchronized] returnType methodName() block Thread lock before
executing

[public | private | protected] returnType methodName() Block access control

Constructors look like this:

classname() block basic constructor

classname(parameter, parameter, parameter...) block constructor with
parameters

[public | private | protected] classname()block Access control

In the method/constructor body you can use these references and methods:

this Refers to current object

super Refers to superclass

super.methodName() Call a superclass’s method

this(...) Calls class’s constructor

super(...) Calls superclass’s constructor

return [value] Returns a value

Packages, Interfaces, and Importing
import package.className Imports specific class name

import package.* Imports all public classes in
package

package packagename Classes in this file belong
to this package

030-4s App A.i 1/29/96, 8:22 PM480

481

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

A

P2/V4 /sqc6 TY Java in 21 Days 030-4 al 12.28.95 App A LP#3

interface interfaceName [extends anotherInterface] block

[public] interface interfaceName block

[abstract] interface interfaceName block

Exceptions and Guarding
synchronized (object) block Waits for lock on object

try block Guarded statements

catch (exception) block Executed if exception is thrown

[finally block] Cleanup code

try block Same as previous example (can

[catch (exception) block] use optional catch or finally,

finally block but not both)

030-4s App A.i 1/29/96, 8:22 PM481

483

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

B

M
T W

R
F S S

Class Hierarchy
Diagrams

by Charles L. Perkins

BB

Class Hierarchy Diagrams
M

T W
R

F S S

B

484

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

485

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

B

Class Hierarchy Diagrams
M

T W
R

F S S

B

486

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

487

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

B

Class Hierarchy Diagrams
M

T W
R

F S S

B

488

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

489

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

B

Class Hierarchy Diagrams
M

T W
R

F S S

B

490

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

491

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

B

Class Hierarchy Diagrams
M

T W
R

F S S

B

492

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

493

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

B

Class Hierarchy Diagrams
M

T W
R

F S S

B

494

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

495

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc 6 TY Java in 21 Days 030-4 ayanna 12.28.95 App B LP#3

B

About These Diagrams
The diagrams in this appendix are class hierarchy diagrams for the package java and for all the
subpackages recursively below it in the Java beta binary release.

Each page contains the class hierarchy for one package (or a subtree of a particularly large
package) with all its interfaces included, and each class in this tree is shown attached to its
superclasses, even if they are on another page. A detailed key is located on the first page of this
appendix.

Note: Win32Process and UNIXProcess appear in their respective distributions of
Java, but both implement (essentially) the same protocol as their common abstract
superclass—Process—so only it was included. This means that are no platform-
dependent classes in the diagrams. (Of course, each release actually has some such
classes in its .class directories.) Several abstract classes have no subclasses in the
documented library, but any concrete implementation of Java would define
subclasses of them.

I supplemented the (incomplete) API documentation by looking through all the source files
(below src/java) to find all the (missing) package classes and their relationships.

I’ve heard there are various programs that auto-layout hierarchies for you, but I did these the old-
fashioned way (in other words, I earned it, as J.H. used to say). One nice side effect is that these
diagrams should be more readable than a computer would produce, though you will have to live
with my aesthetic choices (sorry). I chose, for example, to attach lines through the center of each
class node, something which I think looks and feels better overall (to me) but which on occasion
can be a little confusing. Follow lines through the center of the classes (not at the corners, nor
along any line not passing through the center) to connect the dots mentally.

497

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc6 TY Java in 21 Days 030-4 ayanna 12.28.95 App C LP#3/4

C

M
T W

R
F S S

The Java Class
Library

by Laura Lemay

CC

030-4s App C.i 1/29/96, 8:30 PM497

498

The Java Class Library

P2/V4/sqc6 TY Java in 21 Days 030-4 ayanna 12.28.95 App C LP#3/4

M
T W

R
F S S

C

This appendix provides a general overview of the classes available in the standard Java packages
(that is, the classes that are guaranteed to be available in any Java implementation). This
appendix is intended for general reference; for more information about class inheritance and the
exceptions defined for each package, see Appendix B. For more specific information about each
variable and the methods within each class, see the API documentation from Sun at http://
java.sun.com.

java.lang
The java.lang package contains the classes and interfaces that make up the core Java language.

Interfaces
Runnable Methods for classes that want to run as threads

Classes
Boolean Object wrapper for boolean values

Character Object wrapper for char values

Class Run-time representations of classes

ClassLoader Abstract behavior for handling loading of classes

Double Object wrapper for double values

Float Object wrapper for float values

Integer Object wrapper for int values

Long Object wrapper for long values

Math Utility class for math operations

Number Abstract superclass of all number classes (Integer,
Float, and so on)

Object Generic Object class, at top of inheritance hierarchy

Process Abstract behavior for processes such as those spawned
using methods in the System class

Runtime Access to the Java run-time

SecurityManager Abstract behavior for implementing security policies

String Character strings

StringBuffer Mutable strings

System Access to Java’s system-level behavior, provided in a
platform-independent way

030-4s App C.i 1/29/96, 8:30 PM498

499

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc6 TY Java in 21 Days 030-4 ayanna 12.28.95 App C LP#3/4

C

Thread Methods for managing threads and classes that run in
threads

ThreadGroup A group of threads

Throwable Generic Exception class; all objects thrown must be a
Throwable

java.util
The java.util package contains various utility classes and interfaces, including random
numbers, system properties, and other useful classes.

Interfaces
Enumeration Methods for enumerating sets of values

Observer Methods for allowing classes to observe Observable
objects

Classes
BitSet A set of bits

Date The current system date, as well as methods for
generating and parsing dates

Dictionary An abstract class that maps between keys and values
(superclass of HashTable)

Hashtable A hash table

Observable An abstract class for observable objects

Properties A hashtable that contains behavior for setting and
retrieving persistent properties of the system or of a
class

Random Utilities for generating random numbers

Stack A stack (a last-in-first-out queue)

StringTokenizer Utilities for splitting strings into a sequence of
individual “tokens”

Vector A growable array of Objects

030-4s App C.i 1/29/96, 8:30 PM499

500

The Java Class Library

P2/V4/sqc6 TY Java in 21 Days 030-4 ayanna 12.28.95 App C LP#3/4

M
T W

R
F S S

C

java.io
The java.io package provides input and output classes and interfaces for streams and files.

Interfaces
DataInput Methods for reading machine-independent typed

input streams

DataOutput Methods for writing machine-independent typed
output streams

FilenameFilter Methods for filtering file names

Classes
BufferedInputStream A buffered input stream

BufferedOutputStream A buffered output stream

ByteArrayInputStream An input stream from a byte array

ByteArrayOutputStream An output stream to a byte array

DataInputStream Enables you to read primitive Java types
(ints, chars, booleans, and so on) from a
stream in a machine-independent way

DataOutputStream Enables you to write primitive Java data
types (ints, chars, booleans, and so on) to a
stream in a machine-independent way

File Represents a file on the host’s file system

FileInputStream An input stream from a file, constructed
using a filename or descriptor

FileOutputStream An output stream to a file, constructed using
a filename or descriptor

FilterInputStream Abstract class which provides a filter for
input streams (and for adding stream
functionality such as buffering)

FilterOutputStream Abstract class which provides a filter for
output streams (and for adding stream
functionality such as buffering)

InputStream An abstract class representing an input
stream of bytes; the parent of all input
streams in this package

030-4s App C.i 1/29/96, 8:31 PM500

502

The Java Class Library

P2/V4/sqc6 TY Java in 21 Days 030-4 ayanna 12.28.95 App C LP#3/4

M
T W

R
F S S

C

Classes
ContentHandler Abstract behavior for reading data from a URL

connection and constructing the appropriate local
object, based on MIME types

InetAddress An object representation of an Internet host (host
name, IP address)

ServerSocket A server-side socket

Socket A socket

SocketImpl An abstract class for specific socket implementations

URL An object representation of a URL

URLConnection Abstract behavior for a socket that can handle various
Web-based protocols (http, ftp, and so on)

URLStreamHandler Abstract class for managing streams to object refer-
enced by URLs

java.awt
The java.awt package contains the classes and interfaces that make up the Abstract Windowing
Toolkit.

Interfaces
LayoutManager Methods for laying out containers

MenuContainer Methods for menu-related containers

Classes
BorderLayout A layout manager for arranging items in border

formation

Button A UI pushbutton

Canvas A canvas for drawing and performing other graphics
operations

CardLayout A layout manager for HyperCard-like metaphors

Checkbox A checkbox

CheckboxGroup A group of exclusive checkboxes (radio buttons)

CheckboxMenuItem A toggle menu item

030-4s App C.i 1/29/96, 8:31 PM502

503

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc6 TY Java in 21 Days 030-4 ayanna 12.28.95 App C LP#3/4

C

Choice A popup menu of choices

Color An abstract representation of a color

Component The abstract generic class for all UI components

Container Abstract behavior for a component that can hold
other components or containers

Dialog A window for brief interactions with users

Dimension Width and height

Event An object representing events caused by the system or
based on user input

FileDialog A dialog for getting file names from the local file
system

FlowLayout A layout manager that lays out objects from left to
right in rows

Font An abstract representation of a font

FontMetrics Abstract class for holding information about a specific
font’s character shapes and height and width infor-
mation

Frame A top-level window with a title

Graphics Abstract behavior for representing a graphics context,
and for drawing and painting shapes and objects

GridBagConstraints Constraints for components laid out using
GridBagLayout

GridBagLayout A layout manager that aligns components horizon-
tally and vertically based on their values from
GridBagConstraints

GridLayout A layout manager with rows and columns; elements
are added to each cell in the grid

Image An abstract representation of a bitmap image

Insets Distances from the outer border of the window; used
to lay out components

Label A text label for UI components

List A scrolling list

MediaTracker A way to keep track of the status of media objects
being loaded over the net

Menu A menu, which can contain menu items and is a
container on a menubar

030-4s App C.i 1/29/96, 8:31 PM503

504

The Java Class Library

P2/V4/sqc6 TY Java in 21 Days 030-4 ayanna 12.28.95 App C LP#3/4

M
T W

R
F S S

C

MenuBar A menubar (container for menus)

MenuComponent The abstract superclass of all menu elements

MenuItem An individual menu item

Panel A container that is displayed

Point x and y coordinates

Polygon A set of points

Rectangle x and y coordinates for the top corner, plus width and
height

Scrollbar A UI scrollbar object

TextArea A multiline, scrollable, editable text field

TextComponent The superclass of all editable text components

TextField A fixed-size editable text field

Toolkit Abstract behavior for binding the abstract AWT
classes to a platform-specific toolkit implementation

Window A top-level window, and the superclass of the Frame
and Dialog classes

java.awt.image
The java.awt.image package is a subpackage of the AWT that provides classes for managing
bitmap images.

Interfaces
ImageConsumer Methods for receiving image data created by an

ImageProducer

ImageObserver Methods to track the loading and construction of an
image

ImageProducer Methods to construct or filter image data

Classes
ColorModel An abstract class for managing color information for

images

CropImageFilter A filter for cropping images to a particular size

DirectColorModel A specific color model for managing and translating
pixel color values

505

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/sqc6 TY Java in 21 Days 030-4 ayanna 12.28.95 App C LP#3/4

C

FilteredImageSource An ImageProducer that takes an image and an
ImageFilter object and produces an image for an
ImageConsumer

ImageFilter A filter that takes image data from an ImageProducer,
modifies it in some way, and hands it off to a
ImageConsumer

IndexColorModel A specific color model for managing and translating
color values in a fixed-color map

MemoryImageSource An image producer that gets its image from memory;
used to construct an image by hand

RGBImageFilter Abstract behavior for a filter that modifies the RGB
values of pixels in RGB images

java.awt.peer
The java.awt.peer package is a subpackage of AWT that provides the (hidden) platform-
specific AWT classes (for example, for Motif, Macintosh, or Windows 95) with platform-
independent interfaces to implement. Thus, callers using these interfaces need not know which
platform’s window system these hidden AWT classes are currently implementing.

Each class in the AWT that inherits from either Component or MenuComponent has a corresponding
peer class. Each of those classes is the name of the Component with -Peer added (for example,
ButtonPeer, DialogPeer, and WindowPeer). Because each one provides similar behavior, they are
not enumerated here.

java.applet
The java.applet package provides applet-specific behavior.

Interfaces
AppletContext Methods to refer to the applet’s context

AppletStub Methods for nonbrowser applet viewers

AudioClip Methods for playing audio files

Classes
Applet The base applet class

030-4s App C.i 1/29/96, 8:31 PM505

507

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/SQC6 TY Java in 21 Days 030-4 ayanna 12.28.95 App D LP#3

D

M
T W

R
F S S

How Java Differs
from C and C++

by Laura Lemay

DD

030-4s App D.i 1/29/96, 8:32 PM507

508

How Java Differs from C and C++

P2/V4/SQC6 TY Java in 21 Days 030-4 ayanna 12.28.95 App D LP#3

M
T W

R
F S S

D

This appendix contains a description of most of the major differences between C, C++ , and the
Java language. If you are a programmer familiar with either C or C++, you may want to review
this appendix to catch some of the common mistakes and assumptions programmers make when
using Java.

Pointers
Java does not have an explicit pointer type. Instead of pointers, all references to objects—
including variable assignments, arguments passed into methods, and array elements—are
accomplished by using implicit references. References and pointers are essentially the same thing
except that you can’t do pointer arithmetic on references (nor do you need to).

Reference semantics also enable structures such as linked lists to be created easily in Java without
explicit pointers; merely create a linked list node with variables that point to the next and the
previous node. Then, to insert items in the list, assign those variables to other node objects.

Arrays
Arrays in Java are first class objects, and references to arrays and their contents are accomplished
through explicit references rather than via point arithmetic. Array boundaries are strictly
enforced; attempting to read past the ends of an array is a compile or run-time error. As with
other objects, passing an array to a method passes a reference to the original array, so changing
the contents of that array reference changes the original array object.

Arrays of objects are arrays of references that are not automatically initialized to contain actual
objects. Using the following Java code produces an array of type MyObject with ten elements, but
that array initially contains only nulls:

MyObject arrayofobjs[] = new MyObject[10];

You must now add actual MyObject objects to that array:

for (int i; i< arrayofobjs.length. i++) {
 arrayofobjs[i] = new MyObject();

Java does not support multidimensional arrays as in C and C++. In Java, you must create arrays
that contain other arrays.

Strings
Strings in C and C++ are arrays of characters, terminated by a null character (\0). To operate
on and manage strings, you treat them as you would any other array, with all the inherent
difficulties of keeping track of pointer arithmetic and being careful not to stray off the end of
the array.

030-4s App D.i 1/29/96, 8:33 PM508

509

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P2/V4/SQC6 TY Java in 21 Days 030-4 ayanna 12.28.95 App D LP#3

D

Strings in Java are objects, and all methods that operate on strings can treat the string as a
complete entity. Strings are not terminated by a null, nor can you accidentally overstep the end
of a string (like arrays, string boundaries are strictly enforced).

Memory Management
All memory management in Java is automatic; memory is allocated automatically when an
object is created, and a run-time garbage collector (the “GC”) frees that memory when the object
is no longer in use. C’s malloc and free functions do not exist in Java.

To “force” an object to be freed, remove all references to that object (assign variables holding
it to null, remove it from arrays, and so on). The next time the Java GC runs, that object is
reclaimed.

Data Types
As mentioned in the early part of this book, all Java primitive data types (char, int, long, and
so on) have consistent sizes and behavior across platforms and operating systems. There are no
unsigned data types as in C and C++ (except for char, which is a 16-bit unsigned integer).

The boolean primitive data type can have two values: true or false. Boolean is not an integer,
nor can it be treated as one, although you cannot cast 0 or 1 (integers) to boolean types in Java.

Composite data types are accomplished in Java exclusively through the use of class definitions.
The struct, union, and typedef keywords have all been removed in favor of classes.

Casting between data types is much more controlled in Java; automatic casting occurs only when
there will be no loss of information. All other casts must be explicit. The primitive data types
(int, float, long, char, boolean, and so on) cannot be cast to objects or vice versa; there are
methods and special “wrapper” classes to convert values between objects and primitive types.

Operators
Operator precedence and association behaves as it does in C. Note, however, that the new
keyword (for creating a new object) binds tighter than dot notation (.), which is different
behavior from C++. In particular, note the following expression:

new foo().bar;

This expression operates as if it were written like this:

(new foo()).bar;

Operator overloading, as in C++, cannot be accomplished in Java. The , operator of C has been
deleted.

030-4s App D.i 1/29/96, 8:33 PM509

510

How Java Differs from C and C++

P2/V4/SQC6 TY Java in 21 Days 030-4 ayanna 12.28.95 App D LP#3

M
T W

R
F S S

D

The >>> operator produces an unsigned logical right shift (remember, there are no unsigned data
types).

The + operator can be used to concatenate strings.

Control Flow
Although the if, while, for, and do statements in Java are syntactically the same as they are in
C and C++, there is one significant difference. The test expression for each control flow construct
must return an actual boolean value (true or false). In C and C++, the expression can return
an integer.

Arguments
Java does not support mechanisms for optional arguments or for variable-length argument lists
to functions as in C and C++. All method definitions must have a specific number of arguments.

Command-line arguments in Java behave differently from those in C and C++. The first element
in the argument vector (argv[0]) in C and C++ is the name of the program itself; in Java, that
first argument is the first of the additional arguments. In other words, in Java, argv[0] is argv[1]
in C and C++; there is no way to get hold of the actual name of the Java program.

Other Differences
The following other minor differences from C and C++ exist in Java:

■■ Java does not have a preprocessor, and as such, does not have #defines or macros.
Constants can be created by using the final modifier when declaring class and instance
variables.

■■ Java does not have template classes as in C++.

■■ Java does not include C’s const keyword or the ability to pass by const reference
explicitly.

■■ Java classes are singly inherited, with some multiple-inheritance features provided
through interfaces.

■■ All functions are implemented as methods. There are no functions that are not tied to
classes.

■■ The goto keyword does not exist in Java (it’s a reserved word, but currently
unimplemented). You can, however, use labeled breaks and continues to break out of
and continue executing complex switch or loop constructs.

030-4s App D.i 1/29/96, 8:33 PM510

	How to Use this Book
	Dedication & Credits
	Table of Contents
	Acknowledgments
	About the Authors
	Introduction
	Week 1 At a Glance
	Lesson 1: An Introduction to Java Programming
	Lesson 2: Object-Oriented Programming and Java
	Lesson 3: Java Basics
	Lesson 4: Working with Objects
	Lesson 5: Arrays, Conditionals, and Loops
	Lesson 6: Creating Classes and Applications in Java
	Lesson 7: More About Methods
	Week 2 At a Glance
	Lesson 8: Java Applet Basics
	Lesson 9: Graphics, Fonts, and Color
	Lesson 10: Simple Animation and Threads
	Lesson 11: More Animation, Images, and Sound
	Lesson 12: Managing Simple Events and Interactivity
	Lesson 13: The Java Abstract Windowing Toolkit
	Lesson 14: Windows, Networking, and Other Tidbits
	Week 3 At a Glance
	Lesson 15: Modifiers
	Lesson 16: Packages and Interfaces
	Lesson 17: Exceptions
	Lesson 18: Multithreading
	Lesson 19: Streams
	Lesson 20: Native Methods and Libraries
	Lesson 21: Under the Hood
	Appendix A: Language Summary
	Appendix B: Class Hierarchy Diagrams
	Appendix C: The Java Class Library
	Appendix D: How Java Differs from C and C++

