Teach Yourself

JAVA

IN 21 Days

Laura Lemay
Charles L. Perkins

Sams
net

201 West 103rd Street
Indianapolis, Indiana 46290

Note:
Click anywhere on this page to jump to the Table of Contents.

About This Book

This book teaches you all about the Java language and how to use it to create
appletsand applications. By the time you get through with this book, you’ll know
enough about Java to do just about anything, inside an applet or out.

Who Should Read This Book

This book is intended for people with at least some basic programming back-
ground, which includes people with years of programming experience or people
with only a small amount of experience. If you understand what variables, loops,
and functions are, you'll be just fine for this book. The sorts of people who might
want to read this book include you, if

O You're a real whiz at HTML, understand CGI programming (in perl,
AppleScript, Visual Basic, or some other popular CGI language) pretty
well, and want to move on to the next level in Web page design.

O You had some Basic or Pascal in school and you have a basic grasp of
what programming is, but you’ve heard Java is easy to learn, really
powerful, and very cool.

O You've programmed C and C++ for many years, you've heard this Java
thing is becoming really popular and you’re wondering what all the fuss
is all about.

O You've heard that Java is really good for Web-based applets, and you're
curious about how good it is for creating more general applications.

What if you know programming, but you don’t know object-oriented program-
ming? Fear not. This book assumes no background in object-oriented design. If
you know object-oriented programming, in fact, the first couple of days will be
easy for you.

How This Book Is Structured

This book is intended to be read and absorbed over the course of three weeks.
During each week, you’ll read seven chapters that present concepts related to the
Java language and the creation of applets and applications.

Conventions

SN
f
v

Y

N

NEW]

_|

=
=

ko

Note: A Note box presents interesting pieces of information related to the surround-
ing discussion.

Technical Note: A Technical Note presents specific technical information related to
the surrounding discussion.

Tip: A Tip box offers advice or teaches an easier way to do something.

Caution: A Caution box alerts you to a possible problem and gives you advice to
avoid it.

Warning: A Warning box advises you about potential problems and helps you steer
clear of disaster.

New terms are introduced in New Term boxes, with the term in italics.

A type icon identifies some new HTML code that you can type in yourself.

An Output icon highlights what the same HTML code looks like when viewed by
either Netscape or Mosaic.

An analysis icon alerts you to the author’s line-by-line analysis.

Vi

To Eric, for all the usual reasons
(moral support, stupid questions, comfort in dark times).
LL

For RKJP, ARL, and NMH
the three most important people in my life.
CLP

Copyright ©1996 by Sams.net

Publishing and its licensors
FIRST EDITION

Al rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein. For
information, address Sams.net Publishing, 201 W. 103rd St., Indianapolis,
IN 46290.

International Standard Book Number: 1-57521-030-4
Library of Congress Catalog Card Number: 95-78866
99 98 97 96 4 3 21

Interpretation of the printing code: the rightmost double-digit number is
the year of the book’s printing; the rightmost single-digit, the number of
the book’s printing. For example, a printing code of 96-1 shows that the
first printing of the book occurred in 1996.

Composed in AGaramond and MCPdigital by Macmillan Computer
Publishing

Printed in the United States of America

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams.net Publishing
cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service
mark.

President, Sams Publishing:
Publisher, Sams.net Publishing:

Richard K. Swadley
George Bond

Publishing Manager: Mark Taber
Managing Editor: Cindy Morrow
Marketing Manager: John Pierce

Acquisitions Editor
Mark Taber

Development Editor
Fran Hatton

Software Development
Specialist
Merle Newlon
Production Editor
Nancy Albright

Technical Reviewer
Patrick Chan

Editorial Coordinator
Bill Whitmer

Technical Edit
Coordinator
Lynette Quinn

Formatter
Frank Sinclair

Editorial Assistant
Carol Ackerman

Cover Designer
Tim Amrhein

Book Designer
Alyssa Yesh

Production Team
Supervisor
Brad Chinn

Production
Michael Brumitt
Jason Hand
Cheryl Moore
Ayanna Lacey
Nancy Price
Bobbi Satterfield
Tim Taylor
Susan Van Ness
Mark Walchle
Todd Wente

Indexer
Tim Griffin

Overview

Introduction

Week 1 at a Glance

Day 1

o O W

7

An Introduction to Java Programming
Object-Oriented Programming and Java
Java Basics

Working with Objects

Arrays, Conditionals, and Loops
Creating Classes and Applications in Java
More About Methods

Week 2 at a Glance

Day 8
9

10

11

12

13

14

Java Applet Basics

Graphics, Fonts, and Color

Simple Animation and Threads

More Animation, Images, and Sound

Managing Simple Events and Interactivity

User Interfaces with the Java Abstract Windowing Toolkit
Windows, Networking, and Other Tidbits

Week 3 at a Glance

Day 15
16
17
18
19
20
21

Appendixes
A

B
C
D

Modifiers

Packages and Interfaces
Exceptions

Multithreading

Streams

Native Methods and Libraries
Under the Hood

Language Summary

The Java Class Library

How Java Differs from C and C++
How Java Differs from C and C++

Index

XXi

19
41
61
79
95
111

129
149
173
195
217
237
279

305
323
341
353
375
403
421

473
483
497
507

511

Vii

Contents

Introduction

Week 1 at a Glance

Day 1 An Introduction to Java Programming

WL IS JAVA? .
Java’s Past, Present, and FULUMEo.oovveineineineseeec e
WHY LEAIN JAVA?eveveieieeieieees et e ettt be e ne st
Java Is Platform-Independent...........ccoceieieieiineicieeee e sasie e
Java IS ODJeCt-OrieNtedccccoveveieiee ettt
Java IS EaSY £0 LEAIN ...eiveiiiie et e
Getting Started with
Programming iN JAVAcc.eoveeeieeieieeesessisreseesaessestesaesseseeseesnenssssnsenns
Getting the SOFTWAIEc.ecv e
Applets and APPHCATIONScociiieieieeeiiiisie st se e s snesresieseeaenaeness
Creating a Java APPHCAtioN .. .vviue i e
Creating a Java APPIEL «.veoveeee e
SUIMIMEIY .ttt ettt aaie e sbee b e b e ssbeesbe e b e ke e shse e beeanbeebn e e sbaenbeensneens
QA et bbbtk eh et sb et abe et e b

Day 2 Object-Oriented Programming and Java

Thinking in Objects: AN ANGIOGYccccevivveiuiiiieieienere e
ODjJECES AN CIASSESvveveereeieereiteireatesesiesresieseessesseeeseeeerasessseresresresresees
Behavior and ALErDULEScoiiriiie it
ATEFIDULES .. bbbt et et
BENAVIOK ...t b
Creating @ ClASS ...cveveriereieie ittt e et
Inheritance, Interfaces, and PaCkagescoovvveriievieniesscie e sesee i
INNEITEANCE ... et
Creating a Class HIerarchycccooeveiviiesviinnie s
HOW INNEritance WOTKSccoeiieiiirioeine st
Single and Multiple INRErTANCEc.ccviviiiicece e
Interfaces and PaCKAgESccvvveiieriiriiesiceee e e
Creating a SUDCIASScovevveieieicrce i
SUIMIMEIY .ottt b et b e sb bt essbe e nbe e s b e b b sn b e nbeenineens
QA e

Day 3 JavaBasics

Statements and EXPreSSIONSccvieirerrerierieriesiessneesieeeesessessessesresresie s
Variables and Data TYPES ..cvecveveveieeeierieesestesie e se e e e sssnee e
Declaring Variablescovcviviiieieccsc et
Notes on Variable NAMEScoeiveiiriiiiseese et

XXi

1

3
.4

7

m Teach Yourself JAVA in 21 Days

Day

Variable TYPES .vcvveieieciice ettt 45
Assigning Values to Variables..........ccccoevverciiieiie e 46
COMIMENTS ...t 47
LITEIAIS .. 47
NUMDBEE LIEralSccveieeeiieieiiee e 47
BOO0IEAN LITEralS ...c.ovevieeiiiieicieeie s 48
Character LIteralS........coooovveireirieiseises e 48
SEPNG LITEIalS ..vcvveveiecei e 49
EXpressions and OPEIatorSccivevvereeiieiesesesesesieseessesseseeseesesesesnens 50
AFEAMELIC .o e 50
More ADOUE ASSIGNMENTcveveicieece e 52
Incrementing and Decrementingcoovveveieverereieieee e 52
L00] 1] o T TTo] - 54
LOGical OPEIAtOrSccevveiierieriiieieeee et e e e st se e st eeneas 55
B @] o1 L (o] £ SR RSRRS 55
OPErator PreCEABNCEvviveiresteeteriestesie e st et e e e re e sresre s re e sne e 56
SEHNG AFTAMELIC ..o s 57
SUMIMIBIY Lottt bbb st b e et e e sbb e e nbeenaneenees 58
QA bbb 60
Working with Objects 61
Creating NEeW ODJECESccvviiiieiie e 62
USING NBW ottt sttt naens 63
WHAL NEW DIOBSovvieeiieeicieicsie et 64
A Note on Memory Managementccocviieiieniieninniee e 64
Accessing and Setting Class and Instance Variables.........c..cccccoovvvieiennn 65
GEHING VAIUBS ... 65
Changing ValUEScviieieiiieie et 65
Class Variablescoviireiiiieeee e 66
Calling Methodsc.cceiieiiie e 67
Class MENOUSceriiririiireiee e 69
References t0 ODJECEScvveveieicice e 70
Casting and Converting Objects and Primitive TYPESccccevvevveverieriennns 71
Casting Primitive TYPES ..cveveveieecieese e 71
(08 T 11010 O] [=1o1 SRS 72
Converting Primitive Types
t0 Objects and ViCe VEISAcccveeeveiiiie e 73
Odds N ENGSoovviveiiiieieieee et 73
Comparing ODJECEScveveieiiieir e 74
(007 0) [0 [0l @ o110 £SO RRPR 75
Determining the Class of an Objectcccocvvvvei i 76
The Java Class LIDFariescccvrvereirieiinisieeseeseesie e 76
SUMIMBIY Lottt sttt enbeesbb e e nbeenaneenees 77

Q&A oot et 78

Day

Day

Day

Sams ney
Lea"ning

Arrays, Conditionals, and Loops 79
AATTAYS ettt ettt ettt nree e 80
Declaring Array Variablesccoovvviiiiiiniie e 80
Creating Array ODBJECTSveiveiveiieiieicieee e 81
Accessing Array EIBMENtScoovviieiiiicicese e 81
Changing Array EIBMENTScocceveieiiiieieseeee e 82
MUultidimenSional AITaYS........ccccvieierereie e 83
BIOCK STAEMENTSvoviviicieeee et 83
I CONAILIONAISeoieveice e 83
The Conditional OPErator.........c.ccveveeiieiiie e 84
SWILCh CONAILIONAISeviieeiiiieicee e 85
(0] 0T o LRSS 86
WHile aNd A0 LOOPS ...cvvveiviiieiieieiee et 88
WRHIE LOOPS ...ttt re e ene s 88
0. WHIIE LOOPS ..ttt 89
Breaking Out Of LOOPScvcviiiiiiiesieie et 89
LabElEd LOOPSveveveireieie ettt st 90
SUIMIMEBIY .ttt st st e st et e s rbeebeesrbeenbeenrneens 91
Q&A .ttt enas 92
Creating Classes and Applications in Java 95
DEfINING CIASSESvevvevieierieiee ettt sre e e are s 96
Creating Instance and Class Variablescccovveveivneiinieiesesese e 96
Defining Instance Variablescccccevevieiiiiiciiieie e 97
CONSEANTS ... e 97
Class VariabIesoooiieiriiiisee e 98
Creating MEthOScoveiveieicice e 99
Defining MEthodsccccviiiiiiee e 99
The this KEYWOITccviviiiiiieie et 101
Variable Scope and Method Definitionsccccccevvevvecviieniececnnnnn, 101
Passing Arguments to Methodscccceeeiereicicieccecce e 102
Class MELNOUScoveirieiieiicisese s 104
Creating Java APPHCAtIONScvvviieiiie e 105
Java Applications and Command-Line Argumentscc.cccceverververnnne. 106
Passing Arguments to Java Programs........cc.ccccvvevevenevesencseseenennas 106
Handling Arguments in Your Java Programcccccceevevveivnnnesvnsnenn, 106
SUIMIMEBIY .ottt bbbttt e sbe et e e sbeeenbeenteas 108
Q&A .t 109
More About Methods 111
Creating Methods with the Same Name, Different Arguments............... 112
ConStructor MEtNOASc.cccevieirieerieese e 115
BaSiC CONSLIUCTONSeveviieiirieiesieese sttt 116
Calling Another CONSLIUCTONccvveieiierieice e 117
Overloading CONSIIUCLONSvcveieiiieriesiesesie e 117

sams
&

Xi

m Teach Yourself JAVA in 21 Days

OVerriding MEethodscveviiiiiicce e 119
Creating Methods that Override Existing Methods..........c..ccccceveennne. 119
Calling the Original Methodccccoiviiiiiie i 121
OVerriding CONSLIUCTONScveeereieese e 122

FIiNalizer MEthOdSc.coveviriiiieiee e 123

SUMIMBIY <ottt et sttt e s b e et st e e nbeennbe s 124

Q&A et 124

Week 2 at a Glance 127
Day 8 Java Applet Basics 129

How Applets and Applications Are Different............ccocooevvvirvicinicnnnnnn, 130

Creating APPIELS ..o 131
Major APPIEt ACEIVITIESovviveieeieie e 132
A SIMPIE APPIEL ... e 134

Including an Applet on a Web Page ..o 136
The APPLET> TaQ....vceeiieieieesiseeeie et 136
Testing the RESUItcvve i 137
Making Java Applets Available to the Web........ccccceveviiievciicrc, 137

More About the KAPPLET> Tag....cccccciveiieieiise e 138
ALIGN .ottt 138
HSPACE and VSPACEccoviviieeiirieiceesesisie e 140
CODE and CODEBASEccviiiiiisieieesisieeesisisesese s 141

Passing Parameters t0 APPIELScovoveveiie i 141

SUMIMIBIY <ottt sttt e s e e et b e e nbeennbe s 146

Q&A et 147

Day 9 Graphics, Fonts, and Color 149

The Graphics Classcucveiiiieiiieie et 150
The Graphics Coordinate SYStemccccevvevveieiieeicie e 151

Drawing and FilliNgccoooveieiiiieeece e 151
LINIES ¢ttt ettt 152
RECEANGIES ... 152
POIYIONS ..o 155
OVIS e 156
AATC e 157
A Simple Graphics EXample.........coovveieieiiiiiese e 161
Copying and CIEAriNGccccvivrerieseie e 163

TEXE AN FONES it 163
Creating FONt ODJECEScvvcvvieciciie e 163
Drawing Characters and Strings..........cooeveveveverieieeieee e 164
Finding Out Information About a FONt..........ccccovevveiciiieii e 166

00K ittt 168
UsiNg Color ODJECESocvvcviieiece e 168
Testing and Setting the Current Colorsccccevvevveieienieen e, 169
A Single Color EXamPplecccoveviiiiiisece e 170

SUMIMIBIY <ottt ettt nb e s e e e be e s nbeenbeennbe s 171

Q&A b 171

Xii

Day

Day

Day

10

11

12

Simple Animation and Threads

Creating Animation in Javac..ccocvevveivinanine
Painting and Repaintingc.ccccoovevvevvenenn.

Starting and Stopping

an Applet’s Executioncccccevevviiviennnne
Putting It Togetherc..ccccecvvvevevcieiienee,

Threads: What They Are

and Why You Need Themcccccevevieinenenn,

The Problem with the Digital Clock Applet

Writing Applets with Threads............c...c.....
Fixing The Digital ClocKccccocvviviennnne
Reducing Animation Flickerccccccceveviennnn,
Flicker and How to Avoid Itcccoevenane.
How to Override Updatec.ccceevvvrirnnne
Solution One: Don'’t Clear the Screen

Solution Two: Redraw

Only What You Have TOcccccvevveienene,
SUMMANY .o
Q&A o

More Animation, Images, and Sound

Retrieving and Using IMagesc.cccoeveveeennnn.
Getting IMagesccocvvveveviercieeeeeeeese s
Drawing IMagescccoveveereneiesesesiesieeans
Modifying IMagescccovvvvevenerericieienen,

Creating Animation Using Images.....................
An Example: NeKO......ccccovevvviveiciineiecei,

Retrieving and Using Sounds...........cccccevevenenn.

Sun’s Animator Applet ...,

More About Flicker; Double-Buffering.............
Creating Applets with Double-Buffering......
An Example: Checkers Revisited

SUMMANY .o

Q&A o

Managing Simple Events and Interactivity

MOUSE ClICKS ..o
mouseDown and MOuUSEUP......ccevvererierverienns
An Example: SPotS......ccccvveiviirciveinseseceie

Mouse MOVEMENTSccceevririiiieiiieeie e
mouseDrag and mouseMOoVe........c..ccccvevriennnne
mouseEnter and MOUSEEXItcccocvvvreereene
An Example: Drawing LINESc.covevveiveieniiesenese e

KeyD0oard EVENTScoveiveieieieicese sttt
The keyDown MEthodcc.coveieiiieicese e
DEfAUIL KEYS ...

Sams ney
Lea"ning

173

174
174

175
175

177
178
179
180
182
182
183
183

186
192
192

195

196
196
198
201
201
201
209
211
212
212
213
214
215

217

218
219
220
223
223
223
224
228
228
229

sams
&

Xiii

Xiv

Teach Yourself JAVA in 21 Days

m

Day

Day

13

14

An Example: Entering, Displaying, and Moving Characters 229
Testing for Modifier KEYScccoveiiveieieercceece e 232
The AWT Event HandIerccovveiiiiniiince s 233
SUMIMIBIY <ottt ettt nb e s e e e be e s nbeenbeennbe s 235
QA e 235
The Java Abstract Windowing Toolkit 237
AN AWT OVEIVIEW ..ottt ettt sse e sne e sne e snesens 238
The Basic User Interface COMPONENTS.........coveeveveveieeeeesiese e 240
LADEIS ...t 241
BULEONS ...t 242
ChECKDOXES ... 243
RAAIO BULEONScveveiicieicieeie et 244
ChOICE IMIBNUS ...ttt 245
TEXE FIEIUS .o 247
Panels and LayOUL...........ccceieieiiieice e e 249
LaYOUL MANAGETS ...veeieeiiiieiiie sttt sttt 249
INSBES .ot 254
Handling Ul Actions and EVENLSccccvveieieiiii e 255
Nesting Panels and COMPONENTSccccvverieiiiese e 258
INESEEA PANEIS ... 258
Events and Nested Panelscoovverieriineeneeneee e 258
MoOre UL COMPONENTScoviiiiiiiiiieiie et 259
TEXE ATBAS ..ottt 259
R0 (0] T g0 T RSP S 261
Scrollbars and SHABTScoveviiriiiece s 262
CANVASES ..ottt n e n e 265
MOTE U EVENTS ... 265
A Complete Example:

RGB t0 HSB CONVEIEN ..o 266
Create the Applet Layoutcccoveveriieicice e 267
Create the Panel Layoutccccoeveveieicsiceeece e 267
Define the SUDPANELSccccoeiveieieecec e 269
Handle the ACLIONScovciiieree e 272
Update the RESUILcceiviiiie e 272
The Complete SOUICe COUEcvevveieieece e 274

SUMIMIBIY <ottt et sttt e s b e et b e e nbeennbe s 277
QA o 277
Windows, Networking, and Other Tidbits 279
Windows, Menus, and Dialog BOXESccccvcveerieiesesesesenesieseeieaenes 280
FTAMES ..o 280
IMIBINUS <. 282
DiHAlOY BOXESvevverieiieriereeteete et sie sttt ste st sr e e ns et are e 285
FIle DIalOgS .. cuveveeeeeeiciise sttt 287
WINAOW EVENLS ..ot 288
Using AWT Windows in Stand-Alone Applicationscc.cccvee.e. 288

NEIWOTKING 1N JAVA ...veveveieiciccece e 289
Creating Links Inside APPIELScvcveeiieiiiiiesese e 290
Opening Web CONNECLIONScccevvevieiieiieicieieeee e 292
OPENSEIEAM() vviveerreresie ettt ettt sttt st enaens 293
The URLCONNECLION CIASSvevvveriienirieisieise e 296
SOCKEES ...ttt 296

Other APPIEt HINESocvvieiicicece e 297
The showStatus Method ... 297
Applet INFOrmMationccceveieiieicee e 298
Communicating Between APpIetSccceveveve v, 298

SUIMIMAIY .ottt bbbttt e sbe e st enbeesnbeenteas 299

Q&A .t 300

Week 3 at a Glance 303
Day 15 Modifiers 305

Method and Variable Access CONLrol.........cccoovveireriienisiensieseeseeee 307
The Four P’s of Protectioncccveiveiniineineseseseec e 307
The Conventions for Instance Variable ACCESScoceevrererererieennnn. 312

Class Variables and Methodsccccovveriiiniiensienee e 314

The final MOGIfIErcoovieiiiiee e 316
FINAL CIASSES .ttt 316
fiNAl Variablescovoeiieie e 317
fiNal MEthOdS ..o 317

abstract Methods and CIaSSEScovevirvererieereiseese e 319

SUIMIMAIY .ottt st bbb sae et e e sbe e st e nbeesnbeenteas 320

Q&A .t 320

Day 16 Packages and Interfaces 323

PACKAYES ..veuveveererieieiett ettt sttt re e re e nre 324
Programming in the Largecccooevveeeieie i 324
Programming in the Small ..o, 327
HIAING CIASSES ..vevveviveieieieieee ettt 329

INEEITACES ...t 331
Programming in the Largeccccoevveeeeeie e 331
Programming in the Small ..o, 335

SUIMIMEBIY .ottt sttt sttt e e sbe et e e sbeeenbeenteas 338

Q&A .ot 339

Day 17 Exceptions 341

Programming in the Largecccceveveieieiicneieceeeeis e 342

Programming in the Smallccccocooiiiiiiieecce s 345

The Limitations Placed on the Programmerccccoceveveneiesiccvenne. 348

The fiNally CIAUSEcveveeieiieece e 349

SUIMIMEBIY .ottt bbbt sbe et sbe et e e nbeesnbeenteas 350

Q&A .ottt 351

sams
&

Sams.ney
Learning

XV

XVi

Teach Yourself JAVA in 21 Days

E

Day

Day

Day

18

19

20

Multithreading 353
The Problem with Parallelismcccoiiviciiiiiicce e, 354
Thinking MUltithreadedcccoveveeieisiece s 355
POINts ADOUL POINESvooiviiiiieceie et 357
Protecting a Class Variablecccccvvviiieiinine e 360
Creating and UsiNg THreadscccovveieiineiescseseceeeees e 361
The RUNNable TNEEIFACEcvviiviieeiicii e 362
TRFEAATESLELvveieeicvi ittt st s s e s e s sraeesbe e 363
NAMEATRIEAATESLEN ...veeviiieeieetee et 365
Knowing When a Thread has Stoppedccccvvvvievieve v 366
Thread SChedulingccccvoviiiecice s 367
Preemptive Versus NONPreemptiveccccovevveeeveiesiesesese s 367
Testing Your SChedUler..........cocoeviiieicice e 368
SUMIMIBIY <ottt sttt e s b e e be e s rb e e nbeennbe s 371
Q&A e 372
Streams 375
INPUE SEIBAMS ...ttt 377
The abstract Class INPUESEIEAMc..ocveiveieeicieececee e 377
ByteArray INPUESTIEAMccuviiieeiie et 381
FIleINPUESIIBAM ..ot ene s 382
FIlerINPUESTIEAM ..o 383
PipedINPUESTIEAM ... 389
SEQUENCEINPULSEIEAM ..ovveiiiiiiee e 389
StringBufferINPUESTIEAMccvecviiiii e 390
OULPUL SEIBAIMS ..ttt ettt sae b s enbeennre s 391
The abstract Class OUtPULSIIEAMccveviieiieie e 391
ByteArrayOULPULSEIEAMvviieeiii e 392
FileOULPULSIIEAMcvviveceeciice et 393
FilterOULPULSTIIEAM ..o 394
PipedOULPULSEIEAMoecviieeciiie e 399
REIALEA CIASSESvveeiviiiriecrii ittt ettt s et s e e st sraeebeesrae e 399
SUMIMIBIY <ottt sttt e s b e et b e e nbeennbe s 399
QA e 400
Native Methods and Libraries 403
Disadvantages of native Methodscccccocvvieiiiiiiesenece e, 404
The Hlusion of Required EffiCiencycccocvvvvvieiieiieniie e 405
BUilt-1n OPtIMIzZationsccvcveiviiiescse e 407
Simple Optimization TTICKS.......ccoviiviieieceie e 407
Writing native MethodsS.........cccceviiiiiiiieie e 408
The EXample Classcovevevieiiiiie e 409
Generating Header and Stub Filesccccovieveviieieceeeeeee, 410
Creating SIMPIeFileNaAtiVE.Cccccveveverecee e 414

sams
&

Sams ney
Lea"ning

A NGALIVE LIDIANY .ovevccecc e 417
LinKING TEAIL ..o 418
USING YOUN LIBIary ..cvoveeicieecrcese e 418

SUIMIMEBIY .ottt sttt e bbb sba et e e nbeesnbeenteas 418

Q&A e 419

Day 21 Under the Hood 421

The Big PICTUIE ..cveveieeicieieeeee ettt 422
Why 1t's @ POWErful ViSiONccocviiiiieiiii e 423

The Java Virtual Machineccoeiveiineiineiieiseese e 423
AN OVEIVIBW ...ttt bbbttt et 424
The FUNdamental Parts...........ccoeoveirennienneeesecse e 426
The Constant POOIccviiiiireieee e 430
LIMITATIONS ..eviviiveicie et 430

Bytecodes in More Detailcccoveveiiiiieiiceccccse e 431
The Bytecode INErPretero.vivieviieieieee e 431
The “Just-in-Time” COMPIIETccevveieiereieeee e 432
The java2e Translatorcccccceieviieieic s 433
The Bytecodes TheMSEIVEScveveieieeiescse e 434
The _qUICK BYECOESecveiviieiieiicieie ettt 450

The .class File FOrMAt........cccoveiiiiiiiiiieisese e 452

Method SIGNALUIESccvecveieieicceee e 454

The Garbage COlIECLOrccccvveiiieiecerer e 455
The ProBIBMooviiiiicee e 455
THE SOIULION ..ot 456
Java’s Parallel Garbage ColIeCtorcccovevevevierierieieeeeeee e 459

ThE SECUFILY STOTY ...vveieci et 459
Why You Should WOITYccveiiiiecece e 459
Why You Might Not Have TO ...cccceceveiiiceieeeeece e 460
Java’s SECUTItY MOGELccveveiiicicice e 460

SUIMIMEBIY .ottt ettt bbbt e e sbe et e esbeesnbeenreas 470

Q&A e 470

A Language Summary 473

RESEIVEA WOKUS ...t 474

COMIMENTS ...t 475

LIEBIAIS .. 475

Variable DeCIarationcoovierieriineiieeeese e 476

Variable ASSIGNMENTccviiiiiece e 476

L] o110 £ T PP P PRI 477

L@]] =101 iSSP 478

ATTAYS ettt bbbttt nre s 478

Loops and Conditionals...........ccceierierierierieeeese e 478

Class DEfiNItIONSccoveerieieiieeriee e 479

Method and Constructor Definitionscccccovvverviinniinenseseeee 479

Packages, Interfaces, and IMpPOrtingccocevevevieviieieiecccese e 480

Exceptions and GUArdiNgcccoveveieisieieie e 481

XVii

m Teach Yourself JAVA in 21 Days

B Class Hierarchy Diagrams 483
ADOUL These DIagramscc.ccveeeieieiieisese et raens 495
C The Java Class Library 497
JAVALIANG .o s 498
INTEITACES ©..vvveiiee ettt st ae e sbe e 498

(O P TR 498
JAVAULID 1o e 499
INTEITACES ©.vvviieie ettt sre e sae e sbe e 499

(O P TR 499
JAVALIO 1t 500
INTEITACES ©..vvviieieceee et s st s ssae e sbee e 500

(O P TR 500
JAVALNEL 1o e 501
INTEITACES ©..vvviieieceee et s st s ssae e sbee e 501

(O P TR 502
2T T L SRS 502
INTEITACES ©.vvviieie ettt sre e sae e sbe e 502

(O P TR 502

J LT T T 4 0 S 504
INTEITACES ©.vvviieie ettt sre e sae e sbe e 504

(O P TR 504

J LT T L T TSRS 505
JAVALAPPIEL ... s 505
INTEITACES ©..vvveieie ettt et e e sae b ens 505

(O P TR 505

D How Java Differs from C and C++ 507
00T) (=] SRR 508
ATTAYS ettt et b bbbt naae b 508
] (130T 508
Memory Managementccvevviiieniieiiee e 509
DAtA TYPES .evveiieeiiie ettt sttt 509
(@] o 1= -1 (o] USSR OURRPRRPIN 509
(0]) (0] I [Y R 510
ATGUMEBNTS L.ttt sbe et e s e nbeesnne b 510
Other DIffErENCESoicveeieiee ittt 510
Index 511

xviii

Acknowledgments

From Laura Lemay:

To Sun’s Java team, for all their hard work on Java the language and on the browser, and
particularly to Jim Graham, who demonstrated Java and HotJava to me on very short notice in
May and planted the idea for this book.

To everyone who bought my previous books, and liked them. Buy this one too.
From Charles L. Perkins:

To Patrick Naughton, who first showed me the power and the promise of OAK (Java) in early
1993.

To Mark Taber, who shepherded this lost sheep through his first book.

XiX

Teach Yourself JAVA in 21 Days

/|
LA

About the Authors

Laura Lemay is a technical writer and a nerd. After spending six years writing software
documentation for various computer companies in Silicon Valley, she decided writing books
would be much more fun (but has still not yet made up her mind). In her spare time she collects
computers, e-mail addresses, interesting hair colors, and nonrunning motorcycles. She is also the
perpetrator of Teach Yourself Web Publishing with HTML in 14 Days.

You can reach her by e-mail at 1emayelne.com, Or visit her home page at http: //www.lne.com/
lemay/.

Charles L. Perkinsis the founder of Virtual Rendezvous, acompany building what it spent two
years designing: a software layer above Java that will foster socially focused, computer-mediated,
real-time filtered interactions between people’s personas in the virtual environments of the near
future. In previous lives, he has evangelized NeXTSTEP, Smalltalk, and UNIX, and has degrees
in both physics and computer science. Before attempting this book, he was an amateur
columnist and author. He’s done research in speech recognition, neural nets, gestural user
interfaces, computer graphics, and language theory, but had the most fun working at Thinking
Machines and Xerox PARC’s Smalltalk group. In his spare time, he reads textbooks for fun.

You can reach him via e-mail at virtualerendezvous.com, Or Vvisit his Java page at nttp://
rendezvous.com/java.

Introduction

The World Wide Web, for much of its existence, has been a method for distributing passive
information to awidely distributed number of people. The Web has, indeed, been exceptionally
good for that purpose. With the addition of forms and image maps, Web pages began to become
interactive—but the interaction was often simply a new way to get at the same information. The
limitations of Web distribution were all too apparent once designers began to try to stretch the
boundaries of what the Web can do. Even other innovations, such as Netscape’s server push to
create dynamic animations, were merely clever tricks layered on top of a framework that wasn’t
built to support much other than static documents with images and text.

Enter Java, and the capability for Web pages of containing Java applets. Applets are small
programs that create animations, multimedia presentations, real-time (video) games, multi-user
networked games, and real interactivity—in fact, most anything a small program can do, Java
applets can. Downloaded over the netand executed inside a Web page by a browser that supports
Java, applets are an enormous step beyond standard Web design.

The disadvantage of Java is that to create Java applets right now, you need to write them in the
Java language. Java is a programming language, and as such, creating Java applets is more
difficult than creating a Web page or a form using HTML. Soon there will be tools and programs
that will make creating Java applets easier—they may be available by the time you read this. For
now, however, the only way to delve into Java is to learn the language and start playing with the
raw Java code. Even when the tools come out, you may want to do more with Java than the tools
can provide, and you're back to learning the language.

That's where Teach Yourself Java in 21 Days comes in. This book teaches you all about the Java
language and how to use it to create not only applets, but also applications, which are more
general Java programs that don’t need to run inside a Web browser. By the time you get through
with this book, you’ll know enough about Java to do just about anything, inside an applet or
out.

Who Should Read This Book

Teach Yourself Java in 21 Days is intended for people with at least some basic programming
background—uwhich includes people with years of programming experience and people with
only a small amount of experience. If you understand what variables, loops, and functions are,
you’ll be just fine for this book. The sorts of people who might want to read this book include
you, if one or more of the following is true:

O You're a real whiz at HTML, understand CGI programming (in perl, AppleScript,
Visual Basic, or some other popular CGI language) pretty well, and want to move
onto the next level in Web page design.

xXii

Teach Yourself JAVA in 21 Days

A

O You had some Basic or Pascal in school, you've got a basic grasp of what programming
is, but you’ve heard Java is easy to learn, really powerful, and very cool.

O You've programmed C and C++ for many years, you've heard this Java thing is
becoming really popular, and you’re wondering what all the fuss is all about.

O You've heard that Java is really good for Web-based applets, and you’re curious about
how good it is for creating more general applications.

What if you know programming, but you don’t know object-oriented programming? Fear not.
Teach Yourself Java in 21 Days assumes no background in object-oriented design. If you know
object-oriented programming, the first couple of days will be easy for you.

What ifyou’re arank beginner? Thisbook might move alittle fast for you. Javaisa good language
to start with, though, and if you take it slow and work through all the examples, you may still
be able to pick up Java and start creating your own applets.

How This Book Is Organized

Teach Yourself Java in 21 Daysdescribes Java primarily in its current state—what’s known as the
beta API (Application Programming Interface). This is the version of Java that Netscape and
other browsers, such as Spyglass’s Mosaic, support. A previous version of Java, the alpha API,
was significantly different from the version described in this book, and the two versions are not
compatible with each other. There are other books that describe only the alpha API, and there
may still be programs and browsers out there that can only run using alpha Java programs.

Teach Yourself Java in 21 Days uses primarily Java beta because that is the version that is most
current and is the version that will continue to be used in the future. The alpha API is obsolete
and will eventually die out. If you learn Java using beta API, you'll be much better prepared for
any future changes (which will be minor) than if you have to worry about both APIs at once.

Java s still in development. “Beta” means that Java is not complete and that things may change
between the time this book is being written and the time you read this. Keep this in mind as you
work with Java and with the software you’ll use to create and compile programs. If things aren’t
behaving the way you expect, check the Web sites mentioned at the end of this introduction for
more information.

Teach Yourself Javain 21 Days covers the Java language and its class libraries in 21 days, organized
as three separate weeks. Each week covers a different broad area of developing Java applets and
applications.

In the first week, you'll learn about the Java language itself:

O Day 1 is the basic introduction: what Java is, why it’s cool, and how to get the
software. You'll also create your first Java applications and applets.

sams
&

Sams. net
Lea"ning

O On Day 2, you'll explore basic object-oriented programming concepts as they apply to
Java.

O On Day 3, you start getting down to details with the basic Java building blocks: data
types, variables, and expressions such as arithmetic and comparisons.

O Day 4 goes into detail about how to deal with objects in Java: how to create them,
how to access their variables and call their methods, and how to compare and copy
them. You'll also get your first glance at the Java class libraries.

O On Day 5, you'll learn more about Java with arrays, conditional statements. and
loops.

O Day 6 is the best one yet. You'll learn how to create classes, the basic building blocks
of any Java program, as well as how to put together a Java application (an application
being a Java program that can run on its own without a Web browser).

O Day 7 builds on what you learned on Day 6. On Day 7, you'll learn more about how
to create and use methods, including overriding and overloading methods and
creating constructors.

Week 2 is dedicated to applets and the Java class libraries:

O Day 8 provides the basics of applets—how they’re different from applications, how to
create them, and the most important parts of an applet’s life cycle. You'll also learn
how to create HT ML pages that contain Java applets.

O On Day 9, you'll learn about the Java classes for drawing shapes and characters to the
screen—in black, white, or any other color.

O On Day 10, you'll start animating those shapes you learned about on Day 9, includ-
ing learning what threads and their uses are.

O Day 11 covers more detail about animation, adding bitmap images and audio to the
soup.

O Day 12 delves into interactivity—handling mouse and keyboard clicks from the user
in your Java applets.

O Day 13 is ambitious; on that day you’ll learn about using Java’s Abstract Windowing
Toolkit to create a user interface in your applet including menus, buttons, checkboxes,
and other elements.

O On Day 14, you explore the last of the main Java class libraries for creating applets:
windows and dialogs, networking, and a few other tidbits.

Week 3 finishes up with advanced topics, for when you start doing larger and more complex Java
programs, or when you want to learn more:

O On Day 15, you'll learn more about the Java language’s modifiers—for abstract and
final methods and classes as well as for protecting a class’s private information from

the prying eyes of other classes.
XXiii

XXIiV

Teach Yourself JAVA in 21 Days

A

O Day 16 covers interfaces and packages, useful for abstracting protocols of methods to
aid reuse and for the grouping and categorization of classes.

O Day 17 covers exceptions: errors and warnings and other abnormal conditions,
generated either by the system or by you in your programs.

O Day 18 builds on the thread basics you learned on Day 10 to give a broad overview of
multithreading and how to use it to allow different parts of your Java programs to run
in parallel.

O On Day 19, you'll learn all about the input and output streams in Java’s 1/O library.

O Day 20 teaches you about native code—how to link C code into your Java programs
to provide missing functionality or to gain performance.

O Finally, on Day 21, you’'ll get an overview of some of the “behind-the-scenes” techni-
cal details of how Java works: the bytecode compiler and interpreter, the techniques
Java uses to ensure the integrity and security of your programs, and the Java garbage
collector.

Conventions Used in This Book

Text that you type and text that should appear on your screen is presented in monospace type:
It will look like this.

to mimic the way text looks on your screen. Variables and placeholders will appear inmonospace
italic.

The end of each chapter offers common questions asked about that day’s subject matter with
answers from the authors.

Web Sites for Further Information

Before, while, and after you read this book, there are two Web sites that may be of interest to
you as a Java developer.

The official Java web site is at http://java.sun.com/. At this site, you'll find the Java
development software, the HotJava web browser, and online documentation for all aspects of
the Java language. It has several mirror sites that it lists online, and you should probably use the
site “closest” to you on the Internet for your downloading and Java Web browsing. There is also
a site for developer resources, called Gamelan, at http://www.gamelan.com/.

This book also has a companion Web site at nhttp://www.1ne.com/Web/Java/. Information at
that site includes examples, more information and background for this book, corrections to this
book, and other tidbits that were not included here.

An Introduction to Java Programming
Platform independence

The Java compiler and the java interpreter
Object-Oriented Programming and Java
Objects and classes

Encapsulation

Modularity

Java Basics

Java statements and expressions
Variables and data types

Comparisons and logical operators
Working with Objects

Testing and modifying instance variables
Converting objects

Arrays, Conditionals, and Loops
Conditional tests

Iteration

Block statements

®\\VEEK®

1 y Week 1 at a Glance

O Creating Classes and Applications in Java

Defining constants, instance and class
variables, and methods

O More About Methods
Overloading methods
Constructor methods
Overriding methods

4

An Introduction to
Java Programming

by Laura Lemay

An Introduction to Java Programming

Hello and welcome to Teach Yourself Java in 21 Days! Starting today and for the next three weeks
you’ll learn all about the Java language and how to use it to create applets, as well as how to create
stand-alone Java applications that you can use for just about anything.

NEW[] Anappletisadynamic and interactive program that can run inside a Web page displayed
TERM by a Java-capable browser such as HotJava or Netscape 2.0.

The HotJava browser is a World Wide Web browser used to view Web pages, follow links, and
submit forms. It can also download and play applets on the reader’s system.

That's the overall goal for the next three weeks. Today, the goals are somewhat more modest,
and you’ll learn about the following:

O What exactly Java and HotJava are, and their current status

O Why you should learn Java—its various features and advantages over other program-
ming languages

O Getting started programming in Java—what you’ll need in terms of software and
background, as well as some basic terminology

O How to create your first Java programs—to close this day, you’ll create both a simple
Java application and a simple Java applet!

What Is Java?

Java is an object-oriented programming language developed by Sun Microsystems, a company
best known for its high-end Unix workstations. Modeled after C++, the Java language was
designed to be small, simple, and portable across platforms and operating systems, both at the
source and at the binary level (more about this later).

Java is often mentioned in the same breath as HotJava, a World Wide Web browser from Sun
like Netscape or Mosaic (see Figure 1.1). What makes HotJava different from most other
browsers is that, in addition to all its basic Web features, it can also download and play applets
on the reader’s system. Applets appear in a Web page much in the same way as images do, but
unlike images, applets are dynamic and interactive. Applets can be used to create animations,
figures, or areas that can respond to input from the reader, games, or other interactive effects on
the same Web pages among the text and graphics.

Although HotJava was the first World Wide Web browser to be able to play Java applets, Java
support is rapidly becoming available in other browsers. Netscape 2.0 provides support for Java
applets, and other browser developers have also announced support for Java in forthcoming
products.

Figure 1.1. T
The HotJava browser. File Optioms Nawigate Gote Help
| Ozcument LURL: !htp..’f’]wt.im.tﬂ" 1

0.
€@ sun _ &

HD’!‘IM"A

Welcome {Mirror Sifes)

Welzpne to S’ Tawa nnyHat o) heme pags. Su's Java Prograrmming Lingoage 1s anesr
ohject—anented propramomineg [snguzge developed by Sun Microey ta makve & number af prablems
e ern presprarrdring pectice snd o peevide o peegrarerin g bargoa ge far the Inbemer The
Hetlavaitm) Browser is 2 dimamic, extenshle WY W browser that shewcases the. cop shilties of the

Jurn Pra grotroving Longuige

és Faarch o VWak
You con search aur an—ne Web peepes, ar our mzdng §st archives,

Announcements

&
#*. The 1.1 re-Beta el f 1o L Trmelogers K 1s mow anaillahle, See the Jmon
Developers Bl page far foll deiolh od downl eding instnictisns.

E%#WQWMMMMHHMHdHEEEM ‘|
OICLORCRE)
Tzrglete

To create an applet, you write it in the Java language, compile it using a Java compiler, and refer
to that applet in your HTML Web pages. You put the resulting HTML and Java files on a Web
site much in the same way that you make ordinary HT ML and image files available. Then, when
someone using the HotJava browser (or other Java-aware browser) views your page with the
embedded applet, that browser downloads the applet to the local system and executes it, and
then the reader can view and interact with your applet in all its glory (readers using other
browsers won’t see anything). You’ll learn more about how applets, browsers, and the World
Wide Web work together further on in this book.

The important thing to understand about Java is that you can do so much more with it besides
create applets. Java was written as a full-fledged programming language in which you can
accomplish the same sorts of tasks and solve the same sorts of problems that you can in other
programming languages, such as C or C++. HotJava itself, including all the networking, display,
and user interface elements, is written in Java.

An Introduction to Java Programming

Java’s Past, Present, and Future

The Java language was developed at Sun Microsystems in 1991 as part of a research project to
develop software for consumer electronics devices—television sets, VCRs, toasters, and the
other sorts of machines you can buy at any department store. Java’s goals at that time were to
be small, fast, efficient, and easily portable to a wide range of hardware devices. It is those same
goals that made Java an ideal language for distributing executable programs via the World Wide
Web, and also a general-purpose programming language for developing programs that are easily
usable and portable across different platforms.

The Java language was used in several projects within Sun, but did not get very much commercial
attention until it was paired with HotJava. HotJava was written in 1994 in a matter of months,
both as a vehicle for downloading and running applets and also as an example of the sort of
complex application that can be written in Java.

At the time this book is being written, Sun has released the beta version of the Java Developer’s
Kit (JDK), which includes tools for developing Java applets and applications on Sun systems
running Solaris 2.3 or higher for Windows NT and for Windows 95. By the time you read this,
support for Java development may have appeared on other platforms, either from Sun or from
third-party companies.

Note that because the JDK is currently in beta, it is still subject to change between now and when
itis officially released. Applets and applications you write using the JDK and using the examples
in this book may require some changes to work with future versions of the JDK. However,
because the Java language has been around for several years and has been used for several projects,
the language itself is quite stable and robust and most likely will not change excessively. Keep
this beta status in mind as you read through this book and as you develop your own Java
programs.

Support for playing Java programs is a little more confusing at the moment. Sun’s HotJava is
not currently included with the Beta JDK; the only available version of HotJava is an older alpha
version, and, tragically, applets written for the alpha version of Java do not work with the beta
JDK, and vice versa. By the time you read this, Sun may have released a newer version of HotJava
which will enable you to view applets.

The JDK does include an application called appletviewer that allows you to test your Java applets
as you write them. If an applet works in the appletviewer, it should work with any Java-capable
browser. You'll learn more about applet viewer later today.

What's in store for the future? In addition to the final Java release from Sun, other companies
have announced support for Java in their own World Wide Web browsers. Netscape Commu-
nications Corporation hasalready incorporated Java capabilities into the 2.0 version of their very
popular Netscape Navigator Web browser—pages with embedded Java applets can be viewed
and played with Netscape. With support for Java available in as popular a browser as Netscape,

sams
)

Sams.ney
Learning

tools to help develop Java applications (debuggers, development environments, and so on) most
likely will be rapidly available as well. 1

Why Learn Java?

At the moment, probably the most compelling reason to learn Java—and probably the reason
you bought this book—is that HotJava applets are written in Java. Even if that were not the case,
Java as a language has significant advantages over other languages and other programming
environments that make it suitable for just about any programming task. This section describes
some of those advantages.

Java Is Platform-Independent

Platform independence is one of the most significant advantages that Java has over other
programming languages, particularly for systems that need to work on many different platforms.
Java is platform-independent at both the source and the binary level.

NEWI] Platform-independence is a program’s capability of moving easily from one computer
TERM system to another.

At the source level, Java’s primitive data types have consistent sizes across all development
platforms. Java’s foundation class libraries make it easy to write code that can be moved from
platform to platform without the need to rewrite it to work with that platform.

Platform-independence doesn’t stop at the source level, however. Java binary files are also
platform-independent and can run on multiple problems without the need to recompile the
source. How does this work? Java binary files are actually in a form called bytecodes.

NEVW[] Bytecodes are a set of instructions that looks a lot like some machine codes, but that is not
TERM specific to any one processor.

Normally, when you compile a program written in C or in most other languages, the compiler
translates your program into machine codes or processor instructions. Those instructions are
specific to the processor your computer is running—so, for example, if you compile your code
on a Pentium system, the resulting program will run only on other Pentium systems. If you want
to use the same program on another system, you have to go back to your original source, get a
compiler for that system, and recompile your code. Figure 1.2 shows the result of this system:
multiple executable programs for multiple systems.

Things are different when you write code in Java. The Java development environment has two
parts: a Java compiler and a Java interpreter. The Java compiler takes your Java program and
instead of generating machine codes from your source files, it generates bytecodes.

An Introduction to Java Programming

Figure 1.2 Binary File
N . (Pentium)
Traditional compiled
programs. —_
Your Code Compiler (Pentium) Binary File
(PowerPC)
_ —>
__ Compiler (PowerPC) Binary File
_— (SPARC)
—>

Compiler (SPARC)

Torun aJava program, you run a program called a bytecode interpreter, which in turn executes
your Java program (see Figure 1.3). You can either run the interpreter by itself, or—for applets—
there is a bytecode interpreter built into HotJava and other Java-capable browsers that runs the
applet for you.

Figure 1.3.
Java programs.

Java Interpreter
Java Bytecode (Pentium)

(Platform- P —

Independent)

Java Compiler
(Pentium)

Java Code

Java Compiler
(PowerPC)

Java Interpreter
(PowerPC)

Java Compiler
(SPARC)

Java Interpreter
(SPARC)

sams
&

Sams. net
Lea"ning

Why go through all the trouble of adding this extra layer of the bytecode interpreter? Having
your Java programs in bytecode form means that instead of being specific to any one system, your
programs can be run on any platform and any operating or window system as long as the Java
interpreter is available. This capability of a single binary file to be executable across platforms
is crucial to what enables applets to work, because the World Wide Web itself is also platform-
independent. Just as HT ML files can be read on any platform, so applets can be executed on any
platform that is a Java-capable browser.

The disadvantage of using bytecodes is in execution speed. Because system-specific programs
run directly on the hardware for which they are compiled, they run significantly faster than Java
bytecodes, which must be processed by the interpreter. For many Java programs, the speed may
not be an issue. Ifyou write programs that require more execution speed than the Java interpreter
can provide, you have several solutions available to you, including being able to link native code
into your Java program or using tools to convert your Java bytecodes into native code. Note that
by using any of these solutions, you lose the portability that Java bytecodes provide. You'll learn
about each of these mechanisms on Day 20.

Java Is Object-Oriented

To some, object-oriented programming (OOP) technique is merely a way of organizing
programs, and it can be accomplished using any language. Working with a real object-oriented
language and programming environment, however, enables you to take full advantage of object-
oriented methodology and its capabilities of creating flexible, modular programs and reusing
code.

Many of Java’s object-oriented concepts are inherited from C++, the language on which it is
based, but it borrows many concepts from other object-oriented languages as well. Like most
object-oriented programming languages, Java includes a set of class libraries that provide basic
data types, system input and output capabilities, and other utility functions. These basic classes
are part of the Java development kit, which also has classes to support networking, common
Internet protocols, and user interface toolkit functions. Because these class libraries are written
in Java, they are portable across platforms as all Java applications are.

You'll learn more about object-oriented programming and Java tomorrow.

Java Is Easy to Learn

In addition to its portability and object-orientation, one of Java’s initial design goals was to be
small and simple, and therefore easier to write, easier to compile, easier to debug, and, best of
all, easy to learn. Keeping the language small also makes it more robust because there are fewer
chances for programmers to make difficult-to-find mistakes. Despite its size and simple design,
however, Java still has a great deal of power and flexibility.

10

An Introduction to Java Programming

Java is modeled after C and C++, and much of the syntax and object-oriented structure is
borrowed from the latter. If you are familiar with C++, learning Java will be particularly easy for
you, because you have most of the foundation already.

Although Java looks similar to C and C++, most of the more complex parts of those languages
have been excluded from Java, making the language simpler without sacrificing much of its
power. There are no pointers in Java, nor is there pointer arithmetic. Strings and arrays are real
objects in Java. Memory management is automatic. To an experienced programmer, these
omissions may be difficult to get used to, but to beginners or programmers who have worked
in other languages, they make the Java language far easier to learn.

Getting Started with
Programming in Java

Enough background! Let’s finish off this day by creating two real Java programs: a stand-alone
Java application and an applet that you can view in either in the appletviewer (part of the JDK)
or in a Java-capable browser. Although both these programs are extremely simple, they will give
you an idea of what a Java program looks like and how to compile and run it.

Getting the Software

In order to write Java programs, you will, of course, need a Java development environment. At
the time this book is being written, Sun’s Java Development Kit provides everything you need
to start writing Java programs. The JDK isavailable for Sun SPARC systems running Solaris 2.2
or higher and for Windows NT and Windows 95. You can get the JDK from several places:

0O The CD-ROM that came with this book contains the full JDK distribution. See the
CD information for installation instructions.

0O The JDK can be downloaded from Sun’s Java FTP site at ftp://java.sun.com/pub/ OF
from a mirror site (ftp://www.blackdown.org/pub/Java/pub/is one).

Note: The Java Development Kit is currently in beta release. By the time you read
this, The JDK may be available for other platforms, or other organizations may be
selling Java development tools as well.

Although Netscape and other Java-aware browsers provide an environment for playing Java
applets, they do not provide a mechanism for developing Java applications. For that, you need
separate tools—merely having a browser is not enough.

sams
net

Sams.ney
Learning

Applets and Applications
Java applications fall into two main groups: applets and applications. 1

Applets, as you have learned, are Java programs that are downloaded over the World Wide Web
and executed by a Web browser on the reader’s machine. Applets depend on a Java-capable
browser in order to run (although they can also be viewed using a tool called the appletviewer,
which you’ll learn about later today).

Javaapplicationsare more general programswritten in the Java language. Java applications don’t
require a browser to run, and in fact, Java can be used to create most other kinds of applications
that you would normally use a more conventional programming language to create. HotJava
itself is a Java application.

A single Java program can be an applet or an application or both, depending on how you write
that program and the capabilities that program uses. Throughout this first week, you'll be
writing mostly HotJava applications; then you'll apply what you've learned to write applets in
Week 2. If you're eager to get started with applets, be patient. Everything that you learn while
you’re creating simple Java applications will apply to creating applets, and it’s easier to start with
the basics before moving onto the hard stuff. You'll be creating plenty of applets in Week 2.

Creating a Java Application
Let’sstart by creating asimple Javaapplication: the classic Hello World example that all language
books use to begin.

As with all programming languages, your Java source files are created in a plain text editor, or
in an editor that can save files in plain ASCII without any formatting characters. On Unix,
emacs, ped, or vi will work; on Windows, Notepad or DOS Edit are both text editors.

Fire up your editor of choice, and enter the Java program shown in Listing 1.1. Type this
program, as shown, in your text editor. Be careful that all the parentheses, braces, and quotes

are there.

Type Listing 1.1. Your first Java application.

1: class HelloWorld {

2 public static void main (String args[]) {
3: System.out.println("Hello World!");
4: }

5: }

11

12

An Introduction to Java Programming

Analysi

Warning: The numbers before each line are part of the listing and not part of the
program; they’re there so | can refer to specific line numbers when | explain what’s
going on in the program. Do not include them in your own file.

This program has two main parts:

O All the program is enclosed in a class definition—here, a class called He11oworld.

O The body of the program (here, just the one line) is contained in a routine called
main(). In Java applications, as in a C or C++ program, main () is the first
routine that is run when the program is executed.

You’ll learn more about both these parts of a Java application as the book progresses.

Once you finish typing the program, save the file. Conventionally, Java source files are named
the same name as the class they define, with an extension of . java. This file should therefore be
called Helloworld. java

Now, let’s compile the source file using the Java compiler. In Sun’s JDK, the Java compiler is
called javac

To compile your Java program, Make sure the javac program is in your execution path and type
javac followed by the name of your source file:

javac HelloWorld.java

Note: In these examples, and in all the examples throughout this book, we’ll be
using Sun’s Java compiler, part of the JDK. If you have a third-party development
environment, check with the documentation for that program to see how to
compile your Java programs.

The compiler should compile the file without any errors. If you get errors, go back and make
sure that you’ve typed the program exactly as it appears in Listing 1.1.

When the program compiles without errors, you end up with a file called HelloWorld.class, in
the same directory as your source file. This is your Java bytecode file. You can then run that
bytecode file using the Java interpreter. In the JDK, the Java interpreter is called simply java.
Make sure the java program is in your path and type java followed by the name of the file without
the .class extension:

java HelloWorld

sams
&

Sams. net
Lea"ning

If your program was typed and compiled correctly, you should get the string "Hel1lo world!"
printed to your screen as a response.

Note: Remember, the Java compiler and the Java interpreter are different things.
You use the Java compiler (javac) for your Java source files to create .class files, and
you use the Java interpreter (java)to actually run your class files.

Creating a Java Applet

Creating applets is different from creating a simple application, because Java applets run and are
displayed inside a Web page with other page elements and as such have special rules for how they

behave. Because of these special rules for applets in many cases (particularly the simple ones),
creating an applet may be more complex than creating an application.

For example, to do asimple Hello World applet, instead of merely being able to print a message,
you have to create an applet to make space for your message and then use graphics operations
to paint the message to the screen.

Note: Actually, if you run the Hello World application as an applet, the He11o
world message prints to a special window or to a log file, depending on how the
browser has screen messages set up. It will not appear on the screen unless you

write your applet to put it there.

In the next example, you create that simple Hello World applet, place it inside a Web page, and

view the result.

First, you set up an environment so that your Java-capable browser can find your HTML files
and your applets. Much of the time, you’ll keep your HTML files and your applet code in the
same directory. Although this isn’t required, it makes it easier to keep track of each element. In
this example, you use a directory called HTML that contains all the files you'll need.

mkdir HTML
Now, open up that text editor and enter Listing 1.2.

13

14

An Introduction to Java Programming

Type Listing 1.2. The Hello World applet.

import java.awt.Graphics;

1:
2:
3: class HelloWorldApplet extends java.applet.Applet {
4:

5 public void paint(Graphics g) {

6 g.drawString(OHello world!O, 5, 25);

7}
8:}

Save that file inside yetmwLdirectory. Just like with Java applications, give your file a name
that has the same name as the class. In this case, the filenameswowtdAggiet.java

Features to note about applets? There are a couple 10d like to point out:

n Theimport line at the top of the file is somewhat analogousitoala statement
in C; it enables this applet to interact with the JDK classes for creating applets and for
drawing graphics on the screen.

n Thepaint) method displays the content of the applet onto the screen. Here, the
stringHello world gets drawn. Applets use several standard methods to take the place
ofmain(, which includeit) to initialize the appletart) to start it running,
andpaint) to display it to the screen. YouOll learn about all of these in Week 2.

Now, compile the applet just as you did the applicationaisingthe Java compiler.
javac HelloWorldApplet.java

Again, just as for applications, you should now have afile called HelloWorldApplet.class in your
HTML directory.

To include an applet in a Web page, you refer to that applet in the HTML code for that Web
page. Here, you create a very simple HTML file in the HTML directory (see Listing 1.3).

Type Listing 1.3. The HTML with the applet in it.

<HTML>

<HEAD>

: <TITLE>Hello to Everyone!</TITLE>

: </[HEAD><BODY>

<P>My Java applet says:

: <APPLET CODE=0OHelloWorldApplet.classO WIDTH=150 HEIGHT=25>
</BODY>

: </HTML>

oONaRrwWwNE

sams
&

Sams. net
Lea"ning

Analysi

You refer to an applet in your HTML files with the <appLET> tag. You'll learn more about
<APPLET> later on, but here are two things to note:

O Use the cope attribute to indicate the name of the class that contains your applet.
O Use the wipTH and HEIGHT attributes to indicate the size of the applet. The browser uses

these values to know how big a chunk of space to leave for the applet on the page.
Here, a box 150 pixels wide and 25 pixels high is created.

Save the HTML file in your HTML directory, with a descriptive name (for example, you might
name your HTML file the same name as your applet—HellowWorldApplet.html).

And now, you're ready for the final test—actually viewing the result of your applet. To view the
applet, you need one of the following:

O A browser that supports Java applets, such as Netscape 2.0.
O The appletviewer application, which is part of the JDK. The appletviewer is not a

Web browser and won’t enable you to see the entire Web page, but it’s acceptable for
testing to see how an applet will look and behave if there is nothing else available.

Note: Do not use the alpha version of HotJava to view your applets; applets
developed with the beta JDK and onward cannot be viewed by the alpha HotJava.
If, by the time you read this, there is a more recent version of HotJava, you can use

that one instead.

If you're using a Java-capable browser such as Netscape to view your applet files, you can use the
Open Local... item under the File menu to navigate to the HTML file containing the applet
(make sure you open the HTML file and not the class file). You don’t need to install anything

on a Web server yet; all this works on your local system.

If you don’t have a Web browser with Java capabilities built into it, you can use the appletviewer
program to view your Java applet. To run appletviewer, just indicate the path to the HT ML file
on the command line:

appletviewer HTML/HelloWorldApplet.html

v

Tip: Although you can start appletviewer from the same directory as your HTML
and class files, you may not be able to reload that applet without quitting
appletviewer first. If you start appletviewer from some other directory (as in the
previous command line), you can modify and recompile your Java applets and then
just use the Reload menu item to view the newer version.

15

16

An Introduction to Java Programming

Now, if you use the browser to view the applet, you see something similar to the image shown
in Figure 1.4. If you're using appletviewer, you won't see the text around the applet (vy Java
applet says...), but you will see the Hel1o world itself.

Figure 1.4.
The Hello World applet.

Iy Java Applet says: Hello world!

Summary

Today, you got a basic introduction to the Java language and its goals and features. Java is a
programming language, similar to C or C++, inwhich you can develop awide range of programs.
The most common use of Java at the moment is in creating applets for HotJava, an advanced
World Wide Web browser also written in Java. Applets are Java programs that are downloaded
and run as part of a Web page. Applets can create animations, games, interactive programs, and
other multimedia effects on Web pages.

Java’s strengths lie in its portability—both at the source and at the binary level, in its object-
oriented design—and in its simplicity. Each of these features help make applets possible, but
they also make Java an excellent language for writing more general-purpose programs that do
not require HotJava or other Java-capable browser to run. These general-purpose Java programs
are called applications. HotJava itself is a Java application.

To end this day, you experimented with an example applet and an example application, getting
a feel for the differences between the two and how to create, compile, and run Java programs—
or, in the case of applets, how to include them in Web pages. From here, you now have the
foundation to create more complex applications and applets.

Q&A

Q I'd like to use HotJava as my regular Web browser. You haven’t mentioned much
about HotJava today.

A The focus of this book is primarily on programming in Java and in the HotJava
classes, rather than on using HotJava itself. Documentation for using the HotJava
browser comes with the HotJava package.

Q 1 know a lot about HTML, but not much about computer programming. Can |
still write Java programs?

sams
net

Sams.ney
Learning

A If you have no programming experience whatsoever, you most likely will find pro-
gramming Java significantly more difficult. However, Java is an excellent language to
learn programming with, and if you patiently work through the examples and the 1
exercises in this book, you should be able to learn enough to get started with Java.

Q According to today’s lesson, Java applets are downloaded via HotJava and run on
the reader’s system. Isn’t that an enormous security hole? What stops someone
from writing an applet that compromises the security of my system—or worse,
that damages my system?

A Sun’s Java team has thought a great deal about the security of applets within Java-
capable browsers and has implemented several checks to make sure applets cannot do
nasty things:

O Java applets cannot read or write to the disk on the local system.
O Java applets cannot execute any programs on the local system.

O Java applets cannot connect to any machines on the Web except for the server
from which they are originally downloaded.

In addition, the Java compiler and interpreter check both the Java source code and the
Java bytecodes to make sure that the Java programmer has not tried any sneaky tricks
(for example, overrunning buffers or stack frames).

These checks obviously cannot stop every potential security hole, but they can
significantly reduce the potential for hostile applets. You'll learn more about security
issues later on in this book.

Q | followed all the directions you gave for creating a Java applet. | loaded it into
HotJava, but He11o world didn’t show up. What did | do wrong?

A I'll bet you're using the alpha version of HotJava to view the applet. Unfortunately,
between alpha and beta, significant changes were made as to how applets are written.
The result is that you can’t view beta applets (as this one was) in the alpha version of
HotJava, nor can you view alpha applets in browsers that expect beta applets. To view
the applet, either use a different browser, or use the appletviewer application that
comes with the JDK.

17

4

Object-Oriented
Programming
and Java

by Laura Lemay

20

Object-Oriented Programming and Java

Object-oriented programming (OOP) is one of the bigger programming buzzwords of recent
years, and you can spend years learning all about object-oriented programming methodologies
and how they can make your life easier than The Old Way of programming. It all comes down
to organizing your programs in ways that echo how things are put together in the real world.

Today, you’ll get an overview of object-oriented programming concepts in Java and how they
relate to how you structure your own programs:

O What classes and objects are, and how they relate to each other

O The two main parts of a class or object: its behaviors and its attributes

O Class inheritance and how inheritance affects the way you design your programs

O Some information about packages and interfaces
If you're already familiar with object-oriented programming, much of today’s lesson will be old

hat to you. You may want to skim it and go to a movie today instead. Tomorrow, you'll get into
more specific details.

Thinking in Objects: An Analogy

Consider, if you will, Legos. Legos, for those who do not spend much time with children, are
small plastic building blocks in various colors and sizes. They have small round bits on one side
that fit into small round holes on other Legos so that they fit together snugly to create larger
shapes. With different Lego bits (Lego wheels, Lego engines, Lego hinges, Lego pulleys), you can
puttogether castles, automobiles, giant robots that swallow cities, or just about anything else you
can create. Each Lego bit isa small object that fits together with other small objects in predefined
ways to create other larger objects.

Here’s another example. You can walk into a computer store and, with a little background and
often some help, assemble an entire PC computer system from various components: a
motherboard, a CPU chip, a video card, a hard disk, a keyboard, and so on. Ideally, when you
finish assembling all the various self-contained units, you have a system in which all the units
work together to create a larger system with which you can solve the problems you bought the
computer for in the first place.

Internally, each of those components may be vastly complicated and engineered by different
companies with different methods of design. But you don’t need to know how the component
works, what every chip on the board does, or how, when you press the A key, an “A” gets sent
to your computer. As the assembler of the overall system, each component you use is a self-
contained unit, and all you are interested in is how the units interact with each other. Will this
video card fit into the slots on the motherboard and will this monitor work with this video card?
Will each particular component speak the right commands to the other components it interacts
with so that each part of the computer is understood by every other part? Once you know what

sams
&

Sams. net
Lea"ning

the interactions are between the components and can match the interactions, putting together
the overall system is easy.

What does this have to do with programming? Everything. Object-oriented programming
works in exactly this same way. Using object-oriented programming, your overall program is
made up of lots of different self-contained components (objects), each of which has a specific
role in the program and all of which can talk to each other in predefined ways.

Objects and Classes

Object-oriented programming is modeled on how, in the real world, objects are often made up
of many kinds of smaller objects. This capability of combining objects, however, is only one very
general aspect of object-oriented programming. Object-oriented programming provides several
other concepts and features to make creating and using objects easier and more flexible, and the
most important of these features is that of classes.

NEW[] A class is a template for multiple objects with similar features. Classes embody all the
TERM features of a particular set of objects.

When you write a program in an object-oriented language, you don’t define actual objects. You
define classes of objects.

For example, you might have a Tree class that describes the features of all trees (has leaves and
roots, grows, creates chlorophyll). The Tree class serves as an abstract model for the concept of
a tree—to reach out and grab, or interact with, or cut down a tree you have to have a concrete
instance of that tree. Of course, once you have a tree class, you can create lots of different
instances of that tree, and each different tree instance can have different features (short, tall,
bushy, drops leaves in Autumn), while still behaving like and being immediately recognizable
as a tree (see Figure 2.1).

NEWI] An instance of a class is another word for an actual object. If classes are an abstract
TERM representation of an object, an instance is its concrete representation.

So what, precisely, is the difference between an instance and an object? Nothing, really. Object
isthe more general term, but both instances and objects are the concrete representation of a class.
In fact, the terms instance and object are often used interchangeably in OOP language. An
instance of a tree and a tree object are both the same thing.

Inan example closer to the sort of things you might want to do in Java programming, you might
create a class for the user interface element called a button. The Button class defines the features
of a button (its label, its size, its appearance) and how it behaves (does it need a single click or
a double click to activate it, does it change color when it’s clicked, what does it do when it’s
activated?). Once you define the Button class, you can then easily create instances of that
button—that is, button objects—that all take on the basic features of the button as defined by

21

® DAY @

22

2) Object-Oriented Programming and Java

the class, but may have different appearances and behavior based on what you want that
particular button to do. By creating a Button class, you don’t have to keep rewriting the code
for each individual button you want to use in your program, and you can reuse the Button class
to create different kinds of buttons as you need them in this program and in other programs.

Figure 2.1.
The tree class and
tree instances.

Tree

Tree Class
(Abstract)

Tip: If you're used to programming in C, you can think of a class as sort of
creating a new composite data type by using struct and typedef. Classes, how-

ever, can provide much more than just a collection of data, as you'll discover in the
rest of today’s lesson.

When you write a Java program, you design and construct a set of classes. Then, when your
program runs, instances of those classes are created and discarded as needed. Your task, as a Java
programmer, is to create the right set of classes to accomplish what your program needs to
accomplish.

sams
net

Sams.ney
Learning

Fortunately, you don’t have to start from the very beginning: the Java environment comes with
a library of classes that implement a lot of the basic behavior you need—not only for basic
programming tasks (classes to provide basic math functions, arrays, strings, and so on), but also
for graphics and networking behavior. In many cases, the Java class libraries may be enough so
that all you have to do in your Java program is create a single class that uses the standard class
libraries. For complicated Java programs, you may have to create a whole set of classes with

defined interactions between them. 2

NEW[] Aclass library is a set of classes.
TERM

Behavior and Attributes

Every class you write in Java is generally made up of two components: attributes and behavior.
In this section, you’ll learn about each one as it applies to a thoeretical class called motorcycle.
To finish up this section, you’ll create the Java code to implement a representation of a

motorcycle.

Attributes

Attributes are the individual things that differentiate one object from another and determine the
appearance, state, or other qualities of that object. Let’s create a theoretical class called
Motorcycle. The attributes of a motorcycle might include the following:

O Color: red, green, silver, brown

O Style: cruiser, sport bike, standard

O Make: Honda, BMW, Bultaco
Attributes of an object can also include information about its state; for example, you could have
features for engine condition (off or on) or current gear selected.

Attributes are defined by variables; in fact, you can consider them analogous to global variables
for the entire object. Because each instance of a class can have different values for its variables,
each variable is called an instance variable.
NEWI] Instance variables define the attributes of an object. The class defines the kind of attribute,
TERM and each instance stores its own value for that attribute.
Each attribute, as the term is used here, has a single corresponding instance variable; changing

the value of a variable changes the attribute of that object. Instance variables may be set when
an object is created and stay constant throughout the life of the object, or they may be able to

change at will as the program runs.

23

24

Object-Oriented Programming and Java

In addition to instance variables, there are also class variables, which apply to the class itself and
to all its instances. Unlike instance variables, whose values are stored in the instance, class
variables’ values are stored in the class itself. You'll learn about class variables later on this week;
you’ll learn more specifics about instance variables tomorrow.

Behavior

A class’s behavior determines what instances of that class do when their internal state changes
or when that instance is asked to do something by another class or object. Behavior is the way
objects can do anything to themselves or have anything done to them. For example, to go back
tothe theoretical Motorcyc1le class, here are some behaviors that themotorcycie class might have:

O Start the engine

O Stop the engine

O Speed up

O Change gear

o Stall
To define an object’s behavior, you create methods, which look and behave just like functions

in other languages, but are defined inside a class. Java does not have functions defined outside
classes (as C++ does).

NEW[] Methods are functions defined inside classes that operate on instances of those classes.
TERM

Methods don’t always affect only a single object; objects communicate with each other using
methods as well. A class or object can call methods in another class or object to communicate
changes in the environment or to ask that object to change its state.

Just as there are instance and class variables, there are also instance and class methods. Instance
methods (which are so common they’re usually just called methods) apply and operate on an
instance; class methods apply and operate onaclass (or on other objects). You’ll learn more about
class methods later on this week.

Creating a Class

Up to this point, today’s lesson has been pretty theoretical. In thissection, you'll create aworking
example of the motorcycle class so that you can see how instance variables and methods are
defined in a class. You'll also create a Java application that creates a new instance of the
Motorcycle class and shows its instance variables.

Note: I’'m not going to go into a lot of detail about the actual syntax of this
example here. Don’t worry too much about it if you're not really sure what’s going
on; it will become clear to you later on this week. All you really need to worry
about in this example is understanding the basic parts of this class definition.

Ready? Let’s start with a basic class definition. Open up that editor and enter the following: 2

class Motorcycle {

}

Congratulations! You’ve now created a class. Of course, it doesn’t do very much at the moment,
but that’s a Java class at its very simplest.

First, let’s create some instance variables for this class—three of them, to be specific. Just below
the first line, add the following three lines:

String make;

String color;

boolean engineState;

Here, you've created three instance variables: two, make and color, can contain string objects
(string is part of that standard class library mentioned earlier). The third, engineState, i a
boolean that refers to whether the engine is off or on.

Technical Note: boolean in Java is a real data type that can have the value true or
false. Unlike C, booleans are not numbers. You'll hear about this again tomorrow
so you won't forget.

Now let’s add some behavior (methods) to the class. There are all kinds of things a motorcycle
can do, but to keep things short, let’s add just one method—a method that starts the engine.
Add the following lines below the instance variables in your class definition:

void startEngine() {

if (engineState == true)
System.out.println("The engine is already on.");
else {

engineState = true;
System.out.println("The engine is now on.");

25

26

Object-Oriented Programming and Java

The startengine method tests to see whether the engine is already running (in the line
engineState == true)and, if itis, merely prints amessage to that effect. If the engine isn’talready
running, it changes the state of the engine to true and then prints a message.

With your methods and variables in place, save the program to a file called Motorcycle.java
(remember, you should always name your Java files the same names as the class they define).
Here’s what your program should look like so far:

class Motorcycle {
String make;
String color;
boolean engineState;

void startEngine() {

if (engineState == true)
System.out.println("The engine is already on.");
else {

engineState = true;
System.out.println("The engine is now on.");

/ Tip: The indentation of each part of the class isn’t important to the Java compiler.

Using some form of indentation, however, makes your class definition easier for
you and for other people to read. The indentation used here, with instance vari-
ables and methods indented from the class definition, is the style used throughout
this book. The Java class libraries use a similar indentation. You can choose any
indentation style that you like.

Before you compile this class, let’s add one more method. The showatts method prints the
current values of the instance variables in an instance of your motorcycle class. Here’s what it
looks like:

void showAtts() {
System.out.println("This motorcycle is a "
+ color + " " + make);
if (engineState == true)
System.out.println("The engine is on.");
else System.out.println("The engine is off.");

}

The showatts method prints two lines to the screen: the make and color 0f the motorcycle object,
and whether or not the engine is on or off.

Save that file again and compile it using javac:

javac Motorcycle.java

Note: After this point, I’'m going to assume you know how to compile and run Java
programs. | won'’t repeat this information after this.

What happens if you now use the Java interpreter to run this compiled class? Try it. Java assumes
that this class is an application and looks for a main method. This is just a class, however, so it
doesn’t have a main method. The Java interpreter (java) gives you an error like this one:

In class Motorcycle:

void main(String argv[]) is not defined

To do something with the Motorcycle class—for example, to create instances of that class and
play with them—you’re going to need to create a Java application that uses this class or add a
main mMethod to this one. For simplicity’s sake, let’s do the latter. Listing 2.1 shows the main ()
method you’ll add to the mMotorcycile class (you'll go over what this does in a bit).

Type Listing 2.1. The main() method for Motorcycle.java.

1
2
3
4:
5:
6-
7
8

©

10:
11:
12:
13:
14:
15:
16:}

: public static void main (String args[]) {

Motorcycle m = new Motorcycle();
m.make = "Yamaha RZ350";
m.color = "yellow";

System.out.println("Calling showAtts...

m.showAtts();
System.out.println("-------- ");

System.out.println("Starting engine...

m.startEngine();
System.out.println("-------- ");

System.out.println("Calling showAtts...

m.showAtts();
System.out.println("-------- ");

System.out.println("Starting engine...

m.startEngine();

With the main() method, the Mmotorcycle class is now an application, and you can compile it
again and this time it'll run. Here’s how the output should look:

Output

Calling showAtts...
This motorcycle is a yellow Yamaha RZ350
The engine is off.

27

28

Object-Oriented Programming and Java

Starting engine...

The engine is now on.

Calling showAtts...

This motorcycle is a yellow Yamaha RZ350
The engine is on.

Starting engine...

The engine is already on.

The contents of themain () method are all going to look very new to you, so let’s go through

Ana|y5|8 it line by line so that you at least have a basic idea of what it does (you’ll get details about

the specifics of all of this tomorrow and the day after).

The first line declares themain () method. The main () method always looks like this; you'll learn
the specifics of each part later this week.

Line 2, Motorcycle m = new Motorcycle(), Creates a new instance of the motorcycle class and
stores a reference to it in the variable m. Remember, you don’t usually operate directly on classes
in your Java programs; instead, you create objects from those classes and then modify and call
methods in those objects.

Lines 3and 4 set the instance variables for this motorcycle object: the make isnow ayamaha rRz350
(a very pretty motorcycle from the mid-1980s), and the color is ye11ow.

Lines 5 and 6 call the showatts () method, defined in your motorcycle object. (Actually, only
6 does; 5 just prints a message that you’re about to call this method.) The new motorcycle object
then prints out the values of its instance variables—the make and co1or as you set in the previous
lines—and shows that the engine is off.

Line 7 prints a divider line to the screen; this is just for prettier output.

Line 9 calls the startEngine () method in the motorcycle object to start the engine. The engine
should now be on.

Line 12 prints the values of the instance variables again. This time, the report should say the
engine is now on.

Line 15 tries to start the engine again, just for fun. Because the engine is already on, this should
print the error message.

Inheritance, Interfaces, and Packages

Now that you have a basic grasp of classes, objects, methods, variables, and how to put it all
together in a Java program, it’s time to confuse you again. Inheritance, interfaces, and packages
are all mechanisms for organizing classes and class behaviors. The Java class libraries use all these
concepts, and the best class libraries you write for your own programs will also use these concepts.

Inheritance

Inheritance is one of the most crucial concepts in object-oriented programming, and it hasa very
direct effect on how you design and write your Java classes. Inheritance is a powerful mechanism
that means when you write a class you only have to specify how that class is different from some
other class, while also giving you dynamic access to the information contained in those other

classes.
NEWL] Withinheritance, all classes—those you write, those from other class libraries that you use, 2
TERM and those from the standard utility classes as well—are arranged in a strict hierarchy (see

Figure 2.2).

Each class has a superclass (the class above it in the hierarchy), and each class can have one or
more subclasses (classes below that class in the hierarchy). Classes further down in the hierarchy
are said to inherit from classes further up in the hierarchy.

Figure 2.2.

A class hlerarChy' Class A « Class A is the superclass of B
« Class B is a subclass of A
« Class B is the superclass
of C,D,and E
* Classes C, D, and E
are subclasses of B

Class B

Class C Class D Class E

Subclasses inheritall the methods and variables from their superclasses—that s, in any particular
class, if the superclass defines behavior that your class needs, you don’t have to redefine it or copy
that code from some other class. Your class automatically gets that behavior from its superclass,
that superclass gets behavior from its superclass, and so on all the way up the hierarchy. Your
class becomes a combination of all the features of the classes above it in the hierarchy.

At the top of the Java class hierarchy is the classobject; all classes inherit from this one superclass.
object is the most general class in the hierarchy; it defines behavior specific to all objects in the
Java class hierarchy. Each class farther down in the hierarchy adds more information and
becomes more tailored to a specific purpose. In this way, you can think of a class hierarchy as

29

30

Object-Oriented Programming and Java

defining very abstract concepts at the top of the hierarchy and those ideas becoming more
concrete the farther down the chain of superclasses you go.

Most of the time when you write new Java classes, you’ll want to create a class that has all the
information some other class has, plus some extra information. For example, you may want a
version of a Button with its own built-in label. To get all the Button information, all you have
to dois define your class to inherit from sutton. Your class will automatically get all the behavior
defined in Button (and in Button’s superclasses), so all you have to worry about are the things
that make your class different from sutton itself. This mechanism for defining new classes as the
differences between them and their superclasses is called subclassing.

NEW[] Subclassing involves creating a new class that inherits from some other class in the class
TERM hierarchy. Using subclassing, you only need to define the differences between your class

and its parent; the additional behavior is all available to your class through inheritance.

What if your class defines entirely new behavior, and isn’t really a subclass of another class? Your
class can also inherit directly from object, which still allows it to fit neatly into the Java class
hierarchy. In fact, if you create a class definition that doesn’t indicate its superclass in the first
line, Javaautomatically assumesyou’re inheriting fromobject. Themotorcycle class you created
in the previous section inherited from object.

Creating a Class Hierarchy

If you're creating a larger set of classes, it makes sense for your classes not only to inherit from
the existing class hierarchy, but also to make up a hierarchy themselves. This may take some
planning beforehand when you're trying to figure out how to organize your Java code, but the
advantages are significant once it’s done:

O When you develop your classes in a hierarchy, you can factor out information com-
mon to multiple classes in superclasses, and then reuse that superclass’s information
over and over again. Each subclass gets that common information from its superclass.

O Changing (or inserting) a class further up in the hierarchy automatically changes the
behavior of the lower classes—no need to change or recompile any of the lower
classes, because they get the new information through inheritance and not by copying
any of the code.

For example, let’s go back to that motorcycie class, and pretend you created a Java program to
implement all the features of a motorcycle. It’s done, it works, and everything is fine. Now, your
next task is to create a Java class called car.

car and motorcycle have many similar features—both are vehicles driven by engines. Both
have transmissions and headlamps and speedometers. So, your first impulse may be to open up
your motorcycle class file and copy over a lot of the information you already defined into the
new class car.

sams
net

Sams.ney
Learning

A far better plan is to factor out the common information for car and motorcycle into a more
general class hierarchy. This may be a lot of work just for the classesmotorcycie and car, butonce
you add Bicycle, Scooter, Truck, and so on, having common behavior in a reuseable superclass
significantly reduces the amount of work you have to do overall.

Let’s design a class hierarchy that might serve this purpose. Starting at the top is the classobject,

which is the root of all Java classes. The most general class to which motorcycle and car both

belong might be called venicie. A vehicle, generally, is defined as a thing that propels someone 2
from one place to another. In the venicle class, you define only the behavior that enables
someone to be propelled from point a to point b, and nothing more.

Below vehic1e? How about two classes: PersonPoweredvehicle and EnginePoweredVehicle?
EnginePoweredvehicle IS different from vehicle because is has an engine, and the behaviors
might include stopping and starting the engine, having certain amounts of gasoline and oil, and
perhaps the speed or gear in which the engine is running. Person-powered vehicles have some
kind of mechanism for translating people motion into vehicle motion—ypedals, for example.

Figure 2.3 shows what you have so far.

Figure 2.3.
The basic vehicle hierarchy. Object

Vehicle

PersonPoweredVehicle EnginePoweredVehicle

Now, let’s become even more specific. With EnginePoweredvehicle, you might have several
classes: motorcycle, car, Truck, and so on. Or you can factor out still more behavior and have
intermediate classes for Twowheeled and Fourwheeled Vehicles, with different behaviors for each

(see Figure 2.4).

Finally, with a subclass for the two-wheeled engine-powered vehicles you can finally have a class
for motorcycles. Alternatively, you could additionally define scooters and mopeds, both of
which are two-wheeled engine-powered vehicles but have different qualities from motorcycles.

Where do qualities such as make or color come in? Wherever you want them to go—or, more
usually, where they fit most naturally in the class hierarchy. You can define the make and color

31

32

Object-Oriented Programming and Java

onvehicle, and all the subclasses will have those variables as well. The point to remember is that
you have to define a feature or a behavior only once in the hierarchy; it's automatically reused
by each subclass.

Figure 2.4.
Two-wheeled and four-
wheeled vehicles.

EnginePoweredVehicle

TwoWheeled FourWheeled
EnginePoweredVehicle EnginePoweredVehicle
Motorcycle Scooter Moped

How Inheritance Works

How does inheritance work? How is it that instances of one class can automatically get variables
and methods from the classes further up in the hierarchy?

For instance variables, when you create a new instance of a class, you get a “slot” for each variable
defined in the current class and for each variable defined in all its superclasses. In this way, all
the classes combine to form a template for the current object and then each object fills in the
information appropriate to its situation.

Methods operate similarly: new objects have access to all the method names of its class and its
superclasses, but method definitions are chosen dynamically when a method is called. That is,
if you call a method on a particular object, Java first checks the object’s class for the definition
of that method. If it’s not defined in the object’s class, it looks in that class’s superclass, and so
on up the chain until the method definition is found (see Figure 2.5).

Things get complicated when a subclass defines a method that has the same signature (name and
number and type of arguments) as a method defined in a superclass. In this case, the method
definition that is found first (starting at the bottom and working upward toward the top of the
hierarchy) is the one that is actually executed. Because of this, you can purposefully define a
method in asubclass that has the same signature as a method in a superclass, which then “hides”
the superclass’s method. This is called overriding a method. You'll learn all about methods on
Day 7.

ms
net

Figure 2.5. Method
How methods are located. definition

Class

[
T

Class Class 2

Message sent to object and

Class Class passed up class hierarchy
until a definition is found

NEWI] Overriding a method is creating a method in a subclass that has the same signature (name,
TERM number and type of arguments) as a method in a superclass. That new method then hides
the superclass’s method (see Figure 2.6).

Figure 2.6.

Overriding methods. Class

— Method is overridden
L, by this definition

Initial method /

definition Class

Message sent to object and

Class Class passed up class hierarchy
until a definition is found

33

Object-Oriented Programming and Java

Single and Multiple Inheritance

Java’s form of inheritance, as you learned in the previous sections, is called single inheritance.
Single inheritance means that each Java class can have only one superclass (although any given
superclass can have multiple subclasses).

In other object-oriented programming languages, such as C++ and Smalltalk, classes can have
more than one superclass, and they inherit combined variables and methods from all those
classes. This is called multiple inheritance. Multiple inheritance can provide enormous power
in terms of being able to create classes that factor just about all imaginable behavior, but it can
also significantly complicate class definitions and the code to produce them. Java makes
inheritance simpler by being only singly inherited.

Interfaces and Packages

Java has two remaining concepts to discuss here: packages and interfaces. Both are advanced
topics for implementing and designing groups of classes and class behavior. You’ll learn about
both interfaces and packages on Day 16, but they are worth at least introducing here.

Recall that Java classes have only asingle superclass, and they inherit variables and methods from
that superclass and all its superclasses. Although single inheritance makes the relationship
between classes and the functionality those classes implement easy to understand and to design,
it can also be somewhat restricting—in particular, when you have similar behavior that needs
to be duplicated across different “branches” of the class hierarchy. Java solves this problem of
shared behavior by using the concept of interfaces.

NEWI] Aninterface isacollection of method names, without actual definitions, that indicate that
TERM aclass has a set of behaviors in addition to the behaviors the class gets from its superclasses.

Although a single Java class can have only one superclass (due to single inheritance), that class
can also implement any number of interfaces. By implementing an interface, a class provides
method implementations (definitions) for the method names defined by the interface. If two
very disparate classes implement the same interface, they can both respond to the same method
calls (as defined by that interface), although what each class actually does in response to those
method calls may be very different.

You don’t need to know very much about interfaces right now. You'll learn more as the book
progresses, so if all this is very confusing, don’t panic!

The final new Java concept for today is that of packages.

NEW] Packages in Java are a way of grouping together related classes and interfaces. Packages
TERM enable modular groups of classes to be available only if they are needed and eliminate
potential conflicts between class names in different groups of classes.

34

sams
&

Sams. net
Lea"ning

You'll learn all about packages, including how to create and use them, in Week 3. For now, there
are only a few things you need to know:

O The class libraries in the Java Developer’s Kit are contained in a package called java.
The classes in the java package are guaranteed to be available in any Java implementa-
tion, and are the only classes guaranteed to be available across different implementa-
tions. The java package itself contains other packages for classes that define the
language itself, the input and output classes, some basic networking, and the window
toolkit functions. Classes in other packages (for example, classes in the sun or netscape
packages) may be available only in specific implementations.

O By default, your Java classes have access to only the classes in java.lang (the base
language package inside the java package). To use classes from any other package, you
have to either refer to them explicitly by package name or import them in your source
file.

O To refer to a class within a package, list all the packages that class is contained in and
the class name, all separated by periods (.). For example, take the co1or class, which is
contained in the awt package (awt stands for Abstract Windowing Toolkit). The awt
package, in turn, is inside the java package. To refer to the co1or class in your pro-
gram, you use the notation java.awt.Color.

Creating a Subclass

To finish up today, let’s create a class that is a subclass of another class and override some
methods. You'll also get a basic feel for how packages work in this example.

Probably the most typical instance of creating a subclass, at least when you first start
programminginJava, isin creating an applet. All applets are subclasses of the classApp1et (which
is part of the java.applet package). By creating a subclass of App1et, you automatically get all
the behavior from the window toolkit and the layout classes that enables your applet to be drawn
in the right place on the page and to interact with system operations, such as keypresses and
mouse clicks.

In this example, you'll create an applet similar to the Hello World applet from yesterday, but
one that draws the He11o0 string in a larger font and a different color. To start this example, let’s
first construct the class definition itself. Remember the HTML and classes directories you
created yesterday? Let’s go back to those, go back to your text editor, and enter the following class
definition:

public class HelloAgainApplet extends java.applet.Applet {

}

Here, you're creating a class called HelloAgainApplet. Note the part that says extends
java.applet.Applet—that’s the part that says your applet class is a subclass of the app1et class.

35

36

Object-Oriented Programming and Java

Note that because the app1et class is contained in the java.applet package, you don’t have
automatic access to that class, and you have to refer to it explicitly by package and class name.

The other part of this class definition is the pub1ic keyword. Public means that your class is
available to the Java system at large once it is loaded. Most of the time you need to make a class
public only if you want it to be visible to all the other classes in your Java program; but applets,
in particular, must be declared to be public. (You’ll learn more about pub1ic classes in Week 3.)

A class definition with nothing in it doesn’t really have much of a point; without adding or
overriding any of its superclasses’ variables or methods, there’s no point to creating a subclass
at all. Let’s add some information to this class to make it different from its superclass.

First, add an instance variable to contain a Font object:
Font f = new Font("TimesRoman",Font.BOLD,36);

The f instance variable now contains a new instance of the class Font, part of the java.awt
package. This particular font object is a Times Roman font, boldface, 36 points high. In the
previous Hello World applet, the font used for the text was the default font: 12 point Times
Roman. Using a font object, you can change the font of the text you draw in your applet.

By creating an instance variable to hold this font object, you make it available to all the methods
in your class. Now let’s create a method that uses it.

When you write applets, there are several “standard” methods defined in the applet superclasses
that you will commonly override in your applet class. These include methods to initialize the
applet, to start it running, to handle operations such as mouse movements or mouse clicks, or
to clean up when the applet stops running. One of those standard methods is the paint ()
method, which actually displays your applet on screen. The default definition of paint () doesn’t
do anything—it’san empty method. By overriding paint (), you tell the applet just what to draw
on the screen. Here’s a definition of paint():

public void paint(Graphics g) {

g.setFont(f);

g.setColor(Color.red);
g.drawString("Hello again!", 5, 25);

}

There are two things to know about the paint () method. First, note that this method is declared
public, just as the applet itself was. The paint() method is actually pubiic for a different
reason—~because the method it’s overridingisalsopublic. If you try to override amethod in your
own class that’s public in a superclass, you get a compiler error, so the public is required.

Secondly, note that the paint () method takes a single argument: an instance of the Graphics
class. The araphics class provides platform-independent behavior for rendering fonts, colors,
and basic drawing operations. You’ll learn a lot more about the raphics class in Week 2, when
you create more extensive applets.

sams
net

Sams.ney
Learning

Inside your paint () method, you've done three things:

O You've told the graphics object that the default drawing font will be the one contained
in the instance variable f.

O You've told the graphics object that the default color is an instance of the co1or class
for the color red.

O Finally, you've drawn your "Hello Again!" String onto the screen itself, at the x and y
positions of 5 and 25. The string will be rendered in the default font and color.

For an applet this simple, this is all you need to do. Here’s what the applet looks like so far:
public class HelloAgainApplet extends java.applet.Applet {
Font f = new Font("TimesRoman",Font.BOLD,36);

public void paint(Graphics g) {
g.setFont(f);
g.setColor(Color.red);
g.drawString("Hello again!", 5, 50);

}
}

If you've been paying attention, you'll notice something is wrong with this example up to this
point. If you don’t know what it is, try saving this file (remember, save it to the same name as
the class: HelloAgainApplet.java) and compiling it using the Java compiler. You should get a
bunch of errors similar to this one:

HelloAgainApplet.java:7: Class Graphics not found in type declaration.

Why are you getting these errors? Because the classes you're referring to are part of a package.
Remember that the only package you have access to automatically is java.1ang. You referred to
the App1et class in the first line of the class definition by referring to its full package name
(java.applet.Applet). Further on in the program, however, you referred to all kinds of other
classes as if they were already available.

There are two ways to solve this problem: refer to all external classes by full package name or
import the appropriate class or package at the beginning of your class file. Which one you choose
to do is mostly a matter of choice, although if you find yourself referring to a class in another
package lots of times, you may want to import it to cut down on the amount of typing.

In thisexample, you’llimport the classes you need. There are three of them: Graphics, Font, and
color. All three are part of the java.awt package. Here are the lines to import these classes. These
lines go at the top of your program, before the actual class definition:

import java.awt.Graphics;

import java.awt.Font;
import java.awt.Color;

37

38

Object-Oriented Programming and Java

Figure 2.7.
The Hello Again applet.

Tip: You also can import an entire package of (public) classes by using an asterisk
(*) in place of a specific class name. For example, to import all the classes in the awt
package, you can use this line:

import java.awt.*;

Now, with the proper classes imported into your program, HelloAgainApplet should compile
cleanly to aclass file. To test it, create an HT ML file with the <appLET> tag as you did yesterday.
Here’s an HTML file to use:

<HTML>

<HEAD>

<TITLE>Another Applet</TITLE>

</HEAD>

<BODY>

<P>My second Java applet says:

<APPLET CODE="HelloAgainApplet.class" WIDTH=200 HEIGHT=50>
</APPLET>

</BODY>

</HTML>

For this HTML example, your Java class file is in the same directory as this HTML file. Save
the file to HelloAgainApplet.html and fire up your Java-aware browser or the Java applet viewer.
Figure 2.7 shows the result you should be getting (the Hello Again string is red).

My recard lava applet sape

Hello Again!

Summary

If this is your first encounter with object-oriented programming, a lot of the information in this
chapter is going to seem really theoretical and overwhelming. Fear not—the further along in this
book you get, and the more Java applications you create, the easier it is to understand.

One of the biggest hurdles of object-oriented programming is not necessarily the concepts, it’s
their names. OOP has lots of jargon surrounding it. To summarize today’s material, here’s a
glossary of terms and concepts you learned today:

sams
)

Sams.ney
Learning

Class: A template for an object, which contains variables and methods representing
behavior and attributes. Classes can inherit variables and methods from other classes.

Object: A concrete instance of some class. Multiple objects that are instances of the
same class have access to the same methods, but often have different values for their
instance variables.

Instance: The same thing as an object; each object is an instance of some class.
Superclass: A class further up in the inheritance hierarchy than its child, the subclass. 2
Subclass: A class lower in the inheritance hierarchy than its parent, the superclass.
When you create a new class, that’s often called subclassing.

Instance method: A method defined in a class, which operates on an instance of that
class. Instance methods are usually called just methods.

Class method: A method defined in a class, which can operate on the class itself or on
any object.

Instance variable: A variable that is owned by an individual instance and whose value is
stored in the instance.

Class variable: A variable that is owned by the class and all its instances as a whole, and
is stored in the class.

Interface: A collection of abstract behavior specifications that individual classes can
then implement.

Package: A collection of classes and interfaces. Classes from packages other than
java.lang must be explicitly imported or referred to by full package name.

Q&A

Q Methods are effectively functions that are defined inside classes. If they look like
functions and act like functions, why aren’t they called functions?

A Some object-oriented programming languages do call them functions (C++ calls them
member functions). Other object-oriented languages differentiate between functions
inside and outside a body of a class or object, where having separate terms is impor-
tant to understanding how each works. Because the difference is relevant in other
languages, and because the term method is now in such common use in object-
oriented technology, Java uses the word as well.

Q I understand instance variables and methods, but not class variables and
methods.

A Most everything you do in a Java program will be with objects. Some behaviors and
attributes, however, make more sense if they are stored in the class itself rather than in
the object. For example, to create a new instance of a class, you need a method that is

39

40

® DAY @

2) Object-Oriented Programming and Java

defined for the class itself, not for an object. (Otherwise, how can you create an
instance of class? You need an object to call the new method in, but you don’t have an
object yet.) Class variables, on the other hand, are often used when you have an
attribute whose value you want to share with the instances of a class.

Most of the time, you'll use instance variables and methods. You’ll learn more about
class variables and methods later on this week.

4 -

Java Basics

by Laura Lemay

Java Basics

On Days 1 and 2, you learned about Java programming in very broad terms—what a Java
program and an executable look like, and how to create simple classes. For the remainder of this
week, you’re going to get down to details and deal with the specifics of what the Java language
looks like.

Today, you won’t define any classes or objects or worry about how any of them communicate
inside a Java program. Rather, you’ll draw closer and examine simple Java statements—the basic
things you can do in Java within a method definition such as main().

Today you'll learn about the following:

O Java statements and expressions
Variables and data types
Comments

Literals

Arithmetic

Comparisons

Logical operators

Oo oo oo o

Technical Note: Java looks a lot like C++, and—by extension—like C. Much of
the syntax will be very familiar to you if you are used to working in these languages.
If you are an experienced C or C++ programmer, you may want to pay special
attention to the Technical Notes (such as this one), because they will provide
information about the specific differences between these and other traditional
languages and Java.

Statements and Expressions

A statement is the simplest thing you can do in Java; a statement forms a single Java operation.
All the following are simple Java statements:

int i = 1

import java.awt.Font;

System.out.println("This motorcycle is a "

+ color + " " + make);
m.engineState = true;

Statements sometimes return values—for example, when you add two numbers together or test
to see whether one value is equal to another. These kind of statements are called expressions.
We'll discuss these later on today.

42

sams
&

Sams. net
Lea"ning

The most important thing to remember about Java statements is that each one ends with a
semicolon. Forget the semicolon and your Java program won’t compile.

Java also has compound statements, or blocks, which can be placed wherever a single statement
can. Block statements are surrounded by braces ({3). You'll learn more about blocks in Chapter
5, “Arrays, Conditionals, and Loops.”

Variables and Data Types

Variables are locations in memory in which values can be stored. They have a name, a type, and
a value. Before you can use a variable, you have to declare it. After it is declared, you can then
assign values to it.

Java actually has three kinds of variables: instance variables, class variables, and local variables.

Instance variables, as you learned yesterday, are used to define attributes or the state for a
particular object. Class variables are similar to instance variables, except their values apply to all
that class’s instances (and to the class itself) rather than having different values for each object.

Local variables are declared and used inside method definitions, for example, for index counters
in loops, as temporary variables, or to hold values that you need only inside the method
definition itself. They can also be used inside blocks ({}), which you'll learn about later this week.
Once the method (or block) finishes executing, the variable definition and its value cease to exist.
Use local variables to store information needed by a single method and instance variables to store
information needed by multiple methods in the object.

Although all three kinds of variables are declared in much the same ways, class and instance
variables are accessed and assigned in slightly different ways from local variables. Today, you'll
focus on variables as used within method definitions; tomorrow, you’ll learn how to deal with
instance and class variables.

Note: Unlike other languages, Java does not have global variables—that is, vari-
ables that are global to all parts of a program. Instance and class variables can be
used to communicate global information between and among objects. Remember,
Java is an object-oriented language, so you should think in terms of objects and
how they interact, rather than in terms of programs.

Declaring Variables

To use any variable in a Java program, you must first declare it. Variable declarations consist of
a type and a variable name:
43

44

Java Basics

int myAge;
String myName;
boolean isTired;
Variable definitions can go anywhere in a method definition (that is, anywhere a regular Java
statement can go), although they are most commonly declared at the beginning of the definition
before they are used:
public static void main (String args=+]) {
int count;

String title;
boolean isAsleep;

.
You can string together variable names with the same type:

int x, y, z;
String firstName, LastName;

You can also give each variable an initial value when you declare it:

int myAge, mySize, numShoes = 28;

String myName = "Laura";

boolean isTired = true;

int a =4, b =5, ¢c = 6;

If there are multiple variables on the same line with only one initializer (as in the first of the
previous examples), the initial value applies to only the last variable in adeclaration. You can also
group individual variables and initializers on the same line using commas, as with the last
example, above.

Local variables must be given values before they can be used (your Java program will not compile
if you try to use an unassigned local variable). For this reason, it’s a good idea always to give local
variables initial values. Instance and class variable definitions do not have this restriction (their
initial value depends on the type of the variable: nu11 for instances of classes, o for numeric
variables, *\e"' for characters, and false for booleans).

Notes on Variable Names

Variable names in Java can start with a letter, an underscore (_), or a dollar sign (s). They cannot
start with a number. After the first character, your variable names can include any letter or
number. Symbols, such ass, =, e, and so on, are often reserved for operators in Java, so be careful
when using symbols in variable names.

In addition, the Java language uses the Unicode character set. Unicode is a character set
definition that not only offers characters in the standard ASCII character set, but also several
million other characters for representing most international alphabets. This means that you can

net

Sams. net
Learning
3

use accented charactersand other glyphs as legal characters in variable names, aslong as they have
a Unicode character number above eece.

\ Caution: The Unicode specification is a two-volume set of lists of thousands of
¢, characters. If you don’t understand Unicode, or don’t think you have a use for it,

it’s safest just to use plain numbers and letters in your variable names. You'll learn a
little more about Unicode later on.

Finally, note that the Java language is case-sensitive, which means that uppercase letters are
different from lowercase letters. This means that the variable x is different from the variable x,
and a rose is not a Rose is NOt a rose. Keep this in mind as you write your own Java programs 3

and as you read Java code other people have written.

By convention, Java variables have meaningful names, often made up of several words
combined. The first word is lowercase, but all following words have an initial uppercase letter:

Button theButton;

long reallyBigNumber;
boolean currentWeatherStateOfPlanetXShortVersion;

Variable Types

In addition to the variable name, each variable declaration must have a type, which defines what
values that variable can hold. The variable type can be one of three things:

O One of the eight basic primitive data types
O The name of a class
O An array
You'll learn about how to declare and use array variables in Chapter 5.

The eight primitive data types handle common types for integers, floating-point numbers,
characters, and boolean values (true or false). They’re called primitive because they’re built into
the system and are not actual objects, which makes them more efficient to use. Note that these
data types are machine-independent, which means that you can rely on their sizes and
characteristics to be consistent across your Java programs.

There are four Java integer types, each with different ranges of values (as listed in Table 3.1). All
are signed, which means they can hold either positive or negative numbers. Which type you
choose for your variables depends on the range of values you expect that variable to hold; if a
value becomes too big for the variable type, it is truncated.

45

46

Java Basics

Table 3.1. Integer types.

Type Size Range

byte 8 bits -128 to 127

short 16 bits —-32,768 to 32,767

int 32 hits —-2,147,483,648 to 2,147,483,647

long 64 bits —9223372036854775808 to 9223372036854775807

Floating-point numbers are used for numbers with a decimal part. Java floating-point numbers
are compliant with IEEE 754 (an international standard for defining floating-point numbers
and arithmetic). There are two floating-point types: f1oat (32 bits, single-precision) and double
(64 bits, double-precision).

The char type is used for individual characters. Because Java uses the Unicode character set, the
char type has 16 bits of precision, unsigned.

Finally, the boo1ean type can have one of two values, true or faise. Note that unlike in other
C-like languages, boolean is not a number, nor can it be treated as one. All tests of boolean
variables should test for true or false.

Inaddition to the eight basic data types, variables in Java can also be declared to hold an instance
of a particular class:

String LastName;

Font basicFont;

OvalShape myOval;

Each of these variables can then hold only instances of the given class. As you create new classes,
you can declare variables to hold instances of those classes (and their subclasses) as well.

Technical Note: Java does not have a typedef statement (as in C and C++). To
declare new types in Java, you declare a new class; then variables can be declared to
be of that class’s type.

Assigning Values to Variables

Once avariable has been declared, you can assign a value to that variable by using the assignment
operator =:

size = 14;
tooMuchCaffiene = true;

fof = Sams
£lg
Java has three kinds of comments. /= and =, surround multiline comments, asin C or C++. All
text between the two delimiters is ignored:
/* I don't know how I wrote this next part; I was working
really late one night and it just sort of appeared. I
suspect the code elves did it for me. It might be wise
not to try and change it.
*/
Comments cannot be nested; that is, you cannot have a comment inside a comment.
Double-slashes (/) can be used for a single line of comment. All the text up to the end of the
line is ignored:

int vices = 7; // are there really only 7 vices?

The final type of comment begins with /+* and ends with /. These are special comments that
are used for the javadoc system. Javadoc is used to generate API documentation from the code.
You won’t learn about javadoc in this book; you can find out more information from the
documentation that came with Sun’s Java Developer’s Kit or from Sun’s Javahome page (http: /

/java.sun.com).

Literals
Literals are used to indicate simple values in your Java programs.

NEV[] Literal is a programming language term, which essentially means that what you type is
TERM whatyouget. Forexample, if you type 4 inaJava program, you automatically getan integer
with the value 4. If you type ‘a', you get a character with the value a.

Literals may seem intuitive most of the time, but there are some special cases of literals in Java
for different kinds of numbers, characters, strings, and boolean values.

Number Literals

There are several integer literals. 4, for example, is a decimal integer literal of type int (although
you can assign it to a variable of type byte or short because it’s small enough to fit into those
types). Adecimal integer literal larger thanan int isautomatically of type 1ong. You also can force
a smaller number to a 10ng by appending an L or 1 to that number (for example, 4L is a long
integer of value 4). Negative integers are preceded by a minus sign—for example, -4s.

Integers can also be expressed as octal or hexadecimal: a leading o indicates that a number is
octal—for example, 0777 or eee4. A leading ox (or ox) means that it is in hex (exFF, 0XAF45).

47

48

Java Basics

Hexadecimal numbers can contain regular digits (0-9) or upper- or lowercase hex digits (a—f or
A-F).

Floating-point literals usually have two parts: the integer part and the decimal part—for
example, 5.677777. Floating-point literals result in a floating-point number of type doub1e,
regardless of the precision of that number. You can force the number to the type fioat by
appending the letter (or F) to that number—for example, 2. 56F.

You can use exponents in floating-point literals using the letter e or e followed by the exponent
(which can be a negative number): 10e45 or .36E-2.

Boolean Literals

Boolean literals consist of the keywords true and false. These keywords can be used anywhere
you need a test or as the only possible values for boolean variables.

Character Literals

Character literals are expressed by a single character surrounded by single quotes: *a*, '#', '3',
and so on. Characters are stored as 16-bit Unicode characters. Table 3.2 lists the special codes
that can represent nonprintable characters, as well as characters from the Unicode character set.
The letter d in the octal, hex, and Unicode escapes represents a number or a hexadecimal digit
(a—f or A-F).

Table 3.2. Character escape codes.

Escape Meaning

\n Newline

\t Tab

\b Backspace

\r Carriage return
\f Formfeed

\\ Backslash

\! Single quote

\" Double quote
\ddd Octal

\xdd Hexadecimal
\udddd Unicode character

sams
net

Sams.ney
Learning

| Technical Note: C and C++ programmers should note that Java does not include
character codes for \a (bell) or \v (vertical tab).

String Literals
A combination of characters is a string. Strings in Java are instances of the class String. Strings
are not simple arrays of characters as they are in C or C++, although they do have many array-
like characteristics (for example, you can test their length and add and delete individual
characters as if they were arrays). Because string objects are real objects in Java, they have
methods that enable you to combine, test, and modify strings very easily.

String literals consist of a series of characters inside double quotes:

"Hi, I'm a string literal."
"' //an empty string

Strings can contain character constants such as newline, tab, and Unicode characters:

"A string with a \t tab in it"
"Nested strings are \"strings inside of\" other strings"

"This string brought to you by Java\u2122"
In the last example, the Unicode code sequence for \u2122 produces a trademark symbol (™).

Note: Just because you can represent a character using a Unicode escape does not
mean your computer can display that character—the computer or operating system
you are running may not support Unicode, or the font you’re using may not have a
glyph (picture) for that character. All that Unicode escapes in Java provide is a way
to encode special characters for systems that support Unicode.

When you use a string literal in your Java program, Java automatically creates an instance of the
class string for you with the value you give it. Strings are unusual in this respect; the other literals
do not behave in this way (none of the primitive base types are actual objects), and usually
creating anew object involves explicitly creating a new instance of aclass. You’ll learn more about
strings, the String class, and the things you can do with strings later today and tomorrow.

49

50

Java Basics

EXxpressions and Operators

Expressions are the simplest form of statement in Java that actually accomplishes something.

NEW/[] Expressions are statements that return a value.
TERM

Operators are special symbols that are commonly used in expressions.

Arithmetic and tests for equality and magnitude are common examples of expressions. Because
they return a value, you can assign that result to a variable or test that value in other Java
statements.

Operators in Java include arithmetic, various forms of assignment, increment and decrement,
and logical operations. This section describes all these things.

Arithmetic

Java has five operators for basic arithmetic (see Table 3.3).

Table 3.3. Arithmetic operators.

Operator Meaning Example
+ Addition 3+ 4
- Subtraction 5-7
* Multiplication 5 %5
+ Division 14 + 7
% Modulus 20 % 7

Each operator takes two operands, one on either side of the operator. The subtraction operator
(-) can also be used to negate a single operand.

Integer division results in an integer. Because integers don’t have decimal fractions, any
remainder is ignored. The expression 31 + 9, for example, results in 3 (9 goes into 31 only 3
times).

Modulus (=) gives the remainder once the operands have been evenly divided. For example, 31
% 9 results in 4 because 9 goes into 31 three times, with 4 left over.

Note that, for integers, the result type of most operations is an int or a 1ong, regardless of the
original type of the operands. Large results are of type 1ong; all othersare int. Arithmetic wherein
one operand is an integer and another is a floating point results in a floating-point result. (If
you're interested in the details of how Java promotes and converts numeric types from one type

to another, you may want to check out the Java Language Specification; that’s more detail than
| want to cover here.)

Listing 3.1 is an example of simple arithmetic.

Type Listing 3.1. Simple arithmetic.

1: class ArithmeticTest {
2: public static void main (String[] args) {

3 short x = 6;

4 int y = 4;

5: float a = 12.5f;

6: float b = 7f;

7-

8 System.out.println("x is " + x + ", y is " + y);
9: System.out.println("x +y = " + (x +y));

10: System.out.println("x -y =" + (x - y));

11: System.out.println("x / y =" + (X / y));

12: System.out.println("x Sy =" + (X % Vy));

13:

14: System.out.println("a is " + a + ", b is " + b;
15: System.out.println("a / b =" + (a / b));

16: }

17:

18: }

6, vy is 4

+ B
w
<< <

—~
w
=

{10 2 T | | B | N | B

-0~

, b is 7

o X X X X X
= anNn =N

o

An | 1 Inthissimple Javaapplication (note the main () method), you initially define four variables
ay3|5 in lines 3 through 6: x and y, which are integers (type int), and a and b, which are floating-
point numbers (type f1oat). Keep in mind that the default type for floating-point literals
(such as 12.5) is double, S0 to make sure these are numbers of type f1oat, you have to use an f

after each one (lines 5 and 6).

The remainder of the program merely does some math with integers and floating point numbers
and prints out the results.

There is one other thing to mention about this program: the method system.out.printin().
You've seen this method on previous days, but you haven't really learned exactly what it does.
The system.out.println() method merely prints a message to the standard output of your
system—to the screen, to a special window, or maybe just to a special log file, depending on your
system and the development environment you’re running (Sun’s JDK prints it to the screen).
The system.out.println() method takes a single argument—a string—but you can use + to
concatenate values into a string, as you'll learn later today.

51

Take, for example, the following two expressions:

y
y
These two expressions give very different results because of the difference between prefix and
postfix. When you use postfix operators (x++ or x--), y gets the value of x before before x is
incremented; using prefix, the value of x isassigned to y after the increment has occurred. Listing
3.2 is a Java example of how all this works.

X++;
X

Type Listing 3.2. Test of prefix and postfix increment operators.

1: class PrePostFixTest {

2:

3: public static void main (String args[]) {

4: int x = 0; :3
5: int y = 0;

6:

7: System.out.println("x and y are " + x + " and " +vy);
8: X++;

9: System.out.println("x++ results in " + Xx);

10: ++X;

11: System.out.println("++x results in " + X);

12: System.out.println("Resetting x back to 0.");

13: X = 0;

14: System.out.println("— — — — — — ");

15: y = X++;

16: System.out.println("y = x++ (postfix) results in:");
17: System.out.println("x is " + X);

18: System.out.println("y is " + y);

19: System.out.println("— — — — — — ");
20:
21: y = ++X;
22: System.out.println("y = ++x (prefix) results in:");
23: System.out.println("x is " + X);

24: System.out.println("y is " + y);

25: System.out.println("— — — — — — ");

26:

27: }

28:

29: }

x and y are 0 and 0

()utput x++ results in 1

++x results in 2
Resetting x back to 0.

y = ++x (prefix) results in:
X is 2

53

54

Java Basics

Ana| |S In the first part of this example, you increment x alone using both prefix and postfix
ys increment operators. In each, x is incremented by 1 each time. In this simple form, using

gither prefix Or postfix Works the same way.

In the second part of this example, you use the expression y = x++, in which the postfix
increment operator isused. In this result, the value of x is incremented after that value is assigned
to y. Hence the result: y is assigned the original value of x (o), and then x is incremented by 1.

Inthe third part, you use the prefix expressiony = ++x. Here, the reverse occurs: x isincremented
before its value is assigned to y. Because x is 1 from the previous step, its value is incremented
(to 2), and then that value is assigned to y. Both x and y end up being 2.

Technical Note: Technically, this description is not entirely correct. In reality, Java
always completely evaluates all expressions on the right of an expression before
assigning that value to a variable, so the concept of “assigning x to y before X is
incremented” isn’t precisely right. Instead, Java takes the value of x and “remem-
bers” it, evaluates (increments) X, and then assigns the original value of x to y.
Although in most simple cases this distinction may not be important, for more
complex expressions with side effects it may change the behavior of the expression
overall. See the Language Specification for many more details about the details of

expression evaluation in Java.

Comparisons

Java has several expressions for testing equality and magnitude. All of these expressions return
a boolean value (that is, true or false). Table 3.5 shows the comparison operators:

Table 3.

5. Comparison operators.

Operator Meaning

Example

<

>

IN

v

Equal

Not equal

Less than

Greater than

Less than or equal to
Greater than or equal to

X

X

X

== 3
1=3
<

>

IN

3
3
3
3

v

sams
net

Sams.ney
Learning

Logical Operators

Expressions that result in boolean values (for example, the comparison operators) can be
combined by using logical operators that represent the logical combinations anp, or, xor, and

logical noT.

For ano combinations, use either the & or &&. The expression will be true only if both operands
testsarealso true; if either expression is false, the entire expression is false. The difference between
the two operators is in expression evaluation. Using &, both sides of the expression are evaluated
regardless of the outcome. Using &3, if the left side of the expression is false, the entire expression
returns false, and the right side of the expression is never evaluated.

For or expressions, use either ! or ! !. or expressions result in true if either or both of the operands

is also true; if both operands are false, the expression is false. As with & and &g, the single 3
evaluates both sides of the expression regardless of the outcome; with ! 1, if the left expression

is true, the expression returns true and the right side is never evaluated.

In addition, there is the xor operator ~, which returns true only if its operands are different (one
true and one false, or vice versa) and false otherwise (even if both are true).

In general, only the && and | | are commonly used as actual logical combinations. &, !, and ~ are
more commonly used for bitwise logical operations.

For noT, use the 1 operator with a single expression argument. The value of the noT expression
is the negation of the expression; if x is true, 1x is false.

Bitwise Operators

Finally, here’s a short summary of the bitwise operators in Java. These are all inherited from C
and C++ and are used to perform operations on individual bits in integers. This book does not
go into bitwise operations; it’s an advanced topic covered better in books on C or C++. Table
3.6 summarizes the bitwise operators.

Table 3.6. Bitwise operators.

Operator Meaning

& Bitwise AnD

! Bitwise or

- Bitwise xor

<< Left shift

>> Right shift

>>> Zero fill right shift

continues

55

56

Java Basics

Table 3.6. continued

Operator Meaning

- Bitwise complement

<<= Left shift assignment (x = x <<y)

>>= Right shift assignment (x = x >>y)

>>>= Zero fill right shift assignment (x = x >>>)
X&=y AND assignment (X = X & y)

x!=y oR assignment (X + x | y)

X"=y NOT assignment (X =X)

Operator Precedence

Operator precedence determines the order in which expressions are evaluated. This, in some
cases, can determine the overall value of the expression. For example, take the following
expression:

y=6+4/2

Depending on whether the e + 4 expression or the 4 + 2 expression is evaluated first, the value
of y can end up being 5 or 8. Operator precedence determines the order in which expressions
are evaluated, so you can predict the outcome of an expression. In general, increment and
decrement are evaluated before arithmetic, arithmetic expressions are evaluated before compari-
sons, and comparisons are evaluated before logical expressions. Assignment expressions are
evaluated last.

Table 3.8 shows the specific precedence of the various operators in Java. Operators further up
in the table are evaluated first; operators on the same line have the same precedence and are
evaluated left to right based on how they appear in the expression itself. For example, give that
same expressiony = 6 + 4 + 2, you now know, according to this table, that division is evaluated
before addition, so the value of y will be s.

Table 3.7. Operator precedence.

Operator Notes

110 Parentheses () group expressions; dot (.) is used for access to
methods and variables within objects and classes (discussed
tomorrow); [] is used for arrays (discussed later on in the week)

++ -- | ~ instanceof Returns true or false based on whether the object is an instance
of the named class or any of that class’s superclasses (discussed
tomorrow)

Operator Notes

new (type)expression The new operator is used for creating new instances of classes; ()
in this case is for casting a value to another type (you'll learn
about both of these tomorrow)

* T Multiplication, division, modulus

+ - Addition, subtraction

<< >> >>> Bitwise left and right shift

<><2 Relational comparison tests

== I= Equality

& AND

- XOR 3
! OR

3& Logical anD

H Logical or

? Shorthand for if...then...else (discussed on Day 5)
= += -= *= += %= ~= Various assignments

You can always change the order in which expressions are evaluated by using parentheses around
the expressions you want to evaluate first. You can nest parentheses to make sure expressions
evaluate in the order you want them to (the innermost parenthetical expression is evaluated
first). The following expression results in a value of 5, because the e + 4 expression is evaluated
first, and then the result of that expression (1) is divided by 2:

y=(6+4)/2

Parentheses also can be useful in cases where the precedence of an expression isn’t immediately
clear—in other words, they can make your code easier to read. Adding parentheses doesn’t hurt,
so if they help you figure out how expressions are evaluated, go ahead and use them.

String Arithmetic

One special expression in Java is the use of the addition operator (+) to create and concatenate
strings. In most of the previous examples shown today and in earlier lessons, you've seen lots of
lines that looked something like this:

System.out.println(name + " is a " + color " beetle");

The output of that line (to the standard output) is a single string, with the values of the variables
(here, name and color), inserted in the appropriate spots in the string. So what’s going on here? 57

58

Java Basics

The + operator, when used with strings and other objects, creates a single string that contains
the concatenation of all its operands. If any of the operandsin string concatenation is notastring,
it is automatically converted to a string, making it easy to create these sorts of output lines.

Technical Note: An object or type can be converted to a string if you implement
the method tostring(). All objects have a default string representation (the name
of the class followed by brackets), but most classes override tostring() to provide a
more meaningful printable representation.

String concatenation makes lines such as the previous one especially easy to construct. To create
astring, justadd all the parts together—the descriptions plus the variables—and output it to the
standard output, to the screen, to an applet, or anywhere.

The += operator, which you learned about earlier, also works for strings. For example, take the
following expression:

myName += " Jdr.";
This expression is equivalent to this:
myName = myName + " Jr.";

just as it would be for numbers. In this case, it changes the value of myname (which might be
something like yohn smith to have a Jr. at the end (John smith Jr.).

Summary

Asyou learned in the last two lessons, a Java program is made up primarily of classes and objects.
Classes and objects, in turn, are made up of methods and variables, and methods are made up
of statements and expressions. It is those last two things that you’ve learned about today; the
basic building blocks that enable you to create classes and methods and build them up to a full-
fledged Java program.

Today, you learned about variables, how to declare them and assign values to them; literals for
easily creating numbers, characters, and strings; and operators for arithmetic, tests, and other
simple operations. With this basic syntax, you can move on tomorrow to learning about working
with objects and building simple useful Java programs.

To finish up this summary, Table 3.8 is a list of all the operators you learned about today so that
you can refer back to them.

Table 3.8. Operator summary.

Operator Meaning
+ Addition
- Subtraction
* Multiplication
+ Division
% Modulus
< Less than
> Greater than
Less than or equal to
2 Greater than or equal to 3
== Equal
I= Not equal
8& Logical anD
H Logical or
! Logical noT
& AND
! OR
. XOR
<< Left shift
>> Right shift
>>> Zero fill right shift
~ Complement
= Assignment
++ Increment
- Decrement
+= Add and assign
-= Subtract and assign
*= Multiply and assign
+= Divide and assign
%= Modulus and assign
&= AND and assign

continues

59

60

Java Basics

Table 3.8. continued
Operator Meaning
l= or and assign
<<= Left shift and assign
>>= Right shift and assign
>>>= Zero fill right shift and assign

Q&A

Q
A

Q

> O

I didn’t see any way to define constants.

You can’t create local constants in Java; you can create only constant instance and class
variables. You’ll learn how to do this tomorrow.

What happens if you declare a variable to be some integer type and then give it a
number outside the range of values that variable can hold?

Logically, you would think that the variable is just converted to the next larger type,
but this isn’t what happens. What does happen is called overflow. This means that if a
number becomes too big for its variable, that number wraps around to the smallest
possible negative number for that type j/Fstarts counting upward toward zero again.

Because this can result in some very confusing (and wrong) results, make sure that you
declare the right integer type for all your numbers. If there’s a chance a number will
overflow its type, use the next larger type instead.

How can you find out the type of a given variable?

If you're using the base types (int, float, boolean), j/FS0 on, you can’t. If you care
about the type, you can convert the value to some other type by using casting (you’ll
learn about this tomorrow).

If you're using class types, you can use the instanceof operator, which you’ll learn
more about tomorrow.

Why does Java have all these shorthand operators for arithmetic and assignment?
It's really hard to read that way.

The syntax of Java is based on C++, jnd therefore on C. One of C’s implicit goals is
the capability of doing very powerful things with a minimum of typing. Because of
this, shorthand operators, such as the wide array of assignments, are common.

There’s no rule that says you have to use these operators in your own programs,
however. If you find your code to be more readable using the long form, no one will
come to your house and make you change it.

4 -

Working with
Objects

by Laura Lemay

62

Working with Objects

Let’s start today’s lesson with an obvious statement: because Java is an object-oriented language,
you’re going to be dealing with a lot of objects. You'll create them, modify them, move them
around, change their variables, call their methods, combine them with other objects—and, of
course, develop classes and use your own objects in the mix.

Today, therefore, you'll learn all about the Java object in its natural habitat. Today’s topics
include:
O Creating instances of classes
Testing and modifying class and instance variables in your new instance
Calling methods in that object
Casting (converting) objects and other data types from one class to another
Other odds and ends about working with objects
An overview of the Java class libraries

o oo oo

Creating New Objects

When you write a Java program, you define a set of classes. As you learned on Day 2, classes are
templates for objects; for the most part, you merely use the class to create instances and then work
with those instances. In this section, therefore, you’ll learn how to create a new object from any
given class.

Remember strings from yesterday? You learned that using a string literal—a series of characters
enclosed in double-quotes—creates a new instance of the class string with the value of that
string.

The string class is unusual in that respect—although it’s a class, there’s an easy way to create
instances of that class using aliteral. The other classes don’t have that shortcut; to create instances
of those classes you have to do so explicitly by using the new operator.

Note: What about the literals for numbers and characters? Don’t they create
objects, too? Actually, they don’t. The primitive data types for numbers and
characters create numbers and characters, but for efficiency, they aren’t actually
objects. You can put object-wrappers around them if you need to treat them like
objects (you'll learn how to do this later).

Using new

To create a new object, you use new with the name of the class you want to create an instance
of, then parentheses after that:

String str = new String();
Random r = new Random();
Motorcycle m2 = new Motorcycle()

The parentheses are important; don’t leave them off. The parentheses can be empty, in which
case the most simple, basic object is created, or the parentheses can contain arguments that
determine the initial values of instance variables or other initial qualities of that object. The
number and type of arguments you can use with new are defined by the class itself by using a
special method called a constructor; you'll learn about how to create constructors in your own
classes later on this week.

\ Caution: Some classes may not enable you to create instances without any argu-
g’ ments. Check the class to make sure.

-

For example, take the pate class, which creates date objects. Listing 4.1 is a Java program that
shows three different ways of creating a pate object using new:

Type Listing 4.1. Laura’s bate program.

1: import java.util.Date;

2:

3: class CreateDates {

4:

5: public static void main (String args[]) {
6: Date d1, d2, d3;

7:

8: d1 = new Date();

9: System.out.println("Date 1: " + di);
10:

11: d2 = new Date(71, 7, 1, 7, 30);

12: System.out.println("Date 2: " + d2);
13:

14: d3 = new Date("April 3 1993 3:24 PM");
15: System.out.println("Date 3: " + d3);
16: }

17: }

Date 1: Sun Nov 26 19:10:56 PST 1995
Output Date 2: Sun Aug @1 07:30:00 PDT 1971
Date 3: Sat Apr 03 15:24:00 PST 1993

63

64

Working with Objects

In this example, three different dates are created by using different arguments to new. The

Ana|Y5|3 first instance (line 8) uses new with no arguments, which creates a pate object for today’s

date (as the first line of the output shows).

The second pate object you create in this example has five integer arguments. The arguments
represent a date: year, month, day, hours, and seconds. And, as the output shows, this creates
a pate object for that particular date: Sunday, August first, 1971, at 7:30 AM.

The third version of pate takes one argument, a string, representing the date as a text string.
When the pate object is created, that string is parsed, and a pate object with that date and time
is created (see the third line of output). The date string can take many different formats; see the
APl documentation for the pate class (part of the java.util package) for information about
what strings you can use.

What new Does

What does new do? When you use the new operator, several things happen: first, the new instance
of the given class is created, and memory is allocated for it. In addition (and most importantly),
when the new object is created, a special method defined in the given class is called. This special
method is called a constructor.

NEW Constructors are special methods for creating and initializing new instances of classes.
TERM Constructors initialize the new object and its variables, create any other objects that object

needs, and generally perform any other operations the object needs to run.

Multiple constructor definitions in a class can each have a different number or type of
arguments—then, when you use new, you can specify different arguments in the argument list,
and the right constructor for those arguments will be called. That’s how each of those different
versions of new that were listed previously can create different things.

When you create your own classes, you can define as many constructors as you need to
implement that class’s behavior. You'll learn how to create constructors on Day 7.

A Note on Memory Management

Memory management in Java is dynamic and automatic. When you create a new object in Java,
Java automatically allocates the right amount of memory for that object in the heap. You don’t
have to allocate any memory for any objects explicitly; Java does it for you.

What happens when you're finished with that object? How do you de-allocate the memory that
object uses? The answer is again: memory management is automatic. Once you finish with an
object, that object no longer has any live references to it (it won't be assigned to any variables
you'restill using or stored inany arrays). Java has a garbage collector that looks for unused objects

net

Sams. net
Learning
3

and reclaims the memory that those objects are using. You don’t have to do any explicit freeing
of memory; you just have to make sure you're not still holding onto an object you want to get
rid of. You’ll learn more specific details about the Java garbage collector and how it works on

Day 21.

Accessing and Setting Class and
Instance Variables

Now you have your very own object, and that object may have class or instance variables defined
in it. How do you work with those variables? Easy! Class and instance variables behave in exactly
the same ways as the local variables you learned about yesterday; you just refer to them slightly
differently than you do regular variables in your code.

Getting Values

To get at the value to an instance variable, you use dot notation.

NEWI] With dot notation, an instance or class variable name has two parts: the object on the left
TERM side of the dot, and the variable on the right side of the dot.

Forexample, if you have an object assigned to the variablemyobject, and that object hasavariable
called var, you refer to that variable’s value like this:

myObject.var;

This form for accessing variables is an expression (it returns a value), and both sides of the dot
are also expressions. This means that you can nest instance variable access. If that var instance
variable itself holds an object, and that object has its own instance variable called state, you can

refer to it like this:

myObject.var.state;

Dot expressions are evaluated left to right, so you start with myobject’s variable var, which points
to another object with the variable state. You end up with the value of that state variable.

Changing Values

Assigning a value to that variable is equally easy—just tack an assignment operator on the right
side of the expression:

myObject.var.state = true;

65

66

Working with Objects

Listing 4.2 is an example of a program that tests and modifies the instance variables in apoint
object. point is part of the java.awt package and refers to a coordinate point withanx and ay
value.

Type Listing 4.2. The TestPoint Class.

1: import java.awt.Point;

2:

3: class TestPoint {

4:

5: public static void main (String args[]) {

6: Point thePoint = new Point(10,10);

7

8: System.out.println("X is " + thePoint.x);
9: System.out.println("Y is " + thePoint.y);
10:

11: System.out.println("Setting X to 5.");
12: thePoint.x = 5;

13: System.out.println("Setting y to 15.");
14: thePoint.y = 15;

15:

16: System.out.println("X is " + thePoint.x);
17: System.out.println("Y is " + thePoint.y);
18:

19: }
20: }

X is 10

Output v 1 1o

Setting X to 5.
Setting y to 15.
X is 5
Y is 15
A | 1 Inthisexample, you first create an instance of Point where xand v are both 10 (line 6). Lines
id YSIS 8and 9 print out those individual values, and you can see dot notation at work there. Lines
11 through 14 change the values of those variables to 5 and 15, respectively. Finally, lines
16 and 17 print out the values of x and v again to show how they’ve changed.

Class Variables

Class variables, as you learned before, are variables that are defined and stored in the class itself.
Their values, therefore, apply to the class and to all its instances.

With instance variables, each new instance of the class gets a new copy of the instance variables
that class defines. Each instance can then change the values of those instance variables without
affecting any other instances. With class variables, there is only one copy of that variable. Every
instance of the class has access to that variable, but there is only one value. Changing the value
of that variable changes it for all the instances of that class.

sams
net

Sams.ney
Learning

You define class variables by including the static keyword before the variable itself. You'll learn
more about this on Day 6. For example, take the following partial class definition:
class FamilyMember {

static String surname = "Johnson";

String name;
int age;

}

Instances of the class Familymember each have their own values for name and age. But the class
variable surname has only one value for all family members. Change surname, and all the instances
of FamilyMember are affected.

To access class variables, you use the same dot notation as you do with instance variables. To
get or change the value of the class variable, you can use either the instance or the name of the
class on the left side of the dot. Both the lines of output in this example print the same value):
FamilyMember dad = new FamilyMember ()

System.out.println("Family's surname is: " + dad.surname);
System.out.println("Family's surname is: " + FamilyMember.surname);

Because you can use an instance to change the value of a class variable, it’s easy to become
confused about class variables and where their values are coming from (remember, the value of
a class variable affects all the instances). For this reason, it’s a good idea to use the name of the
class when you refer to a class variable—it makes your code easier to read and strange results
easier to debug.

Calling Methods

Calling a method in objects is similar to referring to its instance variables: method calls also use
dot notation. The object whose method you're calling is on the left side of the dot; the name
of the method and its arguments is on the right side of the dot:

myObject.methodOne(argl, arg2, arg3);
Note that all methods must have parentheses after them, even if that method takes no arguments:

myObject.methodNoArgs();

If the method you've called results in an object that itself has methods, you can nest methods
as you would variables:

myObject.getClass().getName();
You can combine nested method calls and instance variable references as well:

myObject.var.methodTwo(argi, arg2);

67

68

Working with Objects

System.out.println(), the method you've been using all through the book this far, is a great
example of nesting variables and methods. The system class (part of the java.1ang package)
describes system-specific behavior. system.out is a class variable that contains an instance of the
class printstream that points to the standard output of the system. printstream instances have
aprintln() method that prints a string to that output stream.

Listing 4.3 shows an example of calling some methods defined in the string class. Strings
include methods for string tests and modification, similar to what you would expect in a string
library in other languages.

Type Listing 4.3. Several Uses of string methods.

1: class TestString {

2:

3 public static void main (String args[]) {

4: String str = "Now is the winter of our discontent";
5:

6: System.out.println("The string is: " + str);

7: System.out.println("Length of this string: "

8: + str.length());

9: System.out.println("The character at position 5: "
10: + str.charAt(5));

11: System.out.println("The substring from 11 to 18: "
12: + str.substring(11, 18));

13: System.out.println("The index of the character d: "
14: + str.indexOf('d"));

15: System.out.print("The index of the beginning of the ")
16: System.out.println("substring \"winter\":"

17: + str.indexOf ("winter"));

18: System.out.println("The string in upper case: "

19: + str.toUpperCase());
20: }
21: }

The string is: Now is the winter of our discontent

()utput Length of this string: 35

The character at position 5: s

The substring from positions 11 to 18: winter

The index of the character d: 25

The index of the beginning of the substring "winter": 11

The string in upper case: NOW IS THE WINTER OF OUR DISCONTENT

A | 1 Inline 4, you create a new instance of string by using a string literal (it’s easier that way
naYSIS than using new and then putting the characters in individually). The remainder of the
program simply calls different string methods to do different operations on that string:

O Line 6 prints the value of the string we created in line 4: "Now is the winter of our
discontent".

sams
)

Sams.ney
Learning

O Line 7 calls the 1ength () method in the new string object. This string has 35 charac-
ters.

O Line 9 calls the charat () method, which returns the character at the given position in
the string. Note that string positions start at e, so the character at position 5 is s.

O Line 11 calls the substring() method, which takes two integers indicating a range and
returns the substring at those starting and ending points. The substring() method
can also be called with only one argument, which returns the substring from that
position to the end of the string.

O Line 13 calls the indexof () method, which returns the position of the first instance of
the given character (here, 'd").

O Line 15 shows a different use of the indexof () method, which takes a string argument
and returns the index of the beginning of that string.

O Finally, line 18 uses the touppercase () method to return a copy of the string in all
uppercase.

Class Methods

Class methods, like class variables, apply to the class as a whole and not to its instances. Class
methods are commonly used for general utility methods that may not operate directly on an
instance of that class, but fit with that class conceptually. For example, the string class contains
a class method called vaiueof (), which can take one of many different types of arguments
(integers, booleans, other objects, and so on). The vaiueof() method then returns a new
instance of string containing the string value of the argument it was given. This method doesn’t
operate directly on an existing instance of string, but getting a string from another object or data
type is definitely a string-like operation, and it makes sense to define it in the string class.

Class methods can also be useful for gathering general methods together in one place (the class).
For example, the math class, defined in the java.1ang package, contains a large set of
mathematical operations as class methods—there are no instances of the classmath, but you can
still use its methods with numeric or boolean arguments.

Tocall aclass method, use dot notation as you do with instance methods. As with class variables,
you can use either an instance of the class or the class itself on the left site of the dot. However,
for the same reasons noted in the discussion on class variables, using the name of the class for
class variables makes your code easier to read. The last two lines in this example produce the same
result:

String s, s2;

s = "foo";

s2 s.valueOf (5);
s2 String.valueOf(5);

69

70

Working with Objects

Figure 4.1. ptl\ Point object

References.

References to Objects

Asyou work with objects, one important thing going on behind the scenes is the use of references
to those objects. When you assign objects to variables, or pass objects as arguments to methods,
you are passing references to those objects, not the objects themselves or copies of those objects.

An example should make this clearer. Examine the following snippet of code:
import java.awt.Point;
class ReferencesTest {
public static void main (String args[]) {
Point pt1, pt2;

pti new Point (100, 100);
pt2 = pti;

pt1.x 200;
pti.y 200;
System.out.println("Point1: " + pt1.x + ", " + ptl.y);
System.out.println("Point2: " + pt2.x + ", " + pt2.y);

}
}

In this program, you declare two variables of type Point, and assign a new point object to pt1.
Then you assign the value of pt1 to pt2.

Now, here’s the challenge. After changing pt1’s x and y instance variables, what will pt2 look
like?

Here’s the output of that program:

Point1: 200, 200
Output - Sains: 5e0; 306

Asyou can see, pt2 was also changed. When you assign the value of pt1 to pt2, you actually

Ana'YSIS create a reference from p2 to the same object to which pt1 refers. Change the object that

pt2 refers to, and you also change the object that pt1 points to, because both are references
to the same object.

x: 200

p2—>1 y: 200

The fact that Java uses references becomes particularly important when you pass arguments to
methods. You’ll learn more about this later on today, but keep these references in mind.

sams
&

Sams. net
Lea"ning

Technical Note: There are no explicit pointers or pointer arithmetic in Java—just
references. However, because of Java references, you have most of the capabilities
that you have with pointers without the confusion and lurking bugs that explicit

pointers can create.

Casting and Converting Objects and
Primitive Types

Sometimes in your Java programs you may have a value stored somewhere that is the wrong type.
Maybe it’s an instance of the wrong class, or perhaps it’s a f1oat and you want it to be an int,
or it’san integer and you want it to be a string. To convert the value of one type to another, you
use a mechanism called casting.
NEWI] Casting isa mechanism of converting the value of an object or primitive type into another
TERM type. The result of a cast is a new object or value; casting does not affect the original object
or value.

Although the concept of casting is a simple one, the rules for what types in Java can be converted
to what other types are complicated by the fact that Java has both primitive types (int, float,
boolean), and object types (string, Point, Window, and so on). Because of these three types, there

are three forms of casts and conversions to talk about in this section:

O Casting between primitive types: int t0 float t0 boolean

O Casting between object types: an instance of a class to an instance of another class

O Converting primitive types to objects and then extracting primitive values back out of
those objects

Casting Primitive Types
Casting between primitive types enables you to “convert” the value of one type to another
primitive type—for example, to assign a number of one type to a variable of another type.
Casting between primitive types most commonly occurs with the numeric types; boolean values
cannot be cast to any other primitive type. You can, however, cast 1 or o to boolean values.

Often, if the type you are casting to is “larger” than the type of the value you’re converting, you
may not have to use an explicit cast. You can often automatically treat a byte or a character as
an int, for example, oran int asa long, an int asa float, Or anything asa double automatically.
In this case, because the larger type provides more precision than the smaller, no loss of

information occurs when the value is cast.

71

72

Working with Objects

To convert a large value to smaller type, you must use an explicit cast, because converting that
value may result in a loss of precision. Explicit casts look like this:

(typename) value

In this form, typename is the name of the type you're converting to (for example: short, int,
float, boolean), and value is an expression that results in the value you want to convert. This
expression divides the values of x by the value of y and casts the result to an int:

(int) (x / y);

Note that because the precedence of casting is higher than that of arithmetic, you have to use
parentheses so that the result of the division is what gets cast to an int.

Casting Objects

Instances of classes can also be cast to instances of other classes, with one restriction: the class
of the object you’re casting and the class you’re casting it to must be related by inheritance; that
i, you can cast an object only to an instance of its class’s sub- or superclass—not to any random
class.

Analogous to converting a primitive value to a larger type, some objects may not need to be cast
explicitly. In particular, because instances’ subclasses usually contain all the information that
instances’ superclasses do, you can use an instance of a subclass anywhere a superclass is expected.
Suppose you have a method that takes two arguments: one of type object, and one of type
Number. You don't have to passinstances of those particular classes to that method. For theobject
argument, you can pass any subclass of object (any object, in other words), and for the Number
argument you can pass in any instance of any subclass of Number (Integer, Boolean, Float, and
S0 on).

Casting an object to an instance of one of that object’s superclasses loses the information the
original subclass provided and requires a specific cast. To cast an object to another class, you use
the same casting operation that you used for base types:

(classname) object

In this case, c1assname is the name of the class you want to cast the object to, and object is a
reference to the object you're casting. Note that casting creates a new instance of the new class
with all the information that the old object contained; the old object still continues to exist as
it did before.

Here’s a (fictitious) example of a cast of an instance of the class GreenaApp1e to an instance of the
class App1e (Where Greenapple is theoretically a subclass of App1e):

GreenApple a;
Apple a2;

a = new GreenApple();

a2 = (Apple) a;

In addition to casting objects to classes, you can also cast objects to interfaces—but only if that
object’s class or one of its superclasses actually implements that interface. Casting an object to
an interface then enables you to call one of that interface’s methods even if that object’s class does
not directly implement that interface. You’ll learn more about interfaces in Week 3.

Converting Primitive Types
to Objects and Vice Versa

Now you know how to cast a primitive type to another primitive type and how to cast between
classes. How can you cast one to the other?

You can't! Primitive types and objects are very different things in Java and you can’t
automatically cast or convert between the two. However, the java. 1ang package includes several
special classes that correspond to each primitive data type: integer for ints, Float for f1oats,
Boolean for booleans, and so on.

Using class methods defined in these classes, you can create an object-equivalent for all the
primitive types using new. The following line of code creates an instance of the integer class with
the value 3s:

Integer intObject = new Integer(35);

Once you have actual objects, you can treat those values as objects. Then, when you want the
primitive values back again, there are methods for that as well—for example, the intvalue()
method extracts an int primitive value from an 1nteger object:

int theInt = intObject.intvalue(); // returns 35

See the Java APl documentation for these special classes for specifics on the methods for
converting primitives to and from objects.

Odds and Ends

This section is a catchall for other information about working with objects, in particular:
0O Comparing objects
O Copying objects
O Finding out the class of any given object
O Testing to see whether an object is an instance of a given class

73

74

Working with Objects

Comparing Objects

Yesterday, you learned about operators for comparing values: equals, not equals, less than, and
so on. Most of these operators work only on primitive types, not on objects. If you try to use other
values as operands, the Java compiler produces errors.

The exception to this rule is with the operators for equality: == (equal) and 1= (not equal). These
operators, when used with objects, tests whether the two operands refer to exactly the same
object.

What should you do if you want to be able to compare instances of your class and have
meaningful results? You have to implement special methods in your class, and you have to call
those methods using those method names.

Technical Note: Java does not have the concept of operator overloading—that is,
the capability of defining the behavior of the built-in operators by defining meth-
ods in your own classes. The built-in operators remain defined only for numbers.

A good example of this is the string class. It is possible to have two strings, two independent
objects in memory with the same values—that is, the same characters in the same order.
According to the == operator, however, those two string objects will not be equal, because,
although their contents are the same, they are not the same object.

The string class, therefore, defines a method called equals () that tests each character in the
string and returns true if the two strings have the same values. Listing 4.4 illustrates this.

Type Listing 4.4. A Test of String Equality.

1: class EqualsTest {

2-

3 public static void main (String args[]) {

4: String stri1, str2;

5: str1 = "she sells sea shells by the sea shore.";

6: str2 = stri;

7

8: System.out.println("String1: " + stri);

9: System.out.println("String2: " + str2);

10: System.out.println("Same object? " + (str1 == str2));
11:

12: str2 = new String(stri);

13:

14: System.out.println("String1: " + stri);

15: System.out.println("String2: " + str2);

16: System.out.println("Same object? " + (str1 == str2));
17: System.out.println("Same value? " + stri.equals(str2));
18: }

19: }

sams
net

Sams.ney
Learning

Stringi1: she sells sea shells by the sea shore.
()utput String2: she sells sea shells by the sea shore.
Same object? true
Stringi: she sells sea shells by the sea shore.
String2: she sells sea shells by the sea shore.
Same object? false
Same value? true
A | 1 The first part of this program (lines 4 through 6) declares two variables, str1 and str2,
nayS|S assigns the literal she sells sea shells by the sea shore. t0 str1, and then assigns that
value to str2. As you know from object references, now str1 and str2 point to the same

object, and the test at line 10 proves that.

In the second part, you create a new string object with the value of str1. Now you have two
different string objects with the same value. Testing them to see whether they’re the same object
by using the == operator (line 16) returns the expected answer, as does testing them using the
equals method (line 17) to compare their values.

Technical Note: Why can’t you just use another literal when you change str2,
rather than using new? String literals are optimized in Java—if you create a string
using a literal, and then use another literal with the same characters, Java knows
enough merely to give you the first string object back. Both strings are the same
objects—to create two separate objects you have to go out of your way.

Copying Objects
Recall from the section on object references that assigning variables and passing objects as
arguments to methods affect only the object’s reference and doesn’t create copies of those
objects. How do you create copies of objects? There are two ways: the copy () method and the
clone () method.

The copy () method (defined inobject, and so available to all objects), takes a single argument—
another instance of the same class—and copies the values of all the argument’s instance variables
into the instance variables of the current object (the one in which you're calling the method).
Note that if those instance variables in turn hold references to objects, only the references are
copied, not the objects.

Point pt1, pt2, pt3;

pt1 = new Point(0,0);
pt2 = new Point(100,100);

pt2.copy(pt1); // pti1's values are copied into pt2; both now are (0,0).

75

76

Working with Objects

The c1one () method is similar to copy (), except that c1one () takes no arguments. The clone ()
method creates a new instance of the same class as the source object and then copies the values
of the instance variables (either primitive types or references to other objects). c1one () returns
an instance of the class object; to use it as an instance of the original class you have to cast it.
Here’s an example that clones the point object in pt2 and stores the result in pt3:

pt3 = (Point) pt2.clone();

Determining the Class of an Object

Want to find out the class of an object? Here’s the way to do it for an object assigned to the
variable obj:

String name = obj.getClass().getName();

What does thisdo? The getc1ass () method is defined in the object class, and assuch is available
for all objects. The result of that method is a c1ass object (where c1ass is itself a class), which
has a method called getName (). getName () returns a string representing the name of the class.

Another test that might be useful to you is the instanceof operator. instanceof has two
operands: an object on the left, and the name of a class on the right. The expression returns true
or false based on whether the object is an instance of the named class or any of that class’s
superclasses:

"foo" instanceof String // true

Point pt = new Point(10,10);

pt instanceof String // false

The instanceof operator can also be used for interfaces; if an object implements an interface,
the instanceof operator with an interface name on the right side returns true. You'll learn all
about interfaces in Week 3.

The Java Class Libraries

To finish up today, let’s look at the some of the Java class libraries. Actually, you’ve had some
experience with them already, so they shouldn’t seem that strange.

The Java class libraries provide the set of classes that are guaranteed to be available in any
commercial Java environment (for example, in HotJava or in Netscape 2.0). Those classes are
in the java package and include all the classes you’ve seen so far in this book, plus a whole lot
more classes you'll learn about later on in this book (and more you may not learn about at all).

The Java Developer’s Kit comes with documentation for all the Java class libraries, which
includes descriptions of each class’s instance variables, methods, constructors, interfaces, and so
on. Ashorter summary of the Java API isin Appendix B as well. Exploring the Java class libraries

sams
)

Sams.ney
Learning

and their methods and instance variables is a great way to figure out what Java can and cannot
do, as well as a starting point for your own development.

Here are the class packages that are part of the Java class libraries:

O java.lang: Classes that apply to the language itself, which includes the object class,
the string class, and the system class. It also contains the special classes for the
primitive types (integer, Character, Float, and so on).

O java.util: Utility classes, such as pate, as well as simple collection classes, such as
vector and Hashtable.

O java.io: Input and output classes for writing to and reading from streams (such as
standard input and output) and for handling files.

O java.net: Classes for networking support, including socket and urL (a class to
represent references to documents on the World Wide Web).

O java.awt: (the Abstract Window Toolkit): Classes to implement a graphical user
interface, including classes for window, Menu, Button, Font, CheckBox, and so on. This
package also includes classes for processing images (the java.awt.Image package).

O java.applet: Classes to implement Java applets, including the app1et class itself, as 4
well as the Audioc1ip class.

In addition to the Java classes, your development environment may also include additional
classes that provide other utilities or functionality. Although these classes may be useful, because
they are not part of the standard Java library, they won’t be available to other people trying to
run your Java program. This is particularly important for applets, because applets are expected
to be able to run on any platform, using any Java-aware browser. Only classes inside the java
package are guaranteed to be available on all browsers and Java environments.

Summary

Objects, objects everywhere. Today, you learned all about how to deal with objects: how to
create them, how to find out and change the values of their variables, and how to call their
methods. You also learned how to copy and compare them, and how to convert them into other
objects. Finally, you learned a bit about the Java class libraries—which give you a whole slew of

classes to play with in your own programs.

You now have the fundamentals of how to deal with most simple things in the Java language.
All you have left are arrays, conditionals, and loops, which you’ll learn about tomorrow. Then
you’ll learn how to define and use classes in Java applications on Day 6, and launch directly into
applets next week. With just about everything you do in your Java programs, you'll always come
back to objects.

77

78

Working with Objects

Q&A

Q

A

I’'m confused about the differences between objects and the primitive data types,
such as int and boolean.

The primitive types in the language (byte, short, int, long, float, double, and char)
represent the smallest things in the language. They are not objects, although in many
ways they can be handled like objects—they can be assigned to variables and passed in
and out of methods. Most of the operations that work exclusively on objects, however,
will not.

Obijects usually represent instances of classes and as such, are much more complex
data types than simple numbers and characters, often containing numbers and
characters as instance or class variables.

In the section on calling methods, you had examples of calling a method with a
different number of arguments each time—and it gave a different kind of result.
How is that possible?

That’s called method overloading. Overloading enables the same function name to have
different behavior based on the arguments it’s called with—and the number and type
of arguments can vary. When you define methods in your own classes, you define
separate method signatures with different sets or arguments and different definitions.
When that method is called, Java figures out which definition to execute based on the
number and type of arguments with which you called it.

You'll learn all about this on Day 6.

No operator overloading in Java? Why not? | thought Java was based on C++,
and C++ has operator overloading.

Java was indeed based on C++, but it was also designed to be simple, so many of
C++’s features have been removed. The argument against operator overloading is that
because the operator can be defined to mean anything, it makes it very difficult to
figure out what any given operator is doing at any one time. This can result in entirely
unreadable code. Given the potential for abuse, the designers of Java felt it was one of
the C++ features that was best left out.

WEEK

Arrays,
Conditionals,
and Loops

by Laura Lemay

80

Arrays, Conditionals, and Loops

Althoughyou could write Java programs using what you’ve learned so far, those programs would
be pretty dull. Much of the good stuff in Java or in any programming language results when you
have arrays to store values in and control-flow constructs (loops and conditionals) to execute
different bits of a program based on tests. Today, you'll find out about the following:

O Arrays, one of the most useful objects in Java, which enable you to collect objects into
an easy-to-manage list

O Block statements, for grouping together related statements
O if and switch, for conditional tests

O for and while loops, for iteration or repeating a statement or statements multiple
times

Arrays

Arraysin Java are different than they are in other languages. Arrays in Java are actual objects that
can be passed around and treated just like other objects.

NEVW[] Arraysareaway tostore alist of items. Each element of the array holds an individual item,
TERM and you can place items into and remove items from those slots as you need to.

Arrays can contain any type of value (base types or objects), but you can’t store different types
in a single array. You can have an array of integers, or an array of strings, or an array of arrays,
but you can’t have an array that contains, for example, both strings and integers.

To create an array in Java, you use three steps:

1. Declare a variable to hold the array.
2. Create a new array object and assign it to the array variable.
3. Store things in that array.

Declaring Array Variables

The first step to creating an array is creating a variable that will hold the array, just as you would
any other variable. Array variables indicate the type of object the array will hold (just as they do
for any variable) and the name of the array, followed by empty brackets (1 1). The following are
all typical array variable declarations:

String difficultWords[];
Point hits[];

int temps[];

net

Sams. net
Learning
3

An alternate method of defining an array variable is to put the brackets after the type instead of
after the variable. They are equivalent, but this latter form is often much more readable. So, for
example, these three declarations could be written like this:

String[] difficultWords;
Point[] hits;

int[] temps;

Creating Array Objects

The second step is to create an array object and assign it to that variable. There are two ways to
do this:

O Using new
O Directly initializing the contents of that array

The first way is to use the new operator to create a new instance of an array:

String[] names = new String[10];

Thatline createsa new array of stringswith ten slots, or elements. When you create the new array
object using new, you must indicate how many elements that array will hold.

Array objects can contain primitive types such as integers or booleans, just as they can contain
objects:

int[] temps = new int[99];

When you create an array object using new, all its elements are initialized for you (e for numeric
arrays, false for boolean, '\o' for character arrays, and nu11 for everything else). You can also
create and initialize an array at the same time. Instead of using new to create the new array object,
enclose the elements of the array inside braces, separated by commas:

String[] chiles = { "jalapeno", "anaheim", "serrano,"
"habanero," "thai" };

Each of the elements inside the braces must be of the same type and must be the same type as
the variable that holds that array. An array the size of the number of elements you’ve included
will be automatically created for you. This example creates an array of string objects named
chiles that contains five elements.

Accessing Array Elements

Once you have an array with initial values, you can test and change the values in each slot of that
array. To get at a value stored within an array, use the array subscript expression:

myArray[subscript]; 81

82

Arrays, Conditionals, and Loops

The myarray part of this expression is a variable holding an array object, although it can also be
an expression that results in an array). The subscript is the slot within the array to access, which
can also be an expression. Array subscripts start with e, as they do in C and C++. So, an array
with ten elements has array values from subscript o to o.

Note that all array subscripts are checked to make sure that they are inside the boundaries of the
array (greater than 0 but less than the array’s length) either when your Java program is compiled
or when it is run. It is impossible in Java to access or assign a value to an array element outside
of the boundaries of the array. Note the following two statements, for example:

String arr[] = new String[10];

arr[10] = "eggplant";

A program with that last statement in it produces a compiler error at that line when you try to
compile it. The array stored in arr has only ten elements numbered from o, the element at
subscript 1e doesn’t exist, and the Java compiler will check for that.

If the array subscript is calculated at run-time (for example, as part of aloop) and ends up outside
the boundaries of the array, the Java interpreter also produces an error (actually, to be technically
correct, it throws an exception). You’ll learn more about exceptions later on next week and on
Day 18.

How can you keep from overrunning the end of an array accidentally in your own programs?
You can test for the length of the array in your programs using the 1ength instance variable—
it's available for all array objects, regardless of type:

int len = arr.length // returns 10

Changing Array Elements

To assign a value to a particular array slot, merely put an assignment statement after the array
access expression:

myarray[1] = 15;

sentence[@] = "The";

sentence[10] = sentence[0];

An important thing to note is that an array of objects in Java is an array of references to those
objects (similar in some ways to an array of pointers in C or C++). When you assign a value to
aslot in an array, you're creating a reference to that object, just as you do for a plain variable.
When you move values around inside arrays (as in that last line), you just reassign the reference;
you don’t copy the value from one slot to another. Arrays of primitive typessuch asintsor f1oats
do copy the values from one slot to another.

Arrays of references to objects, as opposed to the objects themselves, are particularly useful
because it means you can have multiple references to the same objects both inside and outside
arrays—for example, you can assign an object contained in an array to a variable and refer to that
same object by using either the variable or the array position.

sams
net

Sams.ney
Learning

Multidimensional Arrays

Java does not support multidimensional arrays. However, you can declare and create an array
of arrays (and those arrays can contain arrays, and so on, for however many dimensions you
need), and access them as you would C-style multidimensional arrays:

int coords[][] = new int[12][12];
coords[0][0] = 1;
coords[0][1] = 2;

Block Statements

A block statement is a group of other statements surrounded by braces ({}). You can use a block
anywhere a single statement would go, and the new block creates a new local scope for the
statements inside it. This means that you can declare and use local variables inside a block, and
those variables will cease to exist after the block is finished executing. For example, here’s a block
inside a method definition that declares a new variable y. You cannot use y outside the block in

which it’s declared:

void testblock() {

int x = 10;

{ // start of block
int y = 50;
System.out.println("inside the block:");
System.out.println("x:" + Xx);
System.out.println("y:" + y);

} // end of block
}

Blocksare not usually used in this way—alone in a method definition. You've mostly seen blocks
up to this point surrounding class and method definitions, but another very common use of
block statements is in the control flow constructs you’ll learn about in the remainder of today’s

lesson.

If Conditionals

The if conditional, which enables you to execute different bits of code based on a simple test
in Java, is nearly identical to if statements in C. if conditionals contain the keyword if,
followed by a boolean test, followed by a statement (often a block statement) to execute if the

test is true:

if (x <vy)
System.out.println("x is smaller than y");

An optional e1se keyword provides the statement to execute if the test is false:

if (x <vy)
System.out.println("x is smaller than y");
else System.out.println("y is bigger.");

83

84

Arrays, Conditionals, and Loops

Technical Note: The difference between if conditionals in Java and C or C++ is
that the test must return a boolean value (true or false). Unlike in C, the test
cannot return an integer.

if (engineState == true)
System.out.println("Engine is already on.");
else {

System.out.println("Now starting Engine");
if (gasLevel >= 1)
engineState = true;
else System.out.println("Low on gas! Can't start engine.");

}

This example uses the test (enginestate == false). For boolean tests of this type, a common
shortcut is merely to include the first part of the expression, rather than explicitly testing its value
against true or false:

if (engineState)

System.out.println("Engine is on.");
else System.out.println("Engine is off");

The Conditional Operator

An alternative to using the if and e1se keywords in a conditional statement is to use the
conditional operator, sometimes called the ternary operator.

NEW/[] A conditional operator is a ternary operator because it has three terms.
TERM

The conditional operator is an expression, meaning that it returns a value (unlike the more
general if, which can result in any statement or block being executed). The conditional operator
is most useful for very short or simple conditionals, and looks like this:

test ? trueresult : falseresult

The test isan expression that returns true Or false, just like the test in the if statement. If the
test is true, the conditional operator returns the value of trueresuit; if it’s false, it returns the
value of raiseresu1t. For example, the following conditional tests the values of x and y, returns
the smaller of the two, and assigns that value to the variable sma11er:

int smaller = x <y ? X : Vy;

The conditional operator has a very low precedence; that is, it’s usually evaluated only after all
its subexpressions are evaluated. The only operators lower in precedence are the assignment
operators. See the precedence chart in Day 3’s lesson for a refresher on precedence of all the
operators.

sams
net

Sams.ney
Learning

switch Conditionals

A common practice in programming in any language is to test a variable against some value, and
if it doesn’t match that value, to test it again against a different value, and if it doesn’t match that
one to make yet another test, and so on. Using only if statements, this can become unwieldy,
depending on how it’s formatted and how many different options you have to test. For example,
you might end up with a set of if statements something like this or longer:
if (oper == '+')

addargs(argi,arg2);

else if (oper == '=")
subargs(argi,arg2);

else if (oper == '*'")
multargs(argl,arg2);
else if (oper == '/")

divargs(argil,arg2);

This form of if statement is called a nested if, because each else statement in turn contains yet
another if, and so on, until all possible tests have been made.

A common shorthand mechanism for nested i fs that you can use in some cases allows you tests
and actions together inasingle statement. Thisis the switch Or case Statement; in Javait’s switch

and behaves as it does in C:

switch (test) {
case valueOne:
resultOne;
break;
case valueTwo:
resultTwo;
break;
case valueThree:
resultThree;
break;

éé%ault: defaultresult;
}
In the switch statement, the test (a primitive type of byte, char, short, Or int) is compared with
each of the case values in turn. If a match is found, the statement, or statements after the test
is executed. If no match is found, the defau1t statement is executed. The default is optional,
so if there isn’t a match in any of the cases and default doesn’t exist, the switch statement

completes without doing anything.

Note that the significant limitation of the switch in Java is that the tests and values can be only
simple primitive types (and then only primitive types that are castable to int). You cannot use
larger primitive types (long, float) Or objects within a switch, nor can you test for any
relationship other than equality. This limits the usefulness of switch to all but the simplest cases;
nested ifs can work for any kind of test on any type.

85

86

Arrays, Conditionals, and Loops

Here’s a simple example of a switch statement similar to the nested if shown earlier:
switch (oper) {
case '+':
addargs(argi,arg2);
break;
case '*':
subargs(argi,arg2);
break;
case '-':
multargs(argl,arg2);
break;
case '/':
divargs(argi,arg2);
break;

}

Note the break statement included in every line. Without the explicit break, once a match is
made, the statements for that match and also all the statements further down in the switch are
executed until a break or the end of the switch is found (and then execution continues after the
end of the switch). In some cases, this may be exactly what you want to do, but in most cases,
you’llwant to make sure to include the break 50 that only the statements you want to be executed
are executed.

One handy use of falling through occurs when you want multiple values to execute the same
statements. In this instance, you can use multiple case lines with no result, and the switch will
execute the first statements it finds. For example, in the following switch statement, the string
"x is an even number." is printed if x has values of 2, 4, 6, or 8. All other values of x print the
string "x is an odd number."
switch (x) {

case 2:

case 4:

case 6:

case 8:

System.out.println("x is an even number.");

break;
default: System.out.println("x is an odd number.");

for Loops

The for loop, as in C, repeats a statement or block of statements some number of times until
a condition is matched. for loops are frequently used for simple iteration in which you repeat
ablock of statements a certain number of times and then stop, but you can use for loops for just
about any kind of loop.

The for loop in Java looks roughly like this:

for (initialization; test; increment) {

sams
net

Sams.ney
Learning

statements;

}
The start of the for loop has three parts:

O initialization iSan expression that initializes the start of the loop. If you have a loop
index, this expression might declare and initialize it, for example, int i = o. Variables
that you declare in this part of the for loop are local to the loop itself; they cease
existing after the loop is finished executing. (This is different from C or C++.)

O test iS the test that occurs after each pass of the loop. The test must be a boolean
expression or function that returns a boolean value, for example, i < 1e. If the test is
true, the loop executes. Once the test is false, the loop stops executing.

O increment iS any expression or function call. Commonly, the increment is used to
change the value of the loop index to bring the state of the loop closer to returning
false and completing.

The statement part of the for loop is the statement that is executed each time the loop iterates.
Just as with if, you can include either a single statement here or a block; the previous example
used a block because that is more common. Here’s an example of a for loop that initializes all
the values of a string array to null strings:

String strArray[] = new String[10];
int i; // loop index

for (i = 0; i < strArray.length; i++)

strArray[i] = "";
Any of the parts of the for loop can be empty statements, that is, you can simply include a
semicolon with no expression or statement, and that part of the for loop will be ignored. Note
that if you do use a null statement in your for loop, you may have to initialize or increment any
loop variables or loop indices yourself elsewhere in the program.

You can also have an empty statement for the body of your for loop, if everything you want to
doisinthefirst line of that loop. For example, here’s one that finds the first prime number higher

than 4000:
for (i = 4001; notPrime(i); i += 2)
Note that acommon mistake in C that also occurs in Java is accidentally to put a semicolon after
the first line of the for loop:
for (1 = 0; i < 10; it++);

System.out.println("Loop!");
Because the first semicolon ends the loop with an empty statement, the loop doesn’t actually do
anything. The print1n function will be printed only once, because it’s actually outside the for
loop entirely. Be careful not to make this mistake in your own Java programs.

87

88

Arrays, Conditionals, and Loops

while and do Loops

Finally, there are while and do loops. while and do loops, like for loops, enable a block of Java
code to be executed repeatedly until a specific condition is met. Whether you use a for loop, a
while, OF & do is mostly a matter of your programming style.

while and do loops, like for, are exactly the same as those same constructions in C and C++.

while Loops

The while loop is used to repeat a statement or block of statements as long as a particular
condition is true. while loops look like this:

while (condition){
bodyOfLoop;

}

The condition isaboolean expression. If it returns true, the while loop executes the statements
in bodyofLoop and then tests the condition again, repeating until the condition is false. I've
shown the while loop here with a block statement, because it’s most commonly used, although
you can use a single statement in place of the block.

Here’s an example of awhile loop that copies the elements of an array of integers (in array1)
toanarray of f1oats (in array2), casting each element to a f1oat as it goes. The one catch is that
if any of the elements in the first array is o, the loop will immediately exit at that point. To cover
both the cases wherein all the elements have been copied and an element is e, you can use a
compound test with the && operator:
while ((ch != ' ') 8& (ch != '\t') && (ch != '\n') && (ch != '\r')) {

addChar(ch, theName);

ch = instream.read();
}
Note that if the condition is initially false the first time it is tested (for example, if the first element
in that first array is @), the body of the whi1e loop will never be executed. If you need to execute
the loop at least once, you can do one of two things:

O Duplicate the body of the loop outside the while loop.
O Use a do loop (described below).

The do loop is considered the better solution of the two.

do...while Loops

The do loop is just like awhile loop, except that do executes a given statement or block until a
condition is false. The main difference is that while loops test the condition before looping,
making it possible that the body of the loop will never execute if the condition is false the first
time it’s tested. do loops run the body of the loop at least once before testing the condition. do
loops look like this:
do {

bodyOfLoop;
} while (condition);
Here, the bodyofLoop part is the statements that are executed with each iteration. It’s shown here
with a block statement because it’s most commonly used that way, but you can substitute the
braces for a single statement as you can with the other control-flow constructs. The condition
isaboolean test. If it returns true, the loop is run again. If it returns fa1se, the loop exits. Keep
in mind that with do loops, the body of the loop executes at least once.

Here’s a simple example of a do loop that prints a message each time the loop iterates:

int x = 1;

do {
System.out.println("Looping, round " + X);
X++;

} while (x <= 10);

Here’s the output of these statements:

Looping, round

()Utput Looping, round

1

2
Looping, round 3
Looping, round 4
Looping, round 5
Looping, round 6
Looping, round 7
Looping, round 8
Looping, round 9
Looping, round 1

Breaking Out of Loops

In all the loops (for, while, and do), the loop ends when the condition you're testing for is met.
What happens if something odd occurs within the body of the loop and you want to exit the loop
early? For that, you can use the break and continue keywords.

89

90

Arrays, Conditionals, and Loops

You've already seen break as part of the switch statement; it stops execution of the switch, and
the program continues. The break keyword, when used with a loop, does the same thing—it
immediately halts execution of the current loop. If you’ve nested loops within loops, execution
picks up in the next outer loop; otherwise, the program merely continues executing the next
statement after the loop.

For example, suppose you have awhile loop that copies elements from one array into another.
Each element in the array should be copied until the end of the array is reached or if an element
contains o. You can test for that latter case inside the body of the while and then use a break to
exit the loop:

while (count < arrayil.length) {

if (arrayi[count] == 0) {
break;

}

array2[count] = arrayi[count];

count++;

}

}

continue issimilar to break except that instead of halting execution of the loop entirely, the loop
starts over at the next iteration. For do and while loops, this means the execution of the clock
starts over again; for for loops, the increment expression is evaluated and then block is executed.
continue i useful when you want to special-case elements within a loop. With the previous
example of copying one array to another, you can test for whether the current element ise and
restart the loop if you find it so that the resulting array will never contain zero. Note that because
you’re skipping elements in the first array, you now have to keep track of two different array
counters:

while (count < arrayil.length) {

if (arrayi[count] == 0)
continue;
array2[count2++] = (float)arrayi[count++];

Labeled Loops

Both break and continue can have an optional label that tells Java where to break to. Without
a label, break jumps outside the nearest loop (to an enclosing loop or to the next statement
outside the loop), and continue restarts the enclosing loop. Using labeled breaks and continues
enables you to break outside nested loops or to continue a loop outside the current loop.

Tousealabeled loop, add the label before the initial part of the loop, with a colon between them.
Then, when you use break Or continue, add the name of the label after the keyword itself:

out:
for (int 1 = 0; i <10; i++) {
while (x < 50) {
if (1 * x == 400)
break out;
}
}

In this snippet of code, the label out labels the outer for loop. Then, inside both the for and the
while loop, if a particular condition is met inside both loops, a break causes the execution to
creak out of both loops and restart back at the label (out).

Here’sanother example. the following program contains a nested for loop. Inside the innermost
loop, if the sum values of the two counters is greater than four, both loops exit at once:

foo:
for (int i = 1; 1 <= 5; i++)
for (int j = 1; j <= 3; j++) {
System.out.println("i is " + i + ", j is " + j);
if ((i+3) > 4)
break foo;

System.out.println("end of loops");

Here’s the output from this program:

Output

is
is
is
is

iis 1,
iis 1,
iis 1,
iis 2,
i 2,
i 2,
e

is is
is j is
nd of loops

WN =N =

An | 1 Asyou can see, the loop iterated until the sum of i and j was greater than 4, and then both
ayS|S loops exited back to the outer block and the final message was printed.

Summary

Today, you learned about three main topics that you’ll most likely use quite often in your own
Java programs: arrays, conditionals, and loops.

You learned how to declare an array variable, create and assign an array object to that variable,
and access and change elements within that array.

91

92

Arrays, Conditionals, and Loops

Conditionalsinclude the if and switch statements, with which you can branch to different parts
of your program based on a boolean test.

Finally, you learned about the for, while, and do loops, each of which enable you to execute a
portion of your program repeatedly until a given condition is met.

Now that you've learned the small stuff, all that’s left is to go over the bigger issues of declaring
classes and creating methods within which instances of those classes can communicate with each
other by calling methods. Get to bed early tonight, because tomorrow is going to be a wild ride.

Q&A

Q

A

> O

> O

If arrays are objects, and you use new to create them, and they have an instance
variable 1ength, where is the Array class? | didn’t see it in the Java class libraries.

Arrays are implemented kind of weirdly in Java. The Array class is constructed
automatically when your Java program runs; Array provides the basic framework for
arrays, including the 1ength variable. Additionally, each primitive type and object has
an implicit subclass of Array that represents an array of that class or object. When you
create a new array object, it may not have an actual class, but it behaves as if it does.

Does Java have gotos?

The Java language defines the keyword goto, but it is not currently used for anything.
In other words, no, Java does not have gotos.

| declared a variable inside a block statement for an if. When the if was done,
the definition of that variable vanished. Where did it go?

In technical terms, block statements inside braces form a new lexical scope. What this
means is that if you declare a variable inside a block, it’s only visible and usable inside
that block. Once the block finishes executing, all the variables you declared go away.

It’s a good idea to declare most of your variables in the outermost block in which
they’ll be needed—usually at the top of a block statement. The exception might be
very simple variables, such as index counters in for loops, where declaring them in the
first line of the for loop is an easy shortcut.

You’ll learn more about variables and scope tomorrow.
What can’t you use switch with strings?

Strings are objects, and switch in Java works only for the primitive types that can be
cast to integers (byte, char, short, and int). To compare strings, you have to use
nested ifs, which enable more general expression tests, including string comparison.

sams
net

Q It seems to me that a lot of for loops could be written as while loops, and vice
versa.

A True. The for loop is actually a special case of while that enables you to iterate a loop
a specific number of times. You could just as easily do this with a while and then
increment a counter inside the loop. Either works equally well. This is mostly just a
question of programming style and personal choice.

93

4 -

Creating Classes
and Applications
INn Java

By Laura Lemay

96

Creating Classes and Applications in Java

In just about every lesson up to this point you’'ve been creating Java applications—writing
classes, creating instance variables and methods, and running those applications to perform
simple tasks. Also up to this point, you’ve focused either on the very broad (general object-
oriented theory) or the very minute (arithmetic and other expressions). Today, you pull it all
together and learn how and why to create classes by using the following basics:

O The parts of a class definition

O Declaring and using instance variables
O Defining and using methods
[

Creating Java applications, including the main() method and how to pass arguments
to a Java program from a command line

Defining Classes

Defining classes is pretty easy; you’ve seen how to do it a bunch of times in previous lessons. To
define a class, use the c1ass keyword and the name of the class:

class MyClassName {

.
If this class is a subclass of another class, use extends to indicate the superclass of this class:

class myClassName extends mySuperClassName {

If this class implements a specific interface, use imp1ements to refer to that interface:

class MyRunnableClassName implements Runnable {

i"

Both extends and imp1ements are optional. You'll learn about using and defining interfaces in
Week 3.

Creating Instance and Class Variables

A class definition with nothing in it is pretty dull; usually, when you create a class, you have
something you want to add to make that class different from its superclasses. Inside each class
definition are declarations and definitions for variables or methods or both—for the class and
for each instance. In this section, you’ll learn all about instance and class variables; the next
section talks about methods.

Defining Instance Variables

On Day 3, you learned how to declare and initialize local variables—that is, variables inside
method definitions. Instance variables, fortunately, are declared and defined in exactly the same
way as local variables; the only difference is their location in the class definition. Instance
variables are considered instance variables if they are declared outside a method definition.
Customarily, however, most instance variables are defined just after the first line of the class
definition. For example, Listing 6.1 shows a simple class definition for the classeicyc1e, which
inherits from the class PersonPoweredvehicle. This class definition contains four instance
variables:

O bikeType: the kind of bicycle this bicycle is—for example, Mountain Or Street
O chainGear, the number of gears in the front

O rearCogs, the number of minor gears on the rear axle

[

currentGearFront and currentGearRear: the gears the bike is currently in, both front
and rear

Type Listing 6.1. The bicycle class.

1: class Bicycle extends PersonPoweredVehicle {
2: String bikeType;

3: int chainGear;

4: int rearCogs;

5: int currentGearFront;

6 int currentGearRear;

7

Constants

Constants are useful for setting global states in a method or object, or for giving meaningful
names to object-wide values that will never change. In Java, you can create constants only for
instance or class variables, not for local variables.

NEW!] A constant variable or constant is a variable whose value never changes (which may seem
TERM strange given the meaning of the word “variable”).

To declare a constant, use the final keyword before the variable declaration and include an
initial value for that variable:
final float pi = 3.141592;

final boolean debug = false;
final int maxsize = 40000;

97

o) Creating Classes and Applications in Java

Technical Note: The only way to define constants in Java is by using the fina1
ord. Neither the C and C++ constructs for #define nor const are available in

ful for naming various states of an object and then testing for those states.
U have atest label that can be aligned left, right, or center. You can define

, ou can either set the alignment:

sams
net

Sams.ney
Learning

Creating Methods

Methods, as you learned on Day 2, define an object’s behavior—what happens when that object
is created and the various operations that object can perform during its lifetime. In this section,
you’ll get a basic introduction to method definition and how methods work; tomorrow, you’ll
go into more detail about advanced things you can do with methods.

Defining Methods
Method definitions have four basic parts:

O The name of the method

O The type of object or base type this method returns
O A list of parameters

O The body of the method

NEWI] The method’s signature is a combination of the name of the method, the type of object or
TERM base type this method returns, and a list of parameters.

Note: To keep things simple today, I've left off two optional parts of the method
definition: an access qualifier such as public Or private, and the throws keyword,
which indicates the exceptions a method can throw. You'll learn about these parts
of a method definition in Week 3.

In other languages, the name of the method (or function, subroutine, or procedure) is enough
to distinguish it from other methods in the program. In Java, you can have different methods
that have the same name but a different return type or argument list. This is called method
overloading, and you'll learn more about it tomorrow.

Here’s what a basic method definition looks like:

returntype methodname (typel argl, type2 arg2, type3 arg3..) {

}

The returntype is the primitive type or class of the of the value this method returns. It can be
one of the primitive types, a class name, or void if the method does not return a value at all.

Note that if this method returns an array object, the array brackets can go either after the return
type or after the parameter list; because the former way is considerably easier to read, it is used
in the examples today (and throughout this book):

int[] makeRange (int lower, int upper) {...}
99

o b Creating Classes and Applications in Java

The method’s parameter list is a set of variable declarations, separated by commas, inside
parentheses. These parameters become local variables in the body of the method, whose values
are the objects or values of primitives passed in when the method is called.

Inside the body of the method you can have statements, expressions, method calls to other
objects, conditionals, loops, and so on—everything you’ve learned about in the previous lessons.

If your method has a real return type (that is, it has not been declared to return void), somewhere
inside the body of the method you need to return a value. Use the return keyword to do this.
Listing 6.2 shows an example of a class that defines a makeRange () method. makeRange () takes
two integers—a lower bound and an upper bound—and creates an array that contains all the
integers between those two boundaries (inclusive).

Type Listing 6.2. The RangeClass class.

1: class RangeClass {

2 int[] makeRange (int lower, int upper) {

3 int arr[] = new int[(upper - lower) + 1 1;
4:

5: for (int i = @0; i < arr.length; i++) {
6: arr[i] = lower++;

7 }

8: return arr;

9: }

10:

11: public static void main (String arg[]) {

12: int theArray[];

13: RangeClass theRange = new RangeClass();
14:

15: theArray = theRange.makeRange(1,10);

16: System.out.print("The array: [")

17: for (int i = @0; i < theArray.length; i++) {
18: System.out.print(theArray[i] + " ");
19: }
20: System.out.println("]1");
21: }
22:
23: }

Here’s the output of this program:

Output
Analysi

The array: [123456789 10]

uses a for loop to print the values of the new array.

100

sams
&

Sams. net
Lea"ning

The this Keyword

Sometimes, in the body of a method definition, you may want to refer to the current object—
for example, to refer to that object’s instance variables or to pass the current object as an
argument to another method. To refer to the current object in these cases, you can use the this
keyword. this refers to the current object, and you can use it anywhere that object might
appear—in dot notation to refer to the object’s instance variables, as an argument to a method,
as the return value for the current method, and so on. Here’s an example:
t = this.x // the x instance variable for this object
this.myMethod(this) // call the mymethod method, defined in

// this class, and pass it the current

// object
return this; // return the current object
In many cases, however, you may be able to omit the this keyword. You can refer to both
instance variables and method calls defined in the current class simply by name; the this is
implicit in those references. So, the first two examples could be written like this:

t =x // the x instance variable for this object
myMethod(this) // call the myMethod method, defined in this
/] class

Note: Omitting the this keyword for instance variables depends on whether there
are no variables of the same name declared in the local scope. See the next section

for details.

Keep in mind that because this is a reference to the current instance of a class, it makes sense
to use it only inside the body of an instance method definition. Class methods, that is, methods
declared with the static keyword, cannot use this.

Variable Scope and Method Definitions

When you refer to a variable within your method definitions, Java checks for a definition of that
variable first in the current scope (which may be a block), then in the outer scopes up to the
current method definition. If that variable is not a local variable, Java then checks for a definition
of that variable as an instance variable in the current class, and then, finally, in each superclass

in turn.

Because of the way Java checks for the scope of a given variable, it is possible for you to create
avariable in a lower scope such that a definition of that same variable “hides” the original value
of that variable. This can introduce subtle and confusing bugs into your code.

101

102

Creating Classes and Applications in Java

For example, note this small Java program:

class ScopeTest {
int test = 10;

void printTest () {
int test = 20;
System.out.println("test = " + test);
}

}

In this class, you have two variables with the same name and definition: the first, an instance
variable, has the name test and is initialized to the value 10. The second is a local variable with
the same name, but with the value 2. Because the local variable hides the instance variable, the
println() method will print that test is 2o.

You can get around this particular instance by using this. test to refer to the instance variable,
and just test to refer to the local variable.

A more insidious example of this occurs when you redefine a variable in a subclass that already
occurs in a superclass. This can create very insidious bugs in your code—for example, you may
call methods that are intended to change the value of an instance variable, but that change the
wrong one. Another bug might occur when you cast an object from one class to another—the
value of your instance variable may mysteriously change (because it was getting that value from
the superclass instead of from your class). The best way to avoid this behavior is to make sure
that, when you define variables in a subclass, you're aware of the variables in each of that class’s
superclasses and you don’t duplicate what is already there.

Passing Arguments to Methods

When you call a method with object parameters, the variables you pass into the body of the
method are passed by reference, which means that whatever you do to those objects inside the
method affects the original objects as well. This includes arrays and all the objects that arrays
contain; when you pass an array into a method and modify its contents, the original array is
affected. (Note that primitive types are passed by value.)

Here’s an example to demonstrate how this works. First, you have a simple class definition,
which includes a single method called oneTozero() (see Listing 6.3).

Type Listing 6.3. The PassByReference class.

class PassByReference {
int OnetoZero (int arg[]) {
int count = 0;

for (int i = @0; i < arg.length; i++) {

1:
2
3:
4:
5
6 if (arg[i] == 1) {

count++;
arg[i] = 0;
}
}

return count;

The onetozero() method does two things:

O
O

Listing 6.4 shows the main () method for the PassByReference class, which tests the onetozero ()

It counts the number of ones in the array and returns that value.
If it finds a one, it substitutes a zero in its place in the array.

method:

Type

Listing 6.4. The main() method in PassByReference.

1:
2
3
4:
5:
6
7
8

public static void main (String arg[]) {

int arr[] = {1, 3, 4, 5, 1, 1, 7 };
PassByReference test = new PassByReference();
int numOnes;

System.out.print("Values of the array: [");

for (int i = @; i < arr.length; i++) {
System.out.print(arr[i] + " ");

}

System.out.println("1");

numOnes = test.OnetoZero(arr);

System.out.println("Number of Ones = " + numOnes);

System.out.print("New values of the array: [");
for (int i = @; i < arr.length; i++) {
System.out.print(arr[i] + " ");

System.out.println("1");

Here is the output of this program:

Output
Analysi

Lines 2 through 4 set up the initial variables for this example. The first one isan array of integers;
the second one is an instance of the class passByReference, Which is stored in the variable test.
The third is a simple integer to hold the number of ones in the array.

Values of the array: [1345 117]
Number of Ones = 3
New values of the array: [0 3 4500 7]

Let’s go over the main() method line by line so that you can see what is going on.

103

104

Creating Classes and Applications in Java

Lines 6 through 11 print out the initial values of the array; you can see the output of these lines
in the first line of the output.

Line 12 iswhere the real work takes place; this is where you call theonetozero () method, defined
in the object test, and pass it the array stored in arr. This method returns the number of ones
in the array, which you’ll then assign to the variable numones.

Got it so far? Line 13 prints out the number of ones, that is, the value you got back from the
onetozero() method. It returns three, as you would expect.

The last bunch of lines print out the array values. Because a reference to the array object is passed
to the method, changing the array inside that method changes that original copy of the array.
Printing out the values in lines 14 through 18 proves this—that last line of output shows that
all the 15 in the array have been changed to os.

Class Methods

Just as you have class and instance variables, you also have class and instance methods, and the
difference between the two types of methods are analogous. Class methods are global to the class
itself and available to any other classes or objects. Therefore, class methods can be used anywhere
regardless of whether an instance of the class exists or not.

For example, the Java class libraries include a class called math. The math class defines a whole
set of math operations that can be used in any program with the various number types:
float root = Math.sqrt(453.0);

System.out.print("The larger of x and y is" + Math.max(x,y));

To define class methods, use the static keyword in front of the method definition, just as you
would create a class variable. For example, that max class method might have a signature like this:

static int max (int argl, int arg2) { ... }

In a similar example, Java supplies “wrapper” classes for each of the base types—for example,
classes for 1nteger, Float, and Boolean. Using class methods defined in those classes, you can
convert to and from objects and base types. For example, the parseint () class method in the
Integer Class takes a string and a radix (base) and returns the value of that string as an integer:

int count = Integer.parseInt("42", 10) // returns 42

Most methods that operate on a particular object, or that affect that object, should be defined
as instance methods. Methods that provide some general utility but do not directly affect an
instance of that class are better declared as class methods.

sams
)

Sams.ney
Learning

Creating Java Applications

Now that you know how to create classes, objects, and class and instance variables and methods,
all that’s left is to put it together into something that can actually run—in other words, to create
a Java application.

Applications, to refresh your memory, are Java programs that run on their own. Applications
are different from applets, which require HotJava or a Java-capable browser to view them. Much
of what you’ve been using up to this point have been Java applications; next week you'll dive into
how to create applets. (Applets require a bit more background in order to get them to interact
with the browser and draw and update with the graphics system. You'll learn all of this next
week.)

A Java application consists of one of more classes and can be as large or as small as you want it
to be. HotJava is an example of a Java application. The only thing you need to make a Java
application run is one class that serves as the “jumping-off” point for the rest of your Java
program. If your program is small enough, it may need only the one class.

The jumping-off class for your program needs one thing: amain () method. When you run your
compiled Java class (using the Java interpreter), the main() method is the first thing that gets
called. None of this should be much of a surprise to you at this point; you’ve been creating Java
applications with main () methods all along.

The signature for the main() method always looks like this:
public static void main (String arg[]) {...}
Here’s a run-down of the parts of the main() method:

O public means that this method is available to other classes and objects. The main ()
method must be declared public. You'll learn more about public and private
methods in Week 3.

static means that this is a class method.
void means the main() method doesn’t return anything.

O main() takes one parameter: an array of strings. This argument is used for command-
line arguments, which you’ll learn about in the next section.

The body of the main() method contains any code you need to get your application started:
initial variables or creating instances of any classes you may have declared.

When Java executes the main () method, keep in mind that main () is a class method—the class
that holds it is not automatically instantiated when your program runs. If you want to treat that
class as an object, you have to instantiate it in the main () method yourself (all the examples up
to this point have done this).

105

106

Creating Classes and Applications in Java

Java Applications and Command-Line
Arguments

Because Java applications are stand-alone programs, it’s useful to be able to pass arguments or
options to that program to determine how the program is going to run, or to enable a generic
program to operate on many different kinds of input. Command-line arguments can be used
for many different purposes—for example, to turn on debugging input, to indicate a filename
to read or write from, or for any other information that you might want your Java program to
know.

Passing Arguments to Java Programs

To pass arguments to a Java program, you merely append them to the command line when you
run your Java program:

java Myprogram argumentOne 2 three

On thiscommand line, you have three arguments: argumentone, the number 2, and three. Note
that a space separates arguments, so this command line produces three arguments:

java myprogram Java is cool

To group arguments, surround them with double-quotes. This command line produces one
argument:

java myprogram "Java is cool"

The double-quotes are stripped off before the argument gets to your Java program.

Handling Arguments in Your Java Program

How does Java handle arguments? It stores them in an array of strings, which is passed to the
main() method in your Java program. Remember the signature for main():

public static void main (String arg[]) {...}

Here, arg is the name of the array of strings that contains the list of arguments. You can actually
call it anything you want; argv is common (after the array of the same name from C and Unix
shell scripting).

Inside your main() method, you can then handle the arguments your program was given by
iterating over the array of arguments and handling those arguments any way you want. For
example, Listing 6.5 is a really simple class that prints out the arguments it gets, one per line.

Type Listing 6.5. The EchoArgs class.

1:
2 public
3:

4:

5: }
6

7

:)

class EchoArgs {

static void main(String args[]) {

for (int i = 0; i < args.length; i++) {

System.out.println("Argument " + i + ": " + args[i]);

The following is some sample input and output from this program:

java EchoArgs

Argument

OUIDUE ~ Argunent

Argument
Argument

java EchoArgs

Argument

OUtput ~ ~rgunen

Argument
Argument

12 3 jump

0: 1
1: 2
2: 3
3: jump

"foo bar" zap twaddle 5

0: foo bar
1: zap

2: twaddle
3: 5

Note how the arguments are grouped in the listing; putting quotes around foo bar causes that
argument to be treated as one unit inside the argument array.

Technical Note: The array of arguments in Java is not analogous to argv in C and
Unix. In particular, arg[e], the first element in the array of arguments, is the first

command-line argument after the name of the class—not the name of the program
as it would be in C. Be careful of this as you write your Java programs.

An important thing to note about the arguments you pass into a Java program is that those
arguments will be stored in an array of strings. This means that any arguments you pass to your
Java program will be converted to strings so they can be stored in the argument array. To treat
them as non-strings, you’ll have to convert them to whatever type you want them to be.

For example, suppose you have a very simple Java program called sumAverage that takes any
number of numeric arguments and returns the sum and the average of those arguments. Listing
6.6 shows a first pass at this program.

107

108

Creating Classes and Applications in Java

Type Listing 6.6. First try at the SumAverage class.

1: class SumAverage {

2 public static void main (String args[]) {

3 int sum = 0;

4:

5: for (int i = @; i < args.length; i++) {

6: sum += args[i];

7 }

8:

9: System.out.println("Sum is: " + sum);
10: System.out.println("Average is: " +
11: (float)sum / (float)args.length);
12: }

13: }

Atfirst glance, this program seems rather straightforward—a for loop iterates over the array

Ana'YSIS of arguments, summing them, and then the sum and the average are printed out as the last

step.

What happens when you try and compile this? You get the following error:

SumAverage.java:9: Incompatible type for +=. Can't convert java.lang.String to int.
sum += args[i];

You get this error because the argument array is an array of strings. Even though you passed

integers into the program from the command line, those integers were converted to strings

before they were stored in the array. To be able to sum those integers, you have to convert them

back from strings to integers. There’s a class method for the 1nteger class, called parseint, that

does just this. If you change line 7 to use that method, everything works just fine:

sum += Integer.parselnt(args[i]);

Now, compiling the program produces no errors and running it with various arguments returns
the expected results. For example, java sumAverage 1 2 3 returns the following output:

Sum is: 6

()utput Average is: 2

Summary

Today, you put together everything you’ve come across in the preceding days of this week about
how to create Java classes and use them in Java applications. This included the following:

O Instance and class variables, which hold the attributes of the class and its instances.
You learned how to declare them, how they are different from regular local variables,
and how to declare constants.

sams
)

Sams.ney
Learning

O Instance and class methods, which define a class’s behavior. You learned how to define
methods, including the parts of a method’s signature, how to return values from a
method, how arguments are passed in and out of methods, and the this keyword to
refer to the current object

O Java applications—all about the main() method and how it works as well as how to
pass arguments into a Java application from a command line.

Q | tried creating a constant variable inside a method, and | got a compiler error
when | tried it. What was | doing wrong?

A You can create only constant (fina1) class or instance variables; local variables cannot
be constant.

Q static and final are not exactly the most descriptive words for creating class
variables, class methods, and constants. Why not use c1ass and const?

A static comes from Java’s C++ heritage; C++ uses the static keyword to retain
memory for class variables and methods (and, in fact, they aren’t called class methods
and variables in C++: static member functions and variables are more common
terms).
final, however, is new. final is used in a more general way for classes and methods to
indicate that those things cannot be subclassed or overridden. Using the final
keyword for variables is consistent with that behavior. fina1 variables are not quite the
same as constant variables in C++, which is why the const keyword is not used.

Q Inmy class, | have an instance variable called name. I also have a local variable
called name in a method, which, because of variable scope, gets hidden by the
local variable. Is there any way to get hold of the instance variable’s value?

A The easiest way is not to name your local variables the same names as your instance
variables. If you feel you must, you can use this.name to refer to the instance variable
and name to refer to the local variable.

Q | want to pass command-line arguments to an applet. How do | do this?

A You're writing applets already? Been skipping ahead, have you? The answer is that you
use HTML attributes to pass arguments to an applet, not the command line (you
don’t have a command line for applets). You’ll learn how to do this next week.

Q 1 wrote a program to take four arguments, but if | give it too few arguments, it
crashes with a run-time error.

A Testing for the number and type of arguments your program expects is up to you in
your Java program; Java won'’t do it for you. If your program requires four arguments,
test that you have indeed been given four arguments, and return an error message if
you haven't.

109

4 -

More About
Methods

by Laura Lemay

112

More About Methods

Methods are arguably the most important part of any object-oriented language. Whereas classes
and objects provide the framework, and class and instance variables provide a way of holding
that class or object’s attributes and state, it is the methods that actually provide an object’s
behavior and define how that object interacts with other objects in the system.

Yesterday, you learned a little about defining methods. With what you learned yesterday, you
could create lots of Java programs, but you’d be missing some of the features of methods that
make them really powerful, that make your objects and classes more efficient and easier to
understand. Today, you'll learn about these additional features, including the following:

O Overloading methods, sometimes called creating polymorphic methods—that is,
creating methods with multiple signatures and definitions but with the same name

O Creating constructor methods—methods that enable you to initialize objects to set up
an initial state in the system when an object is created

O Overriding methods—creating a different definition for a method that has been
defined in a superclass

O Finalizer methods—a way for an object to clean up after itself before it is removed
from the system

Creating Methods with the Same
Name, Different Arguments

Yesterday, you learned how to create methods with a single name and a single signature.
Methods in Java can also be overloaded—that is, you can create methods that have the same
name, but different signatures and different definitions. Method overloading enables instances
of your class to have a simpler interface to other objects (no need for entirely different methods
that do essentially the same thing) and to behave differently based on the input to that method.

When you call a method in an object, Java matches up the method name and the number and
type of arguments to choose which method definition to execute.

To create an overloaded method, all you need to do is create several different method definitions
inyour class, all with the same name, but with different parameter lists (either in number or type
of arguments) and with different bodies. Java can understand method overloading as long as
each parameter list is unique for each method name.

Note that Java differentiates overloaded methods with the same name, based on the number and
type of parameters to that method, noton its return type. That s, if you try to create two methods
with the same name, same parameter list, but different return types, you’ll get a compiler error.
The variable names you choose for each parameter to the method are irrelevant—all that matters
is the number and the type.

Here’s an example of creating an overloaded method. Listing 7.1 shows a simple class definition
for a class called myrect, which defines a rectangular shape. The myrect class has four instance
variables to define the upper left and lower right corners of the rectangle: x1, y1, x2, and y2.

Note: Why did I call it myrect? Java’s awt package has a class called rRectangle that
implements much of this same behavior. | called this class myrect to prevent
confusion between the two classes.

Type Listing 7.1. The MyRect class.

class MyRect {

int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;

When a new instance of the myrect class is initially created, all its instance variables are initialized
to o. Let’s define a buildrect () method that takes four integer arguments and “resizes” the
rectangle to have the appropriate values for its corners, returning the resulting rectangle object
(note that because the arguments have the same names as the instance variables, you have to
make sure to use this to refer to them):

MyRect buildRect(int x1, int y1, int x2, int y2) {

this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;

return this;
}
What if you want to define a rectangle’s dimensions in a different way—for example, by using
point Objects rather than individual coordinates? You can overload buildrect() SO that its
parameter list takes two pPoint objects (note that you’ll need to import the Point class at the top
of your source file so Java can find it):

MyRect buildRect(Point topLeft, Point bottomRight) {

x1 = topLeft.x;
y1 = topLeft.y;
X2 = bottomRight.x;
y2 = bottomRight.y;

return this;

113

More About Methods

Perhaps you want to define the rectangle using a top corner and a width and height. Just create
a different definition for buildrect():

MyRect buildRect(Point topLeft, int w, int h) {

x1 = topLeft.x;
y1 = topLeft.y;
X2 = (x1 + w);
y2 = (y1 + h);

return this;

}

To finish up this example, let’s create a method to print out the rectangle’s coordinates, and a
main() method to test it all (just to prove that this does indeed work). Listing 7.2 shows the
completed class definition with all its methods.

Type Listing 7.2. The complete MyRect class.

import java.awt.Point;

class MyRect {
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
MyRect buildRect(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
return this;
}
MyRect buildRect(Point topLeft, Point bottomRight) {
x1 = topLeft.x;
y1 = topLeft.y;
x2 = bottomRight.Xx;
y2 = bottomRight.y;
return this;
}
MyRect buildRect(Point topLeft, int w, int h) {
x1 = topLeft.x;
y1 = topLeft.y;
X2 = (x1 + w);
y2 = (y1 + h);
return this;
}
void printRect(){
System.out.print("MyRect: <" + x1 + ", " + y1);
System.out.println(", " + x2 + ", " + y2 + ">");

114

public static void main (String args[]) {
MyRect rect = new MyRect();

System.out.println("Calling buildRect with coordinates 25,25 50,50:");
rect.buildRect (25, 25, 50, 50);

rect.printRect();

System.out.println("---------- ");

System.out.println("Calling buildRect w/points (10,10), (20,20):");
rect.buildRect(new Point(10,10), new Point(20,20));
rect.printRect();

System.out.println("---------- ");

System.out.print("Calling buildRect w/1 point (10,10),");
System.out.println(" width (50) and height (50)");

rect.buildRect(new Point(10,10), 50, 50);
rect.printRect();
System.out.println("---------- ");

Here’s the output of this Java program:

Calling buildRect with coordinates 25,25 50,50:

Output MyRect: <25, 25, 50, 50>

Calling buildRect w/points (10,10), (20,20):
MyRect: <10, 10, 20, 20>

Calling buildRect w/1 point (10,10), width (50) and height (50)
MyRect: <10, 10, 60, 60>

As you can see from this example, all the buildrect () methods work based on the arguments
with which they are called. You can define as many versions of a method as you need to in your
own classes to implement the behavior you need for that class.

Constructor Methods

Inaddition to regular methods, you can also define constructor methods in your class definition.

NEW[] Aconstructor method isaspecial kind of method that determines howan object is initialized
TERM when it’s created.

Unlike regular methods, you can’t call a constructor method by calling it directly; instead,
constructor methods are called by Java automatically. Here’s how it works: when you use new
to create a new instance of a class, Java does three things:

O Allocates memory for the object

115

116

More About Methods

O Initializes that object’s instance variables, either to their initial values or to a default (e
for numbers, nu11 for objects, false for booleans)

O Calls the class’s constructor method (which may be one of several methods)
Ifaclass doesn’t have any special constructor methods defined, you'll still end up with an object,
but you’ll have to set its instance variables or call other methods that object needs to initialize

itself to that object afterward. All the examples you've created up to this point have behaved like
this.

By defining constructor methods in your own classes, you can set initial values of instance
variables, call methods based on those variables or call methods on other objects, or calculate
initial properties of your object. You can also overload constructors, as you would regular
methods, to create an object that has specific properties based on the arguments you give to new.

Basic Constructors

Constructors look a lot like regular methods, with two basic differences:

O Constructors always have the same name as the class.
O Constructors don’t have a return type.

For example, Listing 7.3 shows a simple class called person, with a constructor that initializes
its instance variables based on the arguments to new. The class also includes a method for the
object to introduce itself, and a main() method to test each of these things.

Type Listing 7.3. The Person class.

class Person {
String name;
int age;

Person(String n, int a) {
name = n;
age = a;

}

void printPerson() {
System.out.print("Hi, my name is " + name);
System.out.println(". I am " + age + " years o0ld.");

}

public static void main (String args[]) {
Person p;

p = new Person("Laura", 20);
p.printPerson();
System.out.println("-------- ");

p = new Person("Tommy", 3);
p.printPerson();
System.out.println("-------- ")

Here’s the output for this example program:

Hi, my name is Laura. I am 20 years old.

Output -

Hi, my name is Tommy. I am 3 years old.

Calling Another Constructor

Some constructors you write may be a superset of another constructor defined in your class; that
is, they might have the same behavior plus a little bit more. Rather than duplicating identical
behavior in multiple constructor methods in your class, it makes sense to be able to just call that
first constructor from inside the body of the second constructor. Java provides a special syntax
for doing this. To call a constructor defined on the current class, use this form:

this(argl1, arg2, arg3...);

The arguments to this are, of course, the arguments to the constructor.

Overloading Constructors

Like regular methods, constructors can also take varying numbers and types of parameters,
enabling you to create your objects with exactly the properties you want it to have, or for it to
be able to calculate properties from different kinds of input.

Forexample, the buildrect () methods you defined in the myrect class earlier today would make
excellent constructors, because what they’re doing is initializing an object’s instance variables to
the appropriate objects. So, instead of the original buildrect () method you had defined (which
took four parameters for the coordinates of the corners), you can create a constructor instead.
Listing 7.4 shows a new class, called myrect2, that has all the same functionality of the original
MyRect, except with overloaded constructor methods instead of the buildrect () method.

Type Listing 7.4. The MyRect2 class (with constructors).

import java.awt.Point;

class MyRect2 {
int x1 =

0;
int y1 = 0;

continues

117

More About Methods

Listing 7.4. continued

int x2 = 0;
int y2 = 0;
MyRect2(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}

MyRect2(Point topLeft, Point bottomRight) {
x1 = topLeft.x;

y1 topLeft.y;
x2 bottomRight.x;
y2 bottomRight.y;
}
MyRect2(Point topLeft, int w, int h) {
x1 = topLeft.x;
y1 = topLeft.y;
X2 = (x1 + w);
y2 = (y1 + h);
}
void printRect(){
System.out.print("MyRect: <" + x1 + ", " + y1);
System.out.println(", " + x2 + ", " + y2 + ">");
}
public static void main (String args[]) {
MyRect2 rect;
System.out.println("Calling MyRect2 with coordinates 25,25 50,50:");
rect = new MyRect2(25, 25, 50,50);
rect.printRect();
System.out.println("---------- ")
System.out.println("Calling buildRect w/points (10,10), (20,20):");
rect= new MyRect2(new Point(10,10), new Point(20,20));
rect.printRect();
System.out.println("---------- ")
System.out.print("Calling buildRect w/1 point (10,10),");
System.out.println(" width (50) and height (50)");
rect = new MyRect2(new Point(10,10), 50, 50);
rect.printRect();
System.out.println("---------- ")
}
}

Here’s the output for this example program (it’s the same output from the previous example;
only the code to produce it has changed):

118

Calling MyRect2 with coordinates 25,25 50,50:

Output MyRect: <25, 25, 50, 50>

Calling buildRect w/points (10,10), (20,20):
MyRect: <10, 10, 20, 20>

Calling buildRect w/1 point (10,10), width (50) and height (50)
MyRect: <10, 10, 60, 60>

Overriding Methods

When you classamethod inan object, Java looks for that method definition in the correct object,
and if it doesn’t find one, it passes the method call up the class hierarchy until a method
definition is found. Method inheritance enables you to define and use methods repeatedly in
subclasses without having to duplicate the code itself.

However, there may be times when you want an object to respond to the same methods but have
different behavior when that method is called. In this case, you can override that method.
Overriding a method involves defining a method in a subclass that has the same signature as a
method in a superclass. Then, when that method is called, the method in the subclass is found
and executed instead of the one in the superclass.

Creating Methods
that Override Existing Methods

To override amethod, all you have to do is create a method in your superclass that has the same
signature (name, return type, and parameter list) as a method defined by one of your class’s
superclasses. Because Java executes the first method definition it finds that matches the
signature, this effectively “hides” the original method definition. Here’s a simple example;
Listing 7.5 shows a simple class with a method called printme (), which prints out the name of
the class and the values of its instance variables.

Type Listing 7.5. The PrintClass class.
class PrintClass {
int x 0;
int y 1;

void printMe() {
System.out.println("X is " + x + ", Y is " + y);
System.out.println("I am an instance of the class " +
this.getClass().getName());

119

120

More About Methods

Listing 7.6 shows a class called pPrintsubciass that is a subclass of (extends) printClass. The
only difference between printcilass and printsubclass is that the latter hasa z instance variable.

Type Listing 7.6. The PrintSubClass class.

class PrintSubClass extends PrintClass {
int z = 8;

public static void main (String args[]) {
PrintSubClass obj = new PrintSubClass();
obj.printMe();

Here’s the output from printsubclass:

X is @0, Y is 1
()utput I am an instance of the class PrintSubClass

| : In the main() method of Printsubciass, you create a PrintSubclass object and call the
Ana YSIS printMe () method. Note that PrintSubclass doesn’t define this method, so Java looks for
it in each of printsubclass’s superclasses—and finds it, in this case, in pPrintclass.
Unfortunately, because printme () is still defined in printciass, it doesn’t print the z instance
variable.

Now, let’s create a third class. printsubclass2 is nearly identical to printsubciass, but you
override the printme () method to include the z variable. Listing 7.7 shows this class.

Type Listing 7.7. The PrintSubClass2 class.

class PrintSubClass2 extends PrintClass {
int z = 3;

void printMe() {
System.out.println("x is " + x + ", y is " + y +
"y z is " + z);
System.out.println("I am an instance of the class " +
this.getClass().getName());

}

public static void main (String args[]) {
PrintSubClass2 obj = new PrintSubClass2();
obj.printMe();

Now, when you instantiate this class and call the printme () method, the version of printme ()
you defined for this class is called instead of the one in the superclass Printciass (asyou can see
in this output):

x is 0, y is 1, z is 3
()utput I am an instance of the class PrintSubClass2

Calling the Original Method

Usually, there are two reasons why you want to override a method that a superclass has already
implemented:

O To replace the definition of that original method completely
O To augment the original method with additional behavior

You've already learned about the first one; by overriding amethod and giving that method a new
definition, you’ve hidden the original method definition. But sometimes you may just want to
add behavior to the original definition rather than erase it altogether. This is particularly useful
where you end up duplicating behavior in both the original method and the method that
overrides it; by being able to call the original method in the body of the overridden method, you
can add only what you need.

To call the original method from inside a method definition, use the super keyword to pass the
method call up the hierarchy:
void myMethod (String a, String b) {

// do stuff here

super.myMethod(a, b);
// maybe do more stuff here

The super keyword, like the this keyword, is a placeholder for this class’s superclass. You can
use it anywhere you want to refer to your superclass rather than to the current class.

For example, Listing 7.8 shows those printme () methods used in the previous example.

Type Listing 7.8. The printMe methods.

// from PrintClass
void printMe() {
System.out.println("X is " + x + ", Y is " + y);
System.out.println("I am an instance of the class" +
this.getClass().getName());

}

//from PrintSubClass2
void printMe() {
System.out.println("X is " + x + ", Y is " +y + ", Z is " + Z);
System.out.println("I am an instance of the class " +
this.getClass().getName());

121

122

More About Methods

Qutout

Rather than duplicating most of the behavior of the superclass’s method in the subclass, you can
rearrange the superclass’s method so that additional behavior can easily be added:

// from PrintClass

void printMe() {
System.out.println("I am an instance of the class" +

this.getClass().getName());

System.out.println("X is " + Xx);
System.out.println("Y is " + y);
}

}

Then, inthe superclass, when you override printme, you can merely call the original method and
then add the extra stuff:

// From PrintSubClass2

void printMe() {
super.printMe();
System.out.println("Z is " + z);
}

}

Here’s the output of calling printme () on an instance of the superclass:
am an instance of the class PrintSubClass2

is 0

is 1

is 3

N <X H

Overriding Constructors

Constructors cannot technically be overridden. Because they always have the same name as the
current class, you're always creating new constructors instead of inheriting the ones you’ve got.
Much of the time, this is fine, because when your class’s constructor is called, the constructor
with the same signature for all your superclass is also called, so initialization of all the parts of
a class you inherit can happen.

However, when you're defining constructors for your own class, you may want to change how
your object is initialized, not only by initializing the information your class adds, but also to
change the information that is already there. You can do this by explicitly calling your
superclass’s constructors.

To call a regular method in a superclass, you Use super.methodname (arguments). Because with
constructors you don’t have a method name to call, however, you have to use a different form:

super(argl, arg2, ...);

Similar to using this(...) in a constructor, super(...) calls the constructor method for the
immediate superclass (which may, in turn, call the constructor of its superclass, and so on).

For example, Listing 7.9 shows a class called NamedPoint, Which extends the class Point from
Java’s awt package. The point class has only one constructor, which takes an x and ay argument
and returnsaproint object. NamedPoint hasan additional instance variable (astring for the name)
and defines a constructor to initialize x, y, and the name.

Type Listing 7.9. The NamedPoint class.

: import java.awt.Point;

-

class NamedPoint extends Point {
String name;

NamedPoint(int x, int y, String name) {
super(x,y);
this.name = name;

Co~NoOOar,WN

An | 1 The constructor defined here for NamedPoint (lines 6 through 8) calls Point’s constructor
ay3|5 method to initialize Point’s instance variables (x and y). Although you can just as easily
initialize x and y yourself, you may not know what other things point is doing to initialize
itself, so it’s always a good idea to pass constructors up the hierarchy to make sure everything

is set up correctly.

Finalizer Methods

Finalizer methods are like the opposite of constructor methods; whereas a constructor method
is used to initialize an object, finalizer methods are called just before the object is garbage-
collected and its memory reclaimed.

To create a finalizer method, include a method with the following signature in your class
definition:

void finalize() {

}

Inside the body of that finalize() method, include any cleaning up you want to do for that
object.

Before you start using finalizer methods extensively in your Java programs, however, be aware
that finalizer methods have several very important restrictions. First of all, the finalizer method
isnot guaranteed to be called until the object’s memory is actually reclaimed, which may be some
time after you’ve removed all references to that object.

123

124

More About Methods

You can always call the fina1ize () method yourself at any time; it’s just a plain method like any
other. However, calling finalize() does not trigger an object to be garbage-collected. Only
removing all references to an object will cause it to be marked for deleting, and even then, Java
may or may not call the finalize () method itself—regardless of whether or not you've already
called it.

Finalizer methods are best used for optimizing the removal of an object—for example, by
removing references to other objects, by cleaning up things that object may have touched, or for
other optional behaviors that may make it easier for that object to be removed. In most cases,
you may not need to use finalize() atall.

Summary

Today, you learned all kinds of techniques for using, reusing, defining, and redefining methods.
You learned how to overload a method name so that the same method can have different
behaviors based on the arguments with which it’s called. You learned about constructor
methods, which are used to initialize a new object when it’s created. You learned about method
inheritance and how to override methods that have been defined in a class’s superclasses. Finally,
you learned about finalizer methods, that can be used to clean up after an object just before that
object is garbage-collected and its memory reclaimed.

Congratulations on completing your first week of Teach Yourself Java in 21 Days! Starting next
week, you’ll apply everything you've learned this week to writing Java applets and to working
with more advanced concepts in putting together Java programs and working with the standard
Java class libraries.

Q&A

Q | created two methods with the following signatures:

int total(int arg1, int arg2, int arg3) {...}
float total(int argi1, int arg2, int arg3) {...}

The Java compiler complains when | try to compile the class with these method
definitions. But their signatures are different—what have | done wrong?

A Method overloading in Java works only if the parameter lists are different—either in
number or type of arguments. Return type is not relevant for method overloading.
Think about it—if you had two methods with exactly the same parameter list, how
would Java know which one to call?

Q You described using the this() method (this(arg, arg, ...)) to call a construc-
tor from inside another constructor. Are you limited to using the this() method
call inside constructors?

A No, you can use that method anywhere to refer to the current object’s constructor.
On an existing object, calling a constructor is an easy way to reinitialize that object
back to its default state (or to change it to have the state that you want it to have).

Q Can I overload overridden methods (that is, can | create methods that have the
same name as an inherited method, but a different parameter list)?

A Sure! As long as a parameter lists vary, it doesn’t matter whether you've defined a new
method name or one that you’ve inherited from a superclass.

Q | created a finalizer method to decrement a class variable and print a message
when my object gets garbage-collected. This way | can keep track of how many
objects of this class are running at any given time. But sometimes finalize() gets
called and sometimes it doesn’t. How can | guarantee that finalize() will be
called and my program will operate correctly?

A finalize() is provided as a convenience, to give an object a chance to clean up after
itself. finalize () may or may not be called on any given object before it is garbage-
collected, so you should not depend on its existence; you should be using finalize()
only to provide program optimizations.

If you absolutely require that an object perform some operation before that object gets

garbage-collected, you should create a specific method other than finalize() and
explicitly call that method before discarding references to that object.

125

Java Applet Basics

Including an applet on a Web page
Passing parameters

Graphics, Fonts, and Color

Graphics primitives

The color class

Simple Animation and Threads

paint () and repaint()

Reducing animation flicker

stop and start

More Animation, Images, and Sound
Scaling options, executing sound effectively
Double-buffering

Managing Simple Events and Interactivity
MouseDown and MouseUp

The Java event handler

®\\VEEK®

2 y Week 2 at a Glance

O User Interfaces with the Java Abstract Windowing Toolkit
Canvases, text components, widgets, and window construction components

O Windows, Networking, and Other Tidbits
Programming menus and creating links inside applets

128

4

Java Applet Basics

by Laura Lemay

130

Java Applet Basics

Much of Java’s current popularity has come about because of Java-capable World Wide Web
browsers and their support for applets: small programs that run inside a Web page and can be
used to create dynamic, interactive Web designs. Applets, as | noted at the beginning of this
book, are written in the Java language, and can be viewed in any browser that supports Java,
including Sun’s HotJava and Netscape’s Navigator 2.0. Learning how to create applets is most
likely the reason you bought this book, so let’s waste no more time.

Last week, you focused on learning about the Java language itself, and most of the little programs
you created were Java applications. This week, now that you have the basics down, you move
on to creating and using applets, which includes a discussion of many of the classes in the
standard Java class library.

Today, you'll start with the basics:

O A small review of differences between Java applets and applications

O Getting started with applets: the basics of how an applet works and how to create your
own simple applets

O Including an applet on a Web page by using the <aAppLET> tag, including the various
features of that tag

O Passing parameters to applets

How Applets and Applications Are
Different

Although you explored the differences between Java applications and Java applets in the early
part of this book, let’s review them.

In short, Java applications are stand-alone Java programs that can be run by using just the Java
interpreter, for example, from a command line. Most everything you’ve used up to this point
in the book has been a Java application, albeit a simple one.

Java applets, however, are run from inside a World Wide Web browser. A reference to an applet
is embedded in a Web page using a special HTML tag. When a reader, using a Java-aware
browser, loads a Web page with an applet in it, the browser downloads that applet from a Web
server and executes it on the local system (the one the browser is running on).

Because Java applets run inside the Java browser, they have access to the same capabilities that
the browser has: sophisticated graphics, drawing, and image processing packages; user interface
elements; networking; and event handling. Java applications can also take advantage of these
features, but they don’t require them (you’ll learn how to create Java applications that use applet-
like graphics and Ul features on Day 14).

sams
&

Sams. net
Lea"ning

The advantages applets have over applications in terms of graphics and Ul capabilities, however,
are hampered by restrictions on what applets can do. Given the fact that Java applets can be
downloaded from anywhere and run on a client’s system, restrictions are necessary to prevent
an applet from causing system damage or security breaches. Without these restrictions in place,
Java applets could be written to contain viruses or trojan horses (programs that seem friendly
but do some sort of damage to the system), or be used to compromise the security of the system
that runs them. The restrictions on what an applet can do include the following:

O Applets can’t read or write to the reader’s file system, except in specific directories
(which are defined by the user through an access control list that, by default, is
empty). Some browsers may not even allow an applet to read or write to the file
system at all.

O Applets can’t usually communicate with a server other than the one that had originally
stored the applet. (This may be configurable by the browser; however, you should not
depend on having this behavior available.)

O Applets can’t run any programs on the reader’s system. For Unix systems, this includes
forking a process.

O Applets can’t load programs native to the local platform, including shared libraries
such as DLLs.

In addition, Java itself includes various forms of security and consistency checking in the Java
compiler and interpreter to prevent unorthodox use of the language (you’ll learn more about this
on Day 21). This combination of restrictions and security features make it more difficult for a
rogue Java applet to do damage to the client’s system.

Note: The most important words in the last sentence are “more difficult.” These
restrictions can prevent most of the more obvious ways of trying to cause damage
to a client’s system, but it’s impossible to be absolutely sure that a clever program-
mer cannot somehow work around those restrictions. Sun has asked the Net at
large to try to break Java’s security and to create an applet that can work around the
restrictions imposed on it. If a hole is found, Sun will patch it. You'll learn about
more issues in Java security on Day 21.

Creating Applets

For the most part, all the Java programs you've created up to this point have been Java
applications—simple programs with a single main () method that created objects, set instance
variables, and ran methods. Today and in the days following, you'll be creating applets

131

132

Java Applet Basics

exclusively, so you should have a good grasp of how an applet works, the sorts of features an
applet has, and where to start when you first create your own applets. Without further ado, let’s
get on with it.

To create an applet, you create a subclass of the class App1et, in the java.applet package. The
Applet class provides behavior to enable your applet not only to work within the browser itself,
but also to take advantage of the capabilities of AWT to include Ul elements, to handle mouse
and keyword events, and to draw to the screen. Although your applet can have as many “helper”
classes as it needs, it’s the main applet class that triggers the execution of the applet. That initial
applet class always has a signature like this:

public class myClass extends java.applet.Applet {

}

Note the pub1ic keyword. Java requires that your applet subclass be declared public. Again, this
is true only of your main applet class; any helper classes you create can be public OF private as
you wish. Public, private, and other forms of access control are described on Day 15.

When Java encounters your applet in a Web page, it loads your initial applet class over the
network, as well as any other helper classes that first class uses. Unlike with applications, where
Javacallsthemain () method directly onyourinitial class, when your applet is loaded, Java creates
an instance of that class, and all the system-based methods are sent to that instance. Different
applets on the same page, or on different pages that use the same class, use different instances,
so each one can behave differently from other applets running on the same system.

Major Applet Activities

To create a basic Java application, your class has to have one method, main (), with a specific
signature. Then, when your application starts up, main is executed, and from main you can set
up the behavior that your programs need. Applets are similar but more complicated. Applets
have many different activities that correspond to various major events in the life cycle of the
applet—for example, initialization, painting, or mouse events. Each activity hasacorresponding
method, so when an event occurs, the browser or other Java-capable tool calls those specific
methods.

By default, none of those activity methods have any definitions; to provide behavior for those
events you must override the appropriate method in your applet’s subclass. You don’t have to
override all of them, of course; different applet behavior requires different methods to be
overridden.

You'll learn about the various important methods to override as the week progresses, but, for a
general overview, here are five of the more important methods in an applet’s execution:
initialization, starting, stopping, destroying, and painting.

sams
net

Sams.ney
Learning

Initialization

Initialization occurs when the applet is first loaded (or reloaded). Initialization can
creating the objects it needs, setting up an initial state, loading images or fonts,
parameters. To provide behavior for the initialization of your applet, overiide (the
method:

public void init() {

}

Starting

After an applet is initialized, it is started. Starting can also occur if the applet was previously
stopped. For example, an applet is stopped if the reader follows a link to a different page, and
it is started again when the reader returns to this page. Note that starting can occur several times
during an applet’s life cycle, whereas initialization happens only once. To provide startup
behavior for your applet, override the start()!

public void start() {

}Functionality that you put in the

start () method might include starting up a thread to control
the applet, sending the appropriate messages to helper objects, or in some way telling the applet
to begin running. You’ll learn more about starting applets on Day 10.

Stopping

Stopping and starting go hand in hand. Stopping occurs when the reader leaves the page that
contains a currently running applet. By default, when the reader leaves a page, the applet
continues running, using up system resources. By overriding stop, you can suspend execution
of the applet and then restart it if the applet is viewed again. To stop an applet’s execution, use
the stop () method:

public void stop() {

}

Destroying

Destroying sounds more violent than it is. Destroying enables the applet to clean up after itself
just before it or the browser exits—for example, to kill any running threads or to release any other
running objects. Generally, you won’t want to override destroy unless you have specific
resources that need to be released—for example, threads that the applet has created. To provide
clean up behavior for your applet, override the destroy () method:

134

Java Applet Basics

public void destroy() {

}

Technical Note: How is destroy () different from finalize(), which was described
on Day 77 First, destroy () applies only to applets. finalize() is a more general-
purpose way for a single object of any type to clean up after itself.

The other difference is that destroy () is always called when the applet has finished
executing, either because the browser is exiting or because the applet is being
reloaded. finalize() is not guaranteed to be executed.

Painting

Painting is how an applet actually draws something on the screen, be it text, a line, a colored
background, or an image. Painting can occur many hundreds of times during an applet’s life
cycle—for example, once after the applet is initialized, if the browser is placed behind another
window on the screen and then brought forward again, if the browser window is moved to a
different position on the screen, or perhaps repeatedly in the case of animations. You override
the paint () method for your applet to have an actual appearance on the screen. The paint ()
method looks like this:

public void paint(Graphics g) {
}

Note that unlike the other major methods in thissection, paint () takesan argument, an instance
of the classaraphics. Thisobject is created and passed to paint by the browser, so you don’t have
to worry about it. However, you will have to make sure that the Graphics class (part of the
java.awt package) gets imported into your applet code, usually through an import Statement at
the top of your Java file:

import java.awt.Graphics;

A Simple Applet

On Day 2, you created a simple applet called HelloAgainApplet (this was the one with the big
red Hello Again). There, you created and used that applet as an example of creating a subclass.
Let’s go over the code for that applet again, this time looking at it slightly differently in light of
the things you just learned about applets. Listing 8.1 shows the code for that applet.

Type Listing 8.1. The Hello Again applet.

1: import java.awt.Graphics;

2: import java.awt.Font;

3: import java.awt.Color;

4:

5: public class HelloAgainApplet extends java.applet.Applet {
6:

7: Font f = new Font("TimesRoman",Font.BOLD,36);
8:

9: public void paint(Graphics g) {

10: g.setFont(f);

11: g.setColor(Color.red);

12: g.drawString("Hello again!", 5, 50);

13: }

14: }

An | 1 Thisapplet overrides paint (), one of the major methods described in the previous section.
ay3|3 Because the applet doesn’t actually execute (all it does is print a couple of words to the
screen), and there’s not really anything to initialize, you don’t need a start() Or a stop()

or an init() method.

The paint method is where the real work of this applet (what little work goes on) really occurs.
The araphics object passed into the paint() method holds that graphics state—that is, the
current features of the drawing surface. Lines 10 and 11 set up the default font and color for this
graphics state (here, the font object help in the £ instance variable, and an object representing
the color red that’s stored in the color class’s variable red).

Line 12 then draws the string "He11o Again!" by using the current font and color at the position
5, 50. Note that the o point for y is at the top left of the applet’s drawing surface, with positive
y moving downward, so 5o is actually at the bottom of the applet. Figure 8.1 shows how the
applet’s bounding box and the string are drawn on the page.

Figure 8.1. o,o—l
Drawing the applet.

50

ello again!

135

Java Applet Basics

Including an Applet on a Web Page

After you create a class or classes that contain your applet and compile them into class files as
you would any other Java program, you have to create a Web page that will hold that applet by
using the HTML language. There is a special HTML tag for including applets in Web pages;
Java-capable browsers use the information contained in that tag to locate the compiled class files
and execute the applet itself. In this section, you’ll learn about how to put Java appletsin a Web
page and how to serve those files to the Web at large.

Note: The following section assumes you have at least a passing understanding of
writing HTML pages. If you need help in this area, you may find the book Teach
Yourself Web Publishing with HTML in 14 Days useful. It is also from Sams.Net
(and also written by one of the authors of this book).

The <APPLET> Tag

To include an applet on a Web page, use the <appLET> tag. <APPLET> is a special extension to
HTML for including applets in Web pages. Listing 8.2 shows a very simple example of a Web
page with an applet included in it.

Type Listing 8.2. A simple HTML page.

<HTML>

<HEAD>

<TITLE>This page has an applet on it</TITLE>
</HEAD>

<BODY>

<P>My second Java applet says:

<APPLET CODE="HelloAgainApplet.class" WIDTH=200 HEIGHT=50>
There would be an applet here if your browser
10: supported Java.

11: </APPLET>

12: </BODY>

13: </HTML>

©CONODOHRWN=

There are three things to note about the <appLET> tag in this page:

Analysi

O The cope attribute indicates the name of the class file that loads this applet, including
the .class extension. In this case, the class file must be in the same directory as this

136

sams
net

HTML file. To indicate applets are in a different directory, use copesase, described
later today.

O wipTH and HEIGHT are required and used to indicate the bounding box of the applet—
that is, how big a box to draw for the applet on the Web page. Be sure you set wipTH
and HeIGHT to be an appropriate size for the applet; depending on the browser, if your
applet draws outside the boundaries of the space you’ve given it, you may not be able
to see or get to those parts of the applet outside the bounding box.

O The text between the <appLET> and </APPLET> tags is displayed by browsers that do
not understand the <appLET> tag (which includes most browsers that are not Java-
capable). Because your page may be viewed in many different kinds of browsers, it is a
very good idea to include alternate text here so that readers of your page who don’t
have Java will see something other than a blank line. Here, you include a simple
statement that says There would be an applet here if your browser supported
Java.

Note that the <apPLET> tag, like the <1me> tag, is not itself a paragraph, so it should be enclosed
inside a more general text tag, such as <p> or one of the heading tags (<H1>, <H2>, and so on).

Testing the Result

Now with a class file and an HTML file that refers to your applet, you should be able to load
that HTML file into your Java-capable browser (using either the Open Local... dialog item or
afile URL, or by indicating the filename on acommand line). The browser loads and parses your
HTML file, and then loads and executes your applet class.

Figure 8.2 shows the Hello Again applet, in case you've forgotten what it looks like.

Figure 8.2.
The Hello Again applet.

Hello again!

Making Java Applets Available to the Web

After you have an applet and an HTML file, and you’ve verified that everything is working
correctly on your local system, the last step is making that applet available to the World Wide
Web at large so that anyone with a Java-capable browser can view that applet.

137

138

Java Applet Basics

Java applets are served by a Web server the same way that HT ML files, images, and other media
are. You don’t need special server software to make Java applets available to the Web; you don’t
even need to configure your server to handle Java files. If you have a Web server up and running,
or space on a Web server available to you, all you have to do is move your HT ML and compiled
class files to that server, as you would any other file.

If you don’t have a Web server, you have to rent space on one or set one up yourself. (Web server
setup and administration, as well as other facets of Web publishing in general, are outside the
scope of this book.)

More About the <APPLET> Tag

In its simplest form, by using cope, wipTH, and HEIGHT, the <APPLET> tag merely creates a space
of the appropriate size and then loads and plays the applet in that space. The <apPLET> tag,
however, does include several attributes that can help you better integrate your applet into the
overall design of your Web page.

Note: The attributes available for the <appLET> tag are almost identical to those for
the HTML <1me> tag.

ALIGN

The aL1n attribute defines how the applet will be aligned on the page. This attribute can have
one of nine values: LEFT, RIGHT, TOP, TEXTTOP, MIDDLE, ABSMIDDLE, BASELINE, BOTTOM, and
ABSBOTTOM.

In the case of ALTGN=LEFT and ALIGN=RIGHT, the applet is placed at the left or right margins of the
page, respectively, and all text following that applet flows in the space to the right or left of that
applet. The text will continue to flow in that space until the end of the applet, or you can use
aline break tag (<r>) with the cLEAR attribute to start the left line of text below that applet. The
CLEAR attribute can have one of three values: cLEAR=LEFT starts the text at the next clear left
margin, cLEAR=RIGHT does the same for the right margin, and cLEAr=ALL starts the text at the next
line where both margins are clear.

For example, here’s a snippet of HTML code that aligns an applet against the left margin, has
some text flowing alongside it, and then breaks at the end of the paragraph so that the next bit
of text starts below the applet:

ms
net

Sams. net
Learning

<P><APPLET CODE="HelloAgainApplet" WIDTH=300 HEIGHT=200
ALIGN=LEFT>Hello Again!</APPLET>

To the left of this paragraph is an applet. It's a
simple, unassuming applet, in which a small string is
printed in red type, set in 36 point Times bold.

<BR CLEAR=ALL>
<P>In the next part of the page, we demonstrate how

under certain conditions, styrofoam peanuts can be
used as a healthy snack.

Figure 8.3 shows how this applet and the text surrounding it might appear in a Java-capable
browser.

Netscape: Applet Alignment =———

Figure 8.3. el
An applet aligned left. Tothe left of this parsgreph is an spplat. Its an
unassuming spplet, in which a small string is printed

HEIIO again! in red type, set in 36 point Times bold.

In the next part of the page, we demonstrate how under centain conditions, styrofoam peanuts can
ke used as a healthyr snack.

&
) . | [

For smaller applets, you may want to include your applet within a single line of text. To do this,
there are seven values for aL16n that determine how the applet is vertically aligned with the text:
O acieN=TEXTTTOP aligns the top of the applet with the top of the tallest text in the line.

ALIGN=TOP aligns the applet with the topmost item in the line (which may be another
applet, or an image, or the top of the text).
O ALieN=ABsSMIDDLE aligns the middle of the applet with the middle of the largest item in

the line.
O AcieN=mIDDLE aligns the middle of the applet with the middle of the baseline of the

text.
O ALIGN=BASELINE aligns the bottom of the applet with the baseline of the text.
ALIGN=BASELINE i$ the same as ALIGN=BOTTOM, but ALIGN=BASELINE is a more descriptive

O

name.
O ALIGN=ABSBOTTOM aligns the bottom of the applet with the lowest item in the line
(which may be the baseline of the text or another applet or image).

Figure 8.4 shows the various alignment options, where the line is an image and the arrow is a
small applet.

139

® DAY @

140

8y

Java Applet Basics

Figure 8.4.
Applet alignment options.

Middle of Text and Line aligned, armow varies:

IAK@L: Top >F|.]jgn: Text Top

Top of Text and Line aligned, arrow varies:
o Absolute Middle Align: Middle >
Top of Text and Line alioned, arrow varies:

ign: Bageline/Bottom Align: Absohite Bottom

HSPACE and VSPACE

Thenspace and vspAce attributes are used to set the amount of space, in pixels, between an applet
and its surrounding text. HspAce controls the horizontal space (the space to the left and right of
the applet). vspace controls the vertical space (the space above and below). For example, here’s
that sample snippet of HTML with vertical space of 1e and horizontal space of se:

<P><APPLET CODE="HelloAgainApplet" WIDTH=300 HEIGHT=200
ALIGN=LEFT VSPACE=10 HSPACE=50>Hello Again!</APPLET>

To the left of this paragraph is an applet. It's a
simple, unassuming applet, in which a small string is
printed in red type, set in 36 point Times bold.

<BR CLEAR=ALL>

<P>In the next part of the page, we demonstrate how
under certain conditions, styrofoam peanuts can be

used as a healthy snack.

The result in a typical Java browser might look like that in Figure 8.5.

sams
&

Sams. net
Lea"ning

Figure 8.5. = Netscape: Applet Alignment A=
Vertical and horizontal To the left of this paragraph is an epplet. Its an Bl
unassuming spplet, in which a small string is =
Space. printed in red type, set in 38point Times bold. i
50 .
it W
Hello again! |
10—~
50
["In the next part of the page, we demonstrate how under certain conditions, styrofoam peanuts can |
e used as a healthy snack. ‘0
] B
=gl [] |

CODE and CODEBASE

copE is used to indicate the name of the class file that holds the current applet. If cope is used
alone in the <ApPLET> tag, the class file is searched for in the same directory as the HTML file

that references it.

If you want to store your class files in a different directory than that of your HTML files, you
have to tell the Java-capable browser where to find those class files. To do this, you use cCODEBASE.
copE contains only the name of the class file; cobesase contains an alternate pathname where
classes are contained. For example, if you store your class files in a directory called /classes, which
is in the same directory as your HTML files, copesase is the following:

<APPLET CODE="myclass.class" CODEBASE="classes"
WIDTH=100 HEIGHT=100>

Passing Parameters to Applets

With Java applications, you can pass parameters to your main () routine by using arguments on
the command line. You can then parse those arguments inside the body of your class, and the
application acts accordingly based on the arguments it is given.

Applets, however, don’t have a command line. How do you pass in different arguments to an
applet? Applets can get different input from the HTML file that contains the <AppPLET> tag
through the use of applet parameters. To set up and handle parameters in an applet, you need

two things:

O A special parameter tag in the HTML file
O Code in your applet to parse those parameters

141

142

Java Applet Basics

Applet parameters come in two parts: a name, which is simply a name you pick, and a value,
which determines the value of that particular parameter. So, for example, you can indicate the
color of text in an applet by using a parameter with the name color and the value red. You can
determine an animation’s speed using a parameter with the name speed and the value s.

In the HTML fie that contains the embedded applet, you indicate each parameter using the
<PARAM> tag, which has two attributes for the name and the value, called (surprisingly enough),
NAME and VALUE. The <pARam> tag goes inside the opening and closing <APPLET> tags:

<APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=100>

<PARAM NAME=font VALUE="TimesRoman">

<PARAM NAME=size VALUE="36">

A Java applet appears here.</APPLET>

This particular example defines two parameters to the MyApplet applet: one whose name is font
and whose value is TimesRoman, and one whose name is size and whose value is 3.

Those parameters are passed to your applet when it is loaded. In the init() method for your
applet, you can then get hold of those parameters by using the getParameter method.
getParameter takes one argument—a string representing the name of the parameter you're
looking for—and returns a string containing the corresponding value of that parameter. (Like
arguments in Java applications, all the parameter values are converted to strings.) To get the
value of the font parameter from the HTML file, you might have a line such as this in your
init() method:

String theFontName = getParameter("font");

Note: The names of the parameters as specified in <pAram> and the names of the
parameters in getParameter must match identically, including having the same
upper and lower case. In other words, <PARAM= NAME="name"> is different from
<PARAM NAME="Name">. If your parameters are not being properly passed to your
applet, make sure the parameter names match.

Note that if a parameter you expect has not been specified in the HTML file, getParameter
returns nu11. Most often, you will want to test for a nu11 parameter and supply a reasonable
default:

if (theFontName == null)

theFontName = "Courier"

Keep in mind also that because getParameter returnsstrings, if you want a parameter to be some
other object or type, you have to convert it yourself. To parse the size parameter from that same
HTML file and assign it to an integer variable called thesize, you might use the following lines:

int theSize;
String s = getParameter("size");
if (s == null)
theSize = 12;
else theSize = Integer.parselnt(s);
Get it? Not yet? Let’s create an example of an applet that uses this technique. You'll modify the
HelloAgainApplet so that it says hello to a specific name, for example "Hello Bill" O "Hello

Alice". The name is passed into the applet through an HTML parameter.

Let’s start with the original He110AgainApplet class:

import java.awt.Graphics;
import java.awt.Font;
import java.awt.Color;

public class MoreHelloApplet extends java.applet.Applet {
Font f = new Font("TimesRoman",Font.BOLD,36);

public void paint(Graphics g) {
g.setFont(f);
g.setColor(Color.red);
g.drawString("Hello Again!", 5, 50);

}
}
The first thing you need to add in this class is a place for the name. Because you’ll need that name
throughout the applet, let’s add an instance variable for the name, just after the variable for the
font:

String name;

To set a value for the name, you have to get the parameter. The best place to handle parameters
to an applet is inside an init() method. The init() method is defined similarly to paint ()
(public, with no arguments, and a return type of void). Make sure when you test for a parameter
that you test for a value of nu11. The default, in this case, if a name isn’t indicated, is to say hello
to "Laura":
public void init() {
this.name = getParameter("name");

if (this.name == null)

this.name = "Laura";

}
One last thing to do now that you have the name from the HTML parameters is to modify the
name so that it’s a complete string—that is, to tack "He1lo " onto the beginning, and an
exclamation point onto the end. You could do this in the paint method just before printing the
string to the screen. Here it’s done only once, however, whereas in paint it’s done every time
the screen is repainted—in other words, it’s slightly more efficient to do it inside init () instead:

this.name = "Hello " + this.name + "!";

143

® DAY @

8 p Java Applet Basics

And now, all that’s left is to modify the paint() method. The original drawstring method
looked like this:

g.drawString("Hello Again!", 5, 50);

To draw the new string you have stored in the name instance variable, all you need to do is
substitute that variable for the literal string:

g.drawString(this.name, 5, 50);

Listing 8.3 shows the final result of themoreHe110Applet class. Compile it so that you have a class
file ready.

Type Listing 8.3. The moreHelloApplet Class.

1: import java.awt.Graphics;

2: import java.awt.Font;

3: import java.awt.Color;

4:

5: public class MoreHelloApplet extends java.applet.Applet {
6:

7: Font f = new Font("TimesRoman",Font.BOLD,36);
8: String name;

9:

10: public void init() {

11: this.name = getParameter("name");

12: if (this.name == null)

13: this.name = "Laura";

14:

15: this.name = "Hello " + this.name + "!";
16: }

17:

18: public void paint(Graphics g) {

19: g.setFont(f);
20: g.setColor(Color.red);
21: g.drawString(this.name, 5, 50);
22: }
23: }

Now, let’s create the HTML file that contains this applet. Listing 8.4 shows a new Web page
for the MoreHelloApplet applet.

Type Listing 8.4. The HTML file for the MoreHelloApplet applet.

<HTML>

<HEAD>
<TITLE>Hello!</TITLE>
</HEAD>

<BODY>

G WN =

144

<pP>

<APPLET CODE="MoreHelloApplet.class" WIDTH=300 HEIGHT=50>
<PARAM NAME=name VALUE="Bonzo">

Hello to whoever you are!

10: </APPLET>

11: </BODY>

12: </HTML>

A | 71 Note the <appLET> tag, which points to the class file for the applet with the appropriate
naYSIS width and height (3ee and se). Just below it (line 8) is the <pAram> tag, which you use to
pass in the name. Here, the nave parameter is simply name, and the value is the strong

"Bonzo".

Loading up this HTML file produces the result shown in Figure 8.6.

Figure 8.6.
The result of

MoreHelloApplet, first try. Hellﬂ B onzo I

Let’s try a second example. Remember that in the code for MoreHelloApplet, if no name is
specified, the default is the name "Laura". Listing 8.5 creates an HTML file with no parameter
tag for name.

T o Listing 8.5. Another HTML File for the
yp MoreHelloApplet applet.

<HTML>

<HEAD>
<TITLE>Hello!</TITLE>
</HEAD>

<BODY>

<pP>

<APPLET CODE="MoreHelloApplet.class" WIDTH=300 HEIGHT=50>
Hello to whoever you are!
</APPLET>

10: </BODY>

11: </HTML>

©CoONOUOH_WN=

Here, because no name was supplied, the applet uses the default, and the result is what you might
expect (see Figure 8.7).

145

146

Java Applet Basics

Figure 8.7.
The result of

ML Hello Laura!

Summary

Applets are probably the most common use of the Java language today. Applets are more
complicated than many Javaapplications because they are executed and drawn inline witha Web
page. Applets can more easily provide easy access to the graphics, user interface, and events
systems in the Web browser itself. Today, you learned the basics of creating applets, including
the following things:

O All applets you develop using Java inherit from the App1et class, part of the java.applet
package. The app1et class provides basic behavior for how the applet will be integrated
with and react to the browser and various forms of input from that browser and the
person running it. By subclassing Applet, you have access to all that behavior.

O Applets have five main methods, which are used for the basic activities an applet
performs during its life cycle: init(), start(), stop(), destroy(), and paint().
Although you don’t need to override all these methods, these are the most common
methods you’ll see repeated in many of the applets you'll create in this book and in
other sample programs.

O To run a compiled applet class file, you include it in an HTML Web page by using
the <appLET> tag. When a Java-capable browser comes across <APPLET>, it loads and
plays the applet described in that tag. Note that to publish Java applets on the World
Wide Web alongside HTML files you do not need special server software; any plain
old Web server will do just fine.

O Unlike applications, applets do not have a common line on which to pass arguments,
s0 those arguments must be passed into the applet through the HTML file that
contains it. You indicate parameters in an HTML file by using the <pArAw> tag inside
the opening and closing <apPLET> tags. <PARAM> has two attributes: nave for the name
of the parameter, and vaLue for its value. Inside the body of your applet (usually in
init()), you can then gain access to those parameters using the getparameter method.

sams
)

Sams.ney
Learning

Q In the first part of today’s lesson, you say that applets are downloaded from
random Web servers and run on the client’s system. What'’s to stop an applet

developer from creating an applet that deletes all the files on that system, or in
some other way compromises the security of the system?

A Recall that Java applets have several restrictions that make it difficult for most of the
more obvious malicious behavior to take place. For example, because Java applets
cannot read or write files on the client system, they cannot delete files or read system
files that might contain private information. Because they cannot run programs on the
client’s system, they cannot, for example, use the system’s mail system to mail files to
someone elsewhere on the network.

In addition, Java’s very architecture makes it difficult to circumvent these restrictions.

The language itself, the Java compiler, and the Java interpreter all have checks to make
sure that no one has tried to sneak in bogus code or play games with the system itself.

You’ll learn more about these checks at the end of this book.

Of course, no system can claim to be entirely secure, and the fact that Java applets are

run on the client’s system makes them especially ripe for suspicion.

Q Wait a minute. If I can’t read or write files or run programs on the system the
applet is running on, doesn’t that mean | basically can’t do anything other than
simple animations and flashy graphics? How can | save state in an applet? How
can | create, say, a word processor or a spreadsheet as a Java applet?

A For everyone who doesn’t believe that Java is secure enough, there is someone who
believes that Java’s security restrictions are too severe for just these reasons. Yes, Java
applets are limited because of the security restrictions. But given the possibility for
abuse, | believe that it's better to err on the side of being more conservative as far as
security is concerned. Consider it a challenge.

Keep in mind, also, that Java applications have none of the restrictions that Java
applets do, but because they are also compiled to bytecode, they are portable across
platforms. It may be that the thing you want to create would make a much better
application than an applet.

Q | have an older version of HotJava. | followed all the examples in this section,
but HotJava cannot read my applets (it seems to ignore that they exist). What's
going on?

147

148

Java Applet Basics

A You most likely have an alpha version of HotJava. Recall that significant changes were

made to the Java APl and how Java applets are written between alpha and beta. The
results of these changes are that browsers that support alpha applets cannot read beta
applets, and vice versa. The HTML tags are even different, so an older browser just
skips over newer applets, and vice versa.

By the time you read this, there may be a new version of HotJava with support for
beta. If not, you can use Netscape 2.0 or the JDK’s applet viewer to view applets
written to the beta specification.

I noticed in a page about the <AppLET> tag that there’s also a NamE attribute. You
didn’t discuss it here.

NAME is used when you have multiple applets on a page that need to communicate with
each other. You'll learn about this on Day 12.

I have an applet that takes parameters and an HTML file that passes it those
parameters. But when my applet runs, all | get are null values. What’s going on
here?

Do the names of your parameters (in the name attribute) match exactly with the names
you're testing for in getParameter? They must be exact, including case, for the match
to be made. Make sure also that your <param> tags are inside the opening and closing
<APPLET> tags, and that you haven’t misspelled anything.

4

Graphics, Fonts,
and Color

by Laura Lemay

150

Graphics, Fonts, and Color

Now you have a basic understanding of how applets work. For the remainder of this week you'll
cover the sorts of things you can do with applets with the built-in Java class libraries, and how
you can combine them to produce interesting effects. You'll start today with how to draw to the
screen—that is, how to produce lines and shapes with the built-in graphics primitive, how to
print text using fonts, and how to use and modify color in your applets. Today you'll learn,
specifically:

O How the graphics system works in Java: the Graphics class, the coordinate system used
to draw to the screen, and how applets paint and repaint

O Using the Java graphics primitives, including drawing and filling lines, rectangles,
ovals, and arcs

O Creating and using fonts, including how to draw characters and strings and how to
find out the metrics of a given font for better layout

O All about color in Java, including the co1or class and how to set the foreground
(drawing) and background color for your applet

Note: Today’s lesson discusses many of the basic operations available to you with
the Java class libraries regarding graphics, fonts, and color. However, today’s lesson,
as well as all of this book, is also intended to be more of an introduction and an
overview than an exhaustive description of all the features available to you. Be sure
to check out the Java APl documentation for more information on the classes
described today.

The Graphics Class

With Java’s graphics capabilities, you can draw lines, shapes, characters, and images to the screen
inside your applet. Most of the graphics operations in Java are methods defined in the Graphics
class. You don’t have to create an instance of raphics in order to draw something in your applet;
in your applet’s paint () method (which you learned about yesterday), you are given aGraphics
object. By drawing on that object, you draw onto your applet and the results appear on screen.

Theacraphics classis part of the java.awt package, so if your applet does any painting (as it usually
will), make sure you import that class at the beginning of your Java file:

import java.awt.Graphics;
public class MyClass extended java.applet.Applet {

}..

sams
net

Sams.ney
Learning

The Graphics Coordinate System
To draw an object on the screen, you call one of the drawing methods available in the Graphics

class. All the drawing methods have arguments representing endpoints, corners, or starting
locations of the object as values in the applet’s coordinate system—for example, a line starts at

the points 10,10 and ends at the points 20, 2e.
Java’s coordinate system has the origin (e,e) in the top left corner. Positive x values are to the
right, and positive y values are down. All pixel values are integers; there are no partial or fractional
pixels. Figure 9.1 shows how you might draw a simple square by using this coordinate system.

+X

0,0

Figure 9.1.
The Java graphics coordi-

nate system.
20,20

60,60

+Y

Java’s coordinate system is different from many painting and layout programs that have their
x andy in the bottom left. If you’re not used to working with this upside-down graphics system,

it may take some practice to get familiar with it.

Drawing and Filling

The Graphics class provides a set of simple built-in graphics primitives for drawing, including

lines, rectangles, polygons, ovals, and arcs.

Note: Bitmap images, such as GIF files, can also be drawn by using the Graphics
class. You’ll learn about this tomorrow.
151

152

Graphics, Fonts, and Color

Lines

To draw straight lines, use the drawLine method. drawLine takes four arguments: the x and y
coordinates of the starting point and the x and y coordinates of the ending point.

public void paint(Graphics g) {
g.drawLine(25,25,75,75);
}

Figure 9.2 shows the result of this snippet of code.

Figure 9.2.
Drawing lines.

Rectangles

The Java graphics primitives provide not just one, but three kinds of rectangles:

O Plain rectangles
O Rounded rectangles, which are rectangles with rounded corners
O Three-dimensional rectangles, which are drawn with a shaded border

For each of these rectangles, you have two methods to choose from: one that draws the rectangle
in outline form, and one that draws the rectangle filled with color.

To draw a plain rectangle, use either the drawrect Or fillrRect methods. Both take four
arguments: the x and y coordinates of the top left corner of the rectangle, and the width and
height of the rectangle to draw. For example, the following paint () method draws two squares:
the left one is an outline and the right one is filled (Figure 9.3 shows the result):
public void paint(Graphics g) {

g.drawRect (20,20,60,60);

g.fillRect(120,20,60,60);
}
Rounded rectanglesare, as you might expect, rectangles with rounded edges. ThedrawRoundRect
and fillRoundRect methods to draw rounded rectangles are similar to regular rectangles except
that rounded rectangles have two extra arguments for the width and height of the angle of the

sams
&

Sams. net
Lea"ning

corners. Those two arguments determine how far along the edges of the rectangle the arc for the
corner will start; the first for the angle along the horizontal plane, the second for the vertical.
Larger values for the angle width and height make the overall rectangle more rounded; values
equal to the width and height of the rectangle itself produce a circle. Figure 9.4 shows some

examples of rounded corners.

Figure 9.3.
Rectangles.

Figure 9.4. 30

Rounded corners.

20

20

Here’s a paint method that draws two rounded rectangles: one as an outline with a rounded
corner 1o pixelssquare; the other, filled, with arounded corner 2o pixels square (Figure 9.5 shows

the resulting squares):

public void paint(Graphics g) {
g.drawRoundRect (20,20,60,60,10,10);
) .

3

g.fillRoundRect(120,20,60,60,20,20

153

o b Graphics, Fonts, and Color

Figure 9.5.
Rounded rectangles.

Finally, there are three-dimensional rectangles. These rectangles aren’t really 3D; instead, they
have a shadow effect that makes them appear either raised or indented from the surface of the
applet. Three-dimensional rectangles have four arguments for the x and y of the start position
and the width and height of the rectangle. The fifth argument is a boolean indicating whether
the 3D effect is to raise the rectangle (true) or indent it (false). As with the other rectangles,
there are also different methods for drawing and filling: drawabrect and fi113pRect. Here’s code
to produce two of them—the left one indented, the right one raised (Figure 9.6 shows the result):
public void paint(Graphics g) {

g.draw3DRect (20,20,60,60,true);
g.draw3DRect (120,20,60,60,false);

}

Figure 9.6.
Three-dimensional
rectangles.

Note: In the current beta version of the Java developer’s kit, it is very difficult to
see the 3D effect on 3D rectangles, due to a very small line width. (In fact, |
enhanced Figure 9.6 to better show the effect.) If you are having troubles with 3D
rectangles, this may be why. Drawing 3D rectangles in any color other than black
makes them easier to see.

154

Polygons

Polygons are shapes with an unlimited number of sides. To draw a polygon, you need a set of
x and y coordinates, and the drawing method then starts at one, draws a line to the second, then
a line to the third, and so on.

Aswith rectangles, you can draw an outline or afilled polygon (the drawPolygonand fi11Polygon
methods, respectively). You also have a choice of how you want to indicate the list of
coordinates—either as arrays of x and y coordinates or as an instance of the polygon class.

Using the first method, the drawPolygon and fil1Polygon methods take three arguments:

O An array of integers representing x coordinates
O An array of integers representing y coordinates
O An integer for the total number of points

The x and y arrays should, of course, have the same number of elements.

Here’s an example of drawing a polygon’s outline by using this method (Figure 9.7 shows the
result):
public void paint(Graphics g) {

int exes[] = { 39,94,97,142,53,58,26 };

int whys[] = { 33,74,36,70,108,80,106 };
int pts = exes.length;

g.drawPolygon(exes,whys,pts);

Figure 9.7.
A polygon.

Note that Java does not automatically close the polygon; if you want to complete the shape, you
have to include the starting point of the polygon at the end of the array. Drawing afilled polygon,
however, joins the starting and ending points.

155

Graphics, Fonts, and Color

The second way of calling drawpolygon and fillPolygon iSt0 USe a Polygon object. The Polygon
class is useful if you intend to add points to the polygon or if you're building the polygon on the
fly. The po1ygon class enables you to treat the polygon as an object rather than having to deal
with individual arrays.

To create a polygon object you can either create an empty polygon:
Polygon poly = new Polygon();

or create a polygon from a set of points using integer arrays, as in the previous example:

int exes[] = { 39,94,97,142,53,58,26 };
int whys[] = { 33,74,36,70,108,80,106 };
int pts = exes.length;

Polygon poly = new Polygon(exes,whys,pts);

Once you have a polygon object, you can append points to the polygon as you need to:
poly.addPoint(20,35);

Then, to draw the polygon, just use the polygon object as an argument to drawPolygon OF
fil1lPolygon. Here’s that previous example, rewritten this time with aro1ygon object. You’ll also
fill this polygon rather than just drawing its outline (Figure 9.8 shows the output):
public void paint(Graphics g) {

int exes[] = { 39,94,97,142,53,58,26 };

int whys[] = { 33,74,36,70,108,80,106 };

int pts = exes.length;

Polygon poly = new Polygon(exes,whys,pts);

g.fillPolygon(poly);

Figure 9.8.
Another polygon.

Ovals

Use ovals to draw ellipses or circles. Ovals are just like rectangles with overly rounded corners.
In fact, you draw them using the same four arguments: the x and y of the top corner, and the

156

sams
&

Sams. net
Lea"ning

width and height of the oval itself. Note that, because you’re drawing an oval, the starting point
is some distance to the left and up from the actual outline of the oval itself. Again, if you think

of it as a rectangle, it’s easier to place.

As with the other drawing operations, the drawoval method draws an outline of an oval, and the
filloval method draws a filled oval.

Here’s an example of two ovals, a circle and an ellipse (Figure 9.9 shows how these two ovals
appear on screen):

public void paint(Graphics g) {

g.drawOval(20,20,60,60);
g.fillOval(120,20,100,60);

Figure 9.9.
Ovals.

Arc

Of the drawing operations, arcs are the most complex to construct, which is why | saved them
for last. An arc is a part of a oval; in fact, the easiest way to think of an arc is as a section of a

complete oval. Figure 9.10 shows some arcs.

Figure 9.10.
Arcs.

VL
_/J < O

157

Graphics, Fonts, and Color

The drawarc method takes six arguments: the starting corner, the width and height, the angle
atwhich tostart the arc, and the degrees to draw it before stopping. Once again, there isadrawarc
method to draw the arc’s outline and the fi11arc to fill the arc. Filled arcs are drawn as if they
were sections of a pie; instead of joining the two endpoints, both endpoints are joined to the
center of the circle.

The important thing to understand about arcs is that you’re actually formulating the arc as an
oval and then drawing only some of that. The starting corner and width and height are not the
starting point and width and height of the actual arc as drawn on the screen; they’re the width
and height of the full ellipse of which the arc is a part. Those first points determine the size and
shape of the arc; the last two arguments (for the degrees) determine the starting and ending
points.

Let’s start with a simple arc, a C shape on a circle as shown in Figure 9.11.

Figure 9.11.
A C arc.

To construct the method to draw this arc, the first thing you do is think of it asa complete circle.
Then you find the xand y coordinates and the width and height of that circle. Those four values
are the first four arguments to the drawarc or fi11arc methods. Figure 9.12 shows how to get
those values from the arc.

Figure 9.12.
Constructing a circular arc. A

Y

100

A

100

158

To get the last two arguments, think in degrees around the circle. Zero degrees is at 3 o’clock,
90degreesisat 12 o’clock, 180 at 9 o’clock, and 270 at 6 o’clock. The start of the arc is the degree
value of the start of the arc. In this example, the starting point is the top of the C at 90 degrees;
90 is the fifth argument.

Thesixth and lastargument isanother degree value indicating how far around the circle to sweep
and the direction to go in (it’s not the ending degree angle, as you might think). In this case,
because you’re going halfway around the circle, you're sweeping 180 degrees—and 180 is
therefore the last argument in the arc. The important part is that you’re sweeping 180 degrees
counterclockwise, which is in the positive direction in Java. If you are drawing a backwards C,
you sweep 180 degrees in the negative direction, and the last argument is -18e. See Figure 9.13
for the final illustration of how this works.

Note: It doesn’t matter which side of the arc you start with; because the shape of
the arc has already been determined by the complete oval it’s a section of, starting
at either endpoint will work.

Figure 9.13. 90°
Arcs on circles.
90°
180° 0°
180°
270°

Here’s the code for this example; you’ll draw an outline of the C and a filled C to its right, as
shown in Figure 9.14:
public void paint(Graphics g) {

g.drawArc(20,20,60,60,90,180);

g.fillArc(120,20,60,60,90,180);
}
Circlesare an easy way to visualize arcs on circles; arcs on ellipses are slightly more difficult. Let’s
go through this same process to draw the arc shown in Figure 9.15.

159

160

Graphics, Fonts, and Color

Figure 9.14.
Two circular arcs.

Figure 9.15.
An elliptical arc.

Like the arc on the circle, this arc is a piece of a complete oval, in this case, an elliptical oval. By
completing the oval that this arc is a part of, you can get the starting points and the width and
height arguments for the drawarc or fil1Arc method (Figure 9.16).

Figure 9.16.
Arcs on ellipses. T

Y

140

A

:

Then, all you need is to figure out the starting angle and the angle to sweep. This arc doesn’t
start on a nice boundary such as 90 or 180 degrees, so you’ll need some trial and error. This arc
starts somewhere around 25 degrees, and then sweeps clockwise about 130 degrees (Figure
9.17).

Figure 9.17. 90°

Starting and ending points.
25°

180° «—2 0°
-130°

270°

sams
&

Sams. net
Lea"ning

With all portions of the arc in place, you can write the code. Here’s the Java code for this arc,
both drawn andfilled (note in the filled case how filled arcs are drawn as if they were pie sections):
public void paint(Graphics g) {

g.drawArc(10,20,150,50,25, -130) ;
g.fillArc(10,80,150,50,25, -130);

}
Figure 9.18 shows the two elliptical arcs.

Figure 9.18.
Two elliptical arcs.

a

To summarize, here are the steps to take to construct arcs in Java:

O Think of the arc as a slice of a complete oval.
Construct the full oval with the starting point and the width and height (it often helps

to draw the full oval on the screen to get an idea of the right positioning).

O Determine the starting angle for the beginning of the arc.
Determine how far to sweep the arc and in which direction (counterclockwise
indicates positive values, clockwise indicates negatives).

O

A Simple Graphics Example

Here’s an example of an applet that uses many of the built-in graphics primitives to draw a
rudimentary shape. In this case, it’s a lamp with a spotted shade (or a sort of cubist mushroom,
depending on your point of view). Listing 9.1 has the complete code for the lamp; Figure 9.19

shows the resulting applet.

161

DAY
Graphics, Fonts, and Color

Figure 9.19.
The Lamp applet.

Type Listing 9.1. The Lamp class.

1: import java.awt.*;

2:

3: public class Lamp extends java.applet.Applet {
4:

5: public void paint(Graphics g) {

6: // the lamp platform

7 g.fillRect(0,250,290,290);

8:

9: // the base of the lamp

10: g.drawLine(125,250,125,160);

11: g.drawLine(175,250,175,160);

12:

13: // the lamp shade, top and bottom edges
14: g.drawArc(85,157,130,50, -65,312) ;
15: g.drawArc(85,87,130,50,62,58) ;
16:

17: // lamp shade, sides

18: g.drawLine(85,177,119,89);

19: g.drawLine(215,177,181,89);
20:
21: // dots on the shade
22: g.fillArc(78,120,40,40,63,-174);

162

sams
net

Sams.ney
Learning

23: g.fillOval(120,96,40,40);

24: g.fillArc(173,100,40,40,110,180);
25:

26: }

Copying and Clearing

Once you’ve drawn a few things on the screen, you may want to move them around or clear the
entire applet. The craphics class provides methods for doing both these things.

The copyArea method copies a rectangular area of the screen to another area of the screen.
copyArea takes six arguments: the x and y of the top corner of the rectangle to copy, the width
and the height of that rectangle, and the distance in the x and y directions to which to copy it.
For example, this line copies a square area 100 pixels on a side 100 pixels directly to its right:

g.copyArea(0,0,100,100,100,0) ;

To clear a rectangular area, use the clearrect method. clearrect, which takes the same four
arguments as the drawrect and filirect methods, fills the given rectangle with the current
background color of the applet (you’ll learn how to set the current background color later on

today).

To clear the entire applet, you can use the size () method, which returns a pimension object
representing the width and height of the applet. You can then get to the actual values for width
and height by using the width and height instance variables:

g.clearRect(0,0,this.size().width,this.height());

Text and Fonts

Thearaphics classalso enables you to print text on the screen, in conjunction with the Font class,
and, sometimes, the Font metrics class. The Font class represents a given font—its name, style,
and point size—and Font metrics gives you information about that font (for example, the actual
height or width of a given character) so that you can precisely lay out text in your applet.

Note that the text here is static text, drawn to the screen once and intended to stay there. You'll
learn about entering text from the keyboard later on this week.

Creating Font Objects

To draw text to the screen, first you need to create an instance of the Font class. Font objects
represent an individual font—that is, its name, style (bold, italic), and point size. Font names
are strings representing the family of the font, for example, "TimesRoman", "Courier", OF

163

164

Graphics, Fonts, and Color

"Helvetica". Fontstyles are constants defined by the Font class; you can get to them using class
variables—for example, Font.PLAIN, Font.BOLD, OF Font. ITALIC. Finally, the pointsize is the size
of the font, as defined by the font itself; the point size may or may not be the height of the
characters.

Tocreate an individual font object, use these three arguments to theFont class’s new constructor:
Font f = new Font("TimesRoman", Font.BOLD, 24);

Thisexample creates a font object for the TimesRoman BoLD font, in 24 points. Note that like most
Java classes, you have to import this class before you can use it.

Font styles are actually integer constants that can be added to create combined styles; for
example, Font.BOLD + Font.ITALIC produces a font that is both bold and italic.

The fonts you have available to you in your applet depend on the system on which the applet
is running. Currently, although there is a mechanism in Java to get a list of fonts (see the
getFontList method, defined in the java.awt.Toolkit class), it appears not to be working
currently in the beta version of the JDK. Once these capabilities work, it is possible to get a list
of fonts on the system and to be able to make choices based on that list; for now, to make sure
your applet is completely compatible across systems, it’s a very good idea to limit the fonts you
use in your applets to "TimesRoman", "Helvetica", and "courier". If Java can’t find a font you
want to use, it will substitute some default font, usually Courier.

Drawing Characters and Strings

With a font object in hand, you can draw text on the screen using the methods drawchars and
drawstring. First, though, you need to set the current font to your font object using the setFont
method.

The current font is part of the graphics state that is kept track of by thecraphics object on which
you’re drawing. Each time you draw a character or a string to the screen, that text is drawn by
using the current font. To change the font of the text, first change the current font. Here’s a
paint () method that creates a new font, sets the current font to that font, and draws the string
"This is a big font.", starting from the point 10, 100.
public void paint(Graphics g) {

Font f = new Font("TimesRoman", Font.PLAIN,72);

g.setFont(f);

g.drawString("This is a big font.",10,100);
}

This should all look familiar to you; this is how the Hello applets throughout this book were
produced.

The latter two arguments to drawstring determine the point where the string will start. The x
value is the start of the leftmost edge of the text; y is the baseline for the entire string.

sams
net

Samg net
Learning
Center

Similar to drawstring is the drawchars method that, instead of taking a string as an argument,
takes an array of characters. drawchars has five arguments: the array of characters, an n integer
representing the first character in the array to draw, another integer for the last character in the
array to draw (all characters between the first and last are drawn), and the x and y for the starting
point. Most of the time, drawstring is more useful than drawchars.

Listing 9.2 shows an applet that draws several lines of text in different fonts; Figure 9.20 shows
the result.

Type Listing 9.2. Many different fonts.

import java.awt.Font;
import java.awt.Graphics;

public void paint(Graphics g) {

1:

2:

3:

4: public class ManyFonts extends java.applet.Applet {

5

6

7 Font f = new Font("TimesRoman", Font.PLAIN, 18);
8

©

Font fb = new Font("TimesRoman", Font.BOLD, 18);
Font fi = new Font("TimesRoman", Font.ITALIC, 18);
10: Font fbi = new Font("TimesRoman", Font.BOLD + Font.ITALIC, 18);
11:
12: g.setFont(f);
13: g.drawString("This is a plain font", 10, 25);
14: g.setFont(fb);
15: g.drawString("This is a bold font", 10, 50);
16: g.setFont(fi);
17: g.drawString("This is an italic font", 10, 75);
18: g.setFont(fbi);
19: g.drawString("This is a bold italic font", 10, 100);
20: }
21:
22: }
Figure 9.20.
The output of the This is a plain font
ManyFonts applet.

This is a bold font
This 13 an italic font
This is a bold italic font

165

Graphics, Fonts, and Color

Finding Out Information About a Font

Sometimes, you may want to make decisions in your Java program based on the qualities of the
current font—for example, its point size, or the total height of its characters. You can find out
some basic information about fonts and font objects by using simple methods on Graphics and
on the Font objects. Table 9.1 shows some of these methods:

Table 9.1. Font methods.
Method Name In Object Action

getFont() Graphics Returns the current font object as previously set by
setFont ()

getName () Font Returns the name of the font as a string

getSize() Font Returns the current font size (an integer)

getStyle() Font Returns the current style of the font (styles are integer
constants: o is plain, 1 is bold, 2 is italic, 3 is bold italic)

isPlain() Font Returns true or false if the font’s style is plain

isBold() Font Returns true or false if the font’s style is bold

isItalic() Font Returns true or false if the font’s style is italic

For more detailed information about the qualities of the current font (for example, the length
or height of given characters), you need to work with font metrics. The Fontmetrics class
describes information specific to a given font: the leading between lines, the height and width
of each character, and so on. To work with these sorts of values, you create aFontmetrics object
based on the current font by using the applet method getFontmetrics:

Font f = new Font("TimesRoman", Font.BOLD, 36);
FontMetrics fmetrics = getFontMetrics(f);
g.setfont(f);

Table 9.2 shows some of the things you can find out using font metrics. All these methods should
be called on a Fontmetrics object.

Table 9.2. Font metrics methods.
Method Name Action
stringWidth() Given a string, returns the full width of that string, in pixels
charWidth () Given a character, returns the width of that character

166

Method Name Action

getAscent () Returns the ascent of the font, that is, the distance between the
font’s baseline and the top of the characters
getDescent () Returns the descent of the font—that is, the distance between the

font’s baseline and the bottoms of the characters (for characters such
as p and q that drop below the baseline)

getLeading() Returns the leading for the font, that is, the spacing betweenthe
descent of one line and the ascent of another line
getHeight () Returns the total height of the font, which is the sum of the ascent,

descent, and leading value

As an example of the sorts of information you can use with font metrics, Listing 9.3 shows the
Java code for an applet that automatically centers a string horizontally and vertically inside an
applet. The centering position is different depending on the font and font size; by using font
metrics to find out the actual size of a string, you can draw the string in the appropriate place.

Note the app1et.size () method here, which returns the width and height of the overall applet
areaasapimension Object. You canthen getto the individual width and height by using the width
and height instance variables.

Figure 9.21 shows the result (less interesting than if you actually compile and experiment with
various applet sizes).

Type Listing 9.3. Centering a string.

1: import java.awt.Font;

2: import java.awt.Graphics;

3: import java.awt.FontMetrics;

4:

5: public class Centered extends java.applet.Applet {

6:

7: public void paint(Graphics g) {

8: Font f = new Font("TimesRoman", Font.PLAIN, 36);

9: FontMetrics fm = getFontMetrics(f);

10: g.setFont(f);

11:

12: String s = "This is how the world ends.";

13: int xstart = (this.size().width - fm.stringWidth(s)) / 2;
14: int ystart = (this.size().height - fm.getHeight()) / 2;
15:

16: g.drawString(s, xstart, ystart);

17:

18:}

167

168

Graphics, Fonts, and Color

Figure 9.21. L.
The centered text. This 1s how the world ends.

Color

Drawing black lines and tests on a gray background is all very nice, but being able to use different
colors is much nicer. Java provides methods and behaviors for dealing with color in general
through the co1or class, and also provides methods for setting the current foreground and
background colors so that you can draw with the colors you created.

Java’s abstract color model uses 24-bit color, wherein a color is represented as a combination of
red, green, and blue values. Each component of the color can have a number between e and 25s.
0,0,0 is black, 255,255,255 is white, and Java can represent millions of colors between as well.

Java’s abstract color model maps onto the color model of the platform Java is running on, which
usually has only 256 colors or fewer from which to choose. If a requested color in a color object
is not available for display, the resulting color may be mapped to another or dithered, depending
on how the browser viewing the color implemented it, and depending on the platform on which
you’re running. In other words, although Java gives the capability of managing millions of
colors, very few may actually be available to you in real life.

Using Color Objects

Todrawan objectinaparticular color, you must create an instance of theco1or class to represent
that color. The color class defines a set of standard color objects, stored in class variables, that
enable you quickly to get a color object for some of the more popular colors. For example,
Color.red gives you acolor Object representing red (RGB values of 255, o, and), color.white
gives you a white color (RGB values of 255, 255, and 255), and so on. Table 9.3 shows the
standard colors defined by variables in the co1or class.

Table 9.3. Standard colors.

Color Name RGB Value
Color.white 255,255,255
Color.black 0,0,0

Color.lightGray 192,192,192
Color.gray 128,128,128
Color.darkGray 64,64,64

Color Name RGB Value

Color.red 255,0,0
Color.green 0,255,0
Color.blue 0,0,255
Color.yellow 255,255,0
Color.magenta 255,0,255
Color.cyan 0,255,255
Color.pink 255,175,175
Color.orange 255,200,0

If the color you want to draw in is not one of the standard color objects, fear not. You can create
a color object for any combination of red, green, and blue, as long as you have the values of the
color you want. Just create a new color object:

Color ¢ = new Color(140,140,140);

This line of Java code creates a color object representing a dark grey. You can use any
combination of red, green, and blue values to construct a color object.

Alternatively, you can also create a color object using three floats from e.0 to 1.e:

Color ¢ = new Color(0.34,1.0,0.25)

Testing and Setting the Current Colors

To draw an object or text using a color object, you have to set the current color to be that color
object, just as you have to set the current font to the font in which you want to draw. Use the
setColor method (a method for craphics objects) to do this:

g.setColor(Color.green);
After setting the current color, all drawing operations will occur in that color.

In addition to setting the current color for the graphics context, you can also set the background
and foreground colors for the applet itself by using the setBackground and setForeground
methods. Both of these methods are defined in the java.awt.Component class, which Applet—
and therefore your classes—automatically inherits.

The setBackground method sets the background color of the applet, which is usually adark grey.
It takes a single argument, a color object:

setBackground(Color.white);

169

Graphics, Fonts, and Color

The setForeground method also takes a single color as an argument, and affects everything that
has been drawn on the applet, regardless of the color in which it has been drawn. You can use
setForeground to change the color of everything in the applet at once, rather than having to
redraw everything:

setForeground(Color.black);

Inaddition to the setcolor, setForeground, and setBackground methods, there are correspond-
ing “get” methods that enable you to retrieve the current graphics color, background, or
foreground. Those methods are getcolor (defined in Graphics Objects), getForeground (defined
in Applet), and getBackground (also in Applet). You can use these methods to choose colors
based on existing colors in the applet:

setForeground(g.getColor());

A Single Color Example

Listing 9.4 shows the code for an applet that fills the applet’s drawing area with square boxes,
each of which hasarandomly chosen color init. It’swritten so that it can handle any size of applet
and automatically fill the area with the right number of boxes.

Type Listing 9.4. Random color boxes.

1: import java.awt.Graphics;

2: import java.awt.Color;

3:

4: public class ColorBoxes extends java.applet.Applet {

5:

6: public void paint(Graphics g) {

7: int rval, gval, bval;

8:

9: for (int j = 30; j < (this.size().height -25); j += 30)
10: for (int 1 = 5; i < (this.size().width -25); i+= 30) {
11: rval = (int)Math.floor(Math.random() * 256);
12: gval = (int)Math.floor(Math.random() * 256);
13: bval = (int)Math.floor(Math.random() * 256);
14:

15: g.setColor(new Color(rval,gval,bval));
16: g.fillRect(i,j,25,25);

17: g.setColor(Color.black);

18: g.drawRect(i-1,j-1,25,25);

19: }

20: }

21: }

A | +1 Thetwo for loops are the heart of this example; the first one draws the rows, and the second
nayS|S draws the individual boxes within the row. When a box is drawn, the random color is

170

calculated first, and then the box is drawn. A black outline is drawn around each box, because
some of them tend to blend into the background of the applet.

Because this paint method generates new colors each time the applet is painted, you can
regenerate the colors by moving the window around or by covering the applet’s window with
another one. Figure 9.22 shows the final applet (although given that this picture is black and
white, you can’t get the full effect of the multicolored squares).

Figure 9.22.
The random colors applet.

[NNENEEEE]
EECEE ECEEN
O RTINS
I | [P [
(e e e

Summary

You present something on the screen by painting inside your applet: shapes, graphics, text, or
images. Today, you learned the basics of how to paint, including using the graphics primitives
to draw rudimentary shapes, using fonts and font metrics to draw text, and using color objects
to change the color of what you’re drawing on the screen. It’s this foundation in painting that
enables you to do animation inside an applet (which basically involves just painting repeatedly
to the screen) and to work with images. These are topics you'll learn about tomorrow.

Q&A

Q In all the examples you show, and in all the tests I’ve made, the graphics primi-
tives, such as drawLine and drawrect, produce lines that are one pixel wide. How
can | draw thicker lines?

A In the current state of the Java Graphics class, you can’t; no methods exist for chang-
ing the default line width. If you really need a thicker line, you have to draw multiple
lines one pixel apart to produce that effect.

Q | wrote an applet to use Helvetica. It worked fine on my system, but when | run
it on my friend’s system, everything is in Courier. Why?

171

172

Graphics, Fonts, and Color

A Your friend most likely doesn’t have the Helvetica font installed on his or her system.

When Java can’t find a font, it substitutes a default font instead—in your case,
Courier. The best way to deal with this is to query the font list. As I'm writing this,
however, querying the font list doesn’t yet work, so your safest bet is to stick with
either Times Roman or Courier in your applets.

I tried out that applet that draws boxes with random colors, but each time it
draws, a lot of the boxes are the same color. If the colors are truly random, why is
it doing this?

Two reasons. The first is that the random number generator | used in that code (from
the math class) isn’t a very good random number generator; in fact, the documentation
for that method says as much. For a better random number generator, use the Random
class from the java.util package.

The second, more likely, reason is that there just aren’t enough colors available in your
browser or on your system to draw all the colors that the applet is generating. If your
system can’t produce the wide range of colors available using the co1or class, or if the
browser has allocated too many colors for other things, you may end up with duplicate
colors in the boxes, depending on how the browser and the system has been written to
handle that. Usually your applet won’t use quite so many colors, so you won’t run

into this problem quite so often.

2
O
A

Simple Animation
and Threads

by Laura Lemay

174

Simple Animation and Threads

The first thing | ever saw Java do was an animation: a large red "Hi there!" that ran across the
screen from the right to left. Even that simple form of animation was enough to make me stop
and think, “this is really cool.”

That sort of simple animation takes only a few methods to implement in Java, but those few
methods are the basis for any Java applet that you want to update the screen dynamically.
Starting with simple animations is a good way to build up to the more complicated applets.
Today, you'll learn the fundamentals of animation in Java: how the various parts of the system
all work together so that you can create moving figures and dynamic updateable applets.
Specifically, you'll explore the following:

O How Java animations work—the paint () and repaint () methods, starting and
stopping dynamic applets, and how to use and override these methods in your own
applets

O Threads—what they are and how they can make your applets more well-behaved with
other applets and with the Java system in general

O Reducing animation flicker, a common problem with animation in Java

Throughout today, you’ll also work with lots of examples of real applets that create animations
or perform some kind of dynamic movement.

Creating Animation in Java

Animation in Java involves two steps: constructing a frame of animation, and then asking Java
to paint that frame. Repeat as necessary to create the illusion of movement. The basic, static
applets that you created yesterday taught you how to accomplish the first part; all that’s left is
how to tell Java to paint a frame.

Painting and Repainting

The paint () method, as you learned yesterday, is called by Java whenever the applet needs to
be painted—when the applet is initially drawn, when the window containing it is moved, or
when another window is moved from over it. You can also, however, ask Java to repaint the
applet at atime you choose. So, to change the appearance of what is on the screen, you construct
the image or “frame” you want to paint, and then ask Java to paint this frame. If you do this
repeatedly, and fast enough, you get animation inside your Java applet. That’s all there is to it.

Where does all this take place? Not in the paint () method itself. All paint () does is put dots
on thescreen. paint (), in other words, is responsible only for the current frame of the animation
at a time. The real work of changing what paint() does, of modifying the frame for an
animation, actually occurs somewhere else in the definition of your applet.

sams
&

Sams. net
Lea"ning

In that “somewhere else,” you construct the frame (set variables for paint () to use, create color
or font or other objects that paint () will need), and then call the repaint () method. repaint()
is the trigger that causes Java to call paint () and causes your frame to get drawn.

Technical Note: Because a Java applet can contain many different components
that all need to be painted (as you’ll learn later on this week), and in fact, applets
are embedded inside a larger Java application that also paints to the screen in
similar ways, when you call repaint () (and therefore paint()) you’re not actually
immediately drawing to the screen as you do in other window or graphics toolKits.
Instead, repaint () is a request for Java to repaint your applet as soon as it can.
Much of the time, the delay between the call and the actual repaint is negligible.

Starting and Stopping
an Applet’s Execution

Remember start () and stop() from Day 8? These are the methods that trigger your applet to
startand stop running. Youdidn'tuse start () and stop () yesterday, because the applets on that
day did nothing except paint once. With animations and other Java applets that are actually
processing and running over time, you'll need to make use of start () and stop() to trigger the
start of your applet’s execution, and to stop it from running when you leave the page that
contains that applet. For most applets, you’ll want to override start and stop for just this reason.

The start () method triggers the execution of the applet. You can either do all the applet’s work
inside that method, or you can call other object’s methods in order to do so. Usually, start ()
is used to create and begin execution of a thread so the applet can run in its own time.

stop(), on the other hand, suspects an applet’s execution so when you move off the page on
which the applet is displaying, it doesn’t keep running and using up system resources. Most of
the time when you create a start () method, you should also create a corresponding stop().

Putting It Together

Explaining how to do Java animation in text is more of a task than actually showing you how
it works in code. An example or two will help make the relationship between all these methods
Clearer.

Listing 10.1 shows a sample applet that, at first glance, uses basic applet animation to display
the date and time and constantly updates it every second, creating a very simple animated digital
clock (a frame from that clock is shown in Figure 10.1).

175

Simple Animation and Threads

The words “at first glance” in the previous paragraph are very important: this applet doesn’t
work! However, despite the fact that it doesn’t work, you can still learn a lot about basic
animation with it, so working through the code will still be valuable. In the next section, you'll
learn just what’s wrong with it.

See whether you can figure out what’s going on with this code before you go on to the analysis.

Type Listing 10.1. The Date applet.

1: import java.awt.Graphics;
2: import java.awt.Font;
3: import java.util.Date;
4:
5: public class DigitalClock extends java.applet.Applet {
6:
7: Font theFont = new Font("TimesRoman",Font.BOLD,24);
8: Date theDate;
9:
10: public void start() {
11: while (true) {
12: theDate = new Date();
13: repaint();
14: try { Thread.sleep(1000); }
15: catch (InterruptedException e) { }
16: }
17: }
18:
19: public void paint(Graphics g) {
20: g.setFont(theFont);
21: g.drawString(theDate.toString(),10,50);
22: }
23: }
Figure 10.1.

The digital clock.

Sun Nov 05 20:43:02 PST 1995

Think you've got the basic idea? Let’s go through it, line by line.

Analysi

Lines 7 and 8 define two basic instance variables: theFont and thepate, which hold objects
representing the current font and the current date, respectively. More about these later.

176

sams
&

Sams. net
Lea"ning

The start () method triggers the actual execution of the applet. Note the whiie loop inside this
method; given that the test (true) always returns true, the loop never exits. A single animation
frame is constructed inside that while loop, with the following steps:

O The pate class represents a date and time (pate is part of the java.util package—note
that it was specifically imported in line three). Line 12 creates a new instance of the
pate class, which holds the current date and time, and assigns it to the thebate
instance variable.

The repaint () method is called.

O Lines 14 and 15, as complicated as they look, do nothing except pause for 1000
milliseconds (one second) before the loop repeats. The sieep() method there, part of
the Thread class, is what causes the applet to pause. Without a specific s1eep()
method, the applet would run as fast as it possibly could, which, for faster computer
systems, might be too fast for the eye to see. Using s1eep() enables you to control
exactly how fast the animation takes place. The try and catch stuff around it enables
Java to manage errors if they occur. try and catch are called exceptions and are
described on Day 18, next week.

On to the paint() method. Here, inside paint (), all that happens is that the current font (in
the variable theFont) is set, and the date itself is printed to the screen (note that you have to call
the tostring () method to convert the date to astring). Because paint () is called repeatedly with
whatever value happens to be in thepate, the string is updated every second to reflect the new
date.

There are a few things to note about this example. First, you might think it would be easier to
create the new pate object inside the paint () method. That way you could use a local variable
and not need an instance variable to pass the pate object around. Although doing things that
way creates cleaner code, it also results in a less efficient program. The paint () method is called
every time a frame needs to be changed. In this case, it’s not that important(), but in an
animation that needs to change frames very quickly, the paint () method has to pause to create
that new object every time. By leaving paint () to do what it does best—painting the screen—
and calculating new objects before hand, you can make painting as efficient as possible. This is
precisely the same reason why the Font object is also in an instance variable.

Threads: What They Are
and Why You Need Them

Depending on your experience with operating systems and with environments within those
systems, you may or may not have run into the concept of threads. Let’s start from the beginning
with some definitions.

177

178

Simple Animation and Threads

When a program runs, it starts executing, runs its initialization code, calls methods or
procedures, and continues running and processing until it’s complete or until the program is
exited. That program uses a single thread—where the thread is a single locus of control for the
program.

Multithreading, as in Java, enables several different execution threads to run at the same time
inside the same program, in parallel, without interfering with each other.

Here’s a simple example. Suppose you have a long computation near the start of a program’s
execution. This long computation may not be needed until later on in the program’s
execution—it’s actually tangential to the main point of the program, but it needs to get done
eventually. Inasingle-threaded program, you have to wait for that computation to finish before
the rest of the program can continue running. In a multithreaded system, you can put that
computation into its own thread, enabling the rest of the program to continue running
independently.

Using threads in Java, you can create an applet so that it runs in its own thread, and it will happily
run all by itself without interfering with any other part of the system. Using threads, you can
have lots of applets running at once on the same page. Depending on how many you have, you
may eventually exhaust the system so that all of them will run slower, but all of them will run
independently.

Even if you don’t have lots of applets, using threads in your applets is good Java programming
practice. The general rule of thumb for well-behaved applets: whenever you have any bit of
processing that is likely to continue for a long time (such as an animation loop, or a bit of code
that takes a long time to execute), put it in a thread.

The Problem with the Digital Clock Applet

That Digital Clock applet in the last section doesn’t use threads. Instead, you put thewni1e loop
that cycles through the animation directly into the start () method so that when the applet starts
running it keeps going until you quit the browser or applet viewer. Although this may seem like
agood way to approach the problem, the digital clock won’t work because thewhiie loop in the
start () method is monopolizing all the resources in the system—including painting. If you try
compiling and running the digital clock applet, all you get is a blank screen. You also won’t be
able to stop the applet, because there’s no way a stop() method can ever be called.

The solution to this problem is to rewrite the applet to use threads. Threads enable this applet
to animate on its own without interfering with other system operations, enable it to be started
and stopped, and enable you to run it in parallel with other applets.

sams
net

Sams.ney
Learning

Writing Applets with Threads

How do you create an applet that uses threads? There are several things you need to do.
Fortunately, none of them are difficult, and a lot of the basics of using threads in applets is just
boilerplate code that you can copy and paste from one applet to another. Because it’s so easy,
there’s almost no reason not to use threads in your applets, given the benefits.

There are four modifications you need to make to create an applet that uses threads:
O Change the signature of your applet class to include the words implements Runnable.
O Include an instance variable to hold this applet’s thread.

O Modify your start () method to do nothing but spawn a thread and start it running.
O Create a run() method that contains the actual code that starts your applet running. 1 O

Thefirst change is to the first line of your class definition. You've already got something like this:
public class MyAppletClass extends java.applet.Applet {
You need to change it to the following (I’ve put it on two lines so it’ll fit on this page; it can be
either like this or on one line depending on your preference):

public class MyAppletClass extends java.applet.Applet implements Runnable {

s

What does this do? It includes support for the rRunnabie interface in your applet. If you think
way back to Day 2, you'll remember that interfaces are a way to collect method names common
to different classes, which can then be mixed in and implemented inside different classes that

need to implement that behavior. Here, the Runnab1e interface includes the behavior your applet
needs to run a thread; in particular, it gives you a default definition for the run() method.

The second step is to add an instance variable to hold this applet’s thread. Call it anything you
like; it’s a variable of the type Thread (Thread isaclass in java.1ang, S0 you don’t have to import
it):

Thread runner;

Third, add a start () method or modify the existing one so that it does nothing but create a new
thread and start it running. Here’s a typical example of a start () method:
public void start() {
if (runner == null); {
runner = new Thread(this);
runner.start();

179

180

Simple Animation and Threads

If you modify start () to do nothing but spawn a thread, where does the body of your applet
go? It goes into a new method, run(), which looks like this:

public void run() {
// what your applet actually does

}

run() can contain anything you want to run in the separate thread: initialization code, the actual
loop for your applet, or anything else that needs to run in its own thread. You also can create
new objects and call methods from inside run(), and they’ll also run inside that thread. The run
method is the real heart of your applet.

Finally, now that you’ve got threads running and a start method to start them, you should add
astop() method to suspend execution of that thread (and therefore whatever the applet is doing
at the time) when the reader leaves the page. stop(), like start(), is usually something along
these lines:
public void stop() {

if (runner != null) {

runner.stop();
runner = null;

}
}
The stop() method here does two things: it stops the thread from executing and also sets the
thread’s variable (runner) to nu1l. Setting the variable to nu11 makes the Thread object it
previously contained available for garbage collection so that the applet can be removed from
memory after a certain amount of time. If the reader comes back to this page and this applet,
the start method creates a new thread and starts up the applet once again.

And that’s it! Four basic modifications, and now you have a well-behaved applet that runs in its
own thread.

Fixing The Digital Clock

Remember the problems you had with the Digital Clock applet at the beginning of this section?
Let’s fix them so you can get an idea of how a real applet with threads looks. You'll follow the
four steps outlined in the previous section.

First, modify the class definition to include the runnable interface (the class is renamed to
DigitalThreads instead of pigitalClock):

public class DigitalThreads extends java.applet.Applet
implements Runnable {

Second, add an instance variable for the Thread:

Thread runner;

For the third step, swap the way you did things. Because the bulk of the applet is currently in
a method called start(), but you want it to be in a method called run(), rather than do a lot
of copying and pasting, just rename the existing start () to run():

public void run() {
while (true) {

Finally, add the boilerplate start() and stop() methods:

public void start() {
if (runner == null); {
runner = new Thread(this);
runner.start();

}
}
public void stop() { 10
if (runner != null) {
runner.stop();
runner = null;
}
}

You're finished! One applet converted to use threads in less than a minute flat. The code for the
final applet appears in Listing 10.2.

Type Listing 10.2. The fixed digital clock applet.

1: import java.awt.Graphics;

2: import java.awt.Font;

3: import java.util.Date;

4:

5: public class DigitalThreads extends java.applet.Applet
6: implements Runnable {

7:

8: Font theFont = new Font("TimesRoman",Font.BOLD,24);
9: Date theDate;

10: Thread runner;

11:

12: public void start() {

13: if (runner == null); {

14: runner = new Thread(this);
15: runner.start();

16: }

17: }

18:

19: public void stop() {

20: if (runner != null) {

21: runner.stop();

22: runner = null;

23: }

24: }

continues

181

182

Simple Animation and Threads

Listing 10.2. continued

25:

26: public void run() {

27: while (true) {

28: theDate = new Date();

29: repaint();

30: try { Thread.sleep(1000); }

31: catch (InterruptedException e) { }
32: }

33: }

34:

35: public void paint(Graphics g) {

36: g.setFont(theFont);

37: g.drawString(theDate.toString(),10,50);
38: }

39: }

40:

Reducing Animation Flicker

If you've been following along with this book and trying the examples as you go, rather than
reading this book on the airplane or in the bathtub, you may have noticed that when the date
program runs every once in a while, there’s an annoying flicker in the animation. (Not that
there’s anything wrong with reading this book in the bathtub, but you won’t see the flicker if
you do that, so just trust me—there’s a flicker.) This isn’t a mistake or an error in the program;
in fact, that flicker is a side effect of creating animations in Java. Because it is really annoying,
however, you'll learn how to reduce flicker in this part of today’s lesson so that your animations
run cleaner and look better on the screen.

Flicker and How to Avoid It

Flicker is caused by the way Java paints and repaints each frame of an applet. At the beginning
of today’s lesson, you learned that when you call the repaint () method, repaint () calls paint ().
That's not precisely true. A call to paint () does indeed occur in response to a repaint (), but
what actually happens are the following steps:

1. The call to repaint() results in a call to the method update().

2. The update () method clears the screen of any existing contents (in essence, fills it with
the current background color), and then calls paint ().

3. The paint() method then draws the contents of the current frame.
It’s Step 2, the call to update(), that causes animation flicker. Because the screen is cleared

between frames, the parts of the screen that don’t change alternate rapidly between being painted
and being cleared. Hence, flickering.

sams
net

Sams.ney
Learning

There are two major ways to avoid flicker in your Java applets:

O Override update () either not to clear the screen at all, or to clear only the parts of the
screen you've changed.
O Override both update() and paint (), and use double-buffering.
If the second way sounds complicated, that’s because it is. Double-buffering involves drawing

to an offscreen graphics surface and then copying that entire surface to the screen. Because it’s
more complicated, you'll explore that one tomorrow. Today, let’s cover the easier solution:

overriding update.

How to Override Update
The cause of flickering lies in the update () method. To reduce flickering, therefore, override 10
both update () and paint (). Here’s what the default version of update () does (in the component
class, which you’ll learn more about on Day 13):

public void update(Graphics g) {
g.setColor(getBackground());
g.fillRect (0, @, width, height);
g.setColor(getForeground());
paint(g);

Basically, update () clears the screen (or, to be exact, fills the applet’s bounding rectangle with
the background color), sets things back to normal, and then calls paint (). When you override
update (), you have to keep these two thingsin mind and make sure that your version of update ()
does something similar. In the next two sections, you'll work through some examples of
overriding update () in different cases to reduce flicker.

Solution One: Don’t Clear the Screen

The first solution to reducing flicker is not to clear the screen at all. This works only for some
applets, of course. Here’s an example of an applet of this type. The ColorSwirl applet prints a
single string to the screen ("A11 the swirly colors"), but that string is presented in different
colors that fade into each other dynamically. This applet flickers terribly when it’s run. Listing
10.3 shows the source for this applet, and Figure 10.2 shows the result.

Type Listing 10.3. The ColorSwirl applet.

1 import java.awt.Graphics;
2 import java.awt.Color;

3: import java.awt.Font;
4:

continues

183

Simple Animation and Threads

Listing 10.3. continued

5: public class ColorSwirl extends java.applet.Applet
6: implements Runnable {

7:

8: Font f = new Font("TimesRoman",Font.BOLD,48);
9: Color colors[] = new Color[50];

10: Thread runThread;

11:

12: public void start() {

13: if (runThread == null) {

14: runThread = new Thread(this);

15: runThread.start();

16: }

17: }

18:

19: public void stop() {

20: if (runThread != null) {

21: runThread.stop();

22: runThread = null;

23: }

24: }

25:

26: public void run() {

27:

28: // initialize the color array

29: float ¢ = 0;

30: for (int i = @; i < colors.length; i++) {
31: colors[i] =

32: Color.getHSBColor(c, (float)1.0,(float)1.0);
33: c += .02;

34: }

35:

36: // cycle through the colors

37: int i = 0;

38: while (true) {

39: setForeground(colors[i]);

40: repaint();

41: i++;

42: try { Thread.sleep(50); }

43: catch (InterruptedException e) { }
44: if (i == colors.length) i = 0;

45: }

46: }

47:

48: public void paint(Graphics g) {

49: g.setFont(f);

50: g.drawString("All the Swirly Colors", 15,50);
51: }

52: }

184

Sams.ney
Learning

sams
net

Figure 10.2.
The ColorSwirl applet.

Ana|y5|5 There are three new things to note about this applet that might look strange to you:

O When the applet starts, the first thing you do (in lines 28 through 34) is to create an
array of color objects that contains all the colors the text will display. By creating all
the colors beforehand you can then just draw text in, one at a time; it’s faster to
precompute all the colors at once.

O To create the different colors, a method in the color class called getHsBColor () creates
a color object based on values for hue, saturation, and brightness, rather than the
standard red, green, and blue. This is easier; by incrementing the hue value and
keeping saturation and brightness constant you can create a range of colors without
having to know the RGB for each one. If you don’t understand this, don’t worry
about it; it’s just an easy way to create the color array.

O The applet then cycles through the array of colors, setting the foreground to each one
in turn and calling repaint. When it gets to the end of the array, it starts over again
(line 44), so the process repeats over and over ad infinitum.

Now that you understand what the applet does, let’s fix the flicker. Flicker here results because
each time the applet is painted, there’s a moment where the screen is cleared. Instead of the text
cycling neatly from red to a nice pink to purple, it’s going from red to grey, to pink to grey, to
purple to grey, and so on—not very nice looking at all.

Because the screen clearing is all that’s causing the problem, the solution is easy: override
update () and remove the part where the screen gets cleared. It doesn’t really need to get cleared
anyhow, because nothing is changing except the color of the text. With the screen clearing
behavior removed from update(), all update needs to do is call paint(). Here’s what the
update () method looks like in this applet:

public void update(Graphics g) {
paint(g);

With that—with one small three-line addition—no more flicker. Wasn’t that easy?

10

185

Simple Animation and Threads

Solution Two: Redraw
Only What You Have To

For some applets, it won’t be quite that easy. Here’s another example. In this applet, called
Checkers, a red oval (a checker piece) moves from a black square to a white square, as if on a
checkerboard. Listing 10.4 shows the code for this applet, and Figure 10.3 shows the applet
itself.

Type Listing 10.4. The Checkers applet.

1 import java.awt.Graphics;

2 import java.awt.Color;

3

4 public class Checkers extends java.applet.Applet
5: implements Runnable {

6-

7 Thread runner;

8 int xpos;

9:

10: public void start() {

11: if (runner == null); {

12: runner = new Thread(this);

13: runner.start();

14: }

15: }

16:

17: public void stop() {

18: if (runner != null) {

19: runner.stop();
20: runner = null;
21: }

22: }

23:

24: public void run() {

25: setBackground(Color.blue);

26: while (true) {

27: for (xpos = 5; xpos <= 105; xpos+=4) {
28: repaint();

29: try { Thread.sleep(100); }

30: catch (InterruptedException e) { }
31: }

32: for (xpos = 105; xpos > 5; xpos -=4) {
33: repaint();

34: try { Thread.sleep(100); }

35: catch (InterruptedException e) { }
36: }

37: }

38: }

39:
40: public void paint(Graphics g) {
41: // Draw background
42: g.setColor(Color.black);

186

The Checkers applet.

43: g.fillRect(0,0,100,100);

44: g.setColor(Color.white);
45: g.fillRect(101,0,100,100);
46:
47: // Draw checker
48: g.setColor(Color.red);
49: g.fillOval(xpos,5,90,90);
50: }
51: }

Figure 10.3.

Here’s a quick run-through of what this applet does: an instance variable, xpos, keeps track

AnalySB of the current starting position of the checker (because it moves horizontally, the y stays

constant and the x changes). In the run() method, you change the value of x and repaint,
waiting 50 milliseconds between each move. The checker moves from one side of the screen to
the other and then moves back (hence the two for loops in that method).

In the actual paint () method, the background squares are painted (one black and one white),
and then the checker is drawn at its current position.

Thisapplet, like the Swirling Colorsapplet, also has a terrible flicker. (In line 25, the background
is blue to emphasize it, so if you run this applet you'll definitely see the flicker.)

However, the solution to solving the flicker problem for this applet is more difficult than for the
last one, because you actually want to clear the screen before the next frame is drawn. Otherwise,
the red checker won’t have the appearance of leaving one position and moving to another; it’ll
just leave a red smear from one side of the checkerboard to the other.

How do you get around this? You still clear the screen, in order to get the animation effect, but,
rather than clearing the entire screen, you clear only the part that you actually changed. By
limiting the redraw to only a small area, you can eliminate much of the flicker you get from
redrawing the entire screen.

187

188

Simple Animation and Threads

To limit what gets redrawn, you need a couple of things. First, you need a way to restrict the
drawing area so that each time paint () is called, only the part that needs to get redrawn actually
gets redrawn. Fortunately, this is easy by using a mechanism called clipping.

NEW[] Clipping, part of the graphics class, enables you to restrict the drawing area to a small
TERM portion of the full screen; although the entire screen may get instructions to redraw, only

the portions inside the clipping area are actually drawn.

The second thing you need is a way to keep track of the actual area to redraw. Both the left and
right edges of the drawing area change for each frame of the animation (one side to draw the new
oval, the other to erase the bit of the oval left over from the previous frame), so to keep track of
those two x values, you need instance variables for both the left side and the right.

With those two concepts in mind, let’s start modifying the Checkers applet to redraw only what
needs to be redrawn. First, you'll add instance variables for the left and right edges of the drawing
area. Let’s call those instance variables ux1 and ux2 (u for update), where ux1 is the left side of
the area to draw and ux2 the right.

int ux1,ux2;

Now let’s modify the run() method so that it keeps track of the actual area to be drawn, which
you would think is easy—just update each side for each iteration of the animation. Here,
however, things can get complicated because of the way Java uses paint () and repaint().

The problem with updating the edges of the drawing area with each frame of the animation is
that for every call to repaint () there may not be an individual corresponding paint () . If system
resources get tight (because of other programs running on the system or for any other reason),
paint () may not get executed immediately and several calls to paint () may queue up waiting
for their turn to change the pixels on the screen. In this case, rather than trying to make all those
calls to paint () in order (and be potentially behind all the time), Java catches up by executing
only the most recent call to paint () and skips all the others.

If you update the edges of the drawing area with each repaint (), and acouple of calls to paint ()
are skipped, you end up with bits of the drawing surface not being updated and bits of the oval
left behind. There’s a simple way around this: update the leading edge of the oval each time the
frame updates, but only update the trailing edge if the most recent paint has actually occurred.
This way, if a couple of calls to paint () get skipped, the drawing area will get larger for each
frame, and when paint () finally gets caught up, everything will get repainted correctly.

Yes, this is horrifyingly complex. If | could have written this applet simpler, I would have, but
without this mechanism the applet will not get repainted correctly. Let’s step through it slowly
in the code so you can get a better grasp of what’s going on at each step.

Let’sstart with run (), where each frame of the animation takes place. Here’s where you calculate
each side of the drawing area based on the old position of the oval and the new position of the

oval. When the oval is moving toward the left side of the screen, this is easy. The value of ux1
(the left side of the drawing area) is the previous oval’s x position (xpos), and the value of ux2
is the x position of the current oval plus the width of that oval (90 pixels in this example).

Here’s what the old run() method looked like, to refresh your memory:

public void run() {
setBackground(Color.blue);
while (true) {
for (xpos = 5; xpos <= 105; xpos+=4) {
repaint();
try { Thread.sleep(100); }
catch (InterruptedException e) { }

}

for (xpos = 105; xpos > 5; xpos -=4) {
repaint();
try { Thread.sleep(100); } 10
catch (InterruptedException e) { }

}

}
}

In the first for loop in the run () method, where the oval is moving towards the right, you first
update ux2 (the right edge of the drawing area):

ux2 = xpos + 90;

Then, after the repaint () has occurred, you update ux1 to reflect the old x position of the oval.
However, you want to update this value only if the paint actually happened. How can you tell
if the paint actually happened? You can reset ux1 in paint () to a given value (o), and then test
to see whether you can update that value or whether you have to wait for the paint () to occur:

if (ux1 == 0) ux1 = xpos;
Here’s the new, completed for loop for when the oval is moving to the right:

for (xpos = 5; xpos <= 105; xpos+=4) {
ux2 = xpos + 90;
repaint();
try { Thread.sleep(100); }
catch (InterruptedException e) { }
if (ux1 == @) ux1 = xpos;
}
When the oval is moving to the left, everything flips. ux1, the left side, is the leading edge of the
oval that gets updated every time, and ux2, the right side, has to wait to make sure it gets updated.

So, in the second for loop, you first update ux1 to be the x position of the current oval:
ux1 = Xxpos;
Then, after the repaint () is called, you test to make sure the paint happened and update ux:

if (ux2 == @) ux2 = xpos + 90;

189

190

Simple Animation and Threads

Here’s the new version of the secod for loop inside run():

for (xpos = 105; xpos > 5; xpos -=4) {

ux1 = Xpos;

repaint();

try { Thread.sleep(100); }

catch (InterruptedException e) { }

if (ux2 == @) ux2 = xpos + 90;
}
Those are the only modifications run() needs. Let’s override update to limit the region that is
being painted to the left and right edges of the drawing area that you set inside run(). To clip
the drawing areato aspecific rectangle, use thec1iprect () method. c1ipRect (), like drawrect (),
fillRect (), and clearRect (), is defined for graphics objects and takes four arguments: x and

y starting positions, and width and height of the region.

Here’s where ux1 and ux2 come into play. ux1 is the x point of the top corner of the region; then
use ux2 to get the width of the region by subtracting ux1 from that value. Finally, to finish
update (), you call paint():

public void update(Graphics g) {

g.clipRect(ux1, 5, ux2 - uxl1, 95);
paint(g);

Note that with the clipping region in place, you don’t have to do anything to the actual paint ()
method. paint () goes ahead and draws to the entire screen each time, but only the areas inside
the clipping region actually get changed on screen.

You need to update the trailing edge of each drawing area inside paint () in case several calls to
paint () were skipped. Because you are testing for a value of @ inside run (), you merely reset ux1
and ux2 to o after drawing everything:

ux1 = ux2 = 0;

Those are the only changes you have to make to this applet in order to draw only the parts of
the applet that changed (and to manage the case where some frames don’t get updated
immediately). Although this doesn’t totally eliminate flickering in the animation, it does reduce
it a great deal. Try it and see. Listing 10.5 shows the final code for the Checkers applet.

Type Listing 10.5. The final Checkers applet.

: import java.awt.Graphics;
: import java.awt.Color;

Thread runner;

1
2
3:
4: public class Checkers2 extends java.applet.Applet implements Runnable {
5:
6
7 int xpos;

int ux1,ux2;

public void start() {
if (runner == null); {

}

runner = new Thread(this);
runner.start();

public void stop() {
if (runner != null) {

}

runner.stop();
runner = null;

public void run() {
setBackground(Color.blue);
while (true) {

}

for (xpos = 5; xpos <= 105; xpos+=4) {

ux2 = xpos + 90;
repaint();
try { Thread.sleep(100);

catch (InterruptedException e) { }

if (ux1 == 0) ux1 = xpos;

for (xpos = 105; xpos > 5; xpos -=4) {

ux1 = Xpos;
repaint();
try { Thread.sleep(100);

catch (InterruptedException e) { }
if (ux2 == @) ux2 = xpos + 90;

}

public void update(Graphics g) {
g.clipRect(ux1, 5, ux2 - uxi1, 95)
paint(g);

}

public void paint(Graphics g) {
// Draw background

g.setColor(Color.black)
g.fillRect(0,0,100,100)
g.setColor(Color.white)
g.fillRect(101,0,100,10

;
;
;
0);

// Draw checker
g.setColor(Color.red);
g.fillOval(xpos,5,90,90);

// reset the drawing area

uxi

= ux2 = 0;

}

}

3

10

191

192

Simple Animation and Threads

Summary

Congratulations on getting through Day 10! This day was a bit rough; you've learned a lot, and
it all might seem overwhelming. You learned about a plethora of methods to use and override:
start(), stop(), paint(), repaint(), run(), and update ()—and you got a solid foundation in
creating and using threads.

After today, you're over the worst hurdles in terms of understanding applets. Other than
handling bitmap images, which you’ll learn about tomorrow, you now have the basic
background to create just about any animation you want in Java.

Q&A

Q

> O

Why all the indirection with paint and repaint and update and all that? Why not
have a simple paint method that just puts stuff on the screen when you want it
there?

The Java AWT toolkit enables you to nest drawable surfaces within other drawable
surfaces. When a paint takes place, all the parts of the system are redrawn, starting
from the outermost surface and moving downward into the most nested one. Because
the drawing of your applet takes place at the same time everything else is drawn, your
applet doesn’t get any special treatment. Your applet will be painted when everything
else is painted. Although with this system you sacrifice some of the immediacy of
instant painting, it enables your applet to co-exist with the rest of the system more
cleanly.

Are Java threads like threads on other systems?

Java threads have been influenced by other thread systems, and if you're used to
working with threads, many of the concepts in Java threads will be very familiar to
you. You learned the basics today; you'll learn more next week on Day 17.

When an applet uses threads, | just have to tell the thread to start and it starts,
and tell it to stop and it stops? That’s it? | don’t have to test anything in my loops
or keep track of its state? Is just stops?

It just stops. When you put your applet into a thread, Java can control the execution
of your applet much more readily. By causing the thread to stop, your applet just
stops running, and then resumes when the thread starts up again. Yes, it’s all auto-
matic. Neat, isn’t it?

Q

A

> O

The Swirling Colors applet seems to display only five or six colors. What’s going
on here?

This is the same problem that you ran into yesterday wherein, on some systems, there
might not be enough colors to be able to display all of them reliably. If you’re running
into this problem, other than upgrading your hardware, you might try quitting other
applications running on your system that use color. Other browsers or color tools in
particular might be hogging colors that Java wants to be able to use.

Even with the changes you made, the Checkers applet still flickers.

And, unfortunately, it will continue to do so. Reducing the size of the drawing area by
using clipping does significantly reduce the flickering, but it doesn’t stop it entirely.
For many applets, using either of the methods described today may be enough to
reduce animation flicker to the point where your applet works right. To get totally
flicker-free animation, you’ll use a technique called double-buffering, which you'll
learn about tomorrow.

10

193

WEEK

11

More Animation,
Images, and Sound

by Laura Lemay

196

More Animation, Images, and Sound

Animations are fun and easy to do in Java, but there’s only so much you can do with the built-
in Java methods for lines and fonts and colors. For really interesting animations, you have to
provide your own images for each frame of the animation—and having sounds is nice, as well.
Today, you’ll do more with animations, incorporating images and sounds into Java applets.

Specifically, you'll explore the following topics:

O Using images—getting them from the server, loading them into Java, and displaying
them in your applet
Creating animations by using images, including an extensive example
Using sounds—getting them and playing them at the appropriate times
Sun’s Animator applet—an easy way to organize animations and sounds in Java
Double-buffering—nhardcore flicker avoidance

o 0o o o

Retrieving and Using Images

Basic image handling in Java is easy. The 1mage class in java.awt provides abstract methods to
represent common image behavior, and special methods defined in Applet and Graphics give
you everything you need to load and display images in your applet as easily as drawing a rectangle.
In this section, you’ll learn about how to get and draw images in your Java applets.

Getting Images

To display an image in your applet, you first must load that image over the net into your Java
program. Images are stored as separate files from your Java class files, so you have to tell Java
where to find them.

The applet class provides a method called getimage, which loads an image and automatically
creates an instance of the 1mage class for you. To use it, all you have to do is import the
java.awt.Image Class, and then give get1mage the URL of the image you want to load. There are
two ways of doing the latter step:

O The getimage method with a single argument (an object of type URL) retrieves the
image at that URL.

O The getIimage method with two arguments: the base URL (also a urL object) and a
string representing the path or filename of the actual image (relative to the base).

Although the first way may seem easier (just plug in the URL as aurL object), the second is more
flexible. Remember, because you’re compiling Java files, if you include a hard-coded URL of an
image and then move your files around to a different location, you have to recompile all your
Java files.

sams
)

Sams.ney
Learning

The latter form, therefore, is usually the one to use. The App1et class also provides two methods
that will help with the base URL argument to getImage:

O The getbocumentBase () method returns a urL object representing the directory of the
HTML file that contains this applet. So, for example, if the HTML file is located at
http://www.myserver.com/htmlfiles/javahtml/, getDocumentBase returns a URL
pointing to that path.

O The getCodeBase () method returns a string representing the directory in which this
applet is contained—which may or may not be the same directory as the HTML file,
depending on whether the copesase attribute in <ApPLET> is set or not.

Whether you use getDocumentBase () OF getCodebase () depends on whether your images are
relative to your HTML files or relative to your Java class files. Use whichever one applies better
to your situation. Note that either of these methods is more flexible than hard-coding a URL
or pathname into the getimage method; using either getbocumentBase O getCodeBase enables
you to move your HTML files and applets around and Java can still find your images.

Here areafew examples of getImage, to give you an idea of howto use it. Thisfirst call to get1mage
retrieves the file at that specific URL (*http://www.server.com/files/image.gif"). If any part
of that URL changes, you have to recompile your Java applet to take the new path into account:

Image img = getImage(
new URL("http://www.server.com/files/image.gif"));

In the following form of getimage, the image.gif file is in the same directory as the HT ML files
that refer to this applet:

Image img = getImage(getDocumentBase(), "image.gif")
In this similar form, the file image.gif is in the same directory as the applet itself:
Image img = getImage(getCodeBase(), "image.gif")

If you have lots of image files, it’s common to put them into their own subdirectory. This form
of getimage looks for the file image.gif in the directory images, which, in turn, is in the same
directory as the Java applet:

Image img = getImage(getCodeBase(), "images/image.gif")

If Java can’t find the file you’ve indicated, getImage returns nuil. Your program will continue
to run—you just won’t see that image on your screen when you try to draw it.

Note: Currently, Java supports images in the GIF and JPEG formats. Other image
formats may be available later; however, for now, your images should be in either
GIF or JPEG.

197

198

More Animation, Images, and Sound

Drawing Images

All that stuff with getimage does nothing except go off and retrieve an image and stuff it into
an instance of the 1mage class. Now that you have an image, you have to do something with it.

The most likely thing you’re going to want to do is display it as you would a rectangle or a text
string. The Graphics class provides two methods to do just that, both called drawimage.

The first version of drawimage takes four arguments: the image to display, the x and y positions
of the top left corner, and this:
void paint() {

g.drawImage(img, 10, 10, this);
}
This first form does what you would expect it to: it draws the image in its original dimensions
with the top left corner at the given x and y positions. Listing 11.1 shows the code for a very
simple applet that loads in an image called ladybug.gif and displays it. Figure 11.1 shows the
obvious result.

Type Listing 11.1. The Ladybug applet.

1: import java.awt.Graphics;

2: import java.awt.Image;

3:

4: public class LadyBug extends java.applet.Applet {
5:

6: Image bugimg;

7:

8: public void init() {

9: bugimg = getImage(getCodeBase(),
10: "images/ladybug.gif");

11: }

12:

13: public void paint(Graphics g) {

14: g.drawImage(bugimg,10,10,this);
15: }

16: }

The second form of drawImage takes six arguments: the image to draw, the x and y

Ana'YSIS coordinates, a width and height of the image bounding box, and this. If the width and

height arguments for the bounding box are smaller or larger than the actual image, the
image is automatically scaled to fit. Using those extra arguments enables you to squeeze and
expand images into whatever space you need them to fit in (keep in mind, however, that there
may be some image degradation from scaling it smaller or larger than its intended size).

One helpful hint for scaling images is to find out the size of the actual image that you’ve loaded,
S0 you can then scale it to a specific percentage and avoid distortion in either direction. Two
methods defined for the 1mage class enable you do this: getwidth () and getHeight (). Both take

asingle argument, an instance of 1mageobserver, which is used to track the loading of the image
(more about this later). Most of the time, you can use just this as an argument to either
getWidth() O getHeight().

Figure 11.1.
The Ladybug image.

If you stored the ladybug image in a variable called bugimg, for example, this line returns the
width of that image, in pixels:

theWidth = bugimg.getWidth(this);

Listing 11.2 shows another use of the ladybug image, this time scaled several times to different
sizes (Figure 11.2 shows the result).

Type Listing 11.2. More Ladybugs, scaled.

1: import java.awt.Graphics;

2: import java.awt.Image;

3:

4: public class LadyBug2 extends java.applet.Applet {
5:

6: Image bugimg;

7:

8: public void init() {

9: bugimg = getImage(getCodeBase(),

10: "images/ladybug.gif");

11: }

12:

13: public void paint(Graphics g) {

14: int iwidth = bugimg.getWidth(this);
15: int iheight = bugimg.getHeight(this);
16: int xpos = 10;

17:

18: // 25 %

continues

199

® DAY @

11' More Animation, Images, and Sound

Listing 11.2. continued

19: g.drawImage(bugimg,xpos,10,
20: iwidth / 4, iheight / 4, this);
21:
22: /] 50 %
23: Xpos += (iwidth / 4) + 10;
24: g.drawImage (bugimg, xpos , 10,
25: iwidth / 2, iheight / 2, this);
26:
27: /] 100%
28: Xxpos += (iwidth / 2) + 10;
29: g.drawImage (bugimg, xpos, 10, this);
30:
31: /] 150% x, 25% y
32: g.drawImage(bugimg, 10, iheight + 30,
33: (int) (iwidth * 1.5), iheight / 4, this);
34: }
35: }
Figure 11.2.

The second Ladybug applet. ‘

R

A | 1 I've been steadfastly ignoring mentioning that last argument to drawImage: the mysterious
naYSIS this, Which also appears as an argument to getwidth() and getHeight(). Why is this
argument used? Its official use is to pass in an object that functions as an ImageObserver

(that is, an object that implements the ImageObserver interface). Image observers enable you

to watch the progress of how far along an image is in the loading process and to make decisions

200

sams
&

Sams. net
Lea"ning

when the image is only fully or partially loaded. The app1et class, which your applet inherits
from, contains default behavior for watching for images that should work in the majority of
cases—hence, the this argument to drawImage(), getwidth(), and getHeight(). The only
reason you’ll want to use an alternate argument in its place is if you are tracking lots of images
loading synchronously. See the java.awt.image.ImageoObserver class for more details.

Modifying Images

In addition to the basics and handling images described in this section, the java.awt.image
package provides more classes and interfaces that enable you to modify images and their internal
colors, or to create bitmap images by hand. Most of these classes require background knowledge
in image processing, including a good grasp of color models and bitwise operations. All these
things are outside the scope of an introductory book on Java, but if you have this background
(or you're interested in trying it out), the classes in java.awt.image will be helpful to you. Take
a look at the example code for creating and using images that comes with the Java development
kit for examples of how to use the image classes.

Creating Animation Using Images

Creating animations by using images is much the same as creating images by using fonts, colors,
or shapes—you use the same methods, the same procedures for painting, repainting, and
reducing flicker that you learned about yesterday. The only difference is that you have a stack
of images to flip through rather than a set of painting methods.

Probably the best way to show you how to use images for animation is simply to walk through
an example. Here’s an extensive one of an animation of a small cat called Neko.

An Example: Neko

Neko was a small Macintosh animation/game written and drawn by Kenji Gotoh in 1989.
“Neko” is Japanese for “cat,” and the animation is of a small kitten that chases the mouse pointer
around the screen, sleeps, scratches, and generally acts cute. The Neko program has since been
ported to just about every possible platform, as well as rewritten as a popular screensaver.

For this example, you’ll implement a small animation based on the original Neko graphics.
Because the original Neko the cat was autonomous (it could “sense” the edges of the window
and turn and run in a different direction), this applet merely causes Neko to run in from the left
side of the screen, stop in the middle, yawn, scratch its ear, sleep a little, and then run off to the
right.

201

202

More Animation, Images, and Sound

'llz'ir?euiﬁalgts'?c')r/veko. m @‘3 E%n E{eﬁ: %l % Cz@ };%)g

Note: This is by far the largest of the applets discussed in this book, and if | either
print it here and then describe it, or build it up line by line, you’ll be here for days.
Instead, I’'m going to describe the parts of this applet independently, and I’'m going
to leave out the basics—the stuff you learned yesterday about starting and stopping
threads, what the run() method does, and so on. All the code is printed later today
so that you can put it all together.

Before you begin writing Java code to construct an animation, you should have all the images
that form the animation itself. For this version of Neko there are nine of them (the original has
36), as shown in Figure 11.3.

I've stored these images in a subdirectory of my applet directory called, appropriately, images.
Where you store your images isn’t all the important, but you should take note of where you've
put them because you’ll need that information

Now, onto the applet. The basic idea of animation by using images is that you have a set of
images, and you display them one at a time, rapidly, so they give the appearance of movement.
The easiest way to manage this in Java is to store the images in an array of class 1mage, and then
to have a special variable that stores a reference to the current image.

Technical Note: The java.util class contains a class (HashTable) that implements
a hash table. For large amounts of images, a hash table is faster to find and retrieve
images from than an array is. Because you have a relatively small amount of images
here, and because arrays are easier to deal with, I'll use an array here.

For the Neko applet, you'll include instance variables to implement both these things: an array
to hold the images called nekopics, and a variable of type 1mage to hold the current image:
Image nekopics[] = new Image[9];

Image currentimg;

Because you’ll need to pass the position of the current image around between the methods in
this applet, you'll also need to keep track of the current x and y positions. The y stays constant
for this particular applet, but the x may vary. let’s add two instance variables for those two
positions:

sams
net

Sams.ney
Learning

int xpos;

int ypos = 50;

Now, onto the body of the applet. During the applet’sinitialization, you’ll read in all the images
and store them in the nekopics array. This is the sort of operation that works especially well in

an init() method.

Given that you have nine images with nine different filenames, you could do a separate call to
getImage for each one. You can save at least a little typing, however, by creating an array of the
file names (nekosrc, an array of strings) and then just using a for loop to iterate over each one.
Here’s the init () method for the Neko applet that loads all the images into the nekopics array:

public void init() {

String nekosrc[] = { "right1.gif", "right2.gif",
"stop.gif", "yawn.gif", "scratchi.gif",
"scratch2.gif","sleep1.gif", "sleep2.gif",
"awake.gif" };

for (int i=0; i < nekopics.length; i++) {

nekopics[i] = getImage(getCodeBase(),
"images/" + nekosrc[i]);

}
}

Note here in the call to get1mage that the directory these images are stored in is included as part
of the path.

With the images loaded, the next step is to start animating the bits of the applet. You do this
inside the applet’s thread’s run() method. In this applet, Neko does five main things:

O Runs in from the left side of the screen

O Stops in the middle and yawns

O Scratches four times

O Sleeps

O Wakes up and runs off to the right side of the screen

Because you could animate this applet by merely painting the right image to the screen at the
right time, it makes more sense to write this applet so that many of Neko’s activities are
contained in individual methods. This way, you can reuse some of the activities (the animation
of Neko running, in particular) if you want Neko to do things in a different order.

Let’s start by creating a method to make Neko run. Because you’re going to be using this one
twice, making it generic is a good plan. Let’s create the nekorun method, which takes two
arguments: the x position to start, and the x position to end. Neko then runs between those two

positions (the y remains constant).

There are two images that represent Neko running; so, to create the running effect, you need
to alternate between those two images (stored in positions 0 and 1 of the image array), as well

203

204

More Animation, Images, and Sound

as move them across the screen. The moving part is a simple for loop between the start and
end arguments, setting the global x position to the current loop value. Swapping the images
means merely testing to see which one is active at any turn of the loop and assigning the other
one to the current image. Finally, at each new frame, you'll call repaint and s1eep for a bit.

Actually, given that during this animation there will be a lot of sleeping of various intervals, it
makes sense to create a method that does the sleeping for the appropriate time interval. Call it
pause—here’s its definition:

void pause(int time) {

try { Thread.sleep(time); }
catch (InterruptedException e) { }

}
Back to the nekorun method. To summarize, nekorun iterates from the start position to the end
position. For each turn of the loop, it sets the current x position, sets currentimg to the right
animation frame, calls repaint, and pauses. Got it? Here’s the definition of nekorun:
void nekorun(int start, int end) {

for (int i = start; i < end; i+=10) {

this.xpos = 1i;
// swap images

if (currentimg == nekopics[0])
currentimg = nekopics[1];

else if (currentimg == nekopics[1])
currentimg = nekopics[0];

repaint();

pause(150);

}
}
Note that in that second line you increment the loop by ten pixels. Why ten pixels, and not, say,
five or eight? The answer is determined mostly through trial and error to see what looks right.
Ten seems to work best for the animation. When you write your own animations, you have to
play with both the distances and the sleep times until you get an animation you like.

Speaking of repaint, let’s cover the paint () method, which paints each frame. Here the paint
method is trivially simple; all paint is responsible for is painting the current image at the current
xand y positions. All that information is stored in global variables, so the paint method has only
asingle line in it:
public void paint(Graphics g) {

g.drawImage(currentimg, xpos, ypos, this);
}
Now let’s back up to the run() method, where the main processing of this animation is
happening. You've created the nekorun method; in run you'll call that method with the
appropriate values to make Neko run from the right edge of the screen to the center:

// run from one side of the screen to the middle

nekorun(@, this.size().width / 2);

The second major thing Neko does in this animation is stop and yawn. You have a single frame
for each of these things (in positions 2 and 3 in the array), so you don’t really need a separate
method for them. All you need to do is set the appropriate image, call repaint (), and pause for
the right amount of time. This example pauses for a second each time for both stopping and
yawning—again, using trial and error. Here’s the code:

/] stop and pause

currentimg = nekopics[2];

repaint();
pause (1000) ;

// yawn

currentimg = nekopics[3];

repaint();

pause (1000) ;

Let’s move on to the third part of the animation: scratching. There’s no horizontal for this part
of the animation. You alternate between the two scratching images (stored in positions 4 and
5 of the image array). Because scratching is a distinct action, however, let’s create a separate
method for it.

The nekoscratch method takes a single argument: the number of times to scratch. With that
argument, you can iterate, and then, inside the loop, alternate between the two scratching images
and repaint each time:
void nekoscratch(int numtimes) {
for (int i = numtimes; i > @; i--) {
currentimg = nekopics[4];
repaint();
pause(150);
currentimg = nekopics[5];
repaint();
pause(150);

}
Inside the run method, you can then call nekoscratch with an argument of four:

/] scratch four times

nekoscratch(4);

Onward! After scratching, Neko sleeps. Again, you have two images for sleeping (in positions
6 and 7 of the array), which you'll alternate a certain number of times. Here’s the nekosleep
method, which takes a single number argument, and animates for that many “turns”:

void nekosleep(int numtimes) {

for (int i = numtimes; i > @; i--) {
currentimg = nekopics[6];

205

206

More Animation, Images, and Sound

repaint();
pause (250) ;
currentimg = nekopics[7];
repaint();
pause (250) ;
}
}

Call nekos1eep in the run() method like this:

// sleep for 5 "turns"

nekosleep(5);

Finally, to finish off the applet, Neko wakes up and runs off to the right side of the screen. wake
upisyour lastimage in the array (position eight), and you can reuse the nekorun method to finish:
// wake up and run off

currentimg = nekopics[8];

repaint();

pause(500);

nekorun(xpos, this.size().width + 10);

There’sone more thing left to do to finish the applet. The images for the animation all have white
backgrounds. Drawing those images on the default applet background (a medium grey) means
an unsightly white box around each image. To get around the problem, merely set the applet’s
background to white at the start of the run() method:

setBackground(Color.white);

Got all that? There’s a lot of code in this applet, and a lot of individual methods to accomplish
a rather simple animation, but it’s not all that complicated. The heart of it, as in the heart of all
Java animations, is to set up the frame and then call repaint () to enable the screen to be drawn.

Note that you don’t do anything to reduce the amount of flicker in this applet. It turns out that
the images are small enough, and the drawing areaalso small enough, that flicker isnota problem
for thisapplet. It’s always a good idea to write your animations to do the simplest thing first, and
then add behavior to make them run cleaner.

To finish up this section, Listing 11.3 shows the complete code for the Neko applet.

Type Listing 11.3. The final Neko applet.

36: import java.awt.Graphics;
37: import java.awt.Image;
38: import java.awt.Color;

39:

40: public class Neko extends java.applet.Applet
41: implements Runnable {

42:

43: Image nekopics[] = new Image[9];

44: Image currentimg;

45: Thread runner;

46: int xpos;

int ypos = 50;

public void init() {
String nekosrc[] = { "right1.gif", "right2.gif",
"stop.gif", "yawn.gif", "scratchi.gif",
"scratch2.gif","sleepi.gif", "sleep2.gif",
"awake.gif" };

for (int i=0; i < nekopics.length; i++) {
nekopics[i] = getImage(getCodeBase(),
"images/" + nekosrc[il]);

}

public void start() {
if (runner == null) {
runner = new Thread(this);
runner.start();

}

public void stop() {
if (runner != null) {
runner.stop();
runner = null;

}

public void run() {
setBackground(Color.white);

// run from one side of the screen to the middle
nekorun(@, this.size().width / 2);

// stop and pause
currentimg = nekopics[2];
repaint();

pause(1000) ;

// yawn

currentimg = nekopics[3];
repaint();

pause(1000) ;

// scratch four times
nekoscratch(4);

// sleep for 5 "turns"
nekosleep(5);

// wake up and run off
currentimg = nekopics[8];
repaint();
pause(500);
nekorun(xpos, this.size().width + 10);

continues

207

® DAY @

11' More Animation, Images, and Sound

Listing 11.3. continued

102: }

103:

104: void nekorun(int start, int end) {

105: for (int i = start; i < end; i+=10) {
106: this.xpos = i;

107: // swap images

108: if (currentimg == nekopics[0])
109: currentimg = nekopics[1];

110: else if (currentimg == nekopics[1])
111: currentimg = nekopics[0];

112: else currentimg = nekopics[0];
113:

114: repaint();

115: pause(150);

116:

117: }

118:

119: void nekoscratch(int numtimes) {

120: for (int i = numtimes; i > @; i--) {
121: currentimg = nekopics[4];

122: repaint();

123: pause(150);

124: currentimg = nekopics[5];

125: repaint();

126: pause(150);

127: }

128: }

129:

130: void nekosleep(int numtimes) {

131: for (int i = numtimes; i > @; i--) {
132: currentimg = nekopics[6];

133: repaint();

134: pause(250);

135: currentimg = nekopics[7];

136: repaint();

137: pause(250);

138: }

139:

140: void pause(int time) {

141: try { Thread.sleep(time); }

142: catch (InterruptedException e) { }
143: }

144:

145: public void paint(Graphics g) {

146: g.drawImage(currentimg, xpos, ypos, this);
147:

148: }

208

sams
)

Sams.ney
Learning

Retrieving and Using Sounds

Java has built-in support for playing sounds in conjunction with running animations or for
sounds on their own. In fact, support for sound, like support for images, is built into the App1et
and awt classes, so using sound in your Java applets is as easy as loading and using images.

Currently, the only sound format that Java supports is Sun’s AU format, sometimes called p-
law format. AU files tend to be smaller than sound files in other formats, but the sound quality
is not very good. If you’re especially concerned with sound quality, you may want your sound
clipsto be referencesin the traditional HT ML way (as links to external files) rather than included
in a Java applet.

The simplest way to retrieve and play a sound is through the p1ay () method, part of the App1et
classand therefore available to you in your applets. Thep1ay () method issimilar to the getimage
method in that it takes one of two forms:

O play With one argument, a urL object, loads and plays the given audio clip at that
URL.

O play() with two arguments, one a base urL and one a pathname, loads and plays that
audio file. The first argument can most usefully be either a call to getbocumentBase ()
Or getCodeBase().

For example, the following line of code retrieves and plays the sound meow.au, which is
contained in the audio directory. The audio directory, in turn, is located in the same directory
as this applet:

play(getCodeBase(), "audio/meow.au");

The p1ay method retrieves and plays the given sound as soon as possible after it is called. If it
can’t find the sound, you won’t get an error; you just won't get any audio when you expect it.

If you want to play a sound repeatedly, start and stop the sound clip, or run the clip as a loop
(play itover and over), thingsare slightly more complicated—but not much more so. In this case,
you use the applet method getAudioclip() to load the sound clip into an instance of the class
Audioclip (part of java.applet—don’t forget to import it) and then operate directly on that
AudioClip Object.

Suppose, for example, that you have a sound loop that you want to play in the background of
your applet. In your initialization code, you can use this line to get the audio clip:

AudioClip clip = getAudioClip(getCodeBase(),
"audio/loop.au");

Then, to play the clip once, use the p1ay method:

clip.play();

209

210

More Animation, Images, and Sound

To stop a currently playing sound clip, use the stop() method:
clip.stop();

To loop the clip (play it repeatedly), use the 100p() method:
clip.loop();

If the getAudioc1ip method can’t find the sound you indicate, or can’t load it for any reason,
the audioc1ip variableisset tonu11. It’sagood idea to test for this case in your code before trying
to play the audio clip—, because trying to call the piay (), stop (), and 1oop () methodsonanuil
object will result in an error (actually, an exception).

In your applet, you can play as many audio clips as you need; all the sounds you use play
concurrently as your applet executes.

Note that if you use a background sound—a sound clip that loops repeatedly—that sound clip
will not stop playing automatically when you suspend the applet’s thread. This means that even
if your reader moves to another page, the first applet’s sounds will continue to play. You can fix
this problem by stopping the applet’s background sound in your stop() method:
public void stop() {
if (runner != null) {
if (bgsound!= null)
bgsound.stop();

runner.stop();
runner = null;

}
}
Listing 11.4 shows a simple framework for an applet that plays two sounds: the first, a
background sound called loop.au, plays repeatedly. The second, a horn honking (beep.au) plays
every five seconds. (1 won’t bother giving you a picture of this applet, because it doesn’t actually
display anything other than a simple string to the screen).

Type Listing 11.4. The AudioLoop applet.

1: import java.awt.Graphics;

2: import java.applet.AudioClip;

3:

4: public class AudioLoop extends java.applet.Applet
5: implements Runnable {

6:

7: AudioClip bgsound;

8: AudioClip beep;

9: Thread runner;
10:
11: public void start() {
12: if (runner == null) {
13: runner = new Thread(this);
14: runner.start();

16: }

17:

18: public void stop() {

19: if (runner != null) {

20: if (bgsound != null) bgsound.stop();
21: runner.stop();

22: runner = null;

23: }

24: }

25:

26: public void init() {

27: bgsound = getAudioClip(getCodeBase(),"audio/loop.au");
28: beep = getAudioClip(getCodeBase(), "audio/beep.au");
29: }

30:

31: public void run() {

32: if (bgsound != null) bgsound.loop();

33: while (runner != null) {

34: try { Thread.sleep(5000); }

35: catch (InterruptedException e) { }

36: if (bgsound != null) beep.play();

37: }

38: }

39:

40: public void paint(Graphics g) {

41: g.drawString("Playing Sounds....", 10, 10);
42: }

43: }

Sun’s Animator Applet

Because most Java animations have a lot of code in common, being able to reuse all that code
as much as possible makes creating animations with images and sounds much easier, particular
for Java developers who aren’t as good at the programming side of Java. For just this reason, Sun
provides an Animator class as part of the standard Java release.

The Animator applet provides a simple, general-purpose animation interface. You compile the
code and create an HTML file with the appropriate parameters for the animation. Using the
Animator applet, you can do the following:

O Create an animation loop, that is, an animation that plays repeatedly.
Add a soundtrack to the applet.
Add sounds to be played at individual frames.
Indicate the speed at which the animation is to occur.

Specify the order of the frames in the animation—which means that you can reuse
frames that repeat during the course of the animation.

0o o d

211

212

More Animation, Images, and Sound

Even if you don’t intend to use Sun’s Animator code, it’s a great example of how animations
work in$Java and the sorts of clever tricks you can use in$a Java applet.

The animator class is part of the Java distribution (in the demo directory), or you can find out
more information about it at the$Java home page,http://java.sun.com.

More About Flicker: Double-Buffering

Yesterday, you learned two simple ways to reduce flickering in$animations. Although you
learned specifically about animations using drawing, flicker can also result from animations
using images. In addition to the$two flicker-reducing methods described yesterday, there is one
other way to reduce flicker in an application: double-buffering.

NEW 1 With double-buffering, you create a second surface (offscreen, so to speak), do all your
TERM painting to that offscreen surface, and then draw the$whole surface at once onto the actual

applet (and onto the screen) at the$end—rather than drawing to the applet’s actual graphics
surface. Because all the work actually goes on behind the$scenes, there’s no opportunity for
interim parts of the$drawing process to appear accidentally and disrupt the smoothness of the
animation.

Double-buffering isn’t always the best solution. If your applet is suffering from flicker, try
overriding update and drawing only portions of the screen first; that may solve your problem.
Double-buffering is less efficient than regular buffering, and also takes up more memory and
space, so if you can avoid it, make an effort to do so. In terms of nearly eliminating animation
flicker, however, double-buffering works exceptionally well.

Creating Applets with Double-Buffering

To execute double-buffering, you need two things: an image to draw on and a graphics context
for that image. Those two together mimic the$effect of the applet’s drawing surface: the$graphics
context (an instance of Graphics) to provide the$drawing methods, such as drawimage and
drawstring, and the 1mage to hold the dots that get drawn.

There are four major steps to adding double-buffering to your applet. First, your offscreen image
and graphics context need to be stored in instance variables so that you can pass them to the
paint () method. Declare the following instance variables in your class definition:

Image offscreenImage;

Graphics offscreenGraphics;

Second, during the initialization of the$applet, you'll create animage and a Graphics object and
assign them to these variables (you have to wait until initialization so you know how big they’re
going to be). The createImage method gives you an instance of image, which you can then send
the$etaraphics () method in$order to get a new graphics context for that image:

offscreenImage = createlImage(this.size().width,
this.size().height);
offscreenGraphics = offscreenImage.getGraphics();

Now, whenever you have to draw to the screen (usually in your paint method), rather than
drawing topaint’sgraphics, draw to the offscreen graphics. For example, to draw an image called
img at position 10,10, use this line:

offscreenGraphics.drawImage(img,10,10,this);

Finally, at the end of your paint method, after all the drawing to the offscreen image is done,
add the following line to print the offscreen buffer to the real screen:

g.drawImage(offscreenImage, @, 0, this);

Of course, you most likely will want to override update o that it doesn’t clear the screen between
paintings:

public void update(Graphics g) {
paint(g);

Let’s review those four steps:

O Add instance variables to hold the image and graphics contexts for the offscreen
buffer.
Create an image and a graphics context when your applet is initialized.
Do all your applet painting to the offscreen buffer, not the applet’s drawing surface.
O At the end of your paint method, draw the offscreen buffer to the real screen.

An Example: Checkers Revisited

Yesterday’s example featured the animated moving red oval to demonstrate animation flicker
and how to reduce it. Even with the operations you did yesterday, however, the Checkers applet
still flashed occasionally. Let’s revise that applet to include double-buffering.

First, add the instance variables for the offscreen image and its graphics context:

Image offscreenImg;
Graphics offscreenG;

Second, add an init method to initialize the offscreen buffer:

public void init() {
offscreenImg = createImage(this.size().width,
this.size().height);
offscreenG = offscreenImg.getGraphics();

213

214

More Animation, Images, and Sound

Third, modify the paint method to draw to the offscreen buffer instead of to the main graphics
buffer:

public void paint(Graphics g) {
// Draw background
offscreenG.setColor(Color.black);
offscreenG.fillRect(0,0,100,100);
offscreenG.setColor(Color.white);
offscreenG.fillRect(100,0,100,100);
// Draw checker
offscreenG.setColor(Color.red);
offscreenG.fillOval(xpos,5,90,90);

g.drawImage (offscreenImg,@,0,this);
}
Note that you're still clipping the main graphics rectangle in the update method, as you did
yesterday; you don’t have to change that part. The only part that is relevant is that final paint
method wherein everything is drawn offscreen before finally being displayed.

Summary

Three major topics were the focus of today’s lesson. First, you learned about using images in your
applets—locating them, loading them, and using the drawimage method to display them, either
at their normal size or scaled to different sizes. You also learned how to create animations using
images.

Secondly, you learned how to use sounds, which can be included in your applets any time you
need them—at specific moments, or as background sounds that can be repeated while the applet
executes. You learned how to locate, load, and play sounds both using the p1ay() and the
getAudioClip() methods.

Finally, you learned about double-buffering, a technique that enables you virtually to eliminate
flicker in animations, at some expense of animation efficiency and speed. Using images and
graphics contexts, you can create an offscreen buffer to draw to, the result of which is then
displayed to the screen at the last possible moment.

sams
net

Sams.ney
Learning

Q&A
Q In the Neko program, you put the image loading into the init() method. It
seems to me that it might take Java a long time to load all those images, and
because init() isn’t in the main thread of the applet, there’s going to be a
distinct pause there. Why not put the image loading at the beginning of the run()
method instead?

A There are sneaky things going on behind the scenes. The getimage method doesn’t
actually load the image; in fact, it returns an 1mage object almost instantaneously, so it
isn’t taking up a large amount of processing time during initialization. The image data
that getImage points to isn’t actually loaded until the image is needed. This way, Java
doesn’t have to keep enormous images around in memory if the program is going to
use only a small piece. Instead, it can just keep a reference to that data and retrieve
what it needs later.

Q I wrote an applet to do a background sound using the getAudioc1ip() and 1oop()
methods. The sounds works great, but it won’t stop. I've tried suspending the
current thread and killing, but the sound goes on.

A | mentioned this as a small note in the section on sounds; background sounds don’t
run in the main thread of the applet, so if you stop the thread, the sound keeps going.
The solution is easy—in the same method where you stop the thread, also stop the
sound, like this:

runner.stop() //stop the thread
bgsound.stop() //also stop the sound

Q If I use double-buffering, do I still have to clip to a small region of the screen?
Because double-buffering eliminates flicker, it seems easier to draw the whole
frame every time.

A Easier, yes, but less efficient. Drawing only part of the screen not only reduces flicker,
it also limits the amount of work your applet has to do in the paint () method. The
faster the paint () method works, the faster and smoother your animation will run.
Using clip regions and drawing only what is necessary is a good practice to follow in
general—not just if you have a problem with flicker.

215

4

Managing Simple
Events and
Interactivity

by Laura Lemay

218

Managing Simple Events and Interactivity

Java events are part of the Java AWT (Abstract Windowing Toolkit) package. An event is the
way that the AWT communicates to you, as the programmer, and to other Java AWT
components that something has happened. That something can be input from the user (mouse
movements or clicks, keypresses), changes in the system environment (a window opening or
closing, the window being scrolled up or down), or a host of other things that might, in some
way, be interesting to the operation of the program.

Note: Java’s Abstract Windowing Toolkit is a package of classes that implements
most common Ul components, such as windows, buttons, menus, and so on. It is
also specifically the AWT, and not Java, that generates and manages events.

In other words, whenever just about anything happens to a Java AWT component, including
an applet, an event is generated. Some events are handled by the AWT or by the browser without
your needing to do anything. paint () methods, for example, are generated and handled by the
browser—all you have to do is tell the AWT what you want painted when it gets to your part
of the window. Some events, however—for example, a mouse click inside the boundaries of
your applet—you may need to know about. Writing your Java programs to handle these kinds
of events enables you to get input from the user and have your applet change its behavior based
on that input.

Today, you'll learn about managing simple events, including the following basics:

O Mouse clicks

O Mouse movements, including mouse dragging

O Keyboard actions
You'll also learn about the hand1eevent () method, which is the basis for collecting, handling,
and passing on events of all kinds from your applet to other Ul components in the window or

in your applet itself. Tomorrow, you’ll learn how to combine events with the AWT to create a
complete interface for your applet.

Mouse Clicks

Let’s start with the most common event you might be interested in: mouse clicks. Mouse-click
events occur when your user clicks the mouse somewhere in the body of your applet. You can
intercept mouse clicks to do very simple things—for example, to toggle the sound on and off
in your applet, to move to the next slide in a presentation, or to clear the screen and start over—
or you can use mouse clicks in conjunction with mouse movements to perform more complex
motions inside your applet.

sams
)

Sams.ney
Learning

mouseDown and mouseUp

When you click the mouse once, the AWT generates two events: a mousebown event when the
mouse button is pressed, and a mouseup event when the button is released. Why two individual
events for a single mouse action? Because you may want to do different things for the “down”
and the “up.” For example, look at a pull-down menu. The mousebown extends the menu, and
the mouseup selects an item (with mousebrags between—but you’ll learn about that one later).
If you have only one event for both actions (mouseup and mousebown), you cannot implement
that sort of user interaction.

Handling mouse events in your applet is easy—all you have to do is override the right method
definition in your applet. That method will be called when that particular event occurs. Here’s
an example of the method signature for a mousebown event:

public boolean mouseDown(Event evt, int x, int y) {

i..

The mousebown () method (and the mouseup () method as well) takes three parameters: the event
itself and the x and y coordinates where the mousebown Or mouseUp event occurred.

The event argument is an instance of the class event. All system events generate an instance of
the event class, which contains information about where and when the event took place, the kind
of event it is, and other information that you might want to know about this event. Sometimes
having a handle to that event object is useful, as you'll discover later on in this section.

The x and the y coordinates of the event, as passed in through the x and y arguments, are
particularly nice to know because you can use them to determine precisely where the mouse click
took place.

For example, here’s a simple method that prints out information about a mousebown When it
occurs:
public boolean mouseDown(Event evt, int x, int y) {

System.out.println("Mouse down at " + x + "," + y);
return true;

}
By including this method in your applet, every time your user clicks the mouse inside your
applet, this message will get printed.

Note that this method, unlike the other system methods you’ve studied this far, returns a
boolean value instead of not returning anything (void). This will become important tomorrow
when you create user interfaces and then manage input to these interfaces; having an event
handler return true or false determines whether a given Ul component can intercept an event
or whether it needs to pass it on to the enclosing component. The general rule is that if your
method deals with the event, it should return true, which for the focus of today’s lesson is almost
always the case.

219

220

Managing Simple Events and Interactivity

The second half of the mouse click is the mouseup () method, which is called when the mouse
button is released. To handle a mouseup event, add the mouseup() method to your applet.
mouseUp () l00ks just like mouseDown ():

public boolean mouseUp(Event evt, int x, int y) {

}

An Example: Spots

In this section, you’ll create an example of an applet that uses mouse events—mousebown events
in particular. The Spots applet starts with a blank screen and then sits and waits. When you click
the mouse on that screen, a blue dot is drawn. You can place up to ten dots on the screen. Figure
12.1 shows the Spots applet.

Figure 12.1.
The Spots applet.

Let’s start from the beginning and build this applet, starting from the initial class definition:

import java.awt.Graphics;
import java.awt.Color;
import java.awt.Event;

public class Spots extends java.applet.Applet {

final int MAXSPOTS = 10;
int xspots[] = new int[MAXSPOTS];

sams
net

Sams.ney
Learning

int yspots[] = new int[MAXSPOTS];
int currspots = 0;

}

This class uses three other awT classes: Graphics, color, and Event. That last class, Event, needs
to be imported in any applets that use events. The class has four instance variables: a constant
to determine the maximum number of spots that can be drawn, two arrays to store the x and
y coordinates of the spots that have already been drawn, and an integer to keep track of the

number of the current spot.

Note: This class doesn’t include the implements Runnable Words in its definition.
As you’ll see later on as you build this applet, it also doesn’t have a run() method.
Why not? Because it doesn’t actually do anything on its own—all it does is wait for
input and then do stuff when input happens. There’s no need for threads if your

applet isn’t actively doing something all the time.

Let’s start with the init() method, which has one line, to set the background to white:

public void init() {
setBackground(Color.white);

}

Set the background here, instead of in paint (), because paint () is called repeatedly each time
anew spot is added. Because you really need to set the background only once, putting it in the
paint () method unnecessarily slows down that method. Putting it here is a much better idea.

The main action of this applet occurs on the mousebown () method, so let’s add that one now:

public boolean mouseDown(Event evt, int x, int y) {
if (currspots < MAXSPOTS)
addspot (x,Y);
else System.out.println("Too many spots.");

return true;
}
When the mouse click occurs, the mousebown () method tests to see whether there are less than
ten spots. If so, it calls the addspot () method (which you’ll write soon). If not, it just prints an
error message. Finally, it returns true, because all the event methods have to return a boolean

value (usually true).

What does addspot () do? It adds the coordinates of the spot to the arrays that store the
coordinates, increments the currspots variable, and then calls repaint():
void addspot(int x,int y)

xspots[currspots]
yspots[currspots]

X;
y;

(LI | B

221

Managing Simple Events and Interactivity

currspots++;
repaint();

You may be wondering why you have to keep track of all the past spots in addition to the current
spot. The reason is because of repaint (): each time you paint the screen, you have to paint all
the old spots in addition to the newest spot. Otherwise, each time you painted a new spot, the
older spots would get erased. Now, on to the paint () method:
public void paint(Graphics g) {

g.setColor(Color.blue);

for (int i = @; i < currspots; i++) {

g.fillOval(xspots[i] -10, yspots[i] -10,20,20);
}
}

Inside paint, you just loop through the spots you've stored in the xspots and yspots arrays,
painting each one (actually, painting them a little to the right and upward so that the spot is
painted around the mouse pointer rather than below and to the right).

That's it! That’s all you need to create an applet that handles mouse clicks. Everything else is
handled for you. You have to add the appropriate behavior to mousebown () Or mouseup() tO
intercept and handle that event. Listing 12.1 shows the full text for the Spots applet.

Type Listing 12.1. The Spots applet.

1: import java.awt.Graphics;

2: import java.awt.Color;

3: import java.awt.Event;

4:

5: public class Spots extends java.applet.Applet {
6:

7: final int MAXSPOTS = 10;

8: int xspots[] = new int[MAXSPOTS];

9: int yspots[] = new int[MAXSPOTS];

10: int currspots = 0;

11:

12: public void init() {

13: setBackground(Color.white);

14: }

15:

16: public boolean mouseDown(Event evt, int x, int y) {
17: if (currspots < MAXSPOTS)

18: addspot(x,y);

19: else System.out.println("Too many spots.");
20: return true;
21: }
22:
23: void addspot(int x,int y) {
24: xspots[currspots] = X;
25: yspots[currspots] = y;
26: currspots++;
27: repaint();

222

28: }

30: public void paint(Graphics g) {

31: g.setColor(Color.blue);

32: for (int i = 0; i < currspots; it++) {

33: g.fillOval(xspots[i] -10, yspots[i] -10,20,20);

Mouse Movements

Every time the mouse is moved a single pixel in any direction, a mouse move event is generated.
There are two mouse movement events: mouse drags, where the movement occurs with the
mouse button pressed down, and plain mouse movements, where the mouse button isn’t
pressed.

To manage mouse movement events, use the mousebrag() and mouseMove () methods.

mouseDrag and mouseMove

The mousebrag () and mouseMove () methods, when included in your applet code, intercept and
handle mouse movement events. Themousenmove () method, for plain mouse pointer movements
without the mouse button pressed, looks much like the mouse-click methods:

public boolean mouseMove(Event evt, int x, int y) {

}

The mousebrag() method handles mouse movements made with the mouse button pressed
down (a complete dragging movement consists of amousebown event, a series of mousebrag events
for each pixel the mouse is moved, and a mouseup even when the button is released). The
mouseDrag () method looks like this:

public boolean mouseDrag(Event evt, int x, int y) {

}

mouseEnter and mouseEXxit

Finally, there are the mouseEnter () and mouseExit () methods. These two methods are called
when the mouse pointer enters the applet or when it exits the applet. (In case you’re wondering
why you might need to know this, it’s more useful on components of user interfaces that you
might put inside an applet. You'll learn more about Ul tomorrow).

223

224

Managing Simple Events and Interactivity

BothmouseEnter () and mouseExit () have similar signatures—three arguments: the event object
and the x and y coordinates of the point where the mouse entered or exited the applet.

public boolean mouseEnter(Event evt, int x, int y) {

}

public boolean mouseExit(Event evt, int x, int y) {

}

An Example: Drawing Lines

Examples always help to make concepts more concrete. In thissection you’ll create an applet that
enables you to draw straight lines on the screen by dragging from the startpoint to the endpoint.
Figure 12.2 shows the applet at work.

— M

Figure 12.2.
Drawing Lines.

As with the Spots applet (on which this applet is based), let’s start with the basic definition and
work our way through it. Listing 12.2 shows the top of the Lines applet.

Type Listing 12.2. The top of the Lines applet.

1: import java.awt.Graphics;
2: import java.awt.Color;
3: import java.awt.Event;

import java.awt.Point;

public class Lines extends java.applet.Applet {

final
Point
Point
Point
Point

int MAXLINES = 10;

starts[] = new Point[MAXLINES]; // starting points
ends[] = new Point[10]; // ending points
anchor; // start of current line

currentpoint; // current end of line

int currline = 0; // number of lines

public void init() {
setBackground(Color.white);

Analysi

O

[R T

Finally, the init() method (lines 15 through 17), as in the Spots applet, sets the background

Compared to Spots, this applet added a few extra things. Unlike Spots, which keeps track
of individual integer coordinates, this one keeps track of Point objects. Points represent an
x and a y coordinate, encapsulated in a single object. To deal with points, you import the
point class (line 4) and set up a bunch of instance variables that hold points:

The starts array holds points representing the starts of lines already drawn.
The ends array holds the endpoints of those same lines.
anchor holds the starting point of the line currently being drawn.

currentpoint holds the current endpoint of the line currently being drawn.

currline holds the current number of lines (to make sure you don’t go over
MAXLINES).

of the applet to white.

The three main events this applet deals with are mousebown (), t0 set the anchor point for the
current line, mousebrag (), to animate the current line as it’s being drawn, and mouseup (), to set
the ending point for the new line. Given that you have instance variables to hold each of these
values, it’s merely a matter of plugging the right variables into the right methods. Here’s
mouseDown (), Which sets the anchor point:

public boolean mouseDown(Event evt, int x, int y) {

}

anchor =

new Point(x,y);

return true;

While the mouse is being dragged to draw the line, the applet animates the line being drawn.
As you draw the mouse around, the new line moves with it from the anchor point to the tip of
the mouse. The mouseDrag event contains the current point each time the mouse moves, so use
that method to keep track of the current point (and to repaint for each movement so the line
“animates”):

225

Managing Simple Events and Interactivity

public boolean mouseDrag(Event evt, int x, int y) {

currentpoint = new Point(x,y);

repaint();

return true;
}
The new line doesn’t getadded to the arrays of old lines until the mouse button isreleased. Here’s
mouseUp (), Which tests to make sure you haven’t exceeded the maximum number of lines before
calling the add1ine () method (described next):
public boolean mouseUp(Event evt, int x, int y) {

if (currline < MAXLINES)

addline(x,Y);

else System.out.println("Too many lines.");

return true;
}
The add1ine () method is where the arrays of lines get updated and where the applet is repainted
to take the new line into effect:
void addline(int x,int y) {

starts[currline] = anchor;

ends[currline] = new Point(x,y);

currline++;

currentpoint = null;

repaint();
}
Note that in this line you also set currentpoint t0 nu11. Why? Because the current 1ine in
process is over. By setting currentpoint t0 null, you can test for that value in the paint ()
method.

Painting the applet means drawing all the old lines stored in the starts and enes arays, as well
as drawing the current line in process (whose en6points are in anchor and currentpoint,
respectively). To show the animation of the current line, draw it in blue. Here’s the paint ()
method for the Lines applet:

public void paint(Graphics g) {

// Draw existing lines
for (int i = @; i < currline; i++) {
g.drawLine(starts[i].x, starts[i].y,
en6s[i].x, en6s[i].y);

}

// draw current line
g.setColor(Color.blue);
if (currentpoint != null)
g.drawLine(anchor.x,anchor.y,
currentpoint.x,currentpoint.y);

}

Inpaint, when you’re drawing the current line, you test first to see whether currentpoint is null.
Ifitis, the applet isn’t in the middle of drawing a line, so there’s no reason to try drawing a line

226

that doesn’t exist. By testing for currentpoint (and by setting currentpoint to null in the
addline() method), you can paint only what you need.

That's it—just 60 lines of code and a few basic methods, and you have a very basic drawing
application in your Web browser. Listing 12.3 shows the full text of the Lines applet so that you
can put the pieces together.

Type Listing 12.3. The Lines applet.

©CoONOUOA,WN-=

import java.awt.Graphics;
import java.awt.Color;
import java.awt.Event;
import java.awt.Point;

public class Lines extends java.applet.Applet {

final int MAXLINES = ;

Point starts[] = new Point[MAXLINES]; // starting points
Point ends[] = new Point[10]; // endingpoints

Point anchor; // start of current line

Point currentpoint; // current end of line

int currline = 0; // number of lines

public void init() {
setBackground(Color.white);

}

public boolean mouseDown(Event evt, int x, int y) {
anchor = new Point(x,y);
return true;

}

public boolean mouseUp(Event evt, int x, int y) {
if (currline < MAXSPOTS)
addline(x,Y);
else System.out.println("Too many lines.");
return true;

}

public boolean mouseDrag(Event evt, int x, int y) {
currentpoint = new Point(x,y);
repaint();
return true;

}

void addline(int x,int y) {
starts[currline] = anchor;
ends[currline] = new Point(x,y);
currline++;
currentpoint = null;
repaint();

}

public void paint(Graphics g) {

227

Managing Simple Events and Interactivity

Listing 12.3. continued

46

47: // Draw existing lines

48: for (int i = @; i < currline; i++) {
49: g.drawLine(starts[i].x, starts[i].y,
50: ends[i].x, ends[i].y);

51: }

52:

53: // draw current line

54: g.setColor(Color.blue);

55: if (currentpoint != null)

56: g.drawLine(anchor.x,anchor.y,
57: currentpoint.x,currentpoint.y);
58: }

59: }

Keyboard Events

Keyboard events are generated whenever users press a key on the keyboard. By using key events,
you can get hold of the values of the keys they pressed to perform an action or merely to get
character input from the users of your applet.

The keyDown Method

To capture a keyboard event, use the keybown () method:

public boolean keyDown(Event evt, int key) {

}

The keys generated by keybown events (and passed into keybown () as the key argument) are
integers representing ASCII character values, which include alphanumeric characters, function
keys, tabs, returns, and so on. To use them as characters (for example, to print them), you need
to cast them to characters:

currentchar = (char)key;

Here’s a simple example of a keypown () method that does nothing but print the key you just
typed in both its ASCII and character representation:
public boolean keyDown(Event evt, int key) {

System.out.println("ASCII value: " + key);

System.out.println("Character: " + (char)key);
return true;

228

Default Keys

The Event class provides a set of class variables that refer to several standard nonalphanumeric
keys, such as the arrow keys. If your interface uses these keys, you can provide more readable code
by testing for these names in your keybown () method rather than testing for their numeric values.
For example, to test whether the up arrow was pressed, you might use the following snippet of

code:

if (key == Event.UP) {

}

Because the values these class variables hold are integers, you also can use the switch statement

to test for them.

Table 12.1 shows the standard event class variables for various keys and the actual keys they

represent.

Table 12.1. Standard keys defined by the event class.

Class Variable

Represened Key

Event.HOME
Event.END
Event.PGUP
Event.PGDN
Event.UP
Event.DOWN
Event.LEFT
Event.RIGHT

The Home key

The End key

The Page Up key
The Page Down key
The up arrow

The down arrow
The left arrow

The right arrow

An Example: Entering, Displaying, and
Moving Characters

Let’s look at an applet that demonstrates keyboard events. This one enables you to type a
character, and it displays that character in the center of the applet window. You then can move
that character around on the screen by using the arrow keys. Typing another character at any
time changes the character as it’s currently displayed. Figure 12.3 shows an example.

229

230

Managing Simple Events and Interactivity

Figure 12.3.
The Keys applet.

Thisapplet is actually less complicated than the previous applets you’ve used. This one has only
three methods: init (), keybown (), and paint (). The instance variables are also simpler, because
the only things you need to keep track of are the x and y positions of the current character and
the values of that character itself. Here’s the top of this class definition:

import java.awt.Graphics;

import java.awt.Event;
import java.awt.Font;

public class Keys extends java.applet.Applet {

char currkey;
int currx;
int curry;

The init() method is responsible for three things: setting the background color, setting the
applet’sfont (here, 36 point Helvetica bold), and setting the beginning position for the character
(the middle of the screen, minus a few points to nudge it up and to the right):

public void init() {
currx = (this.size().width / 2) -8; // default
curry = (this.size().height / 2) -16;
setBackground(Color.white);
setFont (new Font("Helvetica",Font.BOLD,36));

Because this applet’s behavior is based on keyboard input, the keybown () method is where most
of the work of the applet takes place:
public boolean keyDown(Event evt, int key) {

switch (key) {
case Event.DOWN:

curry += 5;
break;

case Event.UP:
curry -= 5;
break;

case Event.LEFT:
currx -= 5;
break;

case Event.RIGHT:
currx += 5;
break;
default:
currkey = (char)key;

repaint();
return true;
}
In the center of the keybown () applet is a switch statement that tests for different key events. If
the event is an arrow key, the appropriate change is made to the character’s position. If the event
is any other key, the character itself is changed. The method finishes up with a repaint() and
returns true.

The paint() method here is almost trivial; just display the current character at the current
position. However, note that when the applet starts up, there’s no initial character and nothing
to draw, so you have to take that into account. The currkey variable is initialized to e, so you
paint the applet only if currkey has an actual value:

12

public void paint(Graphics g) {
if (currkey != 0) {
g.drawString(String.valueOf (currkey), currx,curry);
}

}
Listing 12.4 shows the complete source for the Keys applet:

Type Listing 12.4. The Keys applet.

import java.awt.Graphics;
import java.awt.Event;
import java.awt.Font;

public class Keys extends java.applet.Applet {

char currkey;
int currx;

ONOUHRWN=

continues

231

Managing Simple Events and Interactivity

Listing 12.4. continued

9: int curry;

10:

11: public void init() {

12: currx = (this.size().width / 2) -8; // default
13: curry = (this.size().height / 2) -16;
14:

15: setBackground(Color.white);

16: setFont(new Font("Helvetica",Font.BOLD,36));
17: }

18:

19: public boolean keyDown(Event evt, int key) {
20: switch (key) {

21: case Event.DOWN:

22: curry += 5;

23: break;

24: case Event.UP:

25: curry -= 55

26: break;

27: case Event.LEFT:

28: currx -= 5;

29: break;

30: case Event.RIGHT:

31: currx += 5;

32: break;

33: default:

34: currkey = (char)key;

35: }

36:

37: repaint();

38: return true;

39: }

40:

41: public void paint(Graphics g) {

42: if (currkey != 0) {

43: g.drawString(String.valueOf (currkey), currx,curry);
44: }

45: }

46: }

Testing for Modifier Keys

Shift, control, and meta are modifier keys. They don’t generate key events themselves, but when
you get an ordinary mouse or keyboard event, you can test to see whether those keys were held
down when the event occurred. Sometimes it may be obvious—shifted alphanumeric keys
produce different key events than unshifted ones, for example. For other events, however—
mouse events in particular—you may want to handle an event with a modifier key held down
differently from a regular version of that event.

232

sams
net

Sams.ney
Learning

The eEvent class provides three methods for testing whether or not a modifier key is held down:
shiftDown (), metaDown (), and controlbown (). All return boolean values based on whether that
modifier key is indeed held down. You can use these three methods in any of the event handling
methods (mouse or keyboard) by calling them on the event object passed into that method:
public boolean mouseDown(Event evt, int x, int y) {

if (evt.shiftDown)

// handle shift-click
else // handle regular click

The AWT Event Handler

The default methods you've learned about today for handling basic events in applets are actually
called by a generic event handler method called hand1eEvent (). The handleEvent () method is
how the AWT generically deals with events that occur between application components and
events based on user input.

In the default hand1eEvent () method, basic events are processed and the methods you learned
about today are called. To handle events other than those mentioned here, to change the default
event handling behavior, or to create and pass around your own events, you need to override
handleEvent in your own Java programs. The hand1letvent () method looks like this:

public boolean handleEvent(Event evt) {

}

To test for specific events, examine the ID instance variable of the event object that gets passed
in. The event ID is an integer, but fortunately, the event class defines a whole set of event IDs
asclass variables that you can test for in the body of the hand1eEvent. Because these class variables
are integer constants, a switch Statement works particularly well. For example, here’s a simple
handleEvent () method to print out debugging information about mouse events:

public boolean handleEvent(Event evt) {
switch (evt.id) {
case Event.MOUSE_DOWN:
System.out.println("MouseDown: " +
evt.x + "," + evt.y);
return true;
case Event.MOUSE_UP:
System.out.println("MouseUp: " +
evt.x + "," + evt.y);
return true;
case Event.MOUSE_MOVE:
System.out.println("MouseMove: " +
evt.x + "," + evt.y);
return true;
case Event.MOUSE_DRAG:
System.out.println("MouseDown: " +
evt.x + "," + evt.y);

233

M

anaging Simple Events and Interactivity

return true;

default:

}
}

return false;

You can test for the following keyboard events:

O

O
O

Event.KEYPRESS iS generated when a key is pressed (the same as the keybown ()
method).

Event.KEYRELEASE i generated when a key is released.
Event.KEYACTION is generated when a key action (a press and a release) occurs.

You can test for these mouse events:

O

Event .MOUSE_DOWN is generated when the mouse button is pressed (the same as the
mouseDown () Method).

Event.MOUSE_UP is generated when the mouse button is released (the same as the
mouseUp () mMethod).

Event .MOUSE_MOVE iS generated when the mouse is moved (the same as the mouseMove ()
method).

Event .MOUSE_DRAG iS generated when the mouse is moved with the button pressed (the
same as the mousebrag() method).

Event.MOUSE_ENTER iS generated when the mouse enters the applet (or a component of
that applet). You can also use the mouseEnter () method.

Event.MOUSE_EXIT is generated when the mouse exits the applet. You can also use the
mouseExit () method.

In addition to these events, the Event class has a whole suite of methods for handling Ul
components. You'll learn more about these events tomorrow.

Note

that if you override hand1eEvent() in your class, none of the default event handling

methods you learned about today will get called unless you explicitly call them in the body of
handleEvent (), SO be careful if you decide to do this. One way to get around this is to test for
the event you're interested in, and if that event isn’t it, to call super.handleEvent () SO that the
superclass that defines hand1eEvent () can process things. Here’s an example of how to do this:

public boolean handleEvent(Event evt) {
if (evt.id == Event.MOUSE_DOWN) {

}
}

234

// process the mouse down
return true;

else {
return super.handleEvent(evt);

sams
)

Sams.ney
Learning

Summary

Handling events in Java’s Abstract Windowing Toolkit (AWT) is easy. Most of the time, all you
need to do is stick the right method in your applet code, and your applet intercepts and handles
that method. Here are some of the basic events you can manage in this way:

O Mouse clicks—mouseup () and mouseDbown () methods for each part of a mouse click.

O Mouse movements—mouseMove () and mousebrag() for mouse movement with the
mouse button released and pressed, respectively, as well as mouseEnter () and
mouseExit () for when the mouse enters and exits the applet area.

O keybown for when a key on the keyboard is pressed.

Alleventsinthe AWT generate an event object; inside that object, you can find out information
about the event, when it occurred, and its x and y coordinates (if applicable). You can also test
that event to see whether a modifier key was pressed when the event occurred, by using the
shiftDown (), controlDown (), and metabown () methods.

Finally, there is the nhandleEvent(), the “parent” of the individual event methods. The
handleEvent() method is actually what the Java system calls to manage events; the default
implementation calls the individual method events where necessary. To override how methods
are managed in your applet, override handleEvent.

Q In the Spots applet, the spot coordinates are stored in arrays, which have a
limited size. How can | modify this applet so that it will drawn an unlimited

number of spots?

A You can do one of a couple things:
The first thing to do is test, in your addspot () method, whether the number of spots
has exceeded maxspoTs. Then create a bigger array, copy the elements of the old array
into that bigger array (use the system.arraycopy () method to do that), and reassign
the x and y arrays to that new, bigger array.
The second thing to do is to use the vector class. vector, part of the java.util package,
implements an array that is automatically growable—sort of like a linked list is in
other languages. The disadvantage of vector is that to put something into vector, it
has to be an actual object. This means you’ll have to cast integers to 1nteger Objects,
and then extract their values from 1nteger objects to treat them as integers again. The
vector class enables you to add and remove objects to the end of vector just as you
can in an array (by using method calls, rather than array syntax). Check it out.

235

236

Managing Simple Events and Interactivity

Q

A

> O

> O

mouseDown () and mouseup () seem to apply to only a single mouse button. How can
I determine which button on the mouse has been pressed?

At the moment, you can’t. AWT assumes that you’re using only one mouse button, or
if you have a mouse with multiple buttons, that you’re using only the left one.
Although this provides some limitations on the kinds of actions you can perform in
your applet, it does provide a cross-platform solution. Remember— different systems
have different mice, so writing your applet to do something specific with the right
mouse button isn’t a good idea if the people running your applet are using
Macintoshes and have only one mouse button. If you really want to have different
mouse actions perform different things, test for modifier keys in your mousebown () and
mouseUp () methods.

What’s a meta key?

It’s popular in Unix systems, and often mapped to Alt on most keyboards. Because
Shift and Ctrl are much more popular and widespread, it’s probably a good idea to
base your interfaces on those modifier keys if you can.

How do | test to see whether the Return key has been pressed?

Return (line feed) is character 10; Enter (carriage return) is character 13. Note that
different platforms may send different keys for the actual key marked Return. In
particular, Unix systems send line feeds, Macintoshes send carriage returns, and DOS
systems send both. So, to provide a cross-platform behavior, you may want to test for
both line feed and carriage return.

The word from the Java team is that a Return is a Return is a Return regardless of the
platform. However, at the time of this writing, it is questionable whether or not this is
currently true in the Java developer’s kit. You may want to check the APl documenta-
tion for the Event class to see whether this has changed in the interim.

I looked at the API for the event class, and there are many more event types
listed there than the ones you mention today.

Yes. The event class defines many different kinds of events, both for general user
input, such as the mouse and keyboard events you learned about here, and also events
for managing changes to the state of user interface components, such as windows and
scroll bars. Tomorrow, you'll learn about those other events.

4

The Java Abstract
Windowing Toolkit

by Laura Lemay

238

The Java Abstract Windowing Toolkit

For the past five days you've concentrated on creating applets that do very simple things: display
text, play an animation or a sound, or enable very basic interactions with the user. Once you get
past that point, however, you may want to start creating more complex applets that behave like
real applications, embedded in a Web page—applets that start to look like real GUI applications
with buttons, menus, text fields and other elements of a real application.

It’s this sort of real work in Java applets and applications that Java’s Abstract Windowing
Toolkit, or AWT, was designed for. You've actually been using the AWT all along, as you might
have guessed from the classes you’ve been importing. The Applet class and most of the classes
you've been using this week are all integral parts of the AWT. In fact, the HotJava browser is
also written in Java and uses the AWT as well.

The AWT provides the following:

O A full set of Ul widgets and other components, including windows, menus, buttons,
checkboxes, text fields, scrollbars, and scrolling lists

O Support for Ul “containers,” which can contain other embedded containers or Ul
widgets

O An event system for managing system and user events between and among parts of the
AWT

O Mechanisms for laying out components in a way that enables platform-independent
Ul design

Today, you'll learn about how to use all these things in your Javaapplets. Tomorrow, you’ll learn
about creating windows, menus, and dialogs, which enable you to pop up separate windows
from the browser window. In addition, you can use the AWT in stand-alone applications, so
everything you've learned so far this week can still be used. If you find the framework of the Web
browser too limiting, you can take your AWT background and start writing full-fledged Java
applications.

Today, however, you'll continue focusing on applets.

Note: This is by far the most complex lesson so far. There’s a lot to cover and a lot
of code to go through today, so if it starts becoming overwhelming, you might
want to take two days (or more) for this one.

An AWT Overview

The basic idea behind the AWT is that a Java window is a set of nested components, starting
from the outermost window all the way down to the smallest Ul component. Components can

include things you can actually see on the screen, such as windows, menubars, buttons, and text
fields, and they can also include containers, which in turn can contain other components. Figure
13.1 shows how a sample page in a Java browser might include several different components,
all of which are managed through the AWT.

This nesting of components within containers within other components creates a hierarchy of
components, from the smallest checkbox inside an applet to the overall window on the screen.
The hierarchy of components determines the arrangement of items on the screen and inside
other items, the order in which they are painted, and how events are passed from one component

s Cpliany Nevigade Cotn Help

to another.
Figure 13.1. Window
AWT components. J'
Menubar

Applet —

T e—

README
m--mnmm WeB TR WER Tt e BUSTE at 8 SapTy

_umwwmu-wuﬂuw*uw

Tema i alpha rresie Wroespes e et sien i cosen sddmmasmy brtizmaly 'l'h*
ﬂqnﬁ_tuplr—.-mqum

W e e e Bary
illrwmhM-u-hu-

Panel

Canvas

M-&h!:w:;:" mmﬁﬂw‘ n;h
] oo, wher Weh brewicn 21 Mansie w
l“m_-ﬂlﬂn--mmﬁimmm
uuuy,.m-h—;qun s

reienie. Parts e Windewn dﬁw““ﬂﬂkmhlmmu

s o —

Mo EEPEET 1N Bk EPE e B
L s R wEh.

Fer ndditiongl riereation e fue Prea i the Kol eva Help mere snd prie te the enee [locumeptanes.

@666

These are the major components you can work with in the AWT:

More
panels

Text field

Label

O Containers. Containers are generic AWT components that can contain other compo-
nents, including other containers. The most common form of container is the panel,
which represents a container that can be displayed on screen. Applets are a form of
panel (in fact, the App1et class is a subclass of the pane1 class).

O Canvases. A canvas is a simple drawing surface. Although you can draw on panels (as
you’ve been doing all along), canvases are good for painting images or other graphics

operations.

o Ul components. These can include buttons, lists, simple popup menus, checkboxes, test
fields, and other typical elements of a user interface.

239

240

The Java Abstract Windowing Toolkit

O Window construction components. These include windows, frames, menubars, and
dialogs. These are listed separately from the other Ul components because you’ll use
these less often—particularly in applets. In applets, the browser provides the main
window and menubar, so you don’t have to use these. Your applet may create a new
window, however, or you may want to write your own Java application that uses these
components.

Theclassesinside the java.awt package are written and organized to mirror the abstract structure
of containers, components, and individual Ul components. Figure 13.2 shows some of the class
hierarchy that makes up the main classesin the AWT. The root of most of the AWT components
is the class component, Which provides basic display and event handling features. The classes
Container, Canvas, TextComponent, and many of the other Ul components inherit from
component. Inheriting from the container class are objects that can contain other AWT
components—the pane1 and window classes, in particular. Note that the java.applet.Applet
class, even though it lives in its own package, inherits from pane1, so your applets are an integral
part of the hierarchy of components in the AWT system.

Figure 13.2.
3 Component
A partial AWT class |
hierarchy. | I I |
Canvas Container TextComponent Button
Panel Window TextField
Applet Frame Dialog

A graphical user interface-based application that you write by using the AWT can be as complex
as you like, with dozens of nested containers and components inside each other. AWT was
designed so that each component can play its part in the overall AWT system without needing
to duplicate or keep track of the behavior of other parts in the system.

The Basic User Interface Components

The simplest form of AWT component is the basic Ul component. You can create and add these
to your applet without needing to know anything about creating containers or panels—your
applet, even before you start painting and drawing and handling events, is already an AWT
container. Because an applet is a container, you can put other AWT components—such as Ul
components or other containers—into it.

sams
net

Sams.ney
Learning

In this section, you'll learn about the basic Ul components: labels, buttons, checkboxes, choice
menus, and text fields. In each case, the procedure for creating the component is the same—you
first create the component, and then add it to the panel that holdsiit, at which point itis displayed
on the screen. To add a component to a panel (such as your applet, for example), use the add()
method:
public void init() {

Button b = new Button("OK");

add(b);
}
Note that where the component appears in the panel depends on the layout that panel is defined
to have. The default layout for panels such as applets is FlowLayout, with a centered alignment,
which means that components are added from left to right in rows, and then row by row as they
fit, with each row centered. This explains why some of the examples in this section look a little
funny. You'll learn more about panels and layouts in the next section.

Note also that each of these components has an action associated with it—that is, something that
component does when it’s activated. Actions generally trigger events or other activities in your
applet (often called callbacks in other window toolkits). In this section, you’ll focus on creating
the components themselves; you’ll learn about adding actions to them later in today’s lesson.

On to the components!

Labels

The simplest form of Ul component is the label.

NEWI] Labels are, effectively, text strings that you can use to label other Ul components.
TERM

The advantages that alabel has over an ordinary text string is that it follows the layout of the given
panel, and you don’t have to worry about repainting it every time the panel is redrawn. Labels
also can be easily aligned within a panel, enabling you to attach labels to other Ul components
without knowing exact pixel positions.

To create a label, use one of the following constructors:

O Label() creates an empty label, with its text aligned left.
O Label(String) creates a label with the given text string, also aligned left.

O Label(String, int) Creates a label with the given text string and the given alignment.
The available alignments are stored in class variables in Labe1, making them easier to
remember: Label.RIGHT, Label.LEFT, and Label.CENTER.

The label’s font is determined by the overall font for the component (as set by the setFont()
method).

241

242

The Java Abstract Windowing Toolkit

Here’s some simple code to create a few labels. Figure 13.3 shows how this looks on screen:

add(new Label("aligned left "));
add(new Label("aligned center", Label.CENTER));
add(new Label(" aligned right", Label.RIGHT));

Figure 13.3.
Labels. aligned left

alighed center

aligned right

Once you have a label object, you can use methods defined in the Labe1 class to get and set the
values of the text as shown in Table 13.1.

Table 13.1. Label methods.

Method Action

getText () Returns a string containing this label’s text

setText (String) Changes the text of this label

getAlignment () Returns an integer representing the alignment of this label:

0 iS Label.LEFT, 1 iS Label.CENTER, 2 iS Label.RIGHT

setAlignment (int) Changes the alignment of this label to the given integer or class
variable

Buttons
The second user interface component to explore is the button.

NEVV[] Buttonsare simple Ul components that trigger some action in your interface when they
TERM are pressed. For example, a calculator applet might have buttons for each number and
operator, or a dialog box might have buttons for “OK” and “Cancel.”

To create a button, use one of the following constructors:

O Button() creates an empty button with no label.
O Button(String) creates a button with the given string object as a label.

sams
net

Sams.ney
Learning

Once you have a button object, you can get the value of the button’s label by using the
getLabel() method and set the label using the setLabel(String) methods.

Figure 13.4 shows some simple buttons, created using the following code:

add(new Button("Rewind"));

add (new Button("Play"));

add(new Button("Fast Forward"));
((

add(new Button("Stop"));

Figure 13.4. :
Buttons. Rewind | Play | Fast Forward | Stap |

Checkboxes
Checkboxes can be selected or deselected to provide options.

NEWI] Checkboxes are user interface components that have two states: on and off (or checked and

TERM unchecked, selected and unselected, true and false, and so on). Unlike buttons, checkboxes
usually don’t trigger direct actions in a Ul but, instead, are used to indicate optional features of

some other action.
Checkboxes can be used in two ways:
O Nonexclusive, meaning that given a series of checkboxes, any of them can be selected.
O Exclusive, meaning that within one series, only one checkbox can be selected at a time.

The latter kind of checkboxes are called radio buttons or checkbox groups, and are described in
the next section.
Nonexclusive checkboxes can be created by using the checkbox class. You can create a checkbox
by using one of the following constructors:

O checkbox () creates an empty checkbox, unselected.
Checkbox (String) creates a checkbox with the given string as a label.

Checkbox (String, null, boolean) Creates a checkbox that is either selected or
unselected based on whether the boolean argument is true or false, respectively. (The
null is used as a placeholder for a group argument. Only radio buttons have groups, as

you’ll learn in the next section).

Table 13.2 lists the checkbox methods; Figure 13.5 shows a few simple checkboxes (only
underwear is selected), generated using the following code:

O
O

243

The Java Abstract Windowing Toolkit

add(new Checkbox("Shoes"));
add(new Checkbox("Socks"));
add(new Checkbox("Pants"));
add(new Checkbox("Underwear", null, true));
add(new Checkbox("Shirt"));
Figure 13.5.
Checkboxes. # Red
+ Blue
A vellow
“Green
+r Qrange
~ PUrple
Table 13.2. Checkbox methods.
Method Action
getLabel() Returns a string containing this checkbox’s label
setLabel(String) Changes the text of the checkbox’s label
getState() Returns true or false, based on whether the checkbox is selected
or not
setState(boolean) Changes the checkbox’s state to selected (true) or unselected
(false)

Radio Buttons
Radio buttons are a variation on the checkbox.

NEVW!] Radio buttons have the same appearance as checkboxes, but only one in a series can be
TERM selected at a time.

To create a series of radio buttons, first create an instance of checkboxGroup:

CheckboxGroup cbg = new CheckboxGroup();

244

Then create and add the individual checkboxes, using the group as the second argument, and
whether or not that checkbox is selected (only one in the series can be selected):

add(new Checkbox("Yes", cbg, true);
add(new Checkbox("no", cbg, false);

Here’s a simple example (the results of which are shown in Figure 13.6):
CheckboxGroup cbg = new CheckboxGroup();

add(new Checkbox("Red", cbg, true));
add(new Checkbox("Blue", cbg, false));
add(new Checkbox("Yellow", chg, false));
add(new Checkbox("Green", cbg, false));
add(new Checkbox("Orange", chg, false));
add(new Checkbox("Purple", chg, false));
Figure 13.6.
Radio buttons. + Red
=~ Blue
w TEllow
= GFEER
grange
~ PUrple

All the checkbox methods defined in the previous section can be used with the checkboxes in
the group. In addition, you can use the getcheckboxGroup () and setCheckboxGroup () methods 13
to access and change the group of any given checkbox.

Finally, the getcurrent () and setcurrent (Checkbox) methods, defined in the checkbox group,
can be used to get or set the currently selected checkbox.

Choice Menus
The choice menu is a more complex Ul component than labels, buttons, or checkboxes.

NEW/[] Choice menusare popup (or pulldown) menus that enable you to select an item from that
TERM menu. The menu then displays that choice on the screen.

To create a choice menu, create an instance of the choice class, and then use the addItem()
method to add individual items to it in the order in which they should appear:

245

The Java Abstract Windowing Toolkit

Choice ¢ = new Choice();

.addItem("Apples");
.addItem("Oranges");
.addItem("Strawberries");
.addItem("Blueberries");
.addItem("Bananas");

O00O0O0

Finally, add the entire choice menu to the panel in the usual way:
add(c);

Figure 13.7 shows a simple choice menu generated from code in the previous example:

Figure 13.7.
Choice menus. apples == |
Oranges

ctrawhberries

|

Bluebherries

Bananas

Tip: Choice menus enable only one selection per menu. If you want to select
multiple items, use a scrolling list instead.

Once your choice menu is created, regardless of whether it’s added to a panel, you can continue
to add items to that menu by using the additem() method. Table 13.3 shows some other
methods that may be useful in working with choice menus.

Table 13.3. Choice menu methods.

Method Action

getItem(int) Returns the string item at the given position (items inside a choice
begin at o, same as arrays)

countItems () Returns the number of items in the menu

getSelectedIndex() Returns the index position of the item that’s selected

246

Method Action

getSelectedItem() Returns the currently selected item as a string
select (int) Selects the item at the given position
select(String) Selects the item with that string

Text Fields

Unlike the Ul components up to this point, which enable you to select only among several
options to perform an action, text fields allow you to enter any values.

NEW[] Text fields enable your reader to enter text.
TERM

To create a text field, use one of the following constructors:

TextField() Creates an empty TextField @ characters wide.

O TextField(int) creates an empty text field with the given width in characters.
TextField(String) creates a text field o characters wide, initialized with the given
string.

O TextField(String, int) creates a text field with the given width in characters and

containing the given string. If the string is longer than the width, you can select and
drag portions of the text within the field and the box will scroll left or right.

Forexample, the following line creates a text field 30 characters wide with the string "enter Your
Name" s its initial contents.

TextField tf = new TextField("Enter Your Name",30);
add (tf);

Tip: Text fields include only the editable field itself. You usually need to include a
label with a text field to indicate what belongs in that text field.

Note: Text fields are different from text areas; text fields are limited in size and are
best used for one-line items, whereas text areas have scrollbars and are better for
larger text windows. Both can be edited and enable selections with the mouse.
You'll learn about text areas later today.

247

248

The Java Abstract Windowing Toolkit

You can also create a text field that obscures the characters typed into it—for example, for
password fields. To do this, first create the text fields itself, and then use the setEchocharacter ()
method to set the character that is echoed on the screen. Here is an example:

TextField tf = new TextField(30);
tf.setEchoCharacter('*');

Figure 13.8 shows three text boxes (and labels) that were created by using the following code:

add(new Label("Enter your Name"));

add(new TextField("your name here",45));
add(new Label("Enter your phone number"));
add(new TextField(12));

add(new Label("Enter your password"));
TextField t = new TextField(20);
t.setEchoCharacter('*');

add(t);

Figure 13.8.
Text fields. Enter your Mame

Your name here

Enter your phone number

Enter your password

Text fields inherit from the class Textcomponent and have a whole suite of methods, both
inherited from that class and defined in its own class, that may be useful to you in your Java
programs. Table 13.4 shows a selection of those methods.

Table 13.4. Text field methods.

Method Action

getText () Returns the text this text field contains (as a string)

setText (String) Puts the given text string into the field

getColumns () Returns the width of this text field

select(int, int) Selects the text between the two integer positions (positions
start from o)

selectAll() Selects all the text in the field

sams
)

Sams.ney
Learning

Method Action

isEditable() Returns true or false based on whether the text is editable or
not

setEditable(boolean) True (the default) enables text to be edited; fa1se freezes the text

getEchoChar () Returns the character used for masking input

echoCharIsSet() Returns true or false whether the field has a masking character
or not

Panels and Layout

You know at this point that an AWT panel can contain Ul components or other panels. The
question now is how those components are actually arranged and displayed on the screen.

In other windowing systems, Ul components are often arranged using hard-coded pixel
measurements—put text field tf at 10,30, for example—the same way you used the graphics
operations to paint squares and ovals on the screen. In the AWT, the window may be displayed
on many different windowing systems on many different screens and with many different kinds
of fonts with different font metrics. Therefore, you need a more flexible method of arranging
components on the screen so that a layout that looks nice on one platform isn’t a jumbled
unusable mess on another.

For just this purpose, Java has layout managers, insets, and hints that each component can
provide for helping lay out the screen.

Note that the nice thing about AWT components and user interface items is that you don’t have
to paint them—the AWT system manages all that for you. If you have graphical components
or images, or you want to create animations inside panels, you still have to do that by hand, but
for most of the basic components, all you have to do is put them on the screen and Java will
handle the rest.

Layout Managers

The actual appearance of the AWT components on the screen is determined by two things: the
order in which they are added to the panel that holds them, and the layout manager that panel
is currently using to lay out the screen. The layout manager determines how portions of the
screen will be sectioned and how components within that panel will be placed.

Note that each panel on the screen can have its own layout manager. By nesting panels within
panels, and using the appropriate layout manager for each one, you can often arrange your Ul
to group and arrange components in a way that is both functionally useful and also looks good

249

250

The Java Abstract Windowing Toolkit

Figure 13.9.
Flow layout.

on a variety of platforms and windowing systems. You'll learn about nesting panels in a later
section.

The AWT provides four basic layout managers: FlowLayout, GridLayout, BorderLayout, and
cardLayout. TO create a layout manager for a given panel, use the setLayout () method for that
panel:
public void init() {

this.setlLayout(new FlowLayout());
}
Setting the default layout manager, like defining the user interface components, is best done
during the applet or class’s initialization, which is why it’s included here.

Once the layout manager is set, you can start adding components to the panel. The order in
which components are added is often significant, depending on which layout manager is
currently active. Read on for information about the specific layout managers and how they
present components within the panel to which they apply.

The following sections describe the four basic Java AWT layout managers.

The FlowLayout Class

The F1owLayout class is the most basic of layouts. Using the flow layout, components are added
to the panel one at a time, row by row. If a component doesn’t fit onto a row, it’s wrapped onto
the next row. The flow layout also has an alignment, which determines the alignment of each
row. By default, each row is aligned centered. Figure 13.9 shows a flow layout at its best—a
simple row of buttons, centered on a line.

one | two | three | four | five I

To create a basic flow layout with a centered alignment, use the following line of code in y@ur
panel’s initialization (because this is the default pane layout, you don’t need to include this line
if that is your intent):

setLayout (new FlowLayout());

To create a flow layout with an alignment other than centered, add the FlowLayout.RIGHT OF
FlowLayout.LEFT class variable as an argument:

setLayout (new FlowLayout(FlowLayout.LEFT));

You can also set horizontal and vertical gap values by using flow layouts. The gap is the number
of pixels between components in a panel; by default, the horizontal and vertical gap values are
three pixels, which can be very close indeed. Horizontal gap spreads out components to the left
and to the right, vertical gap to the top and bottom of each component. Add integer argunents
to the flow layout constructor to increase the gap (a layout gap of 10 pointsin both the horiz@ntal
and vertical directions is shown in Figure 13.10):

setLayout (new FlowLayout(FlowLayout.LEFT),10,10);
Figure 13.10.

Flow layout with a gap of
10 points.

one | Two | three | four | five |

Grid Layouts
Grid layouts use a layout that offers more control over the placement of components in
panel. Using a grid layout, you portion off the area of the panel into rows and columns.
component you then add to the panel is placed in a “cell” of the grid, starting from the to
and progressing through each row from left to right (here’s where the order of calls to the
method are very relevant to how the screen is laid out). By using grid layouts and nested

252

The Java Abstract Windowing Toolkit

Figure 13.11.
Grid layout.

you can often approximate the use of hard-coded pixel values to place your Ul components
precisely where you want them. Figure 13.11 shows a grid layout with three columns and three
rows.

ohe o three

faur five

Tocreateagrid layout, indicate the number of rows and columns you want the grid to have when
you create a new instance of the GridLayout class:

setLayout(new GridLayout(3,3));

Grid layouts can also have a horizontal and vertical gap between components; to create gaps, add
those pixel values:

setLayout(new GridLayout(3,3,10,15));
Figure 13.12 shows a grid layout with a 10-pixel horizontal gap and a 15-pixel vertical gap.

Grid bag layouts, asimplemented by thecridBagLayout class, are variations on grid layouts. Grid
bag layouts also enable you to lay out your user interface elements in a rectangular grid, but with
grid bag layouts you have much more control over the presentation of each element in the grid.
Grid bag layouts use a helper class, GridBagConstraints, to indicate how each cell in the grid is
to be formatted.

Note: The cridBagLayout and GridBagConstraints classes were added to the Java
Developer’s Kit just before this book went to press. For a much better description
of grid bag layouts, see the APl documentation for those classes that comes with
the JDK.

Figure 13.12.
Grid layouts with horizontal
and vertical gap.

Border Layouts

Border layouts behave differently from flow and grid layouts. When you add a component to
a panel that uses a border layout, you indicate its placement as a geographic direction: north,
south, east, west, and center (see Figure 13.13). The components around all the edges are laid
out with as much size as they need; the component in the center, if any, gets any space left over.

Figure 13.13.
Border layout.

To use a border layout, you create it as you do the other layouts:

setLayout(new BorderLayout());

253

254

The Java Abstract Windowing Toolkit

Then you add the individual components by using a special add () method: the first argument
to add() is a string indicating the position of the component within the layout:

add("North", new TextField("Title",50));
add("South", new TextField("Status",50));

You can also use this form of add () for the other layout managers; the string argument will just
be ignored if it’s not needed.

Border layouts can also have horizontal and vertical gaps. Note that the north and south
components extend all the way to the edge of the panel, so the gap will result in less space for
the east, right, and center components. To add gaps to a border layout, include those pixel values
as before:

setLayout(new BorderLayout(10,10));

Card Layouts

Card layouts are different from the other layouts. Unlike with the other three layouts, when you
add components to a card layout, they are not all displayed on the screen at once. Card layouts
are used to produce slide shows of components, one at a time. If you’ve ever used the HyperCard
program on the Macintosh, you’ve worked with the same basic idea.

Generally when you create a card layout, the components you add to it will be other container
components—usually panels. You can then use different layouts for those individual “cards” so
that each screen has its own look.

When you add each “card” to the panel, you can give it a name. Then you can use methods
defined on the cardLayout class to move back and forth between different cards in the layout.

For example, here’s how to create a card layout containing three cards:

setLayout (new CardLayout());
Panel one = new Panel()
add("first", one);

Panel two = new Panel()
add("second", two);

Panel three = new Panel()
add("third", three);
show(this, "second");

Insets

Whereas horizontal gap and vertical gap are used to determine the amount of space between
components in a panel, insets are used to determine the amount of space around the panel itself.
The insets class provides values for the top, bottom, left, and right insets, which are then used
when the panel itself is drawn. Figure 13.14 shows an inset in a GridLayout.

sams
net

Sams.ney
Learning

Insets

Figure 13.14.
Insets.

one two three

four five

Toinclude an inset, override the insets () method in your class (your App1et class or other class
that serves as a panel):

public Insets insets() {
return new Insets(10,10,10,10);

}
The arguments to the Insets constructor provide pixel insets for the top, bottom, left, and right
edges of the panel. This particular example provides an inset of 10 pixels on all four sides of the

panel.

Handling Ul Actions and Events

If you stopped reading today’s lesson right now, you could go out and create an applet that had
lots of little Ul components, nicely laid out on the screen with the proper layout manager, gap,
and insets. If you did stop right here, however, your applet would be really dull, because none
of your Ul components would actually do anything when they were pressed or typed into or
selected.

Foryour Ul components to do something when they are activated, you need to hook up the Ul’s
action with an operation.

Testing foran action by a Ul component isaform of event management—the things you learned

yesterday about events will come in handy here. In particular, Ul components produce the
special kind of event called an action. To intercept an action by any Ul component, you define

an action() method in your applet or class:

255

256

The Java Abstract Windowing Toolkit

public boolean action(Event evt, Object arg) {

}

The action() method should look familiar to the basic mouse and keyboard event methods.
Like those methods, it gets passed the event object that represents this event. It also gets an extra
object, which can be of any type of object. What'’s that second argument for?

The second argument to the action method depends on the Ul component that’s generating the
event. The basic definition is that it’s any arbitrary argument—when a component generates an
event, it can pass along any extra information that might later be needed. Because that extra
information may be useful for you, it’s passed on through the action() method.

All the basic Ul components (except for labels, which have no action) have different actions and
arguments:

O Buttons create actions when they are selected, and a button’s argument is the label of
the button.

O Checkboxes, both exclusive and nonexclusive, generate actions when a box is checked.
The argument is always true.

O Choice menus generate an action when a menu item is selected, and the argument is
that item.

O Text fields create actions when the user presses Return inside that text field. Note that
if the user tabs to a different text field or uses the mouse to change the input focus, an
action is not generated. Only a Return triggers the action.

Note that with actions, unlike with ordinary events, you can have many different kinds of objects
generating the event, as opposed to a single event such as a mousebown. To deal with those
different Ul components and the actions they generate, you have to test for the type of object
that called the event in the first place inside the body of your action() method. That object is
stored in the event’s target instance variable, and you can use the instanceof operator to find
out what kind of Ul component sent it:

public boolean action(Event evt, Object arg) {

if (evt.target instanceof TextField)
handleText (evt.target);

else if (evt.target instanceof Choice)
handleChoice(arg);

i"

Although you can handle Ul actions in the body of the action() method, it's much more
common simply to define a handler method and call that method from action() instead. Here,
there are two handler methods: one to handle the action on the text field (hand1eText()) and
one to handle the action on the choice menu (handlechoice()). Depending on the action you
want to handle, you may also want to pass on the argument from the action, the Ul component
that sent it, or any other information that the event might contain.

Here’s a simple applet that has five buttons labeled with colors. The action () method tests for
a button action and then passes off the word to a method called changecolor (), which changes
the background color of the applet based on which button was pressed (see Figure 13.15 to see
the applet in action):

import java.awt.*;
public class ButtonActionsTest extends java.applet.Applet {

public void init() {
setBackground(Color.white);

add(new Button("Red"));
add(new Button("Blue"))
add(new Button("Green"));
add(new Button("White"));
add(new Button("Black")

)
)
) .

E]
E]
E]
}

public boolean action(Event evt, Object arg) {
if (evt.target instanceof Button)
changeColor((String)arg);
return true;

}

void changeColor(String bname) {
if (bname.equals("Red")) setBackground(Color.red);
else if (bname.equals("Blue")) setBackground(Color.blue);
else if (bname.equals("Green")) setBackground(Color.green);
else if (bname.equals("White")) setBackground(Color.white);
else setBackground(Color.black);

Figure 13.15.
The ButtonAction applet. Red || Blue || Green || white | | Black

257

258

The Java Abstract Windowing Toolkit

Nesting Panels and Components

Adding Ul components to individual applets is fun, but applets begin to turn into lots of fun
when you begin working with nested panels. By nesting different panels inside your applet, and
panels inside those panels, you can create different layouts for different parts of the overall applet
area, isolate background and foreground colors and fonts to individual parts of an applet, and
manage the design of your Ul components much more cleanly and simply. The more complex
the layout of your applet, the more likely you’re going to want to use nested panels.

Nested Panels

Panels, as you've already learned, are components that can be actually displayed on screen;
Panel’s superclass container provides the generic behavior for holding other componentsinside
it. The app1et class, which your applets all inherit from, is a subclass of pane1. To nest other
panels inside an applet, you merely create a new panel and add it to the applet, just as you would
add any other Ul component:

setLayout(new GridLayout(1,2,10,10));

Panel panelf new Panel();

Panel panel2 new Panel();

add(panelil);
add(panel2);

You can then set up an independent layout for those subpanels and add AWT components to
them (including still more subpanels) by calling the add () method in the appropriate panel:
paneli.setlLayout (new FlowLayout());

panell.add(new Button("Up"));

paneli.add(new Button("Down"));

Although you can do all this in a single class, it’s common in applets that make heavy use of the
panels to factor out the layout and behavior of the subpanels into separate classes, and to
communicate between the panels by using method calls. You'll look at an extensive example of
this later on in today’s lesson.

Events and Nested Panels

When you create applets with nested panels, those panels form a hierarchy from the outermost
panel (the applet, usually), to the innermost Ul component. This hierarchy isimportant to how
each component in an applet interacts with the other components in the applet or with the
browser that contains that applet; in particular, the component hierarchy determines the order
in which components are painted to the screen.

More importantly, the hierarchy also affects event handling, particularly for user input events
such as mouse and keyboard events.

sams
&

Sams. net
Lea"ning

Events are received by the innermost component in the component hierarchy and passed up the
chain to the root. Suppose, for example, that you have an applet with a subpanel that can handle
mouse events (using the mousebown () and mouseup () methods) and that panel contains a button.
Clicking on the button means that the button receives the event before the panel does; if the
button isn’t interested in that mousebown (), the event gets passed to the panel, which can then
process it or pass it further up the hierarchy.

Remember the discussion about the basic event methods yesterday? You learned that the basic
event methods all return boolean values. Those boolean values become important when you're
talking about handling events or passing them on.

An event handling method, whether it is the set of basic event methods or the more generic
handleEvent (), can do one of three things, given any random event:

O Not be interested in the event (this is usually true only for handieevent (), which
receives all the events generated by the system). If this is the case, the event is passed
on up the hierarchy until a component processes it (or it is ignored altogether). In this
case, the event handling method should return faise.

O Intercept the event, process it, and return true. In this case, the event stops with that
event method. Recall that this is the case with the basic mousebown () and keyDown ()
methods that you learned about yesterday.

O Intercept the method, process it, and pass it on to the next event handler. This is a
more unusual case, but you may create a user interface by using nested components
that will want to do this. In this case, the event method should return faise to pass
the event on to the next handler in the chain.

More Ul Components

Once you master the basic Ul components and how to add them to panels and manage their
events, you can add more Ul components. In this section, you’ll learn about text areas, scrolling

lists, scrollbars, and canvases.

Note that the Ul components in this section do not produce actions, so you can’t use the
action() method to handle their behavior. Instead, you have to use a generic handleEvent ()
method to test for specific events that these Ul components generate. You'll learn more about
this in the next section.

Text Areas

Text areas are like text fields, except they have more functionality for handling large amounts
of text. Because text fields are limited in size and don’t scroll, they are better for one-line

259

260

The Java Abstract Windowing Toolkit

responses and text entry; text areas can be any given width and height and have scrollbars in
default, so you can deal with larger amounts of text more easily.

To create a text area, use one of the following constructors:

O TextArea() Creates an empty text area e rows long and e characters wide. Given that a
text area with no dimensions can’t be displayed, you should make sure you change the
dimensions of this new text area before adding it to a panel (or just use the next
constructor instead).

O TextArea(int, int) createsan empty text area with the given rows and columns
(characters).

O TextArea(String) creates a text area displaying the given string, e rows by o columns.
O TextArea(String, int, int) creates a text area by displaying the given string and with
the given dimensions.
Figure 13.16 shows a simple text area generated from the following code:

String str = "Once upon a midnight dreary, while I pondered, weak and weary,\n" +
"Over many a quaint and curious volume of forgotten lore,\n" +
"While I nodded, nearly napping, suddenly there came a tapping,\n" +
"As of some one gently rapping, rapping at my chamber door.\n" +
"\"'Tis some visitor,\" I muttered, \"tapping at my chamber door-\n";

add(new TextArea(str,10,60));

Flgure 13.16. once upon a midnight deeary, while | pondered, weak and weary,
A text area. Guer many aquaint and curious volume of forgotten lore,

While | nodded, nearly napping, suddenly there came atapping,
4s of some one gently rapping, rapping at my chamber door,
"“Tis sofme wisitar,” | muttered, "tapping at my chamber doar-
anly this, and nothing more,"

(I =

&h, distinctly | remember it was in the bleak December,
and each separate dying ember wrought its ghost upon the floor,
lEagerIy I wished the morrow;—vainly | had sought to borrow Fi

i~ =

Both text areas and text fields inherit from the Textcomponent class, so a lot of the behavior for
text fields (particularly getting and setting text and selections) is usable on text areas as well (refer
to Table 13.4). Text areas also have a number of their own methods that you may find useful.
Table 13.5 shows a sampling of those methods.

Table 13.5. Text area methods.

Method Action

getColumns () Returns the width of the text area, in characters or
columns

getRows () Returns the number of rows in the text area (not the
number of rows of text that the text area contains)

insertText(String, int) Inserts the string at the given position in the text (text

positions start at o)

replaceText (String, int, int) Replace the text between the given integer positions
with the new string

Scrolling Lists

Remember the choice menu, which enables you to choose one of several different options? A
scrolling list is functionally similar to a choice menu in that it lets you pick several options from
a list. Scrolling lists differ in two significant ways:

o Scrolling lists are not popup menus. They’re lists of items in which you can choose
one or more items from a list. If the number of items is larger than the list box, a
scrollbar is automatically provided so that you can see the other items.

o A scrolling list can be defined to accept only one item at a time (exclusive), or multiple
items (nonexclusive).

To create a scrolling list, create an instance of the List class and then add individual items to
that list. The List class has two constructors:

O List() creates an empty scrolling list that enables only one selection at a time.

O List(int, boolean) creates a scrolling list with the given number of visible lines on
the screen (you're unlimited as to the number of actual items you can add to the list).
The boolean argument indicates whether this list enables multiple selections (true) or
not (false).

After creating a List object, add items to it using the add1tem() method and then add the list
itself to the panel that contains it. Here’s an example, the result of which is shown in Figure
13.17:

List 1st = new List(5, true);

1st.addItem("Hamlet");
1st.addItem("Claudius");

261

The Java Abstract Windowing Toolkit

1st.addItem("Gertrude");
1st.addItem("Polonius");
lst.addItem("Horatio");
lst.addItem("Laertes");
lst.addItem("Ophelia");

add(1lst);
Figure 13.17.

A scrolling list. Hamlet
Claudius

Haratin

e T

Table 13.6 shows some of the methods available to scrolling lists. See the API documentation
for a complete set.

Table 13.6. Scrolling list methods.

Method Action

getItem(int) Returns the string item at the given position

countItems() Returns the number of items in the menu

getSelectedIndex () Returns the index position of the item that’s selected (used for

lists that enable only single selections)

getSelectedIndexes() Returns an array of index positions (used for lists that enable
multiple selections)

getSelectedItem() Returns the currently selected item as a string
getSelectedItems () Returns an array of strings containing all the selected items
select(int) Selects the item at the given position

select(String) Selects the item with that string

Scrollbars and Sliders

Text areas and scrolling lists come with their own scrollbars, which are built into those Ul
components and enable you to manage both the body of the area or the list and its scrollbar as
asingle unit. You can also create individual scrollbars, or sliders, to manipulate a range of values.

262

sams
net

Sams.ney
Learning

Scrollbars are used to select a value between a maximum and a minimum value. To change the
current value of that scrollbar, you can use three different parts of the scrollbar (see Figure

13.18):
O Arrows on either end, which increment or decrement the values by some small unit (1

by default).
A range in the middle, which increments or decrements the value by a larger amount

(10 by default).

A box in the middle, often called an elevator or thumb, whose position shows where in
the range of values the current value is located. Moving this box with the mouse
causes an absolute change in the value, based on the position of the box within the

|

scrollbar.
Figure 13.18.
Scrollbar parts. Arrow (£1) I
Box (elevator, thumb) —— |
Range (+10) —
£

Choosing any of these visual elements causes a change in the scrollbar’s value; you don’t have
to update anything or handle any events. All you have to do is give the scrollbar a maximum and

minimum, and Java will handle the rest.
To create a scrollbar, you can use one of three constructors:
O scrollbar() creates a scrollbar with o, o as its initial maximum and initial minimum

values, in a vertical orientation.
Scrollbar(int) creates a scrollbar with e, o as its initial maximum and initial mini-
mum values. The argument represents an orientation, for which you can use the class

variables scrollbar.HORIZONTAL and Scrollbar.VERTICAL.
Scrollbar(int, int, int, int, int) creates a scrollbar with the following arguments

(each one is an integer, and must be presented in this order):
The first argument is the orientation of the scrollbar: scrol1lbar.HORIZONTAL and
Scrollbar.VERTICAL.

|

263

264

The Java Abstract Windowing Toolkit

The second argument is the initial value of the scrollbar, which should be a value
between the scrollbar’s maximum and minimum values.

The third argument is the the overall width (or height, depending on the orientation)
of the scrollbar’s box. In user interface design, a larger box implies that a larger
amount of the total range is currently showing (applies best to things such as windows
and text areas).

The fourth and fifth arguments are the minimum and maximum values for the
scrollbar.

Here’sasimple example of ascrollbar that increments asingle value (see Figure 13.19). The label
to the left of the scrollbar is updated each time the scrollbar’s value changes:

import java.awt.*;

public class SliderTest extends java.applet.Applet {
Label 1;

public void init() {

1 = new Label("0");

add(1);

add(new Scrollbar(Scrollbar.HORIZONTAL, 1, 0, 1, 100));
}

public boolean handleEvent(Event evt) {
if (evt.target instanceof Scrollbar) {
int v = ((Scrollbar)evt.target).getValue();
l.setText(String.valueOf(v));
}

return true;

Figure 13.19.
A scrollbar. 0 =11 -

The scrol1bar class provides several methods for managing the values within scrollbars (see
Table 13.7).

Table 13.7. Scrollbar methods.

Method Action
getMaximum () Returns the maximum value
getMinimum () Returns the minimum value

Method Action

getOrientation() Returns the orientation of this scrollbar:
o for vertical, 1 for horizontal

getvalue() Returns the scrollbar’s current value
setValue(int) Sets the current value of the scrollbar
Canvases

Although you can draw on most AWT components, such as panels, canvases do little except let
you draw on them. They can’t contain other components, but they can accept events, and you
can create animations and display images on them. Canvases, in other words, should be used for
much of the stuff you learned about earlier this week.

NEW] A canvas is a component that you can draw on.
TERM

To create a canvas, use the canvas class and add it to a panel as you would any other component:

Canvas can = new Canvas();
add(can);

More Ul Events

Yesterday, you learned about some basic event types that are generated from user input to the
mouse or the keyboard. These event types are stored in the Event object as the event ID, and can
be tested for in the body of a hand1eevent () method by using class variables defined in event.
For many basic events, such as mousebown () and keybown (), you can define methods for those
events to handle the event directly. You learned a similar mechanism today for Ul actions where
creating an action() method handled a specific action generated by a Ul component.

The most general way of managing events, however, continues to be the hand1eevent () method.
For events relating to scrollbars and scrolling lists, the only way to intercept these events is to
override handleEvent ().

To intercept a specific event, test for that event’s ID. The available IDs are defined as class
variables in the event class, so you can test them by name. You learned about some of the basic
events yesterday; Table 13.8 shows additonal events that may be useful to you for the
components you've learned about today (or that you might find useful in general).

265

266

The Java Abstract Windowing Toolkit

Table 13.8. Additional events.

Event ID

What It Represents

ACTION_EVENT
KEY_ACTION

LIST DESELECT
LIST SELECT
SCROLL_ABSOLUTE
SCROLL_LINE_DOWN

SCROLL_LINE_UP

SCROLL_PAGE_DOWN

SCROLL_PAGE_UP

Generated when a Ul component action occurs
Generated when text field action occurs

Generated when an item in a scrolling list is deselected
Generated when an item in a scrolling list is selected
Generated when a scrollbar’s box has been moved

Generated when a scrollbar’s bottom endpoint (or left endpoint) is
selected

Generated when a scrollbar’s top endpoint (or right endpoint) is
selected

Generated when the scrollbar’s field below (or to the left of) the
box is selected

Generated when the scrollbar’s field above (or to the right of) the
box is selected

A Complete Example:
RGB to HSB Converter

Let’s take a break here from theory and smaller examples to create a larger, more complex
example that puts together much of what you’ve learned so far. The following applet example
demonstrates layouts, nesting panels, creating user interface components, and catching and
handling actions, as well as using multiple classes to put together a single applet. In short, it’s
probably the most complex applet you'll create so far.

Figure 13.20 shows the applet you'll be creating in this example. The ColorTest applet enables
you to pick colors based on RGB (red, green, and blue) and HSB (hue, saturation, and

brightness) values.

Figure 13.20.
The ColorTest applet.

Rred 127 Hue

Green 127 saturation

Blue 127 Brightness

The ColorTest applet has three main parts: a colored box on the left side and two groups of text
fields on the right. The first group indicates RGB values, the right, HSB. By changing any of
the values in any of the text boxes, the colored box is updated to the new color, as are the values
in the other group of text boxes.

This applet uses two classes:

O colorTest, Which inherits from app1et. This is the controlling class for the applet
itself.

O colorControls, Which inherits from panel. You'll create this class to represent a group
of three text fields and to handle actions from those text fields. Two instances of this
class, one for the RGB values and one for the HSB ones, will be created and added to
the applet.

Let’swork through this step by step, because it’s very complicated and can get confusing. All the
code for this applet will be shown at the end of this section.

Create the Applet Layout

The best way to start creating an applet that uses AWT components is to worry about the layout
firstand then worry about the functionality. When dealing with the layout, you also should start
with the outermost panel first and work inward.

Making a sketch of your Ul design can help you figure out how to organize the panels inside your
applet or window to best take advantage of layout and space. Figure 13.21 shows the ColorTest
applet with a grid drawn over it so that you can get an idea of how the panels and embedded
panels work.

Figure 13.21.
The ColorTest applet panels red |[127 Hue
and components.
p Green 127 Saturation
Blue 12% Brightness

Create the Panel Layout

Let’s start with the outermost panel—the applet itself. This panel has three parts: the color box
on the left, the RGB text fields in the middle, and the HSB fields on the right.

Because this is the applet, your colorTest class will be the applet class and inherit from Appiet.
You'll also import the AWT classes here (note that because you use so many of them in this
program, it’s easiest to just import the entire package):

267

268

The Java Abstract Windowing Toolkit

import java.awt.*;
public class ColorTest extends java.applet.Applet {

}
Let’sstart with the init () method, where all the basic initialization and layout takes place. There
are four major steps:
1. Set the layout for the big parts of the panel. Although a flow layout would work, a
grid layout with one row and three columns is a much better idea.

2. Create the three components of this applet: a canvas for the color box and two
subpanels for the text fields.

3. Add those components to the applet.
4. Finally, initialize the default color and update all the panels to reflect that default
color.

Before you do any of that, let’s set up instance variables to hold the three major components of
thisapplet. You need to keep hold of these objects so you can update things when a value changes.

The color box is easy—it’s just a canvas. Call it swatch.
Canvas swatch;

Now onto the subpanels. There are two of them, and although they have different labels and
values, they’re essentially the same panel. You could just create code for each one here, but you'd
end up duplicating a lot of the same code. This is a perfect opportunity, therefore, to create
another class to represent the subpanels with the text fields on them. Call them co1lorcontrols
(you'll get around to creating the class later) and define two variables, rRGBcontrols and
HSBcontrols, to hold them:

ColorControls RGBcontrols, HSBcontrols;

Back to the init () method. Step one is the layout. Let’s use a grid layout and a gap of ten points
to separate each of the components:

setLayout(new GridLayout(1,3,10,10));

Step two is creating the components, the canvas first. You have an instance variable to hold that
one:

swatch = new Canvas();

You need to create two instances of your as-of-yet nonexistent co1orcontrols panels here aswell,
but you don’t know exactly what you need to create them yet, so let’s put in some basic
constructors and fill in the details later:

RGBcontrols
HSBcontrols

new ColorControls()
new ColorControls();

sams
)

Sams.ney
Learning

Step three is adding them to the panel.

add(swatch);
add (RGBcontrols);
add (HSBcontrols);

While you’re working on layout, add an inset just for fun—ten points along all the edges:

public Insets insets() {
return new Insets(10,10,10,10);

}
Got it so far? Now you have a skeleton init() method and an insets() method in your
colorTestclass. Let’smove on now to creating the subpanel layout—to creating thatcolorcontrols

class.

Define the Subpanels

The colorcontrols class will have behavior for laying out and handling the subpanels that
represent the RGB and HSB values for the color. colorcontrols doesn’t need to be a subclass
of App1et because it isn’t actually an applet, it’s just a panel. Define it to inherit from pane1:

class ColorControls extends Panel {

}

Note: You can put the colorcontrols class in the same file as the colorTest class.
You haven’t been doing this so far because the applets and applications you’ve been
creating had only one class. If you remember way back to Day 1, however, you
learned that you can have multiple class definitions in a single file as long as only
one of those definitions is declared public. In this case, the colorTest class is
public (it’s an applet, so it has to be), but the colorcontrols class doesn’t need to 13

be, so everything works out fine.

You need a couple of instance variables in this class. The first thing you need is a hook back up
to the applet class that contains this panel. Why? The applet class is the class that oversees how
the subcomponentswork, so it’s going to be the class that updates everything. Eventually, you're
going to have to call a method in that class to indicate that something in this panel has changed.
Without an actual reference to that outer class, there’s no way to do this. So, instance variable
number one is a reference to the class colorTest:

ColorTest outerparent;

If you figure that the applet class is the one that’s going to be updating everything, that class is
going to need a way to get hold of the pieces inside this class. In particular, it’s going to be

269

270

The Java Abstract Windowing Toolkit

interested in the individual text fields, so you’re going to need instance variables to hold those.
This creates three of them:

TextField f1, f2, 3;

Now for the constructor for this class. Again, this isn’t an applet, so you don’t use init(); all
you need is a constructor method.

What do you need inside that constructor? You need to set the layout for the subpanel, create
the text fields, and add them to the panel. The goal here is to make the colorcontrols class
generic enough so that you can use it for both the RGB fields and the HSB fields.

The two different panels differ in two respects: the labels for the text fields, and the initial values
for the text fields. That’s six values to get before you can create the object. You can pass those
six values in through the constructors in colorTest. You also need one more. Because you need
that hook back to the applet class, you should also pass in a reference to that object as part of
the constructor.
You now have seven arguments to the basic constructor for the colorcontrols class. Here’s the
signature for that constructor:
ColorControls(ColorTest target,

String 11, String 12, String 13,

int v1, int v2, int v3) {

}
Given those arguments, you can assign the right values to your instance variables:

outerparent = target;

f1 = new TextField(String.valueOf(v1),10);
f2 = new TextField(String.valueOf(v2),10);
f3 = new TextField(String.valueOf(v3),10);

Note that because the first argument to the TextFie1d constructor is a string, and the values that
you passed in were integers, you have to use the valueof () class method (defined in string) to
convert the integer to a string before creating each text field.

Next, you create the layout for this panel. You also use a grid layout for these subpanels, as you
did for the applet panel, but this time the grid will have three rows (one for each of the text field
and label pairs) and two columns (one for the labels and one for the fields).

Given the 3-by-2 grid, you can now add the text fields and labels to that panel. Note that by
separating the labels and the text fields into separate cells in the grid, you can align the labels,
creating a nice aligned layout.

add
add

add
add

new Label(11, Label.RIGHT));
f1);
new Label(12, Label.RIGHT));
f2);

—~——

sams
net

Sams.ney
Learning

add(new Label(13, Label.RIGHT));

add(f3);

Finally (because I like insets), you'll inset the contents of the subpanel a bit—only on the top
and bottom edges—by including an insets() method:

public Insets insets() {
return new Insets(10,10,0,0);

}
You're almost there. You have 98 percent of the layout in place and ready to go, but you're
missing two things: creating the colorcontrols objectsin colorTest, and initializing everything
so that all the components have the right values.

For both, you need to go back to the co1orTest class and the init () method you defined there.
Let’sstart with the initialization part, because that’s easy. The default color is black. Setup alocal
variable to hold that color object:

Color theColor = new Color(0,0,0);
To set the initial color of the color box, all you need to do is set its background:
swatch.setBackground(theColor);

Now, let’s finally tackle initializing those subpanels. The constructor for colorcontrols has
seven arguments: the colorTest object, three labels (strings), and three initial values for the text
fields (integers). Let’s do the RGB controls first, because you can easily extract the initial red,
green, and blue values out of the co1or Object:
RGBcontrols = new ColorControls(this, "Red", "Green", "Blue",

theColor.getRed(), theColor.getGreen(),

theColor.getBlue());
Things get complicated on the HSB side of the panel. The color class provides you with a
method to get the HSB values out of a co1lor object, but there are two problems:

O The raBtoHss() method is a single class method that insists on returning an array of 13
the three values.

O The HSB values are measured in floating-point values. | prefer to think of HSB as
integers, wherein the hue is a degree value around a color wheel (e through 36e), and
saturation and brightness are percentages from o to 1ee. Having HSB as integer values
also enables you to have a generic subpanel, as was the intent.

Initializing the HSB subpanel is going to be a little difficult.

First, let’s extract those HSB values. Given that the method takes three RGB arguments—an
array of three floats—and returns an array of three floats, you have to go through this process
to get those values:

float[] HSB = Color.RGBtoHSB(theColor.getRed(),

theColor.getGreen(), theColor.getBlue(), (new float[3]));
271

The Java Abstract Windowing Toolkit

Now you have an array of floats, where HsB[@] is the hue, HsB[1] is the saturation, and HsB[2]
is the brightness. You can now (finally!) initialize the HSB side of the applet, making sure that
when you pass those HSB values into the subpanel, you multiply them by the right values (360
for the hues, 100 for the saturation and the brightness) and convert them to integers:
HSBcontrols = new ColorControls(this,

"Hue", "Saturation", "Brightness",

(int) (HSB[@] * 360), (int)(HSB[1] * 100),

(int) (HSB[2] * 100));
Ready to give up? Fear not—you’ve done the hard part. From here, it’s (mostly) easy. Once you
have your layout working, you can compile your Java program and see how it looks. None of
your Ul components actually does anything, but perfecting the layout is half the battle.

Handle the Actions

After creating the layout, you set up actions with the Ul components so that when the user
interacts with the applet, the applet can respond.

The action of this applet occurs when the user changes a value in any of the text fields. By causing
an action in atext field, the color changes, the color box updates to the new color, and the values
of the fields in the opposite subpanel change to reflect the new color.

The colorTest class is responsible for actually doing the updating, because it keeps track of all
the subpanels. You should be tracking and intercepting events in the subpanel in which they
occur, however. Because the action of the applet is an actual text action, you can use anaction ()
method to intercept it:
public boolean action(Event evt, Object arg) {

if (evt.target instanceof TextField) {

this.outerparent.update(this);
return true;

}

else return false;
}
In the action() method, you test to make sure the action was indeed generated by a text field
(because there are only text fields available, that’s the only action you’ll get, but it’s a good idea
to test for itanyhow). If so, call the update () method, defined in colorTest, to update the applet
to reflect all the new values. Because the outer applet is responsible for doing all the updating,
this is precisely why you need that hook back to the applet—so you can call the right method
at the right time.

Update the Result

The only part left now is to update all the values and the color swatch if one of the values changes.
For this, you define the update () method in the colorTest class. This update () method takes

272

sams
)

Sams.ney
Learning

a single argument—the colorcontrols instance that contains the changed value (you get that
argument from the action() method in the subpanel).

Note: Won't this update () method interfere with the system’s update () method?
Nope. Remember, methods can have the same names, but different signatures and
definitions. Because this update () has a single argument of type colorControls, it
doesn’t interfere with the other version of update().

The update () method is responsible for updating all the panels in the applet. To know which
panel to update, you need to know which panel changed. You can find out by testing to see
whether the argument you got passed is the same as the subpanels you have stored in the
RGBcontrols and HSBcontrols instance variables:

void update(ColorControls in) {

if (in == RGBcontrols) { // the change was in RGB

else { // change was in HSB

This test is the heart of the update () method. Let’s start with that first case—a number has been
changed in the RGB text fields. So now, based on those new RGB values, you have to generate
anew color object and update the values on the HSB panel. To reduce some typing, you create
a few local variables to hold some basic values. In particular, the values of the text fields are
strings, and you get into them by accessing the text field instance variables for the colorcontrols
panel (f1, f2, £3) and then using the getText () method to extract the actual values. Extract those
values and store them in string variables so that you don’t have to keep typing:

String v1 = in.f1.getText();

String v2 = in.f2.getText();

String v3 = in.f3.getText();

Given those string values for RGB, you now create a color object by converting those strings to
integers:

Color c;

c = new Color(Integer.parseInt(vl),Integer.parselnt(v2),
Integer.parseInt(v3));

Note: This part of the example isn’t very robust; it assumes that the user has indeed
entered real numbers into the text fields. A better version of this would test to make
sure that no parsing errors had occurred (I was trying to keep this example small).

273

The Java Abstract Windowing Toolkit

When you have a color object, you can update the color swatch:
swatch.setBackground(c);

The next step is to update the HSB panel to the new HSB values. Doing this in the init()
methodisnofunatall, andit’seven less fun here. To do this, you callrestoHsB to get the floating-
point values, convert them to integers with the right values, convert them to strings, and then
put them back into the text fields for the HSB subpanel. Got all that? Here’s the code:
float[] HSB = Color.RGBtoHSB(c.getRed(),c.getGreen(),

c.getBlue(), (new float[3]));
HSB[@] *= 360;
HSB[1] *= 100;
HSB[2] *= 100;
HSBcontrols.f1.setText (String.valueOf ((int)HSB[0@]))

5
HSBcontrols.f2.setText (String.valueOf ((int)HSB[1]));
HSBcontrols.f3.setText (String.valueOf ((int)HSB[2]));

The second part of the update () method is called when a value on the HSB side of the panel is
changed. This is the “else” in the if-else that determines what to update, given a change.

Believe it or not, it’s easier to update RGB values given HSB than it is to do it the other way
around. First, convert the string values from the HSB text fields to integers by using these lines:

int f1 = Integer.parseIlnt(vl);
int f2 = Integer.parselnt(v2);
int f3 = Integer.parseInt(v3);

There’s a class method in the color class that creates a new color object when given three HSB
values. The catch is that those values are floats, and they’re not the values you currently have.
To call getHsBcolor () (that’s the name of the method), convert the integers to floats and divide
by the right amounts:

¢ = Color.getHSBColor((float)f1 / 360, (float)f2 / 100, (float)f3/100);
Now that you have a color object, the rest is easy. Set the color swatch:
swatch.setBackground(c);

Then update the RGB text fields with the new RGB values from the color object:
RGBcontrols.f1.setText(String.valueOf (c.getRed())

);
RGBcontrols.f2.setText(String.valueOf (c.getGreen()));
RGBcontrols.f3.setText(String.valueOf(c.getBlue()));

The Complete Source Code

Listing 13.1 shows the complete source code; often it’s easier to figure out what’s going on in
this applet when it’s all in one place and you can follow the method calls and how values are
passed back and forth. Start with the init() method in applet, and go from there.

274

Type Listing 13.1. The ColorTest applet.

import java.awt.*;

public class ColorTest extends java.applet.Applet {
ColorControls RGBcontrols, HSBcontrols;
Canvas swatch;

public void init() {
Color theColor = new Color(0,0,0);
float[] HSB = Color.RGBtoHSB(theColor.getRed(),
theColor.getGreen(), theColor.getBlue(),
(new float[3]));

setLayout(new GridLayout(1,3,10,10));

// The color swatch
swatch = new Canvas();
swatch.setBackground(theColor);

// the control panels

RGBcontrols = new ColorControls(this,
"Red", "Green", "Blue",
theColor.getRed(), theColor.getGreen(),
theColor.getBlue());

HSBcontrols = new ColorControls(this,
"Hue", "Saturation", "Brightness",
(int) (HSB[@] * 360@), (int)(HSB[1] * 100),
(int) (HSB[2] * 100));

add(swatch);

add (RGBcontrols);
add (HSBcontrols);

}

public Insets insets() {
return new Insets(10,10,10,10);

}

void update(ColorControls in) {
Color c;
String v1 = in.f1.getText();
String v2 = in.f2.getText();
String v3 = in.f3.getText();

if (in == RGBcontrols) { // change to RGB
¢ = new Color(Integer.parseInt(vil),
Integer.parselnt(v2),
Integer.parseInt(v3));
swatch.setBackground(c);

continues

275

276

The Java Abstract Windowing Toolkit

Listing 13.1. continued

float[] HSB = Color.RGBtoHSB(c.getRed(),c.getGreen(),
c.getBlue(), (new float[3]));
HSB[@O] *= 360;
HSB[1] *= 100;
HSB[2] *= 100;
HSBcontrols.f1.setText (String.valueOf((int)HSB[0@]));
HSBcontrols.f2.setText (String.valueOf ((int)HSB[1]));
HSBcontrols.f3.setText (String.valueOf ((int)HSB[2]));

}
else { // change to HSB

int f1 = Integer.parselnt(vl);
int f2 Integer.parselnt(v2);
int f3 Integer.parselnt(v3);
¢ = Color.getHSBColor((float)f1 / 360,

(float)f2 / 100, (float)f3/100);
swatch.setBackground(c) ;
RGBcontrols.f1.setText(String.valueOf(c.getRed()));
RGBcontrols.f2.setText (String.valueOf (

c.getGreen()));
RGBcontrols.f3.setText (String.valueOf(c.getBlue()));

class ColorControls extends Panel {
TextField f1, f2, f3;
ColorTest outerparent;

ColorControls(ColorTest target,

}

String 11, String 12, String 13,
int v1, int v2, int v3) {

this.outerparent = target;
setLayout(new GridLayout(3,4,10,10));

f1 = new TextField(String.valueOf(v1),10);
f2 = new TextField(String.valueOf(v2),10);
f3 = new TextField(String.valueOf(v3),10);
add(new Label(1l1, Label.RIGHT));

add(f1);

add(new Label(1l2, Label.RIGHT));

add(f2);

add(new Label(13, Label.RIGHT));

add(f3);

public Insets insets() {
return new Insets(10,10,0,0);

}

public boolean action(Event evt, Object arg) {
if (evt.target instanceof TextField) {

Sams.ney
Learning

sams
net

this.outerparent.update(this);
retrue true;

else return false;

Summary

The Java AWT, or Abstract Windowing Toolkit, is a package of Java classes and interfaces for
creating full-fledged access to awindow-based graphical user interface system, with mechanisms
for graphics display, event management, text and graphics primitives, user interface compo-
nents, and cross-platform layout. The AWT is used by the HotJava browser itself for all its
functionality. Applets are also an integral part of the AWT toolkit.

Today has been a big day; the lesson has brought together everything you've learned up to this
pointabout simple applet management and added a lot more about creating applets, panels, and
user interface components and managing the interactions between all of them. With the
information you got today and the few bits that you’ll learn tomorrow, you can create cross-
platform Java applications that do just about anything you want.

Q&A

Q

> O

You've mentioned a lot about the component and container classes, but it looks
like the only container Objects that ever get created are panels. What do the
component and container classes give me?

Those classes factor out the behavior for components (generic AWT components) and
containers (components that can contain other components). Although you don’t
necessarily create direct instances of these classes, you can create subclasses of them if
you want to add behavior to the AWT that the default classes do not provide. As with
most of the Java classes, any time you need a superclass’s behavior, don’t hesitate to
extend that class by using your own subclass.

Can | put a Ul component at a specific x and y position on the screen?

By using the existing layout managers supplied with the AWT toolkit, no. This is
actually a good thing because you don’t know what kind of display environment your
applet will be run under, what kind of fonts are installed, or what kind of fonts are
being currently used. By using the layout managers provided with the AWT, you can
be sure that every portion of your window will be viewable and readable and usable.
You can’t guarantee that with hard-coded layouts.

277

278

The Java Abstract Windowing Toolkit

Q 1 was exploring the AWT package, and | saw this subpackage called peer. There’s

also references to the peer classes sprinkled throughout the API documentation.
What do peers do?

Peers are responsible for the platform-specific parts of the AWT. For example, when
you create a Java AWT window, you have an instance of the window class that provides
generic Window behavior, and then you have an instance of windowpeer that creates
the very specific window for that platform—a motif window under X windows, a
Macintosh-style window under the Macintosh, or a Windows 95 window under
Windows 95. The peers also handle communication between the window system and
the Java window itself. By separating the generic component behavior (the AWT
classes) from the actual system implementation and appearance (the peer classes), you
can focus on providing behavior in your Java application and let the Java implementa-
tion deal with the platform-specific details.

There’s a whole lot of functionality in the AWT that you haven't talked about
here. Why?

Given that even a basic introduction took this long, | figured that if I put in even
more detail than | already have that this book would turn into Teach Yourself Java in
21 Days Plus a Few Extra for the AWT Stuff.

As it is, I've left windows, menus, and dialog until tomorrow, so you’ll have to wait
for those. But you can find out about a lot of the other features of AWT merely by
exploring the API documentation. Start with the app1et class and examine the sorts of
methods you can call. Then look at pane1, from which applet inherits—you have all
that class’s functionality as well. The superclass of Panel is container, which provides
still more interesting detail. component comes next. Explore the API and see what you
can do with it. You might find something interesting.

4 =
Windows,

Networking, and
Other Tidbits

by Laura Lemay

14 Windows, Networking, and Other Tidbits

4

Here you are on the last day of the second week, and you’re just about finished with applets and
the AWT. With the information you’ll learn today, you can create a wide variety of applets and
applications using Java. Next week’s lessons provide more of the advanced stuff that you’ll need
if you start doing really serious work in Java.

Today, to finish up this week, there are three very different topics:

O Windows, menus, and dialog boxes—the last of the AWT classes that enable you to
pop up real windows from applets, and to create stand-alone Java applications that
have their own windows

O Networking—how to load new HTML files from an applet-capable browser, how to
retrieve files from Web sites, and some basics on how to work with generic sockets in
Java

O Extra tidbits—the smaller stuff that didn’t fit in anywhere else, but that might be
useful to you as you write your Java applets and applications

Windows, Menus, and Dialog Boxes

Today, you'll finish up the last bits of the AWT that didn’t fit into yesterday’s lesson. In addition
to all the graphics, events, Ul, and layout mechanisms that the AWT provides, it also provides
windows, menus, and dialog boxes, enabling to you create fully featured applications either as
part of your applet or independently for stand-alone Java applications.

Frames

The AWT window class enables you to create windows that are independent of the browser
window containing the applet—that is, separate popup windows with their own titles, resize
handles, and menubars.

The window class provides basic behavior for windows. Most commonly, instead of using the
window class, you’ll use window’s subclasses, Frame and pialog. The Frame class enables you to
create a fully functioning window with a menubar. pialog is a more limited window for dialog
boxes. You'll learn more about dialog boxes later on in this section.

To create a frame, use one of the following constructors:

O new Frame() creates a basic frame without a title.
O new Frame(String) creates a basic frame with the given title.

Frames are containers, just like panels are, so you can add other components to them just as you
would regular panels, using the add () method. The default layout for windows isBorderLayout:

win = new Frame("My Cool Window");
win.setlLayout(new BorderLayout(10,20));

280

win.add("North", new Button("start"));

win.add("Center", new Button("Move"));

To set a size for the new window, use the resize() method. To set a location for where the
window appears, use the move () method. Note that the 10cation () method can tell you where
the applet window is on the screen so that you can pop up the extrawindow in a relative position
to that window (all these methods are defined for all containers, so you can use them for applets,
windows, and the components inside them, subject to the current layout):
win.resize(100,200);

Dimension d = location();

win.move(d.width + 50, d.height + 50);

When you initially create a window, it’s invisible. You need to use the show() method to make
the window appear on the screen (you can use hide () to hide it again):

win.show();

Listing 14.1 shows an example of a simple applet with a popup window (both the applet and
the window are shown in Figure 14.1). The applet has two buttons: one to show the window,
and one to hide the window. The window itself, created from a subclass called myFrame has a
singlelabel: "This is a window. " You’ll use this basic window and applet all through this section,
so the more you understand what’s going on here the easier it will be later.

Type Listing 14.1. A popup window.

public class GUI extends java.applet.Applet {
Frame window;

public void init() {
add(new Button("Open Window"));
add(new Button("Close Window"));

window = new MyFrame("A Popup Window");
window.resize(150,150);
window.show() ;

}

public boolean action(Event evt, Object arg) {
if (evt.target instanceof Button) {
String label = (String)arg;
if (label.equals("Open Window")) {
if (!window.isShowing())
window.show();

}
else if (label == "Close Window") {
if (window.isShowing())
window.hide();

}

return true;

continues

281

282

® DAY @

]_4' Windows, Networking, and Other Tidbits

Listing 14.1. continued

else return false;

}
}

class MyFrame extends Frame {
Label 1;

MyFrame (String title) {
super(title);
setLayout (new GridLayout(1,1));
1 = new Label("This is a Window", Label.CENTER);
add(1);

Figure 14.1.
Windows. Qpen Window I Close Window

Menus

Each new window you create can have its own menubar along the top of the screen. Each
menubar can have a number of menus, and each menu, in turn, can have menu items. The AWT
provides classes for all these things called, respectively, menuBar, Menu, andenuItem.

new MenuBar();

To set this bar as the default menu for the window, use the setmenuBar () method on the
window:

window.setMenuBa

Add individual menus (File, Edit, and so on) to the menubar by creating them and then adding
them to the menubar:

Menu m = new Menu("File");

mb.add(m) ;

Some systems enable you to indicate a special help menu, which may be drawn on the right side
of the menubar. You can indicate that a specific menu is the help menu by using the
setHelpMenu() method. The given menu should already be added to the menu itself:

Menu hm = new Menu("Help");

mb.add (hm) ;

mb.setHelpMenu(hm);

If, for any reason, you want to prevent a user from selecting a menu, you can use the disable()
command on that menu (and the enable () command to make it available again):

m.disable();

Menu Items
There are four kinds of items you can add to individual menus:

O Instances of the class menuztem, for regular menu items

O Instances of the class checkBoxmenuItem, for toggled menu items
O Other menus, with their own menu items

O Separators, for lines that separate groups of items on menus

Regular menu items are added by using the menu1tem class. Add them to a menu using the add ()
method:

Menu m = new Menu("Tools");
m.add (new MenuItem("Info"));
m.add (new MenuItem("Colors"));
m.add (new MenuItem("Sizes"));
Submenus can be added simply by creating a new instance of menu and adding it to the first menu.
You can then add items to that menu:

Menu sb = new Menu("Sizes");
m.add(sb);

sb.add(new MenuItem("Small"));
sb.add(new MenuItem("Medium"));
sb.add(new MenuItem("Large"));

The checkBoxMenuItem class creates a menu item with a checkbox on it, enabling the menu state
to be toggled on and off (selecting it once makes the checkbox appear selected,; selecting it again
unselects the checkbox). Create and add a checkbox menu item the same way you create and add
regular menu items:

283

14 Windows, Networking, and Other Tidbits

CheckboxMenuItem coords =
new CheckboxMenuItem("Show Coordinates");
m.add(coords);

Finally, to add a separator to a menu (a line used to separate groups of items in a menu), create
and add a menu item with the label »-».

MenuItem msep = new MenulItem("-");

m.add(msep) ;

Any menu item can be disabled by using the disable() method and enabled again using
enable(). Disabled menu items cannot be selected:

MenuItem mi

m.addItem(mi);
mi.disable();

new MenuItem("Fill");

Menu Actions

The act of selecting a menu item causes an action event to be generated. You can handle that
action the same way you handle other action methods—Dby overriding action (). Both regular
menu itemsand checkbox menu items have actions that generate an extraargument representing
the label for that menu. You can use that label to determine which action to take. Note, also,
that because checkBoxMenuItem is a subclass of menuitem, you don’t have to treat that menu item
as a special case:

public boolean action(Event evt, Object arg) {
if (evt.target instanceof MenulItem) {
String label = (String)arg;
if (label.equals("Show Coordinates")) toggleCoords();
else if (label.equals("Fill")) fillcurrentArea();
return true;
}

else return false;

An Example

Let’s add a menu to the window you created in the previous section. Add it to the constructor
method in the myFrame class (Figure 14.2 shows the resulting menu):

MyFrame (String title) {
super(title);
MenuBar mb = new MenuBar();
Menu m = new Menu("Colors")
m.add(new MenulItem("Red"));
m.add(new MenulItem("Blue"))
m.add(new Menultem("Green")
m.add(new MenulItem("-"));

m

m

3

)s

.add(new CheckboxMenuItem("Reverse Text"));
b.add(m);

284

mb.setHelpMenu(m);
setMenuBar (mb) ;

i..

This menu has four items: one each for the colors red, blue, and green (which, when selected,
change the background of the window), and one checkbox menu item for reversing the color
of the text (to white). To handle these menu items, you need an action() method:

public boolean action(Event evt, Object arg) {
if (evt.target instanceof MenuItem) {
String label = (String)arg;
if (label.equals("Red")) setBackground(Color.red);
else if (label.equals("Blue")) setBackground(Color.blue);
else if (label.equals("Green")) setBackground(Color.green);
else if (label.equals("Reverse Text")) {
if (getForeground() == Color.black)
setForeground(Color.white);
else setForeground(Color.black);
}
return true;

}

else return false;

Figure 14.2.
A menu.

Colors |
[red

Blue
Green

L. Reverse Text
Set Text,..

Dialog Boxes

Dialog boxes are functionally similar to frames in that they pop up new windows on the screen.
However, dialog boxes are intended to be used for transient windows—for example, windows
that let you know about warnings, windows that ask you for specific information, and so on.
Dialogs don’t usually have titlebars or many of the more general features that windows have
(although you can create one with a titlebar), and they can be made nonresizable or modal.

285

286

® DAY @

Figure 14.3.
The Enter Text dialog.

]_4' Windows, Networking, and Other Tidbits

NEW[] A modal dialog prevents input to any of the other windows on the screen until that dialog
TERM is dismissed.

The AWT provides two kinds of dialog boxes: the pia1og class, which provides a generic dialog,
and Filebialog, Which produces a platform-specific dialog to choose files to save or open.

To create a generic dialog, use one of these constructors:
O Dialog(Frame, boolean) creates an initially invisible dialog, attached to the current
frame, which is either modal (true) or not (faise).
O Dialog(Frame, String, boolean) i the same as the previous constructor, with the
addition of a titlebar and a title indicated by the string argument.

Note that because you have to give a dialog a Frame argument, you can attach dialogs only to
windows that already exist independently of the applet itself.

The dialog window, like the frame window, is a panel on which you can lay out and draw Ul
components and perform graphics operations, just as you would any other panel. Like other
windows, the dialog is initially invisible, but you can show it with show () and hide itwith hide ().

Let’s add a dialog to that same example with the popup window. You'll add a menu item for
changing the text of the window, which brings up the Enter Text dialog box (see Figure 14.3).

Warning: Applet Window

I This is a Window I
QK |

Toadd thisdialog, firstadd amenu item to that window (the constructor method for themyFrame
class) to change the text the popup window displays:

m.add(new MenuItem("Set Text..."));

In that same method, you can create the dialog and lay out the parts of it (it’s invisible by default,
S0 you can do whatever you want to it and it won't appear on screen until you show it):

dl = new Dialog(this, "Enter Text",true);
dl.setlLayout(new GridLayout(2,1,30,30));

sams
net

Sams.ney
Learning

tf = new TextField(l.getText(),20);

dl.add(tf);
dl.add(new Button("0K"));
dl.resize(150,75);

The action of choosing the menu item you just added brings up the dialog; choosing the OK
button dismisses it. So you need to add behavior to this class’s action method so that the dialog
works right. To the menu item tests, add a line for the new menu item:
if (evt.target instanceof Menultem) {

label.equals("Red")) setBackground(Color.red);

label.equals("Blue")) setBackground(Color.blue);

if (
if (
if (label.equals("Green")) setBackground(Color.green);
if (label.equals("Set Text...")) dl.show();

}
Then, because ok is a button, you have to add a special case for that button separate from the

menu items. In this special case, set the text of the window to the text that was typed into the
text field, and then hide the dialog again:

if (evt.target instanceof Button) {
if (label.equals("0K")) {
l.setText(tf.getText());

dl.hide();

File Dialogs
FileDialog provides a basic file open/save dialog box that enables you to access the file system.
The Filebialog classissystem-independent, but depending on the platform, the standard Open

File dialog is brought up.

Note: For applets, you can bring up the file dialog, but due to security restrictions
you can’t do anything with it (or, if you can, access to any files on the local system
is severely restricted). Filebialog is much more useful in stand-alone applications.

To create a file dialog, use the following constructors: 14

O FileDialog(Frame, String) creates an Open File dialog, attached to the given frame,
with the given title. This form creates a dialog to load a file.

FileDialog(Frame, String, int) also creates a file dialog, but that integer argument is
used to determine whether the dialog is for loading a file or saving a file (the only
difference is the labels on the buttons; the file dialog does not actually open or save
anything). The possible options for the mode argument are Filebialog.L0AD and

FileDialog.SAVE.

O

287

288

14 Windows, Networking, and Other Tidbits

After you create a Filebialog instance, use show() to display it:

FileDialog fd = new FileDialog(this, "FileDialog");

fd.show();

When the reader chooses a file in the file dialog and dismisses it, you can then get to the file they
chose by using the getbirectory () and getFile () methods; both return strings indicating the
values the reader chose. You can then open that file by using the stream and file handling
methods (which you’ll learn about next week) and then read from or write to that file.

Window Events

Yesterday, you learned about writing your own event handler methods, and you noted that the
Event class defines many standard events for which you can test. Window events are part of that
list, so if you use windows, these events may be of interest to you. Table 14.1 shows those events.

Table 14.1: Window Events from the Event Class.

WINDOW_DESTROY Generated when a window is destroyed (for example, when the
browser or applet viewer has quit)

WINDOW_EXPOSE Generated when the window is brought forward from behind other
windows

WINDOW_ICONIFY Generated when the window is iconified

wINDow DEICONIFY Generated when the window is restored from an icon

WINDOW_MOVED Generated when the window is moved

Using AWT Windows
in Stand-Alone Applications

Because frames are general-purpose mechanisms for creating AWT windows with panels, you
can use them in your stand-alone Java applications and easily take advantage of all the applet
capabilities you learned about this week. To do this, write your application as if it were an applet
(inheriting from the App1et class and using threads, graphics, and Ul components as necessary),
and then add a main() method. Here’s one for a class called myawTc1ass:
public static void main(String args[]) {

Frame f = new Frame("My Window");

MyAWTClass mac = new MyAWTClass();

mac.init();
mac.start();

f.add("Center", mac);

sams
)

Sams.ney
Learning

f.resize (300, 300);
f.show();

}
This main () method does five things:

O It creates a new frame to hold the applet.
It creates an instance of the class that defines that method.
It duplicates the applet environment calls to init() and start().

0
O It adds the applet to the frame and resizes the frame to be 300 pixels square.
O It shows the frame on the screen.

By using this mechanism, you can create a Java program that can function equally well as an
applet or an application—just include init () for applets and main () for applications.

If you do create an application that uses this mechanism, be careful of your init () methods that
get parameters from an HTML file. When you run an applet as an application, you don’t have
the HTML parameters passed into the init() method. Pass them in as command-line
arguments, instead, and handle them in your main () method. Then set a flag so that the init ()
method doesn’t try to read parameters that don’t exist.

Networking in Java

Networking is the capability of making connections from your applet or application to a system
over the network. Networking in Java involves classes in the java.net package, which provide
cross-platform abstractions for simple networking operations, including connecting and
retrieving files by using common Web protocols and creating basic Unix-like sockets. Used in
conjunction with input and output streams (which you’ll learn much more about next week),
reading and writing files over the network becomes as easy as reading or writing to files on the

local disk.
There are restrictions, of course. Java applets cannot read or write from the disk on the machine
that’s running them. Depending on the browser, Java applets may not be able to connect to

systems other than the one upon which they were originally stored. Even given these restrictions,
you can still accomplish a great deal and take advantage of the Web to read and process

information over the net.
This section describes three ways you can communicate with systems on the net:

O showbDocument (), Which enables an applet to tell the browser to load and link to
another page on the Web

O openstrean(), @ method that opens a connection to a URL and enables you to extract
data from that connection

289

14 Windows, Networking, and Other Tidbits

4

O The socket classes, socket and serversocket, Which enable you to open standard
socket connections to hosts and read to and write from those connections

Creating Links Inside Applets

Probably the easiest way to use networking inside an applet is to tell the browser running that
applet to load a new page. You can use this, for example, to create animated image maps that,
when clicked, load a new page.

To link to a new page, you create a new instance of the class URL. You saw some of this when
you worked with images, but let’s go over it a little more thoroughly here.

The unL class represents a uniform resource locator. To create a new URL, you can use one of
four different forms:

O URL(String, String, int, String) creates a new URL object, given a protocol (http,
ftp, gopher, file), a host name (www. 1ne.com, ftp.netcom.com), a port number (se for
http), and a filename or pathname.

O URL(String, String, String) does the same thing as the previous form, minus the
port number.

O URL(URL, String) creates a URL, given a base path and a relative path. For the base,
you can use getbocumentBase () for the URL of the current HTML file, or
getCodeBase for the URL of the Java class file. The relative path will be tacked onto
the last directory in those base URLS (just like with images and sounds).

O URL(String) creates a URL object from a URL string (which should include the
protocol, hostname, and filename).

For that last one (creating a URL from a string), you have to catch a malformed URL exception,
so surround the URL constructor with a try. . .catch:

String url = "http://www.yahoo.com/";

try { theURL = new URL(url); }

catch (MalformedURLException e) {
System.out.println("Bad URL: " + theURL);

}

Getting a URL object is the hard part. Once you have one, all you have to do is pass it to the
browser. Do this by using this single line of code, where theurL is the URL object to link to:

getAppletContext () .showDocument (theURL) ;
The browser that contains your URL will then load and display the document at that URL.

Listing 14.2 shows a simple applet that displays three buttons that represent important Web
locations (the buttons are shown in Figure 14.4). Clicking on the buttons causes the document
to be loaded to the locations to which those buttons refer.

290

Type Listing 14.2. Bookmark buttons.

import java.awt.*;
import java.net.URL;
import java.net.MalformedURLException;

public class ButtonLink extends java.applet.Applet {
Bookmark bmlist[] = new Bookmark[3];

public void init() {
bmlist[@] = new Bookmark("Laura's Home Page",
"http://www.lne.com/lemay/");
bmlist[1] = new Bookmark("Yahoo",
"http://www.yahoo.com");
bmlist[2]= new Bookmark("Java Home Page",
"http://java.sun.com");

setLayout(new GridLayout(bmlist.length,1,10,10));
for (int i = 0; i < bmlist.length; i++) {
add(new Button(bmlist[i].name));
}
}

public boolean action(Event evt, Object arg) {
if (evt.target instanceof Button) {
LinkTo((String)arg);
return true;
}

else retrurn false;

}

void LinkTo(String name) {
URL theURL = null;
for (int i = 0; i < bmlist.length; i++) {
if (name.equals(bmlist[i].name))
theURL = bmlist[i].url;

}
if (theURL != null)
getAppletContext () .showDocument (theURL);

}

class Bookmark {
String name;
URL url;

Bookmark (String name, String theURL) {
this.name = name;
try { this.url = new URL(theURL); }
catch (MalformedURLException e) {
System.out.println("Bad URL: " + theURL);

}

291

292

14

Figure 14.4.
Bookmark buttons.

Windows, Networking, and Other Tidbits

Laura's Home Page

Yahoo

Jauva Home Page

Two classes make up this applet: the first implements the actual applet itself, the second

Ana'YSIS is a class representing a bookmark. Bookmarks have two parts: a name and a URL.

This particular applet creates three bookmark instances and stores them in an array of
bookmarks (this applet could be easily modified to make bookmarks as parameters from an
HTML file). For each bookmark, a button is created whose label is the value of the bookmark’s
name.

When the buttons are pressed, the 1inkTo() method is called, which tells the browser to load
the URL referenced by that bookmark.

Opening Web Connections

Rather than asking the browser to just load the contents of a file, sometimes you might want to
get hold of that file’s contents so that your applet can use them. If the file you want to grab is
stored on the Web, and can be accessed using the more common URL forms (http, ftp, and so
on), your applet can use the URL class to get it.

Note that for security reasons, applets can connect back only to the same host from which they
originally loaded. This means that if you have your applets stored on a system called
www . myhost . com, the only machine your applet can open a connection to will be that same host
(and that same host name, so be careful with host aliases). If the file the applet wants to retrieve
is on that same system, using URL connections is the easiest way to get it.

openStream()

URL defines amethod called openstream(), which opens a network connection using the given
URL and returns an instance of the class 1nputstream (part of the java.io package). If you
convert that stream to a pataInputStream (With a BufferedInputStreamin the middle for better
performance), you can then read characters and lines from that stream (you’ll learn all about
streams on Day 19). For example, these lines open a connection to the URL stored in the variable
theUrL, and then read and echo each line of the file to the standard output:

try {

InputStream in = theURL.openStream();

DataInputStream data = new DataInputStream(
new BufferedInputStream(in);

String line;
while ((line = data.readLine()) != null) {
System.out.println("line");

}

catch (IOException e) {
System.out.println("IO Error: " + e.getMessage());
}

Note: You need to wrap all those lines in a try. . .catch statement to catch
I0Exception exceptions.

Here’s an example of an applet that uses the openstream() method to open a connection to a
Web site, reads a file from that connection (Edgar Allen Poe’s poem “The Raven”), and displays
the result in a text area. Listing 14.3 shows the code; Figure 14.5 shows the result after the file
has been read.

Type Listing 14.3. The GetRaven class.

import java.awt.*;

import java.io.DatalInputStream;

import java.io.BufferedInputStream;
import java.io.IOException;

import java.net.URL;

import java.net.URLConnection;

import java.net.MalformedURLException;

: public class GetRaven extends java.applet.Applet
implements Runnable {

QOVWONOURWN-=

-

continues

293

294

® DAY @

]_4' Windows, Networking, and Other Tidbits

Listing 14.3. continued

URL theURL;
Thread runner;
TextArea ta = new TextArea("Getting text...",30,70);

public void init() {

String url = "http://www.lne.com/Web/Java/raven.txt";

try { this.theURL = new URL(url); }

catch (MalformedURLException e) {
System.out.println("Bad URL: " + theURL);

}
add(ta);
}

public Insets insets() {
return new Insets(10,10,10,10);

}

public void start() {
if (runner == null) {
runner = new Thread(this);
runner.start();

}

public void stop() {
if (runner != null) {
runner.stop();
runner = null;

}

public void run() {
InputStream conn = null;
DataInputStream data = null;
String line;
StringBuffer buf = new StringBuffer();

try {
conn = this.theURL.openStream();
data = new DatalnputStream(new BufferedInputStream(
conn));

while ((line = data.readLine()) != null) {
buf.append(line + "\n");
}

ta.setText(buf.toString());

}
catch (IOException e) {
System.out.println("IO Error:" + e.getMessage());

sams
net

Sams.ney
Learning

Figure 14.5.
The GetRaven class.

=

The Raven

by
Edgar allen Foe

nce upon amidnight deeary, while | pondered, weak and weary,
OUEF many a quaint and curious volume of forgotten lore,

wWhile | nodded, nearly napping, suddenly there came atapping,
As of someane gently rapping, Fapping at my chamber door,
"Tis some wisitor," | muttered, "tapping at my chamber doar;
<nly this, and nothing more.”

Ah, distinctly | remember, it was in the bleak December,

Aand each separate dying ember wrought its ghost upon the floor,
Eagerly | wished the morrow; vainly | had sought to barrow

From my books surcease of sorrow, sorrow for the lost Lenore,
For the rare and radiant maiden whom the angels name Lenore,
Mameless here farevermare,

Aand the silken sad uncertain rustling of each purple curtain
Thrilled me——filled me with fantastic terrors never felt before;
So that now, to still the beating of my heart, | stood repeating,
"*Tis some wisitor entreating entrance at my chamber door,
Sore late wisitor entreating entrance at my chamber door,

This it is, and nothing more”

Presently my soul grew stronger; hesitating then no longer,
"sir," said I, "or madam, truly your forgiveness | implore;

But the fact is, | was napping, and so gently you came rapping,
And so faintly you came tapping, tapping at my chamber door, A

=]

I =

A | :] The init() method (lines 16 to 24) sets up the URL and the text area in which that file
a WS will be displayed. The URL could be easily passed into the applet viaan HTML parameter;
here, it’s just hard-coded for simplicity.
Because it might take some time to load the file over the network, you put that routine into its
own thread and use the familiar start(), stop(), and run() methods to control that thread.

Inside run() (lines 44 to 64), the work takes place. Here, you initialize a bunch of variables
and then open the connection to the URL (using the openstream() method in line 51). Once
the connection is open, you set up an input stream in lines 52 to 56 and read from it, line by
line, putting the result into an instance of stringBuffer (a string buffer is a modifiable string).

Once all the data has been read, line 59 converts the stringBuffer object into a real string and
then puts that result in the text area.

One other thing to note about this example is that the part of the code that opened a network
connection, read from the file, and created a string is surrounded by a try and catch statement.
If any errors occur while you're trying to read or process the file, these statements enable you to
recover from them without the entire program crashing (in this case, the program exits with an
error, because there’s little else to be done if the applet can’t read the file). try and catch give
you the capability of handling and recovering from errors. You'll learn more about exceptions

on Day 18.

295

296

14 Windows, Networking, and Other Tidbits

The URLconnection Class

URL’Sopenstream() method isactually asimplified use of the uRLconnection Class. URLconnection
providesaway to retrieve files by using URLs—on Web or FTP sites, for example.URLconnection
also enables you to create output streams if the protocol allows it.

To use a URL connection, you first create a new instance of the class URLconnection, Set its
parameters (whether it enables writing, for example), and then use the connect () method to
open the connection. Keep in mind that, with a URL connection, the class handles the protocol
for you based on the first part of the URL, so you don’t have to make specific requests to retrieve
a file; all you have to do is read it.

Sockets

For networking applications beyond what the urL and uRLconnection classes offer (for example,
for other protocols or for more general networking applications), Java provides the socket and
ServersSocket classes as an abstraction of standard socket programming techniques.

Note: | don’t have the space to give you a full explanation of how socket program-
ming works. If you haven’t worked with sockets before, see whether openstream()
will meet your needs. If you really need to do more, any book that discusses socket
programming will give you the background you need to work with Java’s sockets.

The socket class provides a client-side socket interface similar to standard Unix sockets. To open
a connection, create a new instance of socket (wWhere nhostname is the host to connect to, and
portnum i the port number):

Socket connection = new Socket(hostname, portnum);

Note: If you use sockets in an applet, you are still subject to the security restrictions
about where you can connect.

Once the socket is open, you can use input and output streams to read and write from that socket
(you’ll learn all about input and output streams on Day 19):

DataInputStream in = new DataInputStream(

new BufferedInputStream(connection.getInputStream()));
DataOutputStream out= new DataOutputStream(

new BufferedOutputStream(connection.getOutputStream()));

net

Sams. net
Learning
3

Once you're done with the socket, don’t forget to close it (this also closes all the input and ouput
streams you may have set up for that socket):

connection.close();

Server-side sockets work similarly, with the exception of the accept () method. A server socket
listens on a TCP port for a connection for a client; when a client connects to that port, the
accept () method accepts a connection from that client. By using both client and server sockets,
you can create applications that communicate with each other over the network.

To create a server socket and bind it to a port, create a new instance of serversocket with the
port number:

ServerSocket sconnection = new ServerSocket(8888);

To listen on that port (and to accept a connection from any clients if one is made), use the
accept () method:

sconnection.accept();

Once the socket connection is made, you can use input and output streams to read to and write
from the client.

See the java.net package for more information about Java sockets.

Other Applet Hints

On this, the last section of the last day of the second week, let’s finish up with some small hints
that didn’t fit in anywhere else: using showstatus() to print messages in the browser’ status
window, providing applet information, and communicating between multiple applets on the

same page.

The showStatus Method

The showstatus () method, available in the applet class, enables you to display a string in the
status bar of the browser, which contains the applet. You can use this for printing error, link,
help, or other status messages:

getAppletContext().showStatus("Change the color");

The getAppletcontext () method enables your applet to access features of the browser that
contains it. You already saw a use of this with links, wherein you could use the showbocument ()
method to tell the browser to load a page. showstatus () uses that same mechanism to print status
messages.

297

298

Windows, Networking, and Other Tidbits

Note: showstatus () may not be supported in all browsers, so do not depend on it
for your applet’s functionality or interface. It is a useful way of communicating
optional information to your user—if you need a more reliable method of commu-
nication, set up a label in your applet and update it to reflect changes in its message.

Applet Information

The AWT gives you a mechanism for associating information with your applet. Usually, there
is a mechanism in the browser viewing the applet to view display information. You can use this
mechanism to sign your name or your organization to your applet, or to provide contact
information so that users can get hold of you if they want.

To provide information about your applet, override the getAppletinfo() method:

public String getAppletInfo() {
return "GetRaven copyright 1995 Laura Lemay";

}

Communicating Between Applets

Sometimes you want to have an HTML page that has several different applets on it. To do this,
all you have to do is include several different iterations of the applet tag—the browser will create
different instances of your applet for each one that appears on the HTML page.

What if you want to communicate between those applets? What if you want a change in one
applet to affect the other applets in some way?

The best way to do this is to use the applet context to get to different applets on the same page.
You've already seen the use of the getAppletContext () method for several other uses; you can
also use it to get hold of the other applets on the page. For example, to call a method in all the
applets on a page (including the current applet), use the getapplets() method and a for loop
that looks something like this:
for (Enumeration e = getAppletContext().getApplets();

e.hasMoreElements();) {

Applet current = (Applet)(e.nextElement());
sendMessage (current);

}

The getApplets() method returns an enumeration object with a list of the applets on the page.
Iterating over the Enumeration Object in this way enables you to access each element in the
Enumeration in turn.

sams
)

Sams.ney
Learning

If you want to call a method in a specific applet, it’s slightly more complicated. To do this, you
give your applets a name and then refer to them by name inside the body of code for that applet.

To give an applet a name, use the nave parameter in your HTML file:

<P>This applet sends information:
<APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=150

NAME="sender"> </APPLET>
<P>This applet receives information from the sender:
<APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=150

NAME="receiver"> </APPLET>
To get a reference to another applet on the same page, use the getapplet () method from the
applet context with the name of that applet. This gives you a reference to the applet of that name.
You can then refer to that applet as if it were just another object: call methods, set its instance
variables, and so on:
// get ahold of the receiver applet
Applet receiver = getAppletContext().getApplet("receiver");
// tell it to update itself.
reciever.update(text, value);
In this example, you use the getapplet () method to get a reference to the applet with the name
receiver. Given that reference, you can then call methods in that applet as if it were just another
object in your own environment. Here, for example, if both applets have an update () method,
you can tell receiver to update itself by using the information the current applet has.

Naming your applets and then referring to them by using the methods described in this section
enables your applets to communicate and stay in sync with each other, providing uniform
behavior for all the applets on your page.

Summary

Congratulations! Take a deep breath—you’re finished with Week 2. This week has been full of
useful information about creating applets and using the Java AWT classes to display, draw,
animate, process input, and create fully fledged interfaces in your applets.

Today, you finished exploring applets and the AWT by learning about three concepts.

First, you learned about windows, frames, menus, and dialogs, which enable you to create a
framework for your applets—or enable your Java applications to take advantage of applet
features.

Second, you head a brief introduction to Java networking through some of the classes in the
java.net package. Applet networking includes things as simple as pointing the browser to
another page from inside your applet, but can also include retrieving files from the Web by using

299

300

14 Windows, Networking, and Other Tidbits

4

standard Web protocols (http, ftp, and so on). For more advanced networking capabilities, Java
provides basic socket interfaces that can be used to implement many basic network-oriented
applets—client-server interactions, chat sessions, and so on.

Finally, you finished up with the tidbits—small features of the Java AWT and of applets that
didn’t fit anywhere else, including showstatus (), producing information for your applet, and
communicating between multiple applets on a single page.

Q&A

Q

A

> O

When | create popup windows using the appietviewer, they all show up with this
big red bar that says warning: applet window. What does this mean?

The warning is to tell you (and the users of your applet) that the window being
displayed was generated by an applet, and not by the browser itself. This is a security
feature to keep an applet programmer from popping up a window that masquerades as
a browser window and, for example, asks users for their passwords.

There’s nothing you can do to hide or obscure the warning.

What good is having a file dialog box if you can’t read or write files from the
local file system?

Applets can’t read or write from the local file system, but because you can use AWT
components in Java applications as well as applets, the file dialog box is very useful for
that purpose.

How can | mimic an HTML form submission in a Java applet?

Currently, applets make it difficult to do this. The best (and easiest way) is to use GeT
notation to get the browser to submit the form contents for you.

HTML forms can be submitted in two ways: by using the GeT request, or by using
posT. If you use GeT, your form information is encoded in the URL itself, something
like this:

http://www.blah.com/cgi-bin/myscript?foo=1&bar=2&name=Laura

Because the form input is encoded in the URL, you can write a Java applet to mimic a
form, get input from the user, and then construct a new URL object with the form
data included on the end. Then just pass that URL to the browser by using
getAppletContext () .showDocument (), and the browser will submit the form results
itself. For simple forms, this is all you need.

Q How can | do posT form submissions?

A You'll have to mimic what a browser does to send forms using posT: open a socket to
the server and send the data, which looks something like this (the exact format is
determined by the HTTP protocol; this is only a subset of it):

POST /cgi-bin/mailto.cgi HTTP/1.0
Content-type: application/x-www-form-urlencoded
Content-length: 36

{your encoded form data here}

If you've done it right, you get the CGI form output back from the server. It’s then up
to your applet to handle that output properly. Note that if the output is in HTML,
there really isn’t a way to pass that output to the browser that is running your applet.
If you get back a URL, however, you can redirect the browser to that URL.

Q showstatus doesn’t work in my browser. How can | give my readers status
information?

A Asyou learned in the section on showstatus (), whether or not a browser supports
showsStatus () iS up to that browser. If you must have status-like behavior in your
applet, consider creating a status label in the applet itself that is updated with the
information you need to present.

301

Modifiers

Method and variable access control
Packages and Interfaces

Hiding classes

Design versus implementation inheritance

Exceptions

Proper throw statements

Using the finally clause
Multithreading

Synchronization problems
More about Point

Java Streams

Input and output, f1ush() and close()
Native Methods and Libraries
Built-in optimizations
Generating header and stub files

®\\VEEK®

3 y Week 3 at a Glance

O Under the Hood
Java bytecodes
Security and consistency checking
Garbage collection

304

4

Modifiers

by Charles L. Perkins

306

Modifiers

Once you begin to program Java for a while, you'll discover that making all your classes,
methods, and variables pub1ic can become quite annoying. The larger your program becomes,
and the more you reuse your classes for new projects, the more you will want some sort of control
over their visibility. One of the large-scale solutions to this problem, packages, must wait until
tomorrow, but today you’'ll explore what you can do within a class.

Today, you'll learn how to create and use the following:

O Methods and variables that control their access by other classes
O Class variables and methods

O Constant variables, classes that cannot be subclassed, and methods that cannot be
overridden

O Abstract classes and methods

NEWI] Modifiers are prefixes that can be applied in various combinations to the methods and
TERM variables within a class and, some, to the class itself.

There is a long and varied list of modifiers. The order of modifiers is irrelevant to their
meaning—your order can vary and is really a matter of taste. Pick a style and then be consistent
with it throughout all your classes. Here is the recommended order:

<access> static abstract synchronized <unusual> final native

where <access> can be public, protected, Or private, and <unusual> includes volatile and
transient.

Note: As of the beta release, threadsafe has been replaced by volatile. Both have
to do with multithreading; no more will be said about them here (see Day 18).
transient is a special modifier used to declare a variable to be outside the persistent
part of an object. This makes persistent object storage systems easier to implement
in Java, and though the compiler supports it, it is not used by the current Java
system. Several reserved keywords (byvalue, future, and generic, for example) may
end up being <unusual> modifiers in later releases of Java. In the beta system, none
of these unusual modifiers appears in the source code for the standard Java library
classes.

All the modifiers are essentially optional; none have to appear in a declaration. Good style
suggests adding as many as are needed to best describe the intended use of, and restrictions on,
what you’re declaring. In some special situations (inside an interface, for example, as described
tomorrow), certain modifiers are implicitly defined for you, and you needn’t type them—they
will be assumed to be there.

sams
)

Sams.ney
Learning

The synchronized modifier is covered on Day 18; it has to do with multithreaded methods. The

native modifier is covered on Day 20; it specifies that a method is implemented in the native

language of your computer (usually C), rather than in Java. How <access> modifiers apply to 15
classes is covered tomorrow.

Method and Variable Access Control

Access control is about controlling visibility. When a method or variable is visible to another
class, its methods can reference (call or modify) that method or variable. To “protect” a method
or variable from such references, you use the four levels of visibility described in the next
sections. Each, in turn, is more restrictive, and thus provides more protection than the one

before it.

The Four P’s of Protection

Learning your four P’s (public, package, protected, and private) comes down to understanding
the fundamental relationships that a method or variable within a class can have to the other

classes in the system.

public

Because any class is an island unto itself, the first of these relationships builds on the distinction
between the inside and the outside of the class. Any method or variable is visible to the class in
which it is defined, but what if you want to make it visible to all the classes outside this class?

Theanswer is obvious: simply declare the method or variable to have pub1ic access. Almost every
method and variable defined in the rest of this book has been declared, for simplicity’s sake,
public. When you use any of the examples provided in your own code, you’ll probably decide
to restrict this access further. Because you're just learning now, it’s not a bad idea to begin with
the widest possible access you can imagine and then narrow it down as you gain design
experience, until the access that each of your variables and methods should have becomes second
nature. Here are some examples of pub1ic declarations:

public class APublicClass {

public int aPublicInt;
public String aPublicString;

public float aPublicMethod() {

}

307

308

Modifiers

Note: The two (or more) spaces after the prefix of modifiers and type in these
declarations are intentional. They make finding the variable or method name
within each line a little easier. Further in the book, you'll see that the type and the
name are sometimes separately lined up in a column to make it even more evident
what is what. When you get enough modifiers on a line, you’ll begin to appreciate
these small touches.

A variable or method with public access has the widest possible visibility. Anyone can see it.
Anyone can use it. Of course, this may not always be what you want—which brings us to the
next level of protection.

package

In C, there is the notion of hiding a name so that only the functions within a given source file
can see it. In Java, source files are replaced by the more explicit notion of packages, which can
group classes (you learn about these tomorrow). For now, all you need to know is that the
relationship you want to support is of a class to its fellow implementors of one piece of a system,
library, or program (or to any other grouping of related classes). This defines the next level of
increased protection and narrowed visibility.

Due to an idiosyncrasy of the Java language, this next level of access has no precise name. It is
indicated by the lack of any access modifier in a declaration. Historically, it has been called
various suggestive names, including “friendly” and “package.” The latter usage seems most
appropriate and is the one used here. Perhaps in a later release of the system, it will be possible
to say package explicitly, but for now it is simply the default protection when none has been
specified.

Note: Why would anyone want to make more typing for themselves and explicitly
say package? It is a matter of consistency and clarity. If you have a pattern of
declarations with varying access modifier prefixes, you may always want the
modifier to be stated explicitly, both for the reader’s benefit and because, in some
contexts, different “default” levels of protection are being assumed, and you want
the compiler to notice your intentions and warn you of any conflicts.

Sams.nE.l

Learning
38
é;

Most of the declarations you've seen in the past two weeks have used this default level of
protection. Here’s a reminder of what they look like:
ALessPublicClass { 15

public class
int aPackagelInt = 2;
String aPackageString = "a 1 and a ";
float aPackageMethod () { // no access modifier means "package"
}

}
public class AClassInTheSamePackage {

public void testUse() {
ALessPublicClass aLPC = new ALessPublicClass();

System.out.println(aLPC.aPackageString + alLPC.aPackagelnt);
aLPC.aPackageMethod () ; // all of these are A.0.K.

Note: If a class from any other package tried to access aLpc the way that
AClassInTheSamePackage (0gs in this example, it would generate compile-time

errors. (You'll learn how to create such classes tomorrow.)

Why was package made a default? When you're designing a large system and you partition your
classes into work groups to implement smaller pieces of that system, the classes often need to
share a lot more with one another than with the outside world. The need for this level of sharing
is common enough that it was made the default level of protection.

What if you have some details of your implementation that you don’t want to share with these
“friends™? The answer to this question leads us naturally to the next level of protection.

protected
The third relationship is between a class and its present and future subclasses. These subclasses
are much closer to a parent class than to any other “outside” classes for the following reasons:

Subclasses are usually more intimately aware of the internals of a parent class.

[
Subclasses are often written by you or by someone to whom you’ve given your source

[
code.
Subclasses frequently need to modify or enhance the representation of the data within

a parent class.

310

Modifiers

No one else is allowed the privilege of this level of access; they must be content with the public
face that the class presents.

To support the level of intimacy reserved for subclasses, modern programming languages have
invented an intermediate level of access between the previous two levels and full privacy. This
level gives more protection and narrows visibility still further, but still allows subclasses full
access. In Java, this level of protection is called, appropriately enough, protected:

public class AProtectedClass {

protected int aProtectedInt
protected String aProtectedString

4;
"and a 3 and a ";

protected float aProtectedMethod () {

}
}

public class AProtectedClassSubclass extends AProtectedClass {
public void testUse() {
AProtectedClass aPC = new AProtectedClass();

System.out.println(aPC.aProtectedString + aPC.aProtectedInt);
aPC.aProtectedMethod() ; // all of these are A.0.K.

}

public class AnyClassInTheSamePackage {
public void testUse() {
AProtectedClass aPC = new AProtectedClass();

System.out.println(aPC.aProtectedString + aPC.aProtectedInt);
aPC.aProtectedMethod() ; // NONE of these are legal

}

Even though AnyclassInTheSamePackage IS in the same package as AProtectedClass, it is nota
subclass of it (it’s a subclass of object). Only subclasses are allowed to see, and use, protected
variables and methods.

One of the most striking examples of the need for this special level of access is when you are
supporting a public abstraction with your class. As far as the outside world is concerned, you have
a simple, public interface (via methods) to whatever abstraction you’ve built for your users. A
more complex representation, and the implementation that depends on it, is hidden inside.
When subclasses extend and modify this representation, or even just your implementation of
it, they need to get to the underlying, concrete representation and not simply to the abstraction:

public class SortedList {
protected BinaryTree theBinaryTree;

public Object[] theList() {
return theBinaryTree.asArray();

sams
net

Sams.ney
Learning

}
public void add(Object o) {
theBinaryTree.addObject(0);
}
}
public class InsertSortedList extends SortedList {
public void insert(Object o, int position) {
theBinaryTree.insertObject (o, position);
}
}

Without being able to access theBinaryTree directly, the insert () method has to get the list as
an array of objects, via the public method theList (), allocate a new, bigger array, and insert the
new object by hand. By “seeing” that its parent is using a BinaryTree to implement the sorted
list, it can call upon BinaryTree’s built-in method insertobject () to get the job done.

Some languages, such as CLU, have experimented with more explicit ways of “raising” and
“lowering” your level of abstraction to solve this same problem in a more general way. In Java,
protected Solves only a part of the problem, by allowing you to separate the concrete from the

abstract; the rest is up to you.

private

The final relationship comes full circle, back to the distinction between the inside and outside
of the class. private is the most narrowly visible, highest level of protection that you can get—
the diametric opposite of public. private methods and variables cannot be seen by any class
other than the one in which they are defined:

public class APrivateClass {

private int aPrivatelnt;
private String aPrivateString;

private float aPrivateMethod () {

}
}

This may seem extremely restrictive, but it is, in fact, a commonly used level of protection. Any
private data, internal state, or representations unique to your implementation—anything that
shouldn’t be directly shared with subclasses—is private. Remember that an an object’s primary
job is to encapsulate its data—to hide it from the world’s sight and limit its manipulation. The
best way to do that is to make as much data as private as possible. Your methods can always be
less restrictive, as you'll see below, but keeping a tight rein on your internal representation is
important. It separates design from implementation, minimizes the amount of information one
class needs to know about another to get its job done, and reduces the extent of the code changes
you need when your representation changes.

311

312

Modifiers

The Conventions
for Instance Variable Access

Agood rule of thumb is that unless an instance variable is constant (you’ll soon see how to specify
this), it should almost certainly be private. If you don’t do this, you have the following problem:
public class AFoolishClass {

public String aUsefulString;

// set up the useful value of the string

}
This class may have thought of setting up ausefu1string for the use of other classes, expecting
them to (only) read it. Because it isn’t private, however, they can say:

AFoolishClass aFC = new AFoolishClass();
aFC.aUsefulString = "oops!";

Because there is no way to specify separately the level of protection for reading from and writing
to instance variables, they should almost always be private.

Note: The careful reader may notice that this rule is violated in many examples in
this book. Most of these were just for clarity’s sake and to make the examples
shorter and pithier. (You'll see soon that it takes more space to do the right thing.)
One use cannot be avoided: the system.out.print () calls scattered throughout the
book must use the public variable out directly. You cannot change this final
system class (which you might have written differently). You can imagine the
disastrous results if anyone accidentally modifies the contents of this (global)
public variable!

Accessor Methods

If instance variables are private, how do you give access to them to the outside world? The
answer is to write “accessor” methods:

public class ACorrectClass {
private String aUsefulString;

public String aUsefulString() { // "get" the value
return aUsefulString;
}

protected void aUsefulString(String s) { /] "set" the value
aUsefulString = s;
}

sams
&

Sams. net
Lea"ning

Using methods to access an instance variable is one of the most frequently used idioms in object-
oriented programs. Applying it liberally throughout all your classes repays you numerous times
over with more robust and reusable programs. Notice how separating the reading and writing
of the instance variable allows you to specify a pub1ic method to returnits value and aprotected
method to set it. This is often a useful pattern of protections, because everyone probably needs
to be able to ask for the value, but only you (and your subclasses) should be able to change it.
Ifitisa particularly private piece of data, you could make its “set” method private and its “get”
method protected, Or any other combination that suits the data’s sensitivity to the light of the

outside world.

\

Warning: According to the beta language specification, it is not legal to have an
instance variable and method by the same name. However, the beta compiler allows
it! Because it is unclear what the final ruling on this conflict will be, use the simple
naming scheme used previously for your programs. In a later release, if the compiler
begins complaining, you can always change the method names to something less

clear.

One of the alternate conventions for the naming of accessor methods is to prepend
the variable name with the prefixes get and set. Besides making you type more—
for a little less clarity—this style forces you (by the capitalization conventions of

Java) to write methods names such as setAnnoyingFirstCapitalLetter (). All this is,
of course, a matter of taste—just be consistent in using whatever convention you

adopt.

Whenever you want to append to your own instance variable, try writing this:

aUsefulString(aUsefulString() + " some appended text");

Just like someone outside the class, you’re using accessor methods to change ausefulString.
Why do this?

You protected the variable in the first place so that changes to your representation would not
affect the use of your class by others, but it still will affect the use of your class by you! As in the
abstract versus concrete discussion earlier, you should be protected from knowing too much
about your own representation, except in those few places that actually need to know about it.
Then, if you must change something about ausefulstring, it will not affect every use of that
variable in your class (as it would without accessor methods); rather, it affects only the
implementations of its accessor.

313

Modifiers

One of the powerful side effects of maintaining this level of indirection in accessing your own
instance variables is that if, at some later date, some special code needs to be performed each time
aUsefulString isaccessed, you can put that code in one place, and all the other methods in your
class (and in everyone else’s) will correctly call that special code. Here’s an example:

protected void aUsefulString(String s) { // the "set" method
aUsefulString = s;
performSomeImportantBookkeepingOn(s);

}

It may seem a little difficult to get used to saying this:
x(12 + 5 * x());

rather than this:

X =12 + 5 * x;

but the minor inconvenience will reward you with a rosy future of reusability and easy
maintenance.

Class Variables and Methods

What if you want to create a shared variable that all your instances can see and use? If you use
an instance variable, each instance has its own copy of the variable, defeating its whole purpose.
If you place it in the class itself, however, there is only one copy, and all the instances of the class
share it. This is called a class variable:

public class Circle {
public static float pi = 3.14159265F;

public float area(float r) {

return pi * r * r;

}

Tip: Because of its historical ties, Java uses the word static to declare class vari-
ables and methods. Whenever you see the word static, remember to substitute
mentally the word “class.”

Instances can refer to their own class variables as though they were instance variables, as in the
last example. Because it’s public, methods in other classes can also refer to pi:

float circumference = 2 * Circle.pi * r;

314

sams
&

Sams. net
Lea"ning

Note: Instances of circie can also use this form of access. In most cases, for clarity,
this is the preferred form, even for instances. It clarifies that a class variable is being
used, and helps the reader to know instantly where it’s used and that the variable is
global to all instances. This may seem pedantic, but if you try it yourself, you’ll see
that it can make things clearer.

By the way, if you might change your mind later about how a class variable is
accessed, created, and so forth, you should create instance (or even class) accessor
methods to hide any uses of it from these changes.

Class methods are defined analogously. They can be accessed in the same two ways by instances
of their class, but only via the full class name by instances of other classes. Here’s a class that
defines class methods to help it count its own instances:

public class InstanceCounter {

private static int instanceCount = 0; // a class variable
protected static int instanceCount() { // a class method
return instanceCount;
}
private static void incrementCount() {
++instanceCount;
}

InstanceCounter() {
InstanceCounter.incrementCount();

}
}

In this example, an explicit use of the class name calls the method incrementcount (). Though
this may seem verbose, in a larger program it immediately tells the reader which object (the class,
rather than the instance) is expected to handle the method. This is especially useful if the reader
needs to find where that method is declared in a large class that places all its class methods at the
top (the recommended practice, by the way).

Note the initialization of instanceCount t0 0. Just as an instance variable is initialized when its
instance is created, a class variable is initialized when its class is created. This class initialization
happens essentially before anything else can happen to that class, or its instances, so the class in
the example will work as planned.

Finally, the conventions you learned for accessing an instance variable are applied in thisexample
to access a class variable. The accessor methods are therefore class methods. (There is no “set”
method here, just an increment method, because no one is allowed to set instanceCount

315

316

Modifiers

directly.) Note that only subclasses are allowed to ask what the instancecCount is, because that
is a (relatively) intimate detail. Here’s a test of InstanceCounter in action:

public class InstanceCounterTester extends InstanceCounter {

}

public static void main(String args[]) {

for (int 1 = 0; i < 10; ++i)
new InstanceCounter();
System.out.println("made " + InstanceCounter.instanceCount());

Not shockingly, this example prints the following:

made 10

The final Modifier

Although it’s not the final modifier discussed, the fina1 modifier is very versatile:

O

When the fina1 modifier is applied to a class, it means that the class cannot be
subclassed.

When it is applied to a variable, it means that the variable is constant.

When it is applied to a method, it means that the method cannot be overridden by
subclasses.

final Classes

Here's a final class declaration:

public final class AFinalClass {

}

You declare aclass fina1 for only two reasons. The first is security. You expect to use its instances
as unforgeable capabilities, and you don’t want anyone else to be able to subclass and create new
and different instances of them. The second is efficiency. You want to count on instances of only
that one class (and no subclasses) being around in the system so that you can optimize for them.

Note: The Java class library uses fina1 classes extensively. You can flip through the
class hierarchy diagrams in Appendix B to see them (fina1 classes are shaded darker
than public classes). Examples of the first reason to use final are the classes:
java.lang.System and, from the package java.net, InetAddress and Socket. A
good example of the second reason is java.lang.String. Strings are So common in
Java, and so central to it, that the run-time handles them specially.

sams
net

Sams.ney
Learning

It will be a rare event for you to create a final class yourself, although you’ll have plenty of
opportunity to be upset at certain system classes being final (thus making extending them
annoyingly difficult). Oh well, such is the price of security and efficiency. Let’s hope that
efficiency will be less of an issue soon, and some of these classes will become pub1ic once again.

final VVariables
To declare constants in Java, use final variables:
public class AnotherFinalClass {
123;

public static final int aConstantInt
public final String aConstantString "Hello world!";

Note: The unusual spacing in the last line of the example makes it clearer that the
top variable is a class variable and the bottom isn’t, but that both are pub1ic and

final.

final class and instance variables can be used in expressions just like normal class and instance
variables, but they cannot be modified. Asaresult, fina1 variables must be given their (constant)
value at the time of declaration. These variables function like a better, typed version of the
#define constants of C. Classes can provide useful constants to other classes via final class
variables such as the one discussed previously. Other classes reference them just as before:

AnotherFinalClass.aConstantInt

Local variables (those inside blocks of code surrounded by braces, for example, inwhile or for
loops) can’t be declared final. (This would be just a convenience, really, because final instance
variables work almost as well in this case.) In fact, local variables can have no modifiers in front

of them at all:

{
int alLocalVariable; // I'm so sad without my modifiers...

final Methods

Here’s an example of using final methods:

public class MyPenultimateFinalClass {
public static final void aUniqueAndReallyUsefulMethod() {

}

15

317

318

Modifiers

public final void noOneGetsToDoThisButMe() {

}
}
final methods cannot be overridden by subclasses. It is a rare thing that a method truly wants
to declare itself the final word on its own implementation, so why does this modifier apply to
methods?

The answer is efficiency. If you declare a method fina1, the compiler can then “in-line” it right
in the middle of methods that call it, because it “knows” that no one else can ever subclass and
override the method to change its meaning. Although you might not use fina1 right away when
writing aclass, as you tune the system later, you may discover that a few methods have to be fina1l
to make your class fast enough. Almost all your methods will be fine, however, just as they are.

The Java class library declares a lot of commonly used methods fina1 so that you'll benefit from
the speed-up. In the case of classes that are already fina1, this makes perfect sense and is a wise
choice. The few final methods declared in non-fina1 classes will annoy you—your subclasses
can no longer override them. When efficiency becomes less of an issue for the Java environment,
many of these T i narhethods can be “unfrozen” again, restoring this lost flexibility to the system.

Note: privatmethods are effectively final, as are all methods declared in a final
class. Marking these latter methods .. (as the Java library sometimes does) is
legal, but redundant; the current compiler already treats themas = .

It’s possible to use final methods for some of the same security reasons you use
. classes, but it’s a much rarer event.

If you use accessor methods a lot (as recommended) and are worried about efficiency, here’s a
rewrite of ACorrectClthsts much faster:

public class ACorrectFinalClass {
private String aUsefulString;

public final String aUsefulString() { // now faster to use
return aUsefulString;

}

protected final void aUsefulString(String s) { // also faster
aUsefulString = s;

}

o N= sams
518
Note: Future Java compilers will almost certainly be smart enough to “in-line” 15

simple methods automatically, so you probably won’t need to use final in such
cases for much longer.

abstract Methods and Classes

Whenever you arrange classes into an inheritance hierarchy, the presumption is that “higher”
classes are more abstract and general, whereas “lower” subclasses are more concrete and specific.
Often, as you design a set of classes, you factor out common design and implementation into
ashared superclass. If the primary reason that a superclass exists is to act as this common, shared
repository, and if only its subclasses expect to be used, that superclass is called an abstract class.

abstract classes can create no instances, but they can contain anything a normal class can
contain and, in addition, are allowed to prefix any of their methods with the modifier abstract.
Non-abstract classes are not allowed to use this modifier; using it on even one of your methods
requires that your whole class be declared abstract. Here’s an example:

public abstract class MyFirstAbstractClass {
int anInstanceVariable;

public abstract int aMethodMyNonAbstractSubclassesMustImplement();

public void doSomething() {
// a normal method
}
}

public class AConcreteSubClass extends MyFirstAbstractClass {
public int aMethodMyNonAbstractSubclassesMustImplement() {
// we *must* implement this method

}
}
and some attempted uses of these classes:
Object a = new MyFirstAbstractClass(); // illegal, is abstract
Object c¢ = new AConcreteSubClass(); // OK, a concrete subclass

Notice that abstract methods need no implementation; it is required that non-abstract
subclasses provide an implementation. The abstract class simply provides the template for the
methods, which are implemented by others later. In fact, in the Java class library, there are several
abstract classes that have no documented subclasses in the system, but simply provide a base
from which you can subclass in your own programs. If you look at the diagrams in Appendix
B, abstract classes are shaded even darker than final classes and are quite common in the

library.

319

320

Modifiers

Using an abstract class to embody a pure design—that is, nothing but abstract methods—is
better accomplished in Java by using an interface (discussed tomorrow). Whenever a design calls
for an abstraction that includes instance state and/or a partial implementation, however, an
abstract class is your only choice. In previous object-oriented languages, abstract classes were
simply a convention. They proved so valuable that Java supports them not only in the form
described here, but in the purer, richer form of interfaces, which will be described tomorrow.

Summary

Today, you learned how variables and methods can control their visibility and access by other
classes via the four P’s of protection: public, package, protected, and private. You also learned
that, although instance variables are most often declared private, declaring accessor methods
allows you to control the reading and writing of them separately. Protection levels allow you,
for example, to separate cleanly your public abstractions from their concrete representations.

You also learned how to create class variables and methods, which are associated with the class
itself, and how to declare final variables, methods, and classes to represent constants, fast or
secure methods, and classes, respectively.

Finally, you discovered how to declare and use abstract classes, which cannot be instantiated,
and abstract methods, which have no implementation and must be overridden in subclasses.
Together, they provide a template for subclasses to fill in and act as a variant of the powerful
interfaces of Java that you'll study tomorrow.

Q&A

Q Why are there so many different levels of protection in Java?

A Each level of protection, or visibility, provides a different view of your class to the
outside world. One view is tailored for everyone, one for classes in your own package,
another for your class and its subclasses only, and the final one for just within your
class. Each is a logically well-defined and useful separation that Java supports directly
in the language (as opposed to, for example, accessor methods, which are a convention
you must follow).

Won't using accessor methods everywhere slow down my Java code?

Not always. Soon, Java compilers will be smart enough to make them fast automati-
cally, but if you're concerned about speed, you can always declare accessor methods to
be fina1, and they’ll be just as fast as direct instance variable accesses.

> O

Q

Are class (static) methods inherited just like instance methods?

A Yes, and no. The beta compiler still allows you to inherit them, but according to one

> O

of the oddest changes in the beta language specifications, static (class) methods are
now final by default. How, then, can you ever declare a non-finai class method? The
answer is that you can’t! Inheritance of class methods is not allowed, breaking the
symmetry with instance methods. Because this goes against a part of Java’s philosophy
(of making everything as simple as possible) perhaps it will be reversed in a later
release. For now, follow the compiler and assume that class methods are inherited
normally.

Based on what I've learned, it seems like final abstract Or private abstract
methods or classes don’t make sense. Are they legal?

Nope, they’re compile-time errors, as you have guessed. To be useful, abstract
methods must be overridden, and abstract classes must be subclassed, but neither of
those two operations would be legal if they were also public Or final.

What about static transient Or final transient?

Those are also compile-time errors. Because a “transient” part of an object’s state is
assumed to be changing within each instance, it can not be static Or final. This
restriction matters only in the future, though, when transient is actually used by Java.

15

321

4

Packages and
Interfaces

by Charles L. Perkins

324

Packages and Interfaces

When you examine a new language feature, you should ask yourself two questions:

1. How can I use it to better organize the methods and classes of my Java program?
2. How can | use it while writing the Java code in my methods?

The first is often called programming in the large, and the second, programming in the small.
Bill Joy, a founder of Sun Microsystems, likes to say that Java feels like C when programming
in the small and like Smalltalk when programming in the large. What he means by that is that
Java is familiar and powerful like any C-like language while you're coding, but has the
extensibility and expressive power of a pure object-oriented language like Smalltalk while you’re
designing.

The separation of “designing” from “coding” was one of the most fundamental advances in
programming in the past few decades, and object-oriented languages such as Java implement a
strong form of this separation. The first part of this separation has already been described on
previous days: when you develop a Java program, first you design the classes and decide on the
relationships between these classes, and then you implement the Java code needed for each of
the methods in your design. If you are careful enough with both these processes, you can change
your mind about aspects of the design without affecting anything but small, local pieces of your
Java code, and you can change the implementation of any method without affecting the rest of
the design.

As you begin to explore more advanced Java programming, however, you'll find that this simple
model becomes too limiting. Today, you'll explore these limitations, for programming in the
large and in the small, to motivate the need for packages and interfaces. Let’s start with packages.

Packages

Packages are Java’s way of doing large-scale design and organization. They are used both to
categorize and group classes. Let’s explore why you might need to use packages.

Programming in the Large

When you begin to develop Java programs that use a large number of classes, you will quickly
discover some limitations in the model presented thus far for designing and building them.

For one thing, as the number of classes you build grows, the likelihood of your wanting to reuse
the short, simple name of some class increases. If you use classes that you’ve built in the past,
or that someone else has built for you (such as the classes in the Java library), you may not
remember—or even know—that these class names are in conflict. Being able to “hide” a class
inside a package becomes useful.

sams
&

Sams. net
Lea"ning

Here’s a simple example of the creation of a package in a Java source file:
package myFirstPackage;

public class MyPublicClass extends ItsSuperclass {

}

Note: If a package statement appears in a Java source file, it must be the first thing
in that file (except for comments and white space, of course).

You first declare the name of the package by using a package Statement. Then you define a class,
just as you would normally. That class, and any other classes also declared inside this same
package name, are grouped together. (These other classes are usually located in other, separate

source files.)

Packages can be further organized into a hierarchy somewhat analogous to the inheritance
hierarchy, where each “level” usually represents a smaller, more specific grouping of classes. The
Java class library itself is organized along these lines (see the diagrams in Appendix B). The top
level is called java; the next level includes names such as io, net, util, and awt. The last has an
even lower level, which includes the package image. The colorModel class, located in the package
image, can be uniquely referred to anywhere in your Java code as java.awt.image.ColorModel.

Note: By convention, the first level of the hierarchy specifies the (globally unique)
name of the company that developed the Java package(s). For example, Sun
Microsystem’s classes, which are not part of the standard Java environment, all
begin with the prefix sun. The standard package, java, is an exception to this rule
because it is so fundamental and because it might someday be implemented by
multiple companies.

Starting with the beta release, Sun has specified a more formal procedure for
package naming to be followed in the future. The top-level package name space
now reserves, for the use of this procedure, all the uppercase abbreviations used for
top-level domains on the Internet (EDU, COM, GOV, FR, US, and so on). These
reserved names form the first part of all new package names, which are prefixed by
a reversed version of your domain name. By this procedure, the sun packages would
be called com. sun. If you're further down in your company’s or university’s domain
tree, you can keep reversing to your heart’s content:
EDU.harvard.cs.projects.ai.learning.myPackage. Because domain names are
already guaranteed to be unique globally, this nicely solves that thorny problem,

325

326

Packages and Interfaces

and as a bonus, the applets and packages from the potentially millions of Java
programmers out there will automatically be stored into a growing hierarchy below
your classes directory, giving you a way to find and categorize them all in a
comprehensible manner.

Because each Java class should be located in a separate source file, the grouping of classes
provided by a hierarchy of packages is analogous to the grouping of files into a hierarchy of
directories on your file system. The Java compiler reinforces this analogy by requiring you to
create a directory hierarchy under your classes directory that exactly matches the hierarchy of the
packages you have created, and to place a class into the directory with the same name (and level)
as the package in which it’s defined.

For example, the directory hierarchy for the Java class library exactly mirrors its package
hierarchy. On UNIX, for example, the class referenced as java.awt . image.ColorModel is Stored
in a file named ColorModel.class in the directory named .../classes/java/awt/image (the ... is the
path where Java was installed on your computer). In particular, if you have created a package
within myFirstPackage called mysecondPackage, by declaring a class:

package myFirstPackage.mySecondPackage;

public class AnotherPublicClass extends AnotherSuperclass {

}

the Java source file (called AnotherPublicClass.java) must be located in a directory below the
current directory called classes/myFirstPackage/mySecondPackage for the compiler (javac) to
find it. When the compiler generates the file AnotherPublicClass.class, it places it into this same
directory so that the java interpreter can find it. Both the compiler and the interpreter expect
(and enforce) the hierarchy.

Note: This also means that, for today’s first example, the source file would be
named APublicClass.java and located in the directory called classes/
myFirstPackage. What happens when, as in earlier examples in the book, classes are
defined without a package statement? The compiler places such classes in a default,
unnamed package, and their .java and .class files can be located in the current
directory or in the classes directory below it.

To be more precise, any occurrence of the phrase “the current directory” in this
section should be replaced by “any of the directories listed in the class path.” The
compiler and interpreter both search this list of paths to find any classes you
reference.

sams
&

Sams. net
Lea"ning

You can specify a class path on the command line when running javac or java, or
more permanently, by changing a special environment variable called
CLASSPATH. (For more details, read the documentation in your Java release.)

Programming in the Small

When you refer to a class by name in your Java code, you are using a package. Most of the time
you aren’t aware of it because many of the most commonly used classes in the system are in a
package that the Java compiler automatically imports for you, called java.1ang. SO whenever

you saw this, for example:

String aString;

something more interesting than you might have thought was occurring. What if you want to
refer to the class you created at the start of this section, the one in the package myFirstPackage?

If you try this:

MyPublicClass someName;

the compiler complains—the class mypublicciass is not defined in the package java.1ang. T
solve this problem, Java allows any class name to be prefixed by the name of the package in which
it was defined to form a unique reference to the class:

myFirstPackage.MyPublicClass someName;

Note: Recall that by convention, package names tend to begin with a lowercase
letter to distinguish them from class names. Thus, for example, in the full name of
the built-in string class, java.lang.String, it’s easier to separate the package name

from the class name visually.

Suppose you want to use a lot of classes from a package, a package with a long name, or both.
You don’t want to have to refer to your classes as that.really.long.package.name.ClassName.
Java allows you to “import” the names of those classes into your program. They then act just as
java.lang classes do, and you can refer to them without a prefix. For example, to use the really
long class name in the last example more easily, you can write the following:

import that.really.long.package.name.ClassName;

ClassName anObject;
// and you can use ClassName directly as many times as you like

327

328

Packages and Interfaces

Note: All import statements must appear after any package Statement but before
any class definitions. Thus, they are “stuck” at the top of your source file.

What if you want to use several classes from that same package? Here’s an attempt from a (soon-
to-be-tired) programmer:

that.really.long.package.name.ClassOne first;
that.really.long.package.name.ClassTwo second;
that.really.long.package.name.ClassThree andSoOn;

Here’s one from a more savvy programmer, who knows how to import awhole package of public
classes:

import that.really.long.package.name.*;

ClassOne first;
ClassTwo second;
ClassThree andSoOn;

command prompt to specify the contents of a directory. For example, if you ask to
list the contents of the directory classes/java/awt/*, that list includes all the .class
files and subdirectories such as image and peer. Writing import java.awt.* does not
import subpackages such as image and peer. To import all the classes in a complex
package hierarchy, you must explicitly import each level of the hierarchy by hand.

\I Warning: The asterisk (*) in this example is not exactly the one you might use at a

If you plan to use a class or a package only a few times in your source file, it’s probably not worth
importing it. The rule of thumb is to ask yourself: “Does the loss in clarity I'd introduce by
referring to just the class name outweigh the convenience of not having to type the extra
characters?” If it does, don’t use import. Remember that the package name lets the reader know
where to find more information about the class right at the place you're using it, rather than at
the top of the file, where the import statements are located.

What if you have the following in class A’s source file?
package packageA;

public class ClassName {

}

public class ClassA {

}

and in class B’s source file you have this:
package packageB;

public class ClassName {

}

public class ClassB {

o 16

Then you the write the following, somewhere else:

import packageA;
import packageB;

ClassName anObject; // which ClassName did you mean?

There are two possible interpretations for the class you intended, one in packageA and one in
packageB. Because this is ambiguous, what should the poor compiler do? It generates an error,
of course, and you have to be more explicit about which one you intended. Here’s an example:

import packageA.*;
import packageB.*;

packageA.ClassName anObject; // now OK
packageB.ClassName anotherObject; // also OK

ClassA anAObject; // was never a problem
ClassB aBObject; // ditto

Note: You may wonder about the numerous declarations that appear as examples
in today’s lesson. Declarations are good examples because they’re the simplest
possible way of referencing a class name. Any use of a class name (in your extends
clause, for example, or in new className()) obeys the same rules.

Hiding Classes

The astute reader may have noticed that the discussion of importing with an asterisk () stated
that it imported a whole package of pub1ic classes. Why would you want to have classes of any
other kind? Take a look at this:

package collections;

public class LinkedList {
private Node root;

329

330

Packages and Interfaces

public void add(Object o) {
root = new Node(o, root);

}
}
class Node { // not public
private Object contents;
private Node next;
Node (Object o, Node n) {
contents = o;
next =n;
}
}

Note: If this were all in one file, you might be violating one of the compiler’s
conventions: only one class should be located in each Java source file. Actually, the
compiler cares only about every public class being in a separate file (although it still
is good style to use separate files for each class).

The goal of the LinkedList class is to provide a set of useful public methods (such as add()) to
any other classes that might want to use them. These other classes could care less about any
support classes LinkedList needs to get its job done, and would prefer to not “see” them when
using LinkedList. In addition, LinkedList may feel that the node class is local to its implemen-
tation and should not be seen by any other classes.

For methods and variables, this would be addressed by the four Ps of protection discussed
yesterday: private, protected, package, and public, listed in order of increasing visibility.
You've already explored many public classes, and because both private and protected really
make sense only when you’re inside a class definition, you cannot put them outside of one as
part of defining a new class. LinkedList might really like to say “only classes in my source file
can see this class,” but because, by convention, each class is located in a separate source file, this
would be a little-needed, over-narrow approach.

Instead, LinkedList declares no protection modifier, which isequivalent to saying package. Now
the class can be seen and used only by other classes in the same package in which it was defined.
In this case, it's the col1ections package. You might use LinkedList as follows:

import collections.*; // only imports public classes

LinkedList alLinkedList;
/* Node nj; */ // would generate a compile-time error

aLinkedList.add(new Integer(1138));
aLinkedList.add("THX-");

sams
&

Sams. net
Lea"ning

Note: You also can import or declare a LinkedList @S collections.LinkedList in
this example. Because LinkedList refers to Node, that class is automatically loaded
and used, and the compiler verifies that LinkedList (as part of package coliec-
tions) has the right to create and use the Node class. You still do not have that right,
though, just as in the example.

One of the great powers of hidden classes is that even if you use them to introduce a great deal
of complexity into the implementation of some pub1ic class, all the complexity is hidden when
that class is imported. Thus, creating a good package consists of defining a small, clean set of
public classes and methods for other classes to use, and then implementing them by using any
number of hidden (package) support classes. You'll see another use for hidden classes later today.

Interfaces

Interfaces, like the abstract classes and methods you saw yesterday, provide templates of behavior
that other classes are expected to implement, but they are much more powerful. Let’s see why
you might need such power.

Programming in the Large

When you first begin to design object-oriented programs, the class hierarchy seems almost
miraculous. Within that single tree you can express a hierarchy of numeric types (number,
complex, float, rational, integer), many simple-to-moderately-complex relationships between
objectsand processes in the world, and any number of points along the axis from abstract/general
to concrete/specific. After some deeper thought or more complex design experience, this
wonderful tree begins to feel restrictive—at times, like a straitjacket. The very power and
discipline you’ve achieved by carefully placing only one copy of each idea somewhere in the tree
can come back to haunt you whenever you need to cross-fertilize disparate parts of that tree.

Some languages address these problems by introducing more flexible run-time power, such as
the code block and the perform: method of Smalltalk; others choose to provide more complex
inheritance hierarchies, such as multiple-inheritance. With the latter complexity comes a host
of confusing and error-prone ambiguities and misunderstandings, and with the former, a harder
time implementing safety and security and a harder language to explain and teach. Java has
chosen to take neither of these paths but, in the spirit of objective-C’s protocols, has adopted
a separate hierarchy altogether to gain the expressive power needed to loosen the straitjacket.

This new hierarchy is a hierarchy of interfaces. Interfaces are not limited to a single superclass,
so they allow a form of multiple-inheritance. But they pass on only method descriptions to their

331

332

Packages and Interfaces

children, not method implementations nor instance variables, which helps to eliminate many
of the complexities of full multiple-inheritance.

Interfaces, like classes, are declared in source files, one interface to a file. Like classes, they also
are compiled into .class files. In fact, almost everywhere that this book has a class name in any
of its examples or discussions, you can substitute an interface name. Java programmers often say
“class” when they actually mean “class or interface.” Interfaces complement and extend the
power of classes, and the two can be treated almost exactly the same. One of the few differences
between them is that an interface cannot be instantiated: new can create only an instance of aclass.
Here’s the declaration of an interface:

package myFirstPackage;
public interface MyFirstInterface extends Interfacel, Interface2, ... {

// all methods in here will be public and abstract
// all variables will be public, static, and final

}

This example is a rewritten version of the first example in today’s lesson. It now adds a new
public interface to the package myFirstPackage, instead of a new public class. Note that
multiple parents can be listed in an interface’s extends clause.

Note: If no extends clause is given, interfaces do not default to inheriting from
object, because object is a class. In fact, interfaces have no “topmost” interface
from which they are all guaranteed to descend.

Any variables or methods defined in a public interface are implicitly prefixed by the modifiers
listed in the comments. Exactly those modifiers can (optionally) appear, but no others:
public interface MySecondInterface {

public static final int theAnswer = 42; // both lines OK
public abstract int 1lifeTheUniverseAndEverything();

long bingBangCounter = 0; // OK, becomes public, static, final
long ageOfTheUniverse(); // OK, becomes public and abstract

protected int aConstant; // not OK
private int getAnInt(); // not OK

Note: If an interface is declared non-public (that is, package), N0 public modifiers
are implicitly prefixed. If you say public inside such an interface, you’re making a
real statement of pub1ic-ness, not simply a redundant statement. It’s not often,

sams
&

Sams. net
Lea"ning

though, that an interface is shared only by the classes inside a package, and not by
the classes using that package as well.

Design Versus Implementation Revisited

One of the most powerful things interfaces add to Java is the capability of separating design
inheritance from implementation inheritance. In the single-class inheritance tree, these two are
inextricably bound. Sometimes, you want to be able to describe an interface to a class of objects
abstractly, without having to implement a particular implementation of it yourself. You could
create an abstract class, such as those described yesterday. In order for a new class to use this
type of “interface,” however, it has to become a subclass of the abstract class and accept its
position in the tree. If this new class also needs to be a subclass of some other class in the tree,
for implementation reasons, what could it do? What if it wants to use two such “interfaces” at
once? Watch this:

class FirstImplementor extends SomeClass implements MySecondInterface {

}

class SecondImplementor implements MyFirstInterface, MySecondInterface {

}

The first class above is “stuck” in the single inheritance tree just below the class somec1ass but
is free to implement an interface as well. The second class is stuck just below object but has
implemented two interfaces (it could have implemented any number of them). Implementing
an interface means promising to implement all the methods specified in it.

Note: Although an abstract class is allowed to ignore this strict requirement, and
can implement any subset of the methods (or even none of them), all its non-
abstract subclasses must still obey it.

Because interfaces are in a separate hierarchy, they can be “mixed-in” to the classes in the single
inheritance tree, allowing the designer to sprinkle an interface anywhere it is needed throughout
the tree. The single-inheritance class tree can thus be viewed as containing only the implemen-
tation hierarchy; the design hierarchy (full of abstract methods, mostly) is contained in the
multiple-inheritance interface tree. This is a powerful way of thinking about the organization
of your program, and though it takes a little getting used to, it’s also a highly recommended one.

Let’s examine one simple example of this separation—creating the new class orange. Suppose

you already have a good implementation of the class Fruit, and an interface, Fruitlike, that
333

334

Packages and Interfaces

represents what Fruits are expected to be able to do. You want an orange to be a fruit, but you
also want it to be a spherical object that can be tossed, rotated, and so on. Here’s how to express
itall:

interface Fruitlike extends Foodlike {

void decay();
void squish();

}

class Fruit extends Food implements Fruitlike {
private Color myColor;
private int daysTilIRot;

}

interface Spherelike {
void toss();
void rotate();

}

class Orange extends Fruit implements Spherelike {
// toss()ing may squish() me (unique to me)
}
You’ll use this example again later today. For now, notice that class orange doesn’t have to say
implements Fruitlike because, by extending Fruit, it already has!

Note: The reverse is not true, however. Implementing an interface implies nothing
about the implementation hierarchy of a class. By the way, if you had used a more
traditional way of designing classes (though not necessarily better), the class Fruit
would be the interface description, as well as being the implementation.

One of the nice things about this structure is that you can change your mind about what class
orange extends (if a really great sphere class is suddenly implemented, for example), yet class
orange Will still understand the same two interfaces:

class Sphere implements Spherelike { // extends Object
private float radius;

}

class Orange extends Sphere implements Fruitlike {
// users of Orange never need know about the change!
}
The canonical use of the “mix-in” capability of interfaces is to allow several classes, scattered
across the single-inheritance tree, to implement the same set of methods (or even just one).

Sams.ney
Learning

sams
net

Although these classes share a common superclass (at worst, object), it is likely that below this
common parent are many subclasses that are not interested in this set of methods. Adding the
methods to the parent class, or even creating a new abstract class to hold them and inserting
it into the hierarchy above the parent, is not an ideal solution.

Instead, use an interface to specify the method(s). It can be implemented by every class that
shares the need and by none of the other classes that would have been forced to “understand”
them in the single-inheritance tree. (Design is applied only where needed.) Users of the interface
can now specify variables and arguments to be of a new interface type that can refer to any of
the classes that implement the interface (as you'll see below)—a powerful abstraction. Some
examples of “mix-in" facilities are object persistence (via read() and write() methods),
producing or consuming something (the Java library does this for images), and providing
generally useful constants. The last of these might look like this:

public interface PresumablyUsefulConstants {
public static final int oneOfThem = 1234;
public static final float another = 1.234F;

public static final String yetAnother "1234";

}

public class AnyClass implements PresumablyUsefulConstants {
public static void main(String argV[]) {
double calculation = oneOfThem * another;

System.out.println("hello " + yetAnother + calculation);

}

This outputs the thoroughly meaningless hel1o 12341522.756, but in the process demonstrates
that the class Anyciass can refer directly to all the variables defined in the interface
PresumablyUsefulConstants. Normally, you refer to such variables and constants via the class,
as for the constant 1nteger.mIN_vALUE, Which is provided by the 1nteger class. If a set of
constants is large or is widely used, the shortcut of being able to refer to them directly (as
one0fThem rather than as PresumablyUsefulConstants.one0fThem) makes it worth placing them

into an interface and implementing it widely.

Programming in the Small

How do you actually use these interfaces? Remember that almost everywhere that you can use
aclass, you can use an interface instead. Let’s try to make use of the interface mysecondInterface

defined previously:
MySecondInterface anObject = getTheRightObjectSomehow();

long age = anObject.ageOfTheUniverse();

16

335

336

Packages and Interfaces

Onceyoudeclare anobject to be of type mysecondInterface, yOU Can USe anobject asthe receiver
of any message that the interface defines (or inherits). What does the previous declaration really
mean?

When avariable is declared to be of an interface type, it simply means that any object the variable
refers to is expected to have implemented that interface—that is, it is expected to understand
all the methods that interface specifies. It assumes that a promise made between the designer of
the interface and its eventual implementors has been kept. Although this is a rather abstract
notion, itallows, for example, the previous code to be written long before any classes that qualify
are actually implemented (or even created!). In traditional object-oriented programming, you
are forced to create a class with “stub” implementations to get the same effect.

Here’s a more complicated example:

Orange anOrange
Fruit aFruit
Fruitlike aFruitlike
Spherelike aSpherelike

getAnOrange();

(Fruit) getAnOrange();
(Fruitlike) getAnOrange();
(Spherelike) getAnOrange();

aFruit.decay(); // fruits decay
aFruitlike.squish(); // and squish
aFruitlike.toss(); // not OK
aSpherelike.toss(); // OK

anOrange.decay (

); // oranges can do it all
anOrange.squish();

5

(

anOrange.toss()

anOrange.rotate();

Declarations and casts are used in this example to restrict an orange to act more like a mere fruit
or sphere, simply to demonstrate the flexibility of the structure built previously. If the second
structure built (the one with the new sphere class) were being used instead, most of this code
would still work. (In the line bearing Fruit, all instances of Fruit need to be replaced by sphere.
The later use of aFruit.decay() could be replaced by, for example, asphere.rotate().
Everything else is the same.)

Note: The direct use of (implementation) class names is for demonstration pur-
poses only. Normally, you would use only interface names in those declarations
and casts so that none of the code in the example would have to change to support
the new structure.

Interfaces are implemented and used throughout the Java class library, whenever a behavior is
expected to be implemented by a number of disparate classes. In Appendix B you'll find, for
example, the interfaces java.lang.Runnable, java.util.Enumeration, java.util.Observable,
java.awt.image.ImageConsumer, and java.awt.image.ImageProducer. Let’s use one of these
interfaces, Enumeration, to revisit the LinkedList example—and to tie together today’s lesson—
by demonstrating a good use of packages and interfaces together:

package collections; 16

public class LinkedList {
private Node root;

public Enumeration enumerate() {
return new LinkedListEnumerator(root);
}
}

class Node {
private Object contents;
private Node next;

public Object contents() {
return contents;

}

public Node next() {
return next;
}
}

class LinkedListEnumerator implements Enumeration {
private Node currentNode;

LinkedListEnumerator (Node root) {
currentNode = root;

}

public boolean hasMoreElements() {
return currentNode != null;

}

public Object nextElement() {
Object anObject = currentNode.contents();

currentNode = currentNode.next();
return anObject;

337

338

Packages and Interfaces

Here is a typical use of the enumerator:

collections.LinkedList alLinkedList = createLinkedList();
java.util.Enumeration e = aLinkedList.enumerate();

while (e.hasMoreElements()) {
Object anObject = e.nextElement();
// do something useful with anObject

}

Notice that although you are using the Enumeration e as though you know what it is, you actually
do not. In fact, it is an instance of a hidden class (LinkedListEnumerator) that you cannot see
or use directly. By a combination of packages and interfaces, the LinkedList class has managed
to provide a transparent public interface to some of its most important behavior (via the already
defined interface java.util.Enumeration) While still encapsulating (hiding) its two implemen-
tation (support) classes.

Handing out an object like this is sometime called vending. Often, the “vendor” gives out an
object that a receiver can’t create itself, but that it knows how to use. By giving it back to the
vendor, the receiver can prove it has a certain capability, authenticate itself, or do any number
of useful tasks—all without knowing much about the vended object. This is a powerful
metaphor that can be applied in a broad range of situations.

Summary

Today, you learned how packages can be used to collect and categorize classes into meaningful
groups. Packages are arranged in a hierarchy, which not only better organizes your programs,
but allows you and the millions of Java programmers out on the Net to name and share their
projects uniquely with one another.

You also learned how to use packages, both your own and the many preexisting ones in the Java
class library.

You then discovered how to declare and use interfaces, a powerful mechanism for extending the
traditional single-inheritance of Java’s classes and for separating the design inheritance from the
implementation inheritance in your programs. Interfaces are often used to call shared methods
when the exact class involved is not known. You’ll see further uses of interfaces tomorrow and
the day after.

Finally, packages and interfaces can be combined to provide useful abstractions, such as
Enumeration, that appear simple yet are actually hiding almost all their (complex) implementa-
tion from their users. This is a powerful technique.

sams
&

Sams. net
Lea"ning

Q&A

Q What will happen to package/directory hierarchies when some sort of archiving
is added to Java?

A Being able to download over the Net a whole archive of packages, classes, and re-
sources is something that Java systems may soon be able to do. When this happens,
the simple mapping between directory hierarchy and package hierarchy will break
down, and you will not be able to tell as easily where each class is stored (that is, in
which archive). Presumably these new, advanced Java systems will provide tools that
make this task (and compiling and linking your program in general) much easier.

Q Can you say import some.package.B* t0 import all the classes in that package that
begin with 8?

A No, the import asterisk () does not act like a command-line asterisk.

Then what exactly does import-ing with an * mean?

Combining everything said previously, this precise definition emerges: it imports all
the pub1ic classes that are directly inside the package named, and not inside one of its
subpackages. (You can only import exactly this set of classes, or exactly one explicitly
named class, from a given package.) By the way, Java only “loads” the information for
a class when you actually refer to that class in your code, so the = form of import is no
less efficient than naming each class individually.

Q Is there any way that a hidden (package) class can somehow be forced out of
hiding?

A A bizarre case in which a hidden class can be forced into visibility occurs if it has a
public superclass and someone casts an instance of it to the superclass. Any public
methods of that superclass can now be called via your hidden class instance, even if
those methods were not thought of by you as pub1ic when overridden in the hidden
class. Usually, these pub1ic methods are ones you don’t mind having your instances
perform, or you wouldn’t have declared them to have that pub1ic superclass. This isn’t
always the case. Many of the system’s built-in classes are pub1ic—Yyou may have no
choice. Luckily, this is a rare event.

Why is full multiple-inheritance so complex that Java abandoned it?

It's not so much that it is too complex, but that it makes the language overly compli-
cated—and as you'll learn on the final day, this can cause larger systems to be less
trustworthy and thus less secure. For example, if you were to inherit from two
different parents, each having an instance variable with the same name, you would be
forced to allow the conflict and explain how the exact same references to that variable
name in each of your superclasses, and in you (all three), are now different. Instead of

> O

> O

339

340

Packages and Interfaces

> O

being able to call “super” methods to get more abstract behavior accomplished, you
would always need to worry about which of the (possibly many) identical methods
you actually wished to call in which parent. Java’s run-time method dispatching would
have to be more complex as well. Finally, because so many people would be providing
classes for reuse on the Net, the normally manageable conflicts that would arise in
your own program would be confounded by millions of users mixing and matching
these fully multi-inherited classes at will. In the future, if all these issues are resolved,
more powerful inheritance may be added to Java, but its current capabilities are
already sufficient for 99 percent of your programs.

abstract classes don’t have to implement all the methods in an interface them-
selves, but do all their subclasses have to?

Actually, no. Because of inheritance, the precise rule is that an implementation must
be provided by some class for each method, but it doesn’t have to be your class. This is
analogous to when you are the subclass of a class that implements an interface for you.
Whatever the abstract class doesn’t implement, the first nonabstract class below it
must implement. Then, any further subclasses need do nothing further.

You didn’t mention callbacks. Aren’t they an important use of interfaces?

Yes, but | didn’t mention them because a good example would be too bulky in the
text. These callbacks are often used in user interfaces (such as window systems) to
specify what set of methods are going to be sent whenever the user does a certain set of
things (such as clicking the mouse somewhere, typing, and so forth). Because the user
interface classes should not “know” anything about the classes using them, an
interface’s ability to specify a set of methods separate from the class tree is crucial in
this case. Callbacks using interfaces are not as general as using, for example, the
perform: method of Smalltalk, however, because a given object can request that a user
interface object “call it back” only by using a single method name. Suppose that object
wanted two user interfaces objects of the same class to call it back, using different
names to tell them apart? It cannot do this in Java, and it is forced to use special state
and tests to tell them apart. (I warned you that it was complicated!). So, although
interfaces are quite valuable in this case, they are not the ideal callback facility.

4

EXxceptions

by Charles L. Perkins

Exceptions

Today, you'll learn about exceptional conditions in Java:

O How to declare when you are expecting one

O How to handle them in your code

O How to create them

O How your code is limited, yet made more robust by them

Let’s begin by motivating why new ways of handling exceptions were invented.

Programming languages have long labored to solve the following common problem:

int status = callSomethingThatAlmostAlwaysWorks();

if (status == FUNNY_RETURN_VALUE) {
e // something unusual happened, handle it
switch(someGlobalErrorIndicator) {
// handle more specific problems

} elie {
- // all is well, go your merry way

}

Somehow this seems like a lot of work to do to handle a rare case. What’s worse, if the function

called returns an int as part of its normal answer, you must distinguish one special integer

(FUNNY_RETURN_VALUE) to indicate an error. What if that function really needs all the integers?

You must do something even more ugly.

Even if you manage to find a distinguished value (such asnuLL in C for pointers, -1 for integers,
and so forth), what if there are multiple errors that must be produced by the same function?
Often, some global variable is used as an error indicator. The function stores a value in it and
prays that no one else changes it before the caller gets to handle the error. Multiple errors
propagate badly, if at all, and there are numerous problems with generalizing this to large
programs, complex errors, and so forth.

Luckily, there is an alternative: using exceptions to help you handle exceptional conditions in
your program, making the normal, nonexceptional code cleaner and easier to read.

NEWI] An exception is any object that is an instance of the class Throwable (or any of
TERM its subclasses).

Programming in the Large

When you begin to build complex programs in Java, you discover that after designing the classes
and interfaces, and their methods descriptions, you still have not defined all the behavior of your
objects. After all, an interface describes the normal way to use an object and doesn’t include any

342

sams
&

Sams. net
Lea"ning

strange, exceptional cases. In many systems, the documentation takes care of this problem by
explicitly listing the distinguished values used in “hacks” like the previous example. Because the
system knows nothing about these hacks, it cannot check them for consistency. In fact, the
compiler can do nothing at all to help you with these exceptional conditions, in contrast to the
helpful warnings and errors it produces if a method is used incorrectly.

More importantly, you have not captured in your design this important aspect of your program.
Instead, you are forced to make up a way to describe it in the documentation and hope you have
not made any mistakes when you implement it later. What’s worse, everyone else makes up a
different way of describing the same thing. Clearly, you need some uniform way of declaring the
intentions of classes and methods with respect to these exceptional conditions. Java provides just
such a way:

public class MyFirstExceptionalClass {
public void anExceptionalMethod() throws MyFirstException {

}
}
Here, you warn the reader (and the compiler) that the code . . . may throw an exception called
MyFirstException.

You can think of a method’s description as a contract between the designer of that method (or
class) and you, the caller of the method. Usually, this description tells the types of a method’s
arguments, what it returns, and the general semantics of what it normally does. You are now
being told, as well, what abnormal things it can do. This is a promise, just like the method
promises to return a value of a certain type, and you can count on it when writing your code.
These new promises help to tease apart and make explicit all the places where exceptional
conditions should be handled in your program, and that makes large-scale design easier.

Because exceptions are instances of classes, they can be put into a hierarchy that can naturally
describe the relationships among the different types of exceptions. In fact, if you take a moment
to glance in Appendix B at the diagrams for java.1ang-errors and java.lang-exceptions, you'll
see that the class Throwab1e actually has two large hierarchies of classes beneath it. The roots of
these two hierarchies are subclasses of Throwab1e called Exception and Error. These hierarchies
embody the rich set of relationships that exist between exceptions and errors in the Java run-time
environment.

When you know that a particular kind of error or exception can occur in your method, you are
supposed to either handle it yourself or explicitly warn potential callers about the possibility via
the throws clause. Not all errors and exceptions must be listed; instances of either class error or
RuntimeException (Or any of their subclasses) do not have to be listed in your throws clause. They
get special treatment because they can occur anywhere within a Java program and are usually
conditions that you, as the programmer, did not directly cause. One good example is the
outofMemoryError, Which can happen anywhere, at any time, and for any number of reasons.

343

344

Exceptions

Note: You can, of course, choose to list these errors and run-time exceptions if you
like, and the callers of your methods will be forced to handle them, just like a non-
run-time exception.

Whenever you see the word “exception” by itself, it almost always means “excep-
tion or error” (that is, an instance of Throwab1e). The previous discussion makes it
clear that Exceptions and Errors actually form two separate hierarchies, but except
for the throws clause rule, they act exactly the same.

If you examine the diagrams in Appendix B more carefully, you'll notice that there are only five
types of exceptions (in java.lang) that must be listed in a throws clause (remember that all
Errors and RuntimeExceptions are exempt):

[0 ClassNotFoundException
[0 IllegalAccessException
[0 InstantiationException
[0 InterrupedException

[0 NoSuchMethodException

Each of these names suggests something that is explicitly caused by the programmer, not some
behind-the-scenes event such as outofMemoryError.

If you look further in Appendix B, near the bottom of the diagrams for java.util and java. io,
you’ll see that each package adds some new exceptions. The former is adding two exceptions
somewhat akin to ArrayStoreException and IndexOutOfBoundsException, and so decides to
place them under RuntimeException. The latter is adding a whole new tree of 10Exceptions,
which are more explicitly caused by the programmer, and so they are rooted under Exception.
Thus, 10Exceptions must be described in throws clauses. Finally, package java.awt defines one
of each style, implicit and explicit.

The Java class library uses exceptions everywhere, and to good effect. If you examine the detailed
API documentation in your Java release, you see that many of the methods in the library have
throws clauses, and some of them even document (when they believe it will make something
clearer to the reader) when they may throw one of the implicit errors or exceptions. This is just
a nicety on the documenter’s part, because you are not required to catch conditions like that.
If it wasn’t obvious that such a condition could happen there, and for some reason you really
cared about catching it, this would be useful information.

sams
net

Sams.ney
Learning

Programming in the Small

Now that you have a feeling for how exceptions can help you design a program and a class library
better, how do you actually use exceptions? Let’s try to use anexceptionalMethod () defined in

today’s first example:

public void anotherExceptionalMethod() throws MyFirstException {
MyFirstExceptionalClass aMFEC = new MyFirstExceptionalClass();

aMFEC.anExceptionalMethod();
}
Let’s examine this example more closely. If you assume that myFirstException is a subclass of
Exception, it means that if you don’t handle itinanotherExceptionalMethod()’s cOde, you must
warnyour callersaboutit. Because your code simply calls anExceptionalMethod () Without doing
anything about the fact that it may throw myFirstException, you must add that exception to 17
your throws clause. This is perfectly legal, but it does defer to your caller something that perhaps
you should be responsible for doing yourself. (It depends on the circumstances, of course.)

Suppose that that you feel responsible today and decide to handle the exception. Because you're
now declaring a method without a throws clause, you must “catch” the expected exception and
do something useful with it:

public void responsibleMethod() {
MyFirstExceptionalClass aMFEC = new MyFirstExceptionalClass();

try {
aMFEC.anExceptionalMethod();

} catch (MyFirstException m) {
P // do something terribly significant and responsible

}
}

The try statement says basically: “Try running the code inside these braces, and if there are
exceptions thrown, I will attach handlers to take care of them.” (You first heard about these on
Day 10.) You can have as many catch clauses at the end of a try as you need. Each allows you
to handle any and all exceptions that are instances: of the class listed in parentheses, of any of
its subclasses, or of a class that implements the interface listed in parentheses. Inthe catch in this
example, exceptions of the class myFirstException (0Or any of its subclasses) are being handled.

What if you want to combine both the approaches shown so far? You'd like to handle the

exception yourself, but also reflect it up to your caller. This can be done, by explicitly rethrowing

the exception:

public void responsibleExceptionalMethod() throws MyFirstException {
MyFirstExceptionalClass aMFEC = new MyFirstExceptionalClass();

try {
aMFEC.anExceptionalMethod();

345

346

Exceptions

} catch (MyFirstException m) {

A // do something responsible

throw m; /| re-throw the exception
) }
This works because exception handlers can be nested. You handle the exception by doing
something responsible with it, but decide that it is too important to not give an exception
handler that might be in your caller a chance to handle it as well. Exceptions float all the way
up the chain of method callers this way (usually not being handled by most of them) until at last,
the system itself handles any uncaught ones by aborting your program and printing an error
message. In a stand-alone program, this is not such a bad idea; but in an applet, it can cause the
browser to crash. Most browsers protect themselves from this disaster by catching all exceptions
themselves whenever they run an applet, but you can never tell. If it’s possible for you to catch
an exception and do something intelligent with it, you should.

Let’s see what throwing a new exception looks like. How about fleshing out today’s first example:

public class MyFirstExceptionalClass {
public void anExceptionalMethod() throws MyFirstException {

if (someThingUnusualHasHappened()) {

throw new MyFirstException();
// execution never reaches here

}

% Note: throw is a little like a break statement—nothing “beyond it” is executed.

This is the fundamental way that all exceptions are generated; someone, somewhere, had to
create an exception object and throw it. In fact, the whole hierarchy under the class Throwable
would be worth much less if there were not throw statements scattered throughout the code in
the Java library at just the right places. Because exceptions propagate up from any depth down
inside methods, any method call you make might generate a plethora of possible errors and
exceptions. Luckily, only the ones listed in the throws clause of that method need be thought
about; the rest travel silently past on their way to becoming an error message (or being caught
and handled higher in the system).

Here’s an unusual demonstration of this, where the throw, and the handler that catcnes it, are
very close together:

System.out.print("Now ");

try {
System.out.print("is ");
throw new MyFirstException();

o N= sams
38
System.out.print("a ");
} catch (MyFirstException m) {
System.out.print("the ");
}
System.out.print("time.");
It prints out Now is the time.
Exceptions are really a quite powerful way of partitioning the space of all possible error
conditions into manageable pieces. Because the first catch clause that matches is executed, you
can build chains such as the following:
try {
someReallyExceptionalMethod();
} catch (NullPointerException n) { // a subclass of RuntimeException
} catch (RuntimeException r) { // a subclass of Exception 17
} catch (IOException i) { // a subclass of Exception
} catch (MyFirstException m) { // our subclass of Exception
} catch (Exception e) { // a subclass of Throwable

} catch (Throwable t) {
// Errors, plus anything not caught above are caught here

}

By listing subclasses before their parent classes, the parent catches anything it would normally
catch that’s also not one of the subclasses above it. By juggling chains like these, you can express
almost any combination of tests. If there’s some really obscure case you can’t handle, perhaps
you can use an interface to catch it instead. That allows you to design your (peculiar) exceptions
hierarchy using multiple inheritance. Catching an interface rather than a class can also be used
to test for a property that many exceptions share but that cannot be expressed in the single-
inheritance tree alone.

Suppose, for example, that a scattered set of your exception classes require a reboot after being
thrown. You create an interface called NeedsReboot, and all these classes implement the interface.
(None of them needs to have a common parent exception class.) Then, the highest level of
exception handler simply catches classes that implement needsReboot and performs a reboot:

public interface NeedsReboot { } // needs no contents at all

try {
someMethodThatGeneratesExceptionsThatImplementNeedsReboot();
} catch (NeedsReboot n) { // catch an interface
A // cleanup
SystemClass.reboot(); // reboot using a made-up system class
}

By the way, if you need really unusual behavior during an exception, you can place the behavior
into the exception class itselfl Remember that an exception is also anormal class, so it can contain

347

348

Exceptions

instance variables and methods. Although using them is a little peculiar, it might be valuable on
a few bizarre occasions. Here’s what this might look like:

try {
someExceptionallyStrangeMethod();

} catch (ComplexException e) {

switch (e.internalState()) { // probably an instance variable value
case e.COMPLEX_CASE: // a class variable of the exception
e.performComplexBehavior(myState, theContext, etc);
break;
}

The Limitations Placed
on the Programmer

As powerful as all this sounds, isn’t it a little limiting, too? For example, suppose you want to
override one of the standard methods of the object class, tostring(), to be smarter about how
you print yourself:
public class MyIllegalClass {

public String toString() {

someReallyExcept1onalMethod()
- // returns some String

}

Because the superclass (object) defined the method declaration for tostring () withoutathrows
clause, any implementation of it in any subclass must obey this restriction. In particular, you
cannot just call someReallyExceptionalMethod (), asyou did previously, because it will generate
ahost of errorsand exceptions, some of which are not exempt from being listed in athrows clause
(such as 10Exception and myFirstException). If all the exceptions thrown were exempt, you
would have no problem, but because some are not, you have to catch at least those few exceptions
for this to be legal Java:

public class MyLegalClass {

public String toString() {
try {
someReallyExceptionalMethod();
} catch (IOException e) {
} catch (MyFirstException m) {
}

// returns some String

}

In both cases, you elect to catch the exceptions and do absolutely nothing with them. Although
thisis legal, it is not always the right thing to do. You may need to think for a while to come up
with the best, nontrivial behavior for any particular catch clause. This extra thought and care

makes your program more robust, better able to handle unusual input, and more likely to work
correctly when used by multiple threads (you’ll see this tomorrow).

MyIllegalClass’S toString() method produces a compiler error to remind you to reflect on
these issues. This extra care will richly reward you as you reuse your classes in later projects and
in larger and larger programs. Of course, the Java class library has been written with exactly this
degree of care, and that’s one of the reasons it’s robust enough to be used in constructing all your
Java projects.

The finally Clause

Finally, for final1y. Suppose there is some action that you absolutely must do, no matter what

happens. Usually, this is to free some external resource after acquiring it, to close a file after 17
opening it, or so forth. To be sure that “no matter what” includes exceptions as well, you use

a clause of the try statement designed for exactly this sort of thing, final1y:

SomeFileClass f = new SomeFileClass();

if (f.open("/a/file/name/path")) {
try {
someReallyExceptionalMethod();
} finally {
f.close();
}
}

This use of fina11y behaves very much like the following:

SomeFileClass f = new SomeFileClass();

if (f.open("/a/file/name/path")) {
try {
someReallyExceptionalMethod();
} catch (Throwable t) {
f.close();
throw t;

}

except that final1y can also be used to clean up not only after exceptions but after return, break,
and continue Statements as well. Here’s a complex demonstration:

public class MyFinalExceptionalClass extends ContextClass {
public static void main(String argv[]) {
int mysteriousState = getContext();

while (true) {
System.out.print("Who ");

try {
System.out.print("is ");
if (mysteriousState == 1)

349

350

Exceptions

return;
System.out.print("that ");
if (mysteriousState == 2)

break;
System.out.print("strange ");
if (mysteriousState == 3)

continue;
System.out.print("but kindly ");
if (mysteriousState == 4)

throw new UncaughtException();
System.out.print("not at all ");
} finally {
System.out.print("amusing ");

}
System.out.print("yet compelling ");

}

System.out.print("man?");

}
Here is the output produced depending on the value of mysteriousState:

1 Who is amusing

2 Who is that amusing man?

3 Who is that strange amusing Who is that strange amusing .

4 Who is that strange but kindly amusing

5 Who is that strange but kindly not at all amusing yet compelling man?
Note: In case 3, the output never ends until you press Ctrl+C. In 4, an error
message generated by the uncaughtException is also printed.

Today, you learned about how exceptions aid your program’s design, robustness, and
multithreading capability (more on this tomorrow).

You also learned about the vast array of exceptions defined and thrown in the Java class library,
and how to try methods while catch-ing any of a hierarchically ordered set of possible exceptions
and errors. Java’s reliance on strict exception handling does place some restrictions on the
programmer, but you learned that these restrictions are light compared to the rewards.

Finally, the final1y clause was discussed, which provides a fool-proof way to be certain that
something is accomplished, no matter what.

sams
&

Sams.ney
Learning

Q&A

Q

A

I’d like to test the last example you gave, but where does getcontext() come
from?

That example wasn’t meant to be an executable program as it stands, but you can turn
it into one as follows. First, remove the clause extends contextclass from line one.
Then, replace getcontext () in the third line with

Integer.parselnt(args[@]). YOU can now compile, then run, the example via the
following:

java MyFinalExceptionClass N
where N is the mysterious state you want.

I’'m still not sure | understand the differences between exceptions, Errors, and 17
RuntimeExceptions. IS there another way of looking at them?

Errors are caused by dynamic linking, or virtual machine problems, and are thus too
low-level for most programs to care about (although sophisticated development
libraries and environments probably care a great deal about them).
RuntimeExceptions are generated by the normal execution of Java code, and though
they occasionally reflect a condition you will want to handle explicitly, more often
they reflect a coding mistake by the programmer and simply need to print an error to
help flag that mistake. Exceptions that are not RuntimeExceptions (I0Exceptions, for
example) are conditions that, because of their nature, should be explicitly handled by
any robust and well-thought-out code. The Java class library has been written using
only a few of these, but they are extremely important to using the system safely and
correctly. The compiler helps you handle these exceptions properly via its throws
clause checks and restrictions.

Is there any way to “get around” the strict restrictions placed on methods by the
throws clause?

Yes. Suppose you thought long and hard and have decided that you need to circum-
vent this restriction. This is almost never the case, because the right solution is to go
back and redesign your methods to reflect the exceptions that you need to throw.
Imagine, however, that for some reason a system class has you in a straitjacket. Your
first solution is to subclass RuntimeException t0 make up a new, exempt exception of
your own. Now you can throw it to your heart’s content, because the throws clause
that was annoying you does not need to include this new exception. If you need a lot
of such exceptions, an elegant approach is to mix in some novel exception interfaces to
your new Runtime classes. You're free to choose whatever subset of these new interfaces
you want to catch (none of the normal rRuntime exceptions need be caught), while any
leftover (new) runtime exceptions are (legally) allowed to go through that otherwise
annoying standard method in the library.

351

352

Exceptions

Q

A

I’'m still a little confused by long chains of catch clauses. Can you label the
previous example with which exceptions are handled by each line of code?

Certainly, here it is:

try {
someReallyExceptionalMethod();
} catch (NullPointerException n) {
- // handles NullPointerExceptions
} catch (RuntimeException r) {
- // handles RuntimeExceptions that are not NullPointerExceptions
} catch (IOException i) {
- // handles IOExceptions
} catch (MyFirstException m) {
- // handles MyFirstExceptions
} catch (Exception e) { // handles Exceptions that are not RuntimeExceptions
e // nor IOExceptions nor MyFirstExceptions
} catch (Throwable t) {
// handles Throwables that are not Exceptions (i.e., Errors)

}

Given how annoying it can sometimes be to handle exceptional conditions
properly, what’s stopping me from surrounding any method with a throws clause
as follows:

try { thatAnnoyingMethod(); } catch (Throwable t) { }

and simply ignoring all exceptions?

Nothing, other than your own conscience. In some cases, you should do nothing,
because it is the correct thing to do for your method’s implementation. Otherwise,

you should struggle through the annoyance and gain experience. Good style is a
struggle even for the best programmer, but the rewards are rich indeed.

4

Multithreading

by Charles L. Perkins

354

Multithreading

Today, you’ll learn more about the threads mentioned briefly in Week 2:

O How to “think multithreaded”

O How to protect your methods and variables from unintended thread conflicts
O How to create, start, and stop threads and threaded classes

O How the scheduler works in Java

First, let’s begin by motivating the need for threads.

Threads are a relatively recent invention in the computer science world. Although processes,
their larger parent, have been around for decades, threads have only recently been accepted into
the mainstream. What’s odd about this is that they are very valuable, and programs written with
them are noticeably better, even to the casual user. In fact, some of the bestindividual, Herculean
efforts over the years have involved implementing a threads-like facility by hand to give a
program a more friendly feel to its users.

Imagine that you’re using your favorite text editor on a large file. When it starts up, does it need
to examine the entire file before it lets you edit? Does it need to make a copy of the file? If the
fileishuge, thiscan be anightmare. Wouldn'titbe nicer for it to show you the first page, enabling
you to begin editing, and somehow (in the background) complete the slower tasks necessary for
initialization? Threads allow exactly this kind of within-the-program parallelism.

Perhaps the best example of threading (or lack of it) is a WWW browser. Can your browser
download an indefinite number of files and Web pages at once while still enabling you to
continue browsing? While these pages are downloading, can your browser download all the
pictures, sounds, and so forth in parallel, interleaving the fast and slow download times of
multiple Internet servers? HotJava can do all of these things—and more—by using the built-
in threading of the Java language.

The Problem with Parallelism

If threading is so wonderful, why doesn’t every system have it? Many modern operating systems
have the basic primitives needed to create and run threads, but they are missing a key ingredient.
The rest of their environment is not thread-safe. Imagine that you are in a thread, one of many,
and each of you is sharing some important data managed by the system. If you were managing
that data, you could take steps to protect it (as you’ll see later today), but the system is managing
it. Now visualize a piece of code in the system that reads some crucial value, thinks about it for
a while, and then adds 1 to the value:

if (crucialvValue > 0) {

e // think about what to do
crucialValue += 1;

sams
&

Sams. net
Lea"ning

Remember that any number of threads may be calling upon this part of the system at once. The
disaster occurs when two threads have both executed the i test before either has incremented
the crucialvalue. In that case, the value is clobbered by them both with the same crucialvalue
+ 1, and one of the increments has been lost. This may not seem so bad to you, but imagine
instead that the crucial value affects the state of the screen as it is being displayed. Now,
unfortunate ordering of the threads can cause the screen to be updated incorrectly. In the same
way, mouse or keyboard events can be lost, databases can be inaccurately updated, and so forth.

This disaster is inescapable if any significant part of the system has not been written with threads
in mind. Therein lies the barrier to a mainstream threaded environment—the large effort
required to rewrite existing libraries for thread safety. Luckily, Javawas written from scratch with
this is mind, and every Java class in its library is thread-safe. Thus, you now have to worry only
about your own synchronization and thread-ordering problems, because you can assume that

the Java system will do the right thing.

NEWI[Atomic operations are operations that appear to happen “all at once”—exactly
TERM at the same time—to other threads.

Note: Some readers may wonder what the fundamental problem really is. Can’t
you just make the .. area in the example smaller and smaller to reduce or eliminate
the problem? Without atomic operations, the answer is no. Even if the

.. took zero time, you must first look at the value of some variable to make any
decision and then change something to reflect that decision. These two steps can
never be made to happen at the same time without an atomic operation. Unless
you’re given one by the system, it’s literally impossible to create your own.

Even the one line crucialvalue += 1 involves three steps: get the current value, add
one to it, and store it back. (Using ++crucialvalue doesn’t help either.) All three
steps need to happen “all at once” (atomically) to be safe. Special Java primitives, at
the lowest levels of the language, provide you with the basic atomic operations you
need to build safe, threaded programs.

Thinking Multithreaded

Getting used to threads takes a little while and a new way of thinking. Rather than imagining
that you always know exactly what’s happening when you look at a method you’ve written, you
have to ask yourself some additional questions. What will happen if more than one thread calls

355

356

Multithreading

into this method at t