Ly

G LU=
HDMINISTRARATION

AUTHOR: COORDINATOR:
A. SUPPRi BOLDTO . JOread EsTEUE

HEEEER FI'EE

SEEmm TECHMNOLOGY E
H B B ACACEMY

GNU/Linux
advanced
administration

Josep Jorba Esteve (coordinador)
Remo Suppi Boldrito

0000000000000000

mEE FrEE
Bt TECHMNOLOGW
H & ACACEMY

© FUOC » PID_00148358

GNU/Linux advanced administration

Josep Jorba Esteve |

| Remo Suppi Boldrito

Senior engineer and PhD in IT of the
Universidad Auténoma de Barcelona
(UAB). Professor of IT, Multimedia
and Telecommunications Studies

of the Open University of Catalonia
(UOQ).

First edition: September 2007

Telecommunications Engineer. PhD
in IT of the UAB. Professor of the
Department of Computer Architec-
ture and Operating Systems of the
UAB.

© Josep Jorba Esteve, Remo Suppi Boldrito

All rights are reserved
© of this edition, FUOC, 2009

Av. Tibidabo, 39-43, 08035 Barcelona

Design: Manel Andreu
Publishing: Eureca Media, SL

Copyright © 2019, FUOC. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of

the license is included in the section entitled "GNU Free Documentation

License"

Preface

Software has become a strategic societal resource in the last few decades.
The emergence of Free Software, which has entered in major sectors of
the ICT market, is drastically changing the economics of software
development and usage. Free Software — sometimes also referred to as
“Open Source” or “Libre Software” — can be used, studied, copied,
modified and distributed freely. It offers the freedom to learn and to
teach without engaging in dependencies on any single technology
provider. These freedoms are considered a fundamental precondition for
sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (Free Software
and Open Standards), still a limited number of people have sufficient
knowledge and expertise in these fields. The FTA attempts to respond to
this demand.

Introduction to the FTA

The Free Technology Academy (FTA) is a joint initiative from several
educational institutes in various countries. It aims to contribute to a
society that permits all users to study, participate and build upon existing
knowledge without restrictions.

What does the FTA offer?

The Academy offers an online master level programme with course
modules about Free Technologies. Learners can choose to enrol in an
individual course or register for the whole programme. Tuition takes
place online in the FTA virtual campus and is performed by teaching
staff from the partner universities. Credits obtained in the FTA
programme are recognised by these universities.

Who is behind the FTA?

The FTA was initiated in 2008 supported by the Life Long Learning
Programme (LLP) of the European Commission, under the coordination
of the Free Knowledge Institute and in partnership with three european
universities: Open Universiteit Nederland (The Netherlands), Universitat
Oberta de Catalunya (Spain) and University of Agder (Norway).

For who is the FTA?
The Free Technology Academy is specially oriented to IT professionals,
educators, students and decision makers.

‘What about the licensing?

All learning materials used in and developed by the FTA are Open
Educational Resources, published under copyleft free licenses that allow
them to be freely used, modified and redistributed. Similarly, the
software used in the FTA virtual campus is Free Software and is built
upon an Open Standards framework.

Evolution of this book

The FTA has reused existing course materials from the Universitat
Oberta de Catalunya and that had been developed together with
LibreSoft staff from the Universidad Rey Juan Carlos. In 2008 this book
was translated into English with the help of the SELF (Science,
Education and Learning in Freedom) Project, supported by the
European Commission's Sixth Framework Programme. In 2009, this
material has been improved by the Free Technology Academy.
Additionally the FTA has developed a study guide and learning activities
which are available for learners enrolled in the FTA Campus.

Participation

Users of FTA learning materials are encouraged to provide feedback and
make suggestions for improvement. A specific space for this feedback is
set up on the FTA website. These inputs will be taken into account for
next versions. Moreover, the FTA welcomes anyone to use and distribute
this material as well as to make new versions and translations.

See for specific and updated information about the book, including
translations and other formats: hbep://fiacademy.org/materials/fim/2. For
more information and enrolment in the FTA online course programme,

please visit the Academy's website: hezp://ftacademy.org/.

I sincerely hope this course book helps you in your personal learning
process and helps you to help others in theirs. I look forward to see you
in the free knowledge and free technology movements!

Happy learning!

Wouter Tebbens

President of the Free Knowledge Institute

Director of the Free technology Academy

The authors would like to thank the Foundation for the
Universitat Oberta de Catalunya for financing the first edition
of this work, and a large share of the improvements leading to
the the second edition, as part of the Master Programme in
Free Software offered by the University in question, where it is
used as material for one of the subjects.

The translation of this work into English has been made
possible with the support from the SELF Project, the SELF
Platform, the European Comission's programme on
Information Society Technologies and the Universitat Oberta
de Catalunya. We would like to thank the translation of the
materials into English carried out by lexia:park.

The current version of these materials in English has been
extended with the funding of the Free Technology Academy
(FTA) project. The FTA project has been funded with support
from the European Commission (reference no. 142706-
LLP-1-2008-1-NL-ERASMUS-EVC of the Lifelong Learning
Programme). This publication reflects the views only of the
authors, and the Commission cannot be held responsible for
any use which may be made of the information contained
therein.

© FUOC » PID_00148358 5

Contents

Module 1
Introduction to the GNU/Linux operating system
Josep Jorba Esteve

No vk wh =

Free Software and Open Source

UNIX. A bit of history

GNU/Linux systems

The profile of the systems administrator
Tasks of the administrator

GNU/Linux distributions

What we will look at...

Module 2
Migration and coexistence with non-Linux systems
Josep Jorba Esteve

1. Computer systems: environments

2. GNU/Linux services

3. Types of use

4. Migration or coexistence

5. Migration workshop: case study analysis
Module 3

Basic tools for the administrator
Josep Jorba Esteve

1. Graphics tools and command line
2. Standards

3. System documentation

4. Shell scripting

5. Package management tools

6. Generic administration tools

7. Other tools

Module 4

The Kernel

Josep Jorba Esteve

N ook wh -

The kernel of the GNU/Linux system
Configuring or updating the kernel
Configuration and compilation process
Patching the kernel

Kernel modules

Future of the kernel and alternatives

Tutorial: : configuring de kernel to the requirements of the user

GNU/Linux advanced administration

© FUOC » PID_00148358 6

Module 5

Local administration

Josep Jorba Esteve

Distributions: special features
Running levels and services
Monitoring system state

File Systems

Users and groups

Printing services

Disks and file systems management
Updating Software

Batch jobs

10. Tutorial: combined practices of the different sections

XN R WD

Module 6

Network administration

Remo Suppi Boldrito

Introduction to TCP/IP (TCP/IP suite)
TCP/IP Concepts

How to assign an Internet address
How to configure the network

DHCP Configuration

IP aliasing

IP Masquerade

NAT with kernel 2.2 or higher

How to configure a DialUP and PPP connection

X NGO A WD =

10. Configuring the network through hotplug
11. Virtual private network (VPN)
12. Advanced configurations and tools

Module 7

Server administration

Remo Suppi Boldrito

Domain name system (DNS)

NIS (YP)

Remote connection services: telnet and ssh
File transfer services: FTP

Information exchange services at user level
Proxy Service: Squid

OpenLdap (Ldap)

File services (NFS)

PN W N

Module 8

Data administration

Remo Suppi Boldrito

1. PostgreSQL

2. Mysql

3. Source Code management systems

GNU/Linux advanced administration

© FUOC » PID_00148358 7

4.

Subversion

Module 9
Security administration
Josep Jorba Esteve

PN EwWN =

Types and methods of attack

System security

Local security

SELinux

Network security

Intrusion detection

Filter protection through wrappers and firewalls
Security tools

Logs analysis

10. Tutorial: How to use security analysis tools

Module 10
Configuration, tuning and optimisation
Remo Suppi Boldrito

1.

Basic aspects

Module 11
Clustering

Remo Suppi Boldrito

1.
2.
3.

Introduction to High Performance Computing (HPC)
OpenMosix

Metacomputers, grid computing

GNU/Linux advanced administration

Introduction to
the GNU/Linux
operating system

Josep Jorba Esteve

© FUOC PID_00148470 Introduction to the GNU/Linux operating system

© FUOC PID_00148470 Introduction to the GNU/Linux operating system

Index
INtroducCtion.. ... 5
1. Free Software and Open SOUXCe..............cooeuuiiiiiiiiiiiiiiiiiiiiiineenaneens 7
2. UNIX. A bit of history...............cccooiiiiii e, 13
3. GNU/LIiNnuX SYSTEIMIS........oiiiiiiiiiiiiiiiiiiiiieiiie ettt eerieeeenaeeecnnaenes 21
4. The profile of the systems administrator................................... 25
5. Tasks of the administrator............c.....cooiiiiiiiiiiiiiiiiiiicees 30
6. GNU/Linux distributions.............cccoooiiiiiiiiiiiiiiiiiiiiieeeceeeeeiee 35
6.1. Debianc..cccceeueeet 39
6.2. Fedora Core 42
7. What we Will 100K at............coooiiiiiiiiiiiii e 47
ACHIVIHIES. ...t 51

BibLOGrapIlyottt eeaa e 52

© FUOC » PID_00148470 5 Introduction to the GNU/Linux operating system

Introduction

GNU/Linux systems [Joh98] are no longer a novelty; they have a broad range
of users and they are used in most work environments.

Their origin dates back to August 1991, when a Finnish student called Linus
Torvalds announced on a news list that he had created his own operating
system and that he was offering it to the community of developers for testing
and suggesting improvements to make it more usable. This was the origin of
the core (or kernel) of the operating system that would later come to be known

as Linux.

Separately, the FSF (Free Software Foundation), through its GNU project, had
been producing software that could be used for free since 1984. Richard Stall-
man (FSF member) considered free software that whose source code we could
obtain, study, modify and redistribute without being obliged to pay for it. Un-
der this model, the business does not reside in hiding the code, but rather in
the complementary additional software, tailoring the software to clients and
added services, such as maintenance and user training (the support we give)
whether in the form of materials, books and manuals, or training courses.

The combination of the GNU software and the Linux kernel, is what has
brought us to today's GNU/Linux systems. At present, the open source move-
ments, through various organisations, such as the FSF, and the companies
that generate the different Linux distributions (Red Hat, Mandrake, SuSe...),
including large companies that offer support, such as HP, IBM or Sun, have
given a large push to GNU/Linux systems to position them at a level of being
capable of competing and surpassing many of the existing closed proprietary

solutions.

GNU/Linux systems are no longer a novelty. GNU software started in the mid-
eighties, the Linux kernel, in the early nineties. And Linux is based on tested
UNIX technology with more than 30 years of history.

In this introductory unit we will revise some of the general ideas of the Open
Source and Free Software movements, as well as a bit of the history of Linux
and its shared origins with UNIX, from which it has profited from more than
30 years of research into operating systems.

© FUOC » PID_00148470 7 Introduction to the GNU/Linux operating system

1. Free Software and Open Source

Under the movements of Free Software and Open Source [OSIc] [OSIb] (also
known as open code or open software), we find various different forms of
software that share many common ideas.

A software product that is considered to be open source implies as its
main idea that it is possible to access its source code, and to modify
it and redistribute it as deemed appropriate subject to a specific open
source license that defines the legal context.

As opposed to a proprietary type code, whereby the manufacturer (software
company) will lock the code, hiding it and restricting the rights to it to itself,
without allowing the possibility of any modification or change that has not
been made previously by the manufacturer, open source offers:

a) access to the source code, whether to study it (ideal for education purposes)
or to modify it, to correct errors, to adapt it or to add more features;

b) software that is free of charge: normally, the software, whether in binary
form or source code form, can be obtained free of charge or for a modest sum
to cover packaging and distribution costs and added value;

c) standards that prevent monopolies of proprietary software, avoiding depen-
dency on a single choice of software manufacturer; this is more important for
a large organisation, whether a company or a state, which cannot (or should
not) put itself in the hands of a single specific solution and depend exclusively
upon it;

d) a model of progress that is not based on hiding information but on sharing
knowledge (like the scientific community) so as to progress more rapidly, and
with better quality since decisions are based on the community's consensus
and not on the whims of the companies that develop proprietary software.

Creating programs and distributing them together with the source code is
nothing new. Since the beginnings of IT and the Internet, things had been
done this way. However, the concept of open source itself, its definition and
the drafting of the conditions it has to meet date back to the middle of 1997.

© FUOC « PID_00148470 8

Eric Raymond and Bruce Perens promoted the idea. Raymond [Ray98] was
the author of an essay called The Cathedral and the Bazaar, which discusses
software development techniques used by the Linux community, headed by
Linus Torvalds, and the GNU community of the Free Software Foundation
(FSF), headed by Richard Stallman. Bruce Perens was the leader of the Debian
project, which was working on creating a GNU/Linux distribution that inte-
grated exclusively free software.

Note

Two of the most important communities are the FSE, with its GNU software project, and
the Open Source community, with Linux as its major project. GNU/Linux is the outcome
of their combined work.

An important distinction between these communities lies in the definitions
of open source and free software. [Deba] [PSO2]

The Free Software Foundation [FSF] is a non-profit corporation founded by
Richard Stallman, who believes that we should guarantee that programs are
within everyone's reach free of charge, freely accessible and for use as each
individual sees fit. The term free caused some reticence among companies.
In English, the word can mean "without cost or payment" or "not under the
control or in the power of another". The FSF sought both, but it was difficult
to sell these two ideas to businesses; the main question was: "How can we
make money with this?" The answer came from the Linux community (headed
by Linus Torvalds), when they managed to obtain something that the GNU
and FSF community had not yet achieved: a free operating system with an
available source code. It was at that moment that the community decided to
unite the various activities within the free software movement under a new

name: open source software.

Open Source was registered as a certification brand, to which software prod-
ucts complying with its specifications could adhere. This did not please ev-
erybody and there tends to be a certain divide or controversy over the two
groups of Open Source and FSF (with GNU), although really they have more
things in common than not.

To some extent, for the exponents of free software (such as the FSF), open
source is a false step, because it means selling out its ideals to the market,
leaving the door open for software that was free to become proprietary. Those
who back open source see it as an opportunity to promote software that would
otherwise only be used by a minority, whereas through its worldwide diffusion
and sharing, including with companies wishing to participate in open source,
we find sufficient strength to challenge proprietary software.

Introduction to the GNU/Linux operating system

Note

See The Catedral and the
Bazaar text at:

http://www.catb.org/~esr/

writings/cathedral-bazaar/
cathedral-bazaar/

© FUOC « PID_00148470 9

However, the idea pursued by both movements is to increase the use of
free software, thus offering an alternative to the sole solutions that large
companies wish to impose. The differences are more than practical.

Having established the basic ideas of the open source community, we reached
the point where we needed to clarify the criteria a software product should
meet in order to qualify as open source. We had to base it on the definition of
open source [OSIb] that was originally written by Bruce Perens in June 1997
in response to comments by developers of the Debian Linux distribution,
which was subsequently re-edited (with minor changes) by the Open Source
Initiative organisation (OSI). This body is responsible for controlling the open

source definition and licenses.

Note

Open source is regulated by a public definition used as the basis for drafting its software
licenses.

A small summary (interpretation) of the definition: Open source software [OS-
Ib], or software with an open source code, must fulfil the following require-

ments:

1) The software may be copied, given away or sold to third parties, without
requiring any payment for it.

2) The program must include source code and must allow distribution in
source code as well as in compiled form. Or, in all events, there must be a
well-publicised means of obtaining the source code (such as downloading via
the Internet, for example). Deliberately obfuscated or intermediary forms of
source code are not allowed. The license must guarantee that changes can be
made.

3) The software license must allow modifications and derived works, and must
allow them to be distributed under the same terms as the license of the original
software. It allows the original code to be re-used.

4) The integrity of the author's source code may be required, in other words,
modifications may be presented in the form of patches to the original code, or
may be required to carry a different name or version number from the original.
This protects which modifications can be attributed to the author. This point
depends on what the software license says.

5) The license must not discriminate against any person or group of persons.
Access to the software must not be restricted. In some cases there may be legal
restrictions, as in the case of the United States for technology exports to third
countries. If there are restrictions of this type, they must be mentioned.

Introduction to the GNU/Linux operating system

Note

See the original definition of
Open Source at:

http://www.opensource.org/
docs/definition.php

In re-edition at:
http://www.opensource.org

© FUOC « PID_00148470 10

6) No discrimination against fields of endeavour. The software can be used in
any field of endeavour, even if it was not designed for that field. Commercial
use is allowed; nobody can stop the software from being used for commercial

purposes.

7) The license applies to everyone who receives the program.

8) If the software forms part of a larger product, it must keep the same license.
This makes sure that parts are not separated in order to form proprietary soft-
ware (in an uncontrolled manner). In the case of proprietary software, it must
inform that it contains parts (stating which parts) of open source software.

9) The license must not restrict any incorporated or jointly distributed soft-
ware, in other words, its incorporation should not act as a barrier for another
jointly distributed software product. This is a controversial issue since it ap-
pears to contradict the preceding point, basically it says that anyone can take
open source software and add it to their own software without this affecting
its license conditions (for example proprietary), although, according to the
preceding point, it would have to inform that there are parts of open source.

10) The license must be technology neutral, i.e. not restricted to certain de-
vices or operating systems. It is not allowed to mention exclusive distribution
means or to exclude possibilities. For example, under the open source licence,
it is not possible to restrict the distribution to CD, FTP or web form.

This definition of open source is not a software license in itself, but
rather a specification of the requirements that an open source software
license must fulfil.

In order to be considered an open source program, the program's license must
comply with the above specifications. The OSI is responsible for checking that
licences meet the specifications. On the Open Source Licenses web page you
can find the list of licenses [OSIa], of which one of the most famous and ex-
tensively used is the GPL (GNU Public License).

Under the GPL, the software may be copied and modified, but modifications
must be made public under the same license, and it prevents the code becom-
ing mixed with proprietary code so as to avoid proprietary code taking over
parts of open source. There is the LGPL license, which is practically identical
except that software with this license can be integrated into proprietary soft-
ware. A classic example is the Linux C library (with LGPL license); if it were
GPL, only free software could be developed, with the LGPL it can be used for
developing proprietary software.

Introduction to the GNU/Linux operating system

Note

Open Source Licences:

http://www.opensource.org/li-
censes/index.html

© FUOC « PID_00148470 11

Many free software projects, or with part open source and part proprietary
code, have their own license: Apache (based on BSD), Mozilla (MPL and NPL
of Netscape) etc. Basically, when it comes to identifying the software as open
source we can make our own license that complies with the above definition
(of open source) or we can choose to license it under an already established
license, or in the case of GPL, we are obliged for our license also to be GPL.

Having studied the concepts of open source and its licenses, we need to look
at to what extent it is profitable for a company to work on or produce open
source. If it were not attractive for companies, we would lose both a potential
client and one of the leading software producers at the same time.

Open source is also attractive for companies, with a business model that em-
phasises a product's added value.

Open source offers various attractive benefits where companies are concerned:

a) For software developer companies, it poses a problem: how to make money
without selling a product. A lot of money is spent on developing a program
and then profit has to be made on top. Well, there is no simple answer, it is not
possible with any type of software, the return lies in the type of software that
can generate profit beyond the mere sale. Normally, a study will be made as
to whether the application will become profitable if developed as open source
(most will), based on the premises that we will have a reduced development
cost (the community will help us), a reduced cost of maintenance or bug cor-
rection (the community can help with this quite quickly) and taking into ac-
count the number of users that the open source will provide, as well as the
needs that they will have for our support or documentation services. If the
balance is positive, then it will be viable to do without revenue from sales.

b) Increasing the number of users.

c) Obtaining greater development flexibility, the more people who intervene,
the more people will be able to detect errors.

d) Revenue will mostly come from support, user training and maintenance.

e) Companies that use software need to take many parameters into consid-
eration before choosing a software for managing tasks, such as performance,
reliability, security, scalability and financial cost. And although it would seem
that open source is already an evident choice on the cost basis, we must say
that there is open source software capable of competing with (or even sur-
passing) proprietary software on any other parameter. Also, we need to take
care with choosing the options or proprietary systems of a single manufactur-
er; we cannot rely solely on them (we may recall cases such as Sony's beta
format video versus VHS, or the MicroChannel architecture of IBM for PCs).

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 12

We need to avoid using monopolies with their associated risks: lack of price
competition, expensive services, expensive maintenance, little (or no) choice
of options etc.

f) For private users it offers a large variety of software adapted for common
uses, since a lot of the software has been conceived and implemented by peo-
ple who wanted to do the same tasks but could not find the right software.
Usually, in the case of a domestic user, a very important parameter is the soft-
ware cost, but the paradox is that precisely domestic users are more prone to
using proprietary software. Normally, domestic users will use illegal copies of
software products; recent statistics show levels of 60-70% of illegal domestic
copies. Users feel that merely by owning a home PC they are entitled to using
the software in some countries for it. In these cases, we are dealing with ille-
gal situations, which although they may not have been prosecuted, may be
one day, or are attempted to be controlled through license systems (or prod-
uct activations). Also, this has an indirect negative effects on free software,
because if users are extensively using proprietary software, it forces everyone
who wants to communicate them, whether banks, companies or public ad-
ministrations, to use the same proprietary software too, and they do have to
pay the product licenses. One of the most important battles for free software
is to capture domestic users.

g) Finally, states, as a particular case, can obtain important benefits from open
source software, since it offers them quality software at ridiculous prices com-
pared to the enormous cost of licenses for proprietary software. Moreover,
open source software can easily integrate cultural aspects (of each country)
such as language, for example. This last case is fairly problematic, since man-
ufacturers of proprietary software refuse to adapt their applications in some
regions — small states with their own language — or ask to be paid for doing so.

Introduction to the GNU/Linux operating system

Note

lllegal domestic copies are also
sometimes known as pirated
copies.

© FUOC » PID_00148470 13 Introduction to the GNU/Linux operating system

2. UNIX. A bit of history

As a predecessor to our GNU/Linux systems [Sta02], let's recall a bit about the
history of UNIX [Sal94] [Lev]. Originally, Linux was conceived as a Minix clone
(an academic implementation of UNIX for PC) and used some ideas developed
in proprietary UNIX; but, in turn, it was developed in open source, and with
a focus on domestic PCs. In this section on UNIX and in the following one
on GNU/Linux, we will see how this evolution has brought us to current day
GNU/Linux systems that are capable of competing with any proprietary UNIX
and that are available for a large number of hardware architectures, from the
simple PC to supercomputers.

Linux can be used on a broad range of machines. In the TOPS00 list, Note

we can find several supercomputers with GNU/Linux (see list on webpage
We can see the TOP500 list of
the fastest supercomputers at:

Center, a cluster, designed by IBM, with 10240 CPUs PowerPC with GNU/Lin- http://www.top500.org
ux operating system (adapted to the requirements of these machines). From

top500.0rg): for example, the MareNostrum, in the Barcelona Supercomputing

the list we can see that overall supercomputers with GNU/Linux make up 75%
of the list.

UNIX started back in 1969 (we now have almost 40 years of history) in the
Bell Telephone Labs (BTL) of AT&T. These had just withdrawn from a project
called MULTICS, which was designed to create an operating system so that a
large computer could support thousands of users simultaneously. BTL, General
Electric, and MIT were involved in the project. But it failed, in part, because
it was too ambitious for the time.

While this project was underway, two BTL engineers who were involved in
MULTICS: Ken Thompson and Dennis Ritchie, found a DEC PDP7 computer
that nobody was using, which only had an assembler and a loading program.
Thompson and Ritchie developed as tests (and often in their free time) parts
of UNIX, an assembler (of machine code) and the rudimentary kernel of the
operating system.

That same year, in 1969, Thompson had the idea of writing a file system for
the created kernel, in such a way that files could be stored in an ordered form
in a system of hierarchical directories. Following various theoretical debates
(which took place over about two months) the system was implemented in
just a couple of days. As progress was made on the system's design, and a
few more BTL engineers joined in, the original machine became too small,
and they thought about asking for a new one (in those days they cost about
100,000 US dollars, which was a considerable investment). They had to make

© FUOC » PID_00148470 14 Introduction to the GNU/Linux operating system

up an excuse (since the UNIX system was a free time development) so they
said they wanted to create a new text processor (an application that generated
money at that time), so they were given approval to purchase a PDP11.

UNIX dates back to 1969, with over 30 years of technologies developed
and used on all types of systems.

When the machine arrived, they were only given the CPU and the memory,
but not the disk or the operating system. Thompson, unable to wait, designed
a RAM disk in memory and used half of the memory as a disk and the other
half for the operating system that he was designing. Once the disk arrived,
they continued working on both UNIX and the promised text processor (the
excuse). The text processor was a success (it was Troff, an editor language sub-
sequently used for creating the UNIX man pages), and BTL started using the
rudimentary UNIX with the new text processor, with BTL thus becoming the
first user of UNIX.

At that time, the UNIX philosophy started to emerge [Ray02a]:

e Write programs that do one thing and do it well.
e Write programs to work together.
e Write programs to handle text streams.

Another important characteristic was that UNIX was one of the first systems
conceived to be independent of the hardware architecture, and this has al-
lowed it to be carried over to a large number of different hardware architec-
tures.

In November 1971, as there were external users, the need to document what
was being done resulted in the UNIX Programmer's Manual signed by Thomp-
son and Richie. In the second edition (June 1972), known as V2 (the edition
of the manuals was made to correspond with the UNIX version number), it
was said that the number of UNIX installations had already reached 10. And
the number continued to grow to about 50 in V5.

Then, at the end of 1973, it was decided to present the results at a conference Note

on operating systems. And consequently, various IT centres and universities

asked for copies of UNIX. AT&T did not offer support or maintenance to UNIX, See: http://www.usenix.org

which meant that users had to unite and share their knowledge by forming
communities of UNIX users. AT&T decided to cede UNIX to universities, but
did not offer them support or correct errors for them. Users started sharing
their ideas, information on programs, bugs etc. They created an association
called USENIX, meaning users of UNIX. Their first meeting in May 1974 was
attended by a dozen people.

© FUOC « PID_00148470 15

One of the universities to have obtained a UNIX license was the University of
California at Berkeley, where Ken Thompson had studied. In 1975, Thompson
returned to Berkeley as a teacher bringing with him the latest version of UNIX.
Two recently-graduated students, Chuck Haley and Bill Joy (nowadays one
of the vice-presidents of SUN Microsystems), joined him and started to work
together on a UNIX implementation.

One of the first things that they were disappointed with were the editors; Joy
perfected an editor called EX, until transforming it into VI, a full screen visual
editor. And the two developed a Pascal language compiler, which they added
to UNIX. There was a certain amount of demand for this UNIX implementa-
tion, and Joy started to produce it as the BSD, Berkeley Software Distribution
(or UNIX BSD).

BSD (in 1978) had a particular license regarding its price: it said that it corre-
sponded to the cost of the media and the distribution it had at that time. Thus,
new users ended up making some changes or incorporating features, selling
their remade copies and after a certain amount of time, these changes were
incorporated into the following version of BSD.

Joy also made a few more contributions to his work on the vi editor, such
as handling text terminals in such a way that the editor was independent of
the terminal where it was being used; he created the TERMCAP system as a
generic terminals interface with controllers for each specific terminal, so that
programs could be executed irrespective of the terminals using the interface.

The following step was to adapt it to different architectures. Until 1977, it
could only be run on PDP machines; that year adaptations were made for
machines of the time such as Interdata and IBM. UNIX Version 7 (V7 in June
1979) was the first portable one. This version offered many advances, as it
included: awk, lint, make, uucp; the manual already had 400 pages (plus two
appendices of 400 pages each). It also included the C compiler designed at BTL
by Kernighan and Ritchie, which had been created to rewrite most of UNIX,
initially in the assembler and then into C with the parts of the assembler
that only depended on the architecture. Also included were an improved shell
(Bourne shell) and commands such as: find, cpio and expr.

The UNIX industry also started to grow, and versions of UNIX (implementa-
tions) started to appear from companies such as: Xenix, a collaboration be-
tween Microsoft — which in its early days it also worked with UNIX versions
— and SCO for Intel 8086 machines (the first IBM PC); new versions of BSD
from Berkeley...

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 16

However, a new problem appeared when AT&T realised that UNIX was a valu-
able commercial product, the V7 license prohibited its study in academic in-
stitutions in order to protect its commercial secret. Until that time many uni-
versities used the UNIX source code in order to teach operating systems, and
they stopped using it to teach only theory.

However, everyone found their own way of solving the problem. In Amster-
dam, Andrew Tanenbaum (prestigious author of theory books on operating
systems) decided to write a new UNIX-compatible operating system without
using a single line of AT&T code; he called this new operating system Minix.
This is what would subsequently be used in 1991 by a Finnish student to cre-
ate his own version of UNIX, which he called Linux.

Bill Joy, who was still at Berkeley developing BSD (already in version 4.1), de-
cided to leave to a new company called SUN Microsystems, where he finished
working on BSD 4.2, which would later be modified to create SUN's UNIX,
SunOS (around 1983). Every company started developing its own versions:
IBM developed AIX, DEC - Ultrix, HP - HPUX, Microsoft/SCO - Xenix etc. As
of 1980, UNIX began as a commercial venture, AT&T released a final version
called UNIX System V (SV), on which as well as on the BSD 4.x, current UNIX
are based, whether on the BSD or the System V branch. SV was revised several
times and, for example, SV Release 4 was one of the most important ones. The
result of these latest versions was that more or less all existing UNIX systems
were adapted to each other; in practice they are versions of AT&T's System
V R4 or Berkeley's BSD, adapted by each manufacturer. Some manufacturers
specify whether their UNIX is a BSD or SV type, but in reality they all have a
bit of each, since later several UNIX standards were drawn up in order to try
and harmonise them; among these, we find IEEE POSIX, UNIX97, FHS etc.

Over time, the UNIX system split into several branches, of which the two main
ones were AT&T's UNIX or System V, and the University of California's BSD.
Most current UNIX systems are based on one or the other, or are a mixture
of the two.

However, at that time, AT&T (SVR4) was undergoing legal proceedings as a
telephone monopoly (it was the leading, if not the only, telephone company
in the US), which forced it to split into several smaller companies, causing
the rights to UNIX to start dancing between owners: in 1990 it was shared
50/50 by the Open Software Foundation (OSF) and UNIX International (UI),
later, UNIX Systems Laboratories (USL), which denounced the University of
Berkeley for its BSD copies, but lost, since the original license did not impose
any ownership rights over the UNIX code. Later, the rights to UNIX were sold
to Novell, which ceded a share to SCO, and as of today it is not very clear who
owns them: they are claimed through different fronts by Novell, the OSF and
SCO. A recent example of this problem is the case of SCO, which initiated a
lawsuit against IBM because according to SCO, it had ceded parts of the UNIX
source code to versions of the Linux kernel, which allegedly include some

Introduction to the GNU/Linux operating system

© FUOC » PID_00148470 17 Introduction to the GNU/Linux operating system

original UNIX code. The result as of today is that the matter remains in the
courts, with SCO turned into a pariah of the IT industry threatening Linux,
IBM, and other proprietary UNIX users, with the assertion that they own the
original rights to UNIX and that everyone else should pay for them. We will
have to see how this case evolves, and the issue of UNIX rights along with it.

First release (1969)

Fifth release (1973)

Sixth release (1976)

PXE CBTS/’ |

1BSD (1978)

/ Seventh release (1978) 2BSD

TS 3.0 (1979) 3BSD (1980)

XENIX (1980)
System Il
(1982) /+.1 BSD (1980)

(1983) SunOS (1982
System V

Linux

(1991)
Novell
Unixware

FreeBSD (1993)

Darwin (1999)

MacOS X (1999)

Figure 1. Historical summary of the different versions of UNIX

The current scenario with UNIX has changed a lot since Linux appeared in
1991, since as of 1995-99 it became a serious alternative to proprietary UNIX
systems, due to the large number of hardware platforms that it supports and
the extensive support for its progress of the international community and
companies. Different proprietary versions of UNIX continue to survive in the
market, because of their adaptation to industrial environments or for being
the best operating system in the market, or because there are needs that can
only be covered with UNIX and the corresponding hardware. Also, some pro-
prietary UNIX are even better than GNU/Linux in terms of reliability and per-
formance although the gap is shortening all the time, since companies with
their own proprietary UNIX systems are showing more and more interest in
GNU/Linux and offering some of their own developments for inclusion in

© FUOC « PID_00148470 18

Linux. We can expect a more or less slow extinction of proprietary UNIX ver-
sions towards Linux-based distributions from manufacturers adapted to their
equipment.

Overview of these companies:

e SUN: it offers a UNIX implementation called Solaris (SunOS evolution). It
started as a BSD system, but is now mostly System V with parts of BSD;
it is commonly used on Sun machines with a SPARC architecture, and in
multiprocessor machines (up to 64 processors). They promote GNU/Lin-
ux as a Java development environment and have a GNU/Linux distribu-
tion known as Java Desktop System, which has been widely accepted in a
number of countries. Also, it has started using Gnome as a desktop, and
offers financial support to various projects such as Mozilla, Gnome and
OpenOffice. We should also mention its initiative with its latest version of
Solaris UNIX, to almost totally free its code in Solaris version 10. Creating
a community for Intel and SPARC architectures, called OpenSolaris, which
has made it possible to create free Solaris distributions. On a separate note,
we should mention recent initiatives (2006) to free the Java platform un-
der GPL licenses, such as the Open]DK project.

e IBM: it has its proprietary version of UNIX called AIX, which survives in
some segments of the company's workstations and servers. At the same
time, it firmly supports the Open Source community, by promoting free
development environments (eclipse.org) and Java technologies for Linux,
it incorporates Linux in its large machines and designs marketing cam-
paigns to promote Linux. It also has influence among the community be-
cause of its legal defence against SCO, which accuses it of violating intel-
lectual property alleging that it incorporated elements of UNIX in GNU/
Linux.

e HP: it has its HPUX UNIX, but offers Linux extensive support, both in the
form of Open Source code and by installing Linux on its machines. It is
said to be the company that has made the most money with Linux.

e SGI: Silicon Graphics has a UNIX system known as IRIX for its graph-
ics machines, but lately tends to sell machines with Windows, and possi-
bly some with Linux. The company has been through difficulties and was
about to break up. It offers support to the Linux community in OpenGL
(3D graphics technology), different file systems and peripheral device con-
trol.

e Apple: joined the UNIX world recently (in the mid-nineties), when it de-
cided to replace its operating system with a UNIX variant. The core known
as Darwin derives from BSD 4.4; this Open Source kernel together with
some very powerful graphic interfaces is what gives Apple its MacOS X
operating system. Considered today to be one of the best UNIX and, at

Introduction to the GNU/Linux operating system

Note

Many companies with pro-
prietary UNIX participate in
GNU/Linux and offer some
of their developments to the
community.

© FUOC « PID_00148470 19

least, one of the most appealing in its graphics aspect. It also uses a large
amount of GNU software as system utilities.

e Linux distributors: both commercial and institutional, we will mention
companies such as Red Hat, SuSe, Mandriva (formerly known as Man-
drake), and non-commercial institutions such as Debian etc. These (the
most widespread distributions) and the smallest ones are responsible for
most of the development of GNU/Linux, with the support of the Linux
community and the FSF with GNU software, in addition to receiving con-
tributions from the abovementioned companies.

e BSD: although it is not a company as such, BSD versions continue to de-
velop, as well as other BSD clone projects such as the FreeBSD, netBSD,
OpenBSD (the UNIX considered to be the securest), TrustedBSD etc. These
operating systems will also result in improvements or software incorpora-
tions to Linux sooner or later. Additionally, an important contribution is
the Darwin kernel stemming from BSD 4.4, which Apple developed as the
Open Source kernel of its MacOS X operating system.

e Microsoft: apart from hindering the development of UNIX and GNU/Lin-
ux, by setting up obstacles through incompatibilities between different
technologies, it has no direct participation in the world of UNIX/Linux.
However, in its early days it developed Xenix (1980) for PCs, based on an
AT&T UNIX license, which although not sold directly was sold through
intermediaries, such as SCO, which acquired control in 1987, and was
renamed SCO UNIX (1989). As a curious side note, later it bought the
rights to the UNIX license from SCO (which in turn had obtained them
from Novell). Microsoft's motives for this acquisition are not clear, but
some suggest that there is a relation with the fact that it supports SCO in
the lawsuit against IBM. In addition, recently (2006), Microsoft reached
agreements with Novell (current provider of the SuSe distribution and the
OpenSuse community), in a number of bilateral decisions to give busi-
ness promotion to both platforms. But part of the GNU/Linux communi-
ty remains sceptical due to the potential implications for Linux intellec-
tual property and issues that could include legal problems for the use of
patents.

Another interesting historical anecdote is that together with a company called
UniSys, they launched a marketing campaign on how to convert UNIX sys-
tems to Windows systems; and although its purpose may be more or less com-
mendable, a curious fact is that the original web server of the business was
on a FreeBSD machine with Apache. Occasionally, it also pays "independent"
companies (some would say they are not very independent) to conduct com-
parative performance analyses between UNIX/Linux and Windows.

Introduction to the GNU/Linux operating system

Note

Open letter from Novell to the
GNU/Linux community
http://www.novell.com/linux/
microsoft/community_open_
letter.html

© FUOC » PID_00148470 20 Introduction to the GNU/Linux operating system

As a general summary, some comments that tend to appear in UNIX
bibliography point to the fact that UNIX is technically a simple and
coherent system designed with good ideas that were put into practice,
but we should not forget that some of these ideas were obtained thanks
to the enthusiastic support offered by a large community of users and
developers who collaborated by sharing technology and governing its
evolution.

And since history tends to repeat itself, currently that evolution and enthusi-
asm continues with GNU/Linux systems.

© FUOC » PID_00148470 21 Introduction to the GNU/Linux operating system

3. GNU/Linux systems

Twenty years ago the users of the first personal computers did not have many
operating systems to choose from. The market for personal computers was
dominated by Microsoft DOS. Another possibility was Apple's MAC, but at an
exorbitant cost in comparison to the rest. Another important option reserved
to large (and expensive) machines was UNIX.

A first option to appear was MINIX (1984), created from scratch by Andrew
Tanenbaum, for educational purposes in order to teach how to design and
implement operating systems [Tan87] [Tan06].

MINIX was conceived for running on an Intel 8086 platform, which was very
popular at the time as it was the basis for the first IBM PCs. The main advantage
of this operating system stemmed from its source code, which was accessible
to anyone (twelve thousand lines of code for assembler and C), and available
from Tanenbaum's teaching books on operating systems [Tan87]. However,
MINIX was an educational tool rather than an efficient system designed for
professional performance or activities.

In the nineties, the Free Software Foundation (FSF) and its GNU project, moti-
vated many programmers to promote quality and freely distributed software.
And aside from utilities software, work was being done on the kernel of an
operating system known as HURD, which would take several years to develop.

Meanwhile, in October 1991, a Finnish student called Linus Torvalds present-
ed version 0.0.1 of his operating system's kernel, which he called Linux, de-
signed for Intel 386 machines, and offered under a GPL license to communi-
ties of programmers and the Internet community for testing, and if they liked
it, for helping with its development. There was such enthusiasm that in no
time a large number of programmers were working on the kernel or on appli-
cations for it.

Some of the features that distinguished Linux from other operating systems
of the time and which continue to be applicable, and others inherited from
UNIX could be:

a) It is an open source operating system: anyone can have access to its sources,
change them and create new versions that can be shared under the GPL license
(which, in fact, makes it free software).

b) Portability: like the original UNIX, Linux is designed to depend very little
on the architecture of a specific machine; as a result, Linux is, mostly, inde-
pendent from its destination machine and can be carried to practically any

© FUOC « PID_00148470 22

architecture with a C compiler such as the GNU gcc. There are just small parts
of assembler code and a few devices that depend on the machine, which need
to be rewritten at each port to a new architecture. Thanks to this, GNU/Lin-
ux is one of the operating systems running on the largest number of architec-
tures: Intel x86 and 1A64, AMD x86 and x86_64, Sun's SPARC, MIPS of Silicon,
PowerPC (Apple), IBM S390, Alpha by Compaq, m68k Motorola, Vax, ARM,
HPPArisc...

¢) Monolith-type kernel: the design of the kernel is joined into a single piece
but is conceptually modular in its different tasks. Another school of design
for operating systems advocates microkernels (Mach is an example), where
services are implemented as separate processes communicated by a more basic
(micro) kernel. Linux was conceived as a monolith because it is difficult to
obtain good performance from microkernels (it is a hard and complex task).
At the same time, the problem with monoliths is that when they grow they
become very large and untreatable for development; dynamic load modules
were used to try to resolve this.

d) Dynamically loadable modules: these make it possible to have parts of the
operating system, such as file systems, or device controllers, as external parts
that are loaded (or linked) with the kernel at run-time on-demand. This makes
it possible to simplify the kernel and to offer these functionalities as elements
that can be separately programmed. With this use of modules, Linux could be
considered to be a mixed kernel, because it is monolithic but offers a number
of modules that complement the kernel (similar to the microkernel concepts).

e) System developed by an Internet-linked community: operating systems had
never been developed so extensively and dispersely, they tend not to leave
the company that develops them (in the case of proprietary systems) or the
small group of academic institutions that collaborate in order to create one.
The phenomenon of the Linux community allows everyone to collaborate
as much as their time and knowledge will permit. The result is: hundreds to
thousands of developers for Linux. Additionally, because of its open-source
nature, Linux is an ideal laboratory for testing ideas for operating systems at
minimum cost; it can be implemented, tested, measures can be taken and the
idea can be added to the kernel if it works.

Projects succeeded each other and — at the outset of Linux with the kernel —
the people of the FSF, with the GNU utility software and, above all, with the
(GCC) C compiler, were joined by other important projects such as XFree (a PC
version of X Window), and desktop projects such as KDE and Gnome. And the
Internet development with projects such as the Apache web server, the Mozilla
navigator, or MySQL and PostgreSQL databases, ended up giving the initial
Linux kernel a sufficient coverage of applications to build the GNU/Linux
systems and to compete on an equal level with proprietary systems. And to
convert the GNU/Linux systems into the paradigm of Open Source software.

Introduction to the GNU/Linux operating system

Note

Original Mach project:
http://www.cs.cmu.edu/afs/
cs/project/mach/public/www/
mach.html

© FUOC « PID_00148470 23

GNU/Linux systems have become the tip of the spear of the Open Source
community, for the number of projects they have been capable of drawing
together and concluding successfully.

The birth of new companies that created GNU/Linux distributions (packaging
of the kernel + applications) and supported it, such as Red Hat, Mandrake,
SuSe, helped to introduce GNU/Linux to reluctant companies and to initiate
the unstoppable growth we are now witnessing today.

We will also comment on the debate over the naming of systems such as GNU/
Linux. The term Linux is commonly used (in order to simplify the name) to
identify this operating system, although in some people's opinion it under-
mines the work done by the FSF with the GNU project, which has provided
the system's main tools. Even so, the term Linux, is extensively used commer-
cially in order to refer to the full operating system.

In general, a more appropriate term that would reflect the community's partic-
ipation, is Linux, when we are referring only to the operating system's kernel.
This has caused a certain amount of confusion because people talk about the
Linux operating system in order to abbreviate. When we work with a GNU/
Linux operating system, we are working with a series of utilities software that
is mostly the outcome of the GNU project on the Linux kernel. Therefore, the
system is basically GNU with a Linux kernel.

The purpose of the FSF's GNU project was to create a UNIX-style free software
operating system called GNU [Sta02].

In 1991, Linus Torvalds managed to join his Linux kernel with the GNU util-
ities when FSF still didn't have a kernel. GNU's kernel is called HURD, and
quite a lot of work is being done on it at present, and there are already beta
versions available of GNU/HURD distributions (see more under the chapter
"Kernel Administration").

It is estimated that in a GNU/Linux distribution there is 28% of GNU
code and 3% that corresponds to the Linux kernel code; the remain-
ing percentage corresponds to third parties, whether for applications or
utilities.

To highlight GNU's contribution [FSF], we can look at some of its contribu-
tions included in GNU/Linux systems:

e The C and C++ compiler (GCC)

e The bash shell

e The Emacs editor (GNU Emacs)

e The postscript interpreter (ghostscript)

Introduction to the GNU/Linux operating system

Note

GNU and Linux by Richard-
Stallman:
http://www.gnu.org/gnu/ lin-
ux-and-gnu.html.

© FUOC « PID_00148470 24

e The standard C library (GNU C library, or glibc)
e The debugger (GNU gdb)

e Makefile (GNU make)

e The assembler (GNU assembler or gas)

e The linker (GNU linker or gld)

GNU/Linux systems are not the only systems to use GNU software; for ex-
ample, BSD systems also incorporate GNU utilities. And some proprietary op-
erating systems such as MacOS X (Apple) also use GNU software. The GNU
project has produced high quality software that has been incorporated into
most UNIX-based system distributions, both free and proprietary.

It is only fair for the world to recognise everyone's work by calling the
systems we will deal with GNU/Linux.

Introduction to the GNU/Linux operating system

© FUOC » PID_00148470 25 Introduction to the GNU/Linux operating system

4. The profile of the systems administrator

Large companies and organisations rely more and more on their IT resources
and on how these are administered and adapted to the required tasks. The
huge increase in distributed networks, with server and client machines, has
created a large demand for a new job in the marketplace: the so-called systems
administrator.

A systems administrator is responsible for a large number of important tasks.
The best systems administrators tend to have a fairly general practical and the-
oretical background. They can perform tasks such as: cabling installations or
repairs; installing operating systems or applications software; correcting sys-
tems problems and errors with both hardware and software; training users;
offering tricks or techniques for improving productivity in areas ranging from
word processing applications to complex CAD or simulator systems; financial-
ly appraising purchases of hardware and software equipment; automating a
large number of shared tasks, and increasing the organisation's overall work
performance.

The administrator can be considered the employee who helps the organisation
to make the most of the available resources, so that the entire organisation
can improve.

The relationship with the organisation's end users can be established in several
ways: either through training users or by offering direct assistance if problems
should arise. The administrator is the person responsible for ensuring that the
technologies employed by users function properly, meaning that the systems
satisfy users' expectations and do the tasks they need to fulfil.

Years ago, and even nowadays, many companies and organisations had no
clear vision of the system administrator's role. When business computing was
in its early days (in the eighties and nineties), the administrator was seen as
the person who understood computers (the "guru") responsible for installing
machines and monitoring or repairing them in case there were any prob-
lems. Normally, the job was filled by a versatile computer technician respon-
sible for solving problems as and when they appeared. There was no clear-cut
profile for the job because extensive knowledge was not required, just basic
knowledge of a dozen (at most) applications (the word processor, spreadsheet,
database etc.), and some basic hardware knowledge was enough for day to
day tasks. Therefore, anyone in the know who understood the issue could do
the job, meaning that usually administrators were not traditional computer
technicians and often knowledge was even communicated orally between an

existing or older administrator and a trainee.

© FUOC « PID_00148470 26

This situation reflected to some extent the prehistory of systems administra-
tion (although there are still people who think that it is basically the same
job). Nowadays, in the age of Internet and distributed servers, a systems ad-
ministrator is a professional (employed full-time exclusively for this purpose)
who offers services in the field of systems software and hardware. The systems
administrator has to execute several tasks destined for multiple IT systems,
mostly heterogeneous, with a view to making them operative for a number
of tasks.

Currently, systems administrators need general knowledge (theoretical and
practical) in a diversity of fields, from network technologies, to operating sys-
tems, diverse applications, basic programming in a large number of program-
ming languages, extensive hardware knowledge — regarding the computer it-
self as well as peripherals — Internet technologies, web-page design, database
management etc. And normally the profile is sought to correspond to the
company's area of work, chemistry, physics, mathematics etc. Therefore, it is
no surprise that any medium to large company has turned away from employ-
ing the available dogsbody towards employing a small group of professionals
with extensive knowledge, most with a university degree, assigned to different
tasks within the organisation.

The systems administrator must be capable of mastering a broad range
of technologies in order to adapt to a variety of tasks that can arise
within an organisation.

Because of the large amount of knowledge required, unsurprisingly there are
several sub-profiles for a systems administrator. In a large organisation it is
common to find different operating systems administrators (UNIX, Mac, or
Windows): database administrator, backup copies administrator, IT security
administrator, user help administrators etc.

In a smaller organisation, all or some of the tasks may be allocated to one or a
few administrators. The UNIX systems (or GNU/Linux) administrators would
be a part of these (unless there is one administrator responsible for all tasks).
Normally, the administrator's working platform is UNIX (or GNU/Linux in
our case), which requires enough specific elements to make this job unique.
UNIX (and its variants) is an open and very powerful operating system and,
like any software system, requires a certain level of adaptation, configuration
and maintenance in the tasks for which it will be used. Configuring and main-
taining an operating system is a serious job, and in the case of UNIX can be-
come quite frustrating.

Some important issues covered include the following:

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 27

a) The fact that the system is very powerful also means that there is a lot of
potential for adapting it (configuring it) for the tasks we need to do. We will
have to evaluate what possibilities it can offer us and which are appropriate
for our final objective.

b) A clear example of an open system is GNU/Linux, which will offer us per-
manent updates, whether to correct system bugs or to incorporate new fea-
tures. And, obviously, all of this has a considerable direct impact on the main-

tenance cost of administration tasks.

c) Systems can be used for critical cost tasks, or in critical points of the organ-
isation, where important failures that would slow down or impede the func-
tioning of the organisation cannot be allowed.

d) Networks are currently an important point (if not the most important), but
it is also a very critical problems area, due both to its own distributed nature
and to the system's complexity for finding, debugging and resolving problems
that can arise.

e) In the particular case of UNIX, and our GNU/Linux systems, the abundance
of both different versions and distributions, adds more problems to their ad-
ministration, because it is important to know what problems and differences
each version and distribution has.

In particular, system and network administration tasks tend to have different
features, and sometimes they are handled separately (or by different adminis-
trators). Although we could also look at it as the two sides of the same job,
with the system itself (machine and software) on the one hand, and the envi-
ronment (network environment) where the system coexists, on the other.

Usually, network administration is understood to mean managing the system
as part of the network and refers to the nearby services or devices required for
the machine to function in a network environment; it does not cover network
devices such as switches, bridges or hubs or other network devices, but basic
knowledge is essential in order to facilitate administration tasks.

In this course, we will first deal with the local aspects of the system itself and
secondly we will look at the tasks of administering a network and its services.

We have already mentioned the problem of determining exactly what a sys-
tems administrator is, because in the IT job market it is not very clear. It was
common to ask for systems administrators based on categories (established
by companies) of programmer or software engineer, which are not entirely
appropriate.

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 28

A programmer is basically a producer of code; in this case, an administrator

would not need to produce much, because it may be necessary for some tasks

but not for others. Normally, it is desirable for an administrator to have more

or less knowledge depending on the job category:

a)

b)

<)

d)

e)

8

h)

i

k)

Some qualification or university degree, preferably in IT, or in a field di-
rectly related to the company or organisation.

The profile of a systems administrator tends to include computer science
or enginnering studies or an education related to the organisation's sphere
of activity together with proven experience in the field and broad knowl-
edge of heterogeneous systems and network technologies.

It is common to ask for 1 to 3 years of experience as an administrator (un-
less the job is as an assistant of an already existing administrator). Experi-

ence of 3 to 5 years may also be requested.

Familiarity with or broad knowledge of network environments and ser-
vices. TCP/IP protocols, ftp, telnet, ssh, http, nfs, nis, ldap services etc.

Knowledge of script languages for prototyping tools or rapid task automa-
tion (for example, shell scripts, Perl, tcl, Python etc.) and programming
experience in a broad range of languages (C, C++, Java, Assembler etc.).

Experience in large applications development in any of these languages
may be requested.

Extensive knowledge of the IT market, for both hardware and software,
in the event of having to evaluate purchases or install new systems or
complete installations.

Experience with more than one version of UNIX (or GNU/Linux systems),
such as Solaris, AIX, AT&T System V, BSD etc.

Experience of non-UNIX operating systems, complementary systems that
may be found in the organisation: Windows 9x/NT/2000/XP/Vista, Mac
OS, VMS, IBM systems etc.

Solid knowledge of UNIX design and implementation, paging mecha-
nisms, exchange, interprocess communication, controllers etc., for exam-
ple, if administration tasks include optimising systems (tuning).

Knowledge and experience in IT security: construction of firewalls, au-
thentication systems, cryptography applications, file system security, se-

curity monitoring tools etc.

Experience with databases, knowledge of SQL etc.

Introduction to the GNU/Linux operating system

© FUOC » PID_00148470 29 Introduction to the GNU/Linux operating system

1) Installation and repair of hardware and/or network cabling and devices.

© FUOC » PID_00148470 30 Introduction to the GNU/Linux operating system

5. Tasks of the administrator

As we have described, we could divide the tasks of a GNU/Linux administrator
(or UNIX in general) [Lev02] into two main parts: system administration and
network administration. In the following points we will show in summary
what these tasks in general consist of for GNU/Linux (or UNIX) systems; most
part of the content of this course manual will be treated in a certain amount
of detail; most of these administration tasks will be developed in this course
manual; for reasons of space or complexity, other parts of the tasks will be
explained superficially.

Administration tasks encompass a series of techniques and knowledge, of
which this manual only reflects the tip of the iceberg; in any case, the bibli-
ography attached to each unit offers references to expand on those subjects.
As we will see, there is an extensive bibliography for almost every point that
is treated.

System administration tasks could be summarised, on the one hand, as
to administer the local system, and on the other hand, to administer
the network.

Local system administration tasks (in no specific order)

e Switching the system on and off: any UNIX-based system has configurable
switching on and off systems so that we can configure what services are
offered when the machine switches on and when they need to be switched
off, so that we can program the system to switch off for maintenance.

e Users and groups management: giving space to users is one of the main
tasks of any systems administrator. We will need to decide what users will
be able to access the system, how, and with what permissions; and to es-
tablish communities through the groups. A special case concerns system
users, pseudousers dedicated to system tasks.

e Management of the system's resources: what we offer, how we offer it and
to whom we give access.

e Management of the file system: the computer may have different resources
for storing data and devices (diskettes, hard disks, optical disk drives etc.)
with different file access systems. They may be permanent or removable
or temporary, which will mean having to model and manage the process

© FUOC » PID_00148470 31 Introduction to the GNU/Linux operating system

of installing and uninstalling the file systems offered by related disks or

devices.

e System quotas: any shared resource will have to be administered, and de-
pending on the number of users, a quota system will need to be established
in order to avoid an abuse of the resources on the part of users or to dis-
tinguish different classes (or groups) of users according to greater or lesser
use of the resources. Quota systems for disk space or printing or CPU use

are common (used computing time).

e System security: local security, about protecting resources against undue
use or unauthorised access to system data or to other users or groups data.

e System backup and restore: (based on the importance of the data) peri-
odic policies need to be established for making backup copies of the sys-
tems. Backup periods need to be established in order to safeguard our da-
ta against system failures (or external factors) that could cause data to be-
come lost or corrupted.

e Automation of routine tasks: many routine administration tasks or tasks
associated to daily use of the machine can be automated easily, due to their
simplicity (and therefore, due to the ease of repeating them) as well as their
timing, which means that they need to be repeated at specific intervals.
These automations tend to be achieved either through programming in
an interpreted language of the script type (shells, Perl etc.), or by inclusion

in scheduling systems (crontab, at...).

e Printing and queue management: UNIX systems can be used as printing
systems to control one or more printers connected to the system, as well as
to manage the work queues that users or applications may send to them.

e Modem and terminals management. These devices are common in envi-
ronments that are not connected to a local network or to broadband:
— Modems make it possible to connect to a network through an inter-
mediary (the ISP or access provider) or to our system from outside, by
telephone access from any point of the telephone network.

— In the case of terminals, before the introduction of networks it was
common for the UNIX machine to be the central computing element,
with a series of dumb terminals that were used merely to visualise in-
formation or to allow information to be entered using external key-
boards; these tended to be series or parallel type terminals. Nowadays,
they are still common in industrial environments and our GNU/Linux
desktop system has a special feature: the virtual text terminals accessed
using the Alt+Fxx keys.

© FUOC » PID_00148470 32 Introduction to the GNU/Linux operating system

e System accounting (or log): to check that our system is functioning cor-
rectly, we need to enforce log policies to inform us of potential failures of
the system or performance of an application, service or hardware resource.
Or to summarise spent resources, system uses or productivity in the form
of a report.

e System performance tunning: system tuning techniques for an established
purpose. Frequently, a system is designed for a specific job and we can
verify that it is functioning correctly (using logs, for example), in order to
check its parameters and adapt them to the expected service.

e System tailoring: kernel reconfiguration. In GNU/Linux, for example, the
kernels are highly configurable, according to the features we wish to in-
clude and the type of devices we have or hope to have on our machine,
in addition to the parameters that affect the system's performance or are
obtained by the applications.

Network administration tasks

e Network interface and connectivity: the type of network interface we use,
whether access to a local network, a larger network, or broadband type
connection with DSL or ISDN technologies. Also, the type of connectivity

we will have, in the form of services or requests.

e Data routing: data that will circulate, where from or where to, depending
on the available network devices, and the machine's functions within the
network; it may be necessary to redirect traffic from/to one or more places.

e Network security: a network, especially one that is open (like Internet)
to any external point, is a possible source of attacks and, therefore, can
compromise the security of our systems or our users' data. We need to
protect ourselves, detect and prevent potential attacks with a clear and
efficient security policy.

e Name services: a network has an infinite number of available resources.
Name services allow us to name objects (such as machines and services) in
order to be able to locate them. With services such as DNS, DHCP, LDAP
etc., we will be able to locate services or equipment later...

e NIS (Network Information Service): large organisations need mechanisms
to organise and access resources efficiently. Standard UNIX forms, such
as user logins controlled by local passwords, are effective when there are
few machines and users, but when we have large organisations, with hi-
erarchical structures, users that can access multiple resources in a unified
fashion or separately with different permissions... simple UNIX methods
are clearly insufficient or impossible. Then we need more efficient systems

© FUOC » PID_00148470 33 Introduction to the GNU/Linux operating system

in order to control all of this structure. Services such as NIS, NIS+, LDAP
help us to organise this complexity in an effective manner.

e NFS (Network Fylesystems): often, on network system structures informa-
tion needs to be shared (such as files themselves) by all or some users.
Or simply, because of the physical distribution of users, access to the files
is required from any point of the network. Network file systems (such as
NES) offer us transparent access to files, irrespective of our location on the

network.

e UNIX remote commands: UNIX has transparent network commands, in
the sense that irrespective of the physical connection it is possible to run
commands that move information along the network or that allow access
to some of the machines' services. These commands tend to have an "r" in
front of them, meaning "remote", such as: rcp, rlogin, rsh, rexec etc., which

remotely enable the specified functionalities on the network.

e Network applications: applications for connecting to network services,
such as telnet (interactive access), FTP (file transmission), in the form of
a client application that connects to a service served from another ma-
chine. Or that we can serve ourselves with the right server: telnet server,
FTP server, web server etc.

e Remote printing: access to remote printing servers, whether directly to
remote printers or to other machines that offer their own local printers.
Network printing transparently for the user or application.

e E-mail: one of the main services offered by UNIX machines is the e-mail
server, which can either store mail or redirect it to other servers, if it is not
directed at its system's own users. In the case of the web, a UNIX system
similarly offers an ideal web platform with the right web server. UNIX has
the biggest market share with regards to e-mail and web servers, and this is
one of its main markets, where it has a dominating position. GNU/Linux
systems offer open source solutions for e-mail and web, representing one
of its main uses.

e X Window: a special model of interconnection is the graphics system of
the GNU/Linux systems (and most of UNIX), X Window. This system al-
lows total network transparency and operates under client-server models;
it allows an application to be totally unlinked from its visualisation and
interaction with it by means of input devices, meaning that these can be
located anywhere on the network. For example, we may be executing a
specific application on one UNIX machine while on another we may vi-
sualise the graphic results on screen and we may enter data using the lo-
cal keyboard and mouse in a remote manner. Moreover, the client, called
client X, is just a software component that can be carried onto other op-
erating systems, making it possible to run applications on one UNIX ma-

© FUOC » PID_00148470 34 Introduction to the GNU/Linux operating system

chine and to visualise them on any other system. So-called X terminals
are a special case — they are basically a type of dumb terminal that can
only visualise or interact (using a keyboard and mouse) with a remotely
run application.

© FUOC » PID_00148470 35 Introduction to the GNU/Linux operating system

6. GNU/Linux distributions

When speaking about the origins of GNU/Linux, we have seen that there is
no clearly defined unique operating system. On the one hand, there are three
main software elements that make up a GNU/Linux system:

1) The Linux kernel: as we have seen, the kernel is just the central part of the
system. But without the utility applications, shells, compilers, editors etc. we
could not have a complete system.

2) GNU applications: Linux's development was complemented by the FSF's ex-
isting software under the GNU project, which provided editors (such as emacs),
a compiler (gcc) and various utilities.

3) Third party software: normally open source. Additionally, any GNU/Lin-
ux system incorporates third party software which makes it possible to add a
number of extensively used applications, whether the graphics system itself
X Windows, servers such as Apache for web, navigators etc. At the same time,
it may be customary to include some proprietary software, depending on to
what extent the distribution's creators want the software to be free.

Because most of the software is open source or free, whether the kernel, GNU
or third-party software, normally there is a more or less rapid evolution of
versions, either through the correction of bugs or new features. This means
that in the event of wanting to create a GNU/Linux system, we will have to
choose which software we wish to install on the system, and which specific
versions of that software.

The world of GNU/Linux is not limited to a particular company or communi-
ty, which means that it offers everyone the possibility of creating their own
system adapted to their own requirements.

Normally, among these versions there are always some that are stable and oth-
ers that are under development in phase alpha or beta, which may contain er-
rors or be unstable, which means that when it comes to creating a GNU/Linux
system, we will have to be careful with our choice of versions. Another addi-
tional problem is the choice of alternatives, the world of GNU/Linux is suffi-
ciently rich for there to be more than one alternative for the same software
product. We need to choose among the available alternatives, incorporating
some or all of them, if we wish to offer the user freedom of choice to select
their software.

© FUOC * PID_00148470 36
Example

We find a practical example with the X Window desktop managers, which, for example,
offer us (mainly) two different desktop environments such as Gnome and KDE; both
have similar characteristics and similar or complementary applications.

In the case of a distributor of GNU/Linux systems, whether commercial or non-profit,
the distributor's responsibility is to generate a system that works, by selecting the best
software products and versions available.

In this case, a GNU/Linux distribution [Dis] is a collection of software that makes up an
operating system based on the Linux kernel.

An important fact that needs to be taken into account, and that causes more
than a little confusion, is that because each of the distribution's software pack-
ages will have its own version (irrespective of the distribution it is located on)
the allocated distribution number does not correspond to the software pack-
ages versions.

Example

Let's look at a few versions as an example (the versions that appear refer to the end of
2003):

a) Linux kernel: we can currently find distributions that offer one or more kernels, such as
those of the old series 2.4.x or generally, the latest 2.6.x in revisions of varying recentness
(the number x).

b) The X Window graphics option, in open source version, which we can find on prac-
tically all GNU/Linux systems, whether as some residual versions of Xfree86 such as the
ones handled by 4.x.y versions or as the new Xorg project (a fork of the previous one in
2003), which is more popular in various versions 6.x or 7.X.

c) Desktop or windows manager: we can have Gnome or KDE, or both; Gnome with
versions 2.x or KDE 3.x.y.

For example, we could obtain a distribution that included kernel 2.4, with XFree 4.4 and
Gnome 2.14; or another, for example, kernel 2.6, Xorg 6.8, KDE 3.1. Which is better? It
is difficult to compare them because they combine a mixture of elements and depending
on how the mixture is made, the product will come out better or worse, and more or
less adapted to the user's requirements. Normally, the distributor will maintain a balance
between the system's stability and the novelty of included versions. As well as provide
attractive application software for the distribution's users, whether it is of a general nature
or specialized in any specific field.

In general, we could analyse the distributions better on the basis of the
following headings, which would each have to be checked:

a) Version of the Linux kernel: the version is indicated by numbers X.Y.Z,
where normally X is the main version, which represents important
changes to the kernel; Y is the secondary version and usually implies im-
provements in the kernel's performance: Y is even for stable kernels and
uneven for developments or tests. And Z is the build version, which indi-
cates the revision number of X.Y, in terms of patches or corrections made.
Distributors tend not to include the kernel's latest version, but rather the
version that they have tested most frequently and have checked is stable
for the software and components that they include. This classical num-
bering scheme (which was observed for branches 2.4.x, until the first ones
of 2.6), was slightly modified to adapt to the fact that the kernel (branch
2.6.X) becomes more stable and that there are fewer revisions all the time

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 37

b)

<)

d)

e)

(meaning a leap in the first numbers), but development is continuous and
frenetic. Under the latest schemes, fourth numbers are introduced to spec-
ify in Z minor changes or the revision's different possibilities (with differ-
ent added patches). The version thus defined with four numbers is the
one considered to be stable. Other schemes are also used for the various
test versions (normally not advisable for production environments), using
suffixes such as -rc (release candidate), -mm, experimental kernels testing
different techniques, or -git, a sort of daily snapshot of the kernel's devel-
opment. These numbering schemes are constantly changing in order to
adapt to the kernel community's way of working, and its needs in order
to speed up the kernel's development.

Packaging format: this is the mechanism used for installing and admin-
istering the distribution's software. It tends to be known for the format
of the software packages it supports. In this case we normally find RPM,
DEB, tar.gz, mdk formats, and although every distribution usually offers
the possibility of using different formats, it tends to have a default format.
The software normally comes with its files in a package that includes in-
formation on installing it and possible dependencies on other software
packages. The packaging is important if third party software that does not
come with the distribution is used, since the software may only be found

in some package systems, or even in just one.

File system structure: the main file system structure (/) tells us where we
can find our fils (or the system's files) in the file system. GNU/Linux and
UNIX have some file location standards (as we will see in the tools unit),
such as FHS (filesystem hierarchy standard) [LinO3b]. Therefore, if we have
an idea of the standard, we will know where to find most of the files; then
it depends whether the distribution follows it more or less and tells us of

any changes that have been made.

System boot scripts: UNIX and GNU/Linux systems incorporate boot
scripts (or shell scripts) that indicate how the machine should start up,
what will be the process (or phases) followed, and what has to be done
at each step. There are two models for this start up, those of SysV or BSD
(this is a difference between the two main UNIX branches); and every dis-
tribution may choose one or the other. Although both systems have the
same functionality, they differ in the details, and this will be important
for administration issues (we will look at this under local administration).
In our case, the analysed systems, both Fedora and Debian, use the SysV
system (which we will look at under the unit on local administration), but
there are other distributions such as Slackware that use the other BSD sys-
tem. And there are some proposals (like Ubuntu's Upstart) of new options

for this start up aspect.

Versions of the system library: all the programs (or applications) that we
have on the system will depend on a (bigger or smaller) number of system

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 38

)

libraries for running. These libraries, normally of two types, whether static
joined to the program (libxxx.a files) or dynamic runtime loaded (libxxx.so
files), provide a large amount of utility or system code that the applica-
tions will use. Running an application may depend on the existence of
corresponding libraries and the specific version of these libraries (it is not
advisable, but can happen). A fairly common case affects the GNU C li-
brary, the standard C library, also known as glibc. An application may ask
us for a specific version of glibc in order to be run or compiled. It is a fair-
ly problematic issue and therefore, one of the parameters valued by the
distribution is knowing what version of the glibc it carries and possible
additional versions that are compatible with old versions. The problem
appears when trying to run or compile an old software product on a recent
distribution, or a very new software product on an old distribution.

The biggest change occurred in moving to a glibc 2.0, in which all the pro-
grams had to be recompiled in order to run correctly, and in the different
revisions numbered 2.x there have been a few minor modifications that
could affect an application. In many cases, the software packages check
whether the correct version of glibc is available or the name itself mentions
the version that needs to be used (example: package-xxx-glibc2.rpm).

X Window desktop: the X Window system is the graphics standard for
desktop visualisation in GNU/Linux. It was developed by MIT in 1984 and
practically all UNIX systems have a version of it. GNU/Linux distributions
have different versions such as Xfree86 or Xorg. Usually, X Window is an
intermediary graphic layer that entrusts another layer known as the win-
dows manager to visualise its elements. Also, we can combine the win-
dows manager with a variety of application programs and utilities to cre-
ate what is known as a desktop environment.

Linux mainly has two desktop environments: Gnome and KDE. Each one
is special in that it is based on a library of its own components (the dif-
ferent elements of the environment such as windows, buttons, lists etc.):
gtk+ (in Gnome) and Qtf (in KDE), which are the main graphics libraries
used to program applications in these environments. But in addition to
these environments, there are many more windows or desktop managers:
XCFE, Motif, Enlightement, Blacklce, FVWM etc., meaning that there is a
broad range of choice. In addition, each one makes it possible to change
the appearance (look & feel) of the windows and components as users'

desire, or even to create their own.

User software: software added by the distributor, mostly Open Source, for
common tasks (or not so common, for highly specialised fields).

Common distributions are so large that we can find hundreds to thou-
sands of these extra applications (many distributions have 1 to 4 CDs — ap-
proximately 1 DVD of extra applications). These applications cover prac-
tically all fields, whether domestic, administrative or scientific. And some
distributions add third party proprietary software (for example, in the case

Introduction to the GNU/Linux operating system

© FUOC » PID_00148470 39 Introduction to the GNU/Linux operating system

of an Office-type suite), server software prepared by the distributor, for
example an e-mail server, secure web server etc.

This is how each distributor tends to release different versions of their
distribution, for example, sometimes there are distinctions between a per-
sonal, professional or server version.

Often, this financial cost does not make sense, because the standard soft-
ware is sufficient (with a bit of extra administration work); but it can be
interesting for companies because it reduces server installation times and
maintenance and also optimises certain critical servers and applications

for the company's IT management.
6.1. Debian
The case of Debian [Debb] is special, in the sense that it is a distribution deliv-
ered by a community with no commercial objectives other than to maintain

its distribution and promote the use of free and open source software.

Debian is a distribution supported by an enthusiastic community of its own
users and developers, based on the commitment to use free software.

The Debian project was founded in 1993 to create the Debian GNU/Linux dis- Note

tribution. Since then it has become fairly popular and even rivals other com-
We can see the Debian So-
cial Contract documents at:

is a community project, the development of this distribution is governed by debian.org.

mercial distributions in terms of use, such as Red Hat or Mandrake. Because it

a series of policies or rules; there are documents known as the Debian Social
Contract, which mention the project's overall philosophy and Debian's poli-
cies, specifying in detail how to implement its distribution.

The Debian distribution is closely related to the objectives of the FSF and its
GNU Free Software project; for this reason, they always include "Debian GNU/
Linux" in their name; also, the text of their social contract has served as the
basis for open source definitions. Where their policies are concerned, anyone

who wishes to participate in the distribution project, must abide by them. Al- d b’
though not a collaborator, these policies can be interesting because they ex- e lan
plain how the Debian distribution operates. Figure 2

We should also mention a practical aspect where end users are concerned: De-
bian has always been a difficult distribution. It tends to be the distribution
used by Linux hackers, meaning those that gut the kernel and make changes,
low level programmers, who wish to be on the leading edge to test new soft-
ware, and to test unpublished kernel developments... in other words, all man-
ner of folk who are mad about GNU/Linux.

Earlier versions of Debian became famous for the difficulty of installing them.
The truth is that not enough effort had been made to make it easy for non-
experts. But with time things have improved. Now, the installation still re-

© FUOC » PID_00148470 40 Introduction to the GNU/Linux operating system

quires a certain amount of knowledge, but can be done following menus (text
menus, unlike other commercial versions that are totally graphic), and there
are programs to facilitate package installations. But even so, the first attempts
can be somewhat traumatic.

Normally, they tend to be variants (called flavours) of the Debian distribution.
Currently, there are three branches of the distribution: stable, testing and un-
stable. And, as their names indicate, stable is the one used for production en-
vironments (or users who want stability), testing offers newer software that has
been tested minimally (we could say it is a sort of beta version of Debian) that
will soon be included in the stable branch. And the unstable branch offers the
latest novelties in software, and its packages change over a short time period;
within a week, or even every day, several packages can change. All distribu-
tions are updatable from various sources (CD, FTP, web) or by a system known
as APT which manages Debian DEB software packages. The three distributions
have more common names assigned to them e.g. (in a Debian specific line

of time):

e Etch (stable)
e Lenny (testing)
e Sid (unstable)

The previous stable version was called Sarge (3.1r6), formerly Woody (that was
3.0). The most current one (in 2007), is the Debian GNU/Linux Etch (4.0). The
most extended versions are Etch and Sid, which are the two extremes. At this
time, Sid is not recommended for daily working environments (production),
because it may have features that are halfway through testing and can fail
(although this is uncommon); it is the distribution that GNU/Linux hackers
tend to use. Also, this version changes almost daily; it is normal, if a daily
update is wanted, for there to be between 10 and 20 new software packages
per day (or even more at certain points in the development).

Etch is perhaps the best choice for daily working environments, it is updated
periodically in order to cover new software or updates (such as security up-
dates). Normally, it does not have the latest software which is not included
until the community has tested it with an extensive range of tests.

We will comment briefly on some of this distribution's characteristics (current
default versions of Etch and Sid):

a) The current (stable) version consists of between 1 and 21 CDs (or 3 DVDs)
of the latest available version of Etch. Normally there are different possi-
bilities depending on the set of software that we find on physical support
(CD or DVD) or what we can subsequently download from the Internet,
for which we only need a basic CD (netinstall CD), plus the internet access
to download the rest upon demand. This distribution can be bought (at a

© FUOC « PID_00148470 41

b)

<)

d)

e)

8

h)

i)

1)

k)

D

symbolic cost for the physical support, thus contributing to maintain the
distribution) or can be downloaded from debian.org or its mirrors.

The testing and unstable versions tend not to have official CDs, but rather
a stable Debian can be converted into a festing or unstable version by chang-
ing the configuration of the APT packages system.

Linux kernel: the default kernels were 2.4.x series and included an optional
2.6.x, which is now the default in the latest versions. The focus of the stable
Debian is to promote stability and to leave users the option of another
more updated software product if they need it (in unstable or testing).

Packaging format: Debian supports one of the formats that offers most
facilities, APT. The software packages have a format known as DEB. APT
is a high level tool for managing them and maintaining a database of
instantly installable or available ones. Also, the APT system can obtain
software from various sources, CD, FTP, or web.

The APT system is updatable at any time, from a list of Debian software
sources (APT sources), which may be default Debian (debian.org) or third
party sites. This way we are not linked to a single company or to a single
subscription payment system.

Some of the versions used are, for example: Xfree86(4.x), glibc (2.3.x)...
Debian Sid has Xorg (7.1), glibc (2.3.x%)...

For the desktop, it accepts Gnome 2.16.x (default) or KDE 3.3.x (K Desktop
Environment). Unstable with Gnome 2.18.x and KDE 3.5.x.

In terms of interesting applications, it includes the majority of those we
tend to find in GNU/Linux distributions; in Sid: editors such as emacs (and
xemacs), gcc compiler and tools, Apache web server, Mozilla (or Firefox)
web browser, Samba software for sharing files with Windows etc.

It also includes office suites such as OpenOffice and KOffice.

Debian includes many personalised configuration files for distribution in
/etc directories.

Debian uses the lilo, boot manager by default, although it can also use
Grub.

The configuration for listening to TCP/IP network services, which is done,
as on most UNIX systems, with the inetd server (/etc/inetd.conf). Al-
though it also has an optional xinetd, which is becoming the preferred
choice.

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 42

m) There are many more GNU/Linux distributions based on Debian, since the
system can be easily adapted to make bigger or smaller distributions with
more or less software adapted to a particular segment. One of the most
famous ones is Knoppix, a single CD distribution, of the Live CD type (run
on CD), which is commonly used for GNU/Linux demos, or to test it on
a machine without previously installing it, since it runs from the CD, al-
though it can also be installed on the hard disk and become a standard De-
bian. Linex is another distribution that has become quite famous because
of its development supported by the local authority of the autonomous
community of Extremadura. At the same time, we find Ubuntu, one of the
distributions to have achieved the greatest impact (even exceeding Debian
in several aspects), because of its ease for building an alternative desktop.

Note

Debian can be used as a base for other distributions; for example, Knoppix is a distri-
bution based on Debian that can be run from CD without having to install it on the
hard drive. Linex is a Debian distribution adapted to the autonomous community of
Extremadura as part of its project to adopt open source software. And Ubuntu is a distri-
bution optimised for desktop environments.

& Aplicaciones Lugares Escritorio [(Gl [BN 1 lun 19 de mar, 20:27 @ B

=

Equipo

fle Edt View History Bookmarks Iools Help

& - - & @ @ httpspwww.debian.org/ e G

@ The Mozilla Organiza... [Latest Builds

>
About Deblan) News] Getting Deblan] Support | Developers' Corer { Site map] Search

About What is Debian?
Social Contract
Eree Sofware Debian is a free operating system (OS) for your computer. An
farus operating system is the set of basic programs and utilities that
Denaliens make your computer run. Debian uses the Linux kernel (the
Comaitds core of an operating system), but mogt-attha hasia OS taols -
News come from the GNU project; hence thj —
Weskly News
Events Debian GNU/Linux provides more thd P =
P
Gtting Deblan over 15490 packages, precompiled s4
R ey nice format for easy installation on y§ GNOME™ Aerca de Gnome - Noticias - Software - Resarrolladores - Amigos de Gnome - Contacte
CD ISO images Read more. Bienvenido al Escritorio Gnome
Network install - = Gnome incluye la mayoria de lo que ve en su
Bre-installed computadora, incluyendo el gestor de
archivos, navegador web, mends y muchas

Qeblanfackages Getting Started splcaciones.

The latest stable release of Debian i

W release was made on February 18th,
e available versions of Debian
Bone
Versién: 2.14.3
Distribuidor: Debian
Fecha de compilacién: 15/02/07

IB) [@ Debian -- The Universal Operating System - iceweasel || € Acerca del Escritorio de Gnome @ iniciando Capturar pantalla da =

Figure 3. Debian Sid environment with Gnome 2.14

6.2. Fedora Core

Red Hat Inc. [Redh] is one of the main commercial companies in the world
of GNU/Linux, with one of the most successful distributions. Bob Young and
Marc Ewing created Red Hat Inc. in 1994. They were interested in open source
software models and thought it would be a good way of doing business. Their
main product is their Red Hat Linux distribution (which we will abbreviate

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 43

to Red Hat), which is available to different segments of the market, individu-
al users (personal and professional versions), or medium or large companies
(with their Enterprise version and its different sub-versions).

Red Hat Linux is the main commercial distribution of Linux, oriented
at both the personal desktop and high range server markets. Addition-
ally, Red Hat Inc. is one of the companies that collaborates the most
in the development of Linux, since various important members of the
community work for it.

rednat fedord?

Figure 4

Although they work with an open source model, it is a company with com-
mercial objectives, which is why they tend to add value to their basic distri-
bution through support contracts, update subscriptions and other means. For
businesses, they add tailor-made software (or own software), to adapt it to the
company's needs, either through optimised servers or utility software owned
by Red Hat.

As of a certain point (towards the end of 2003), Red Hat Linux (version 9.x), de-
cided to discontinue its desktop version of GNU/Linux, and advised its clients
to migrate towards the company's business versions, which will continue to

be the only officially supported versions.

At that moment, Red Hat decided to initiate the project open to the commu-
nity known as Fedora [Fed], with a view to producing a distribution guided by
the community (Debian-style, although for different purposes), to be called
Fedora Core. In fact, the goal is to create a development laboratory open to
the community that makes it possible to test the distribution and at the same
time to guide the company's commercial developments in its business distri-

butions.

To some extent, critics have pointed out that the community is being used as
betatesters for technologies that will subsequently be included in commercial
products. Also, this model is subsequently used by other companies to create

Introduction to the GNU/Linux operating system

Note

See: http://fedoraproject.org

© FUOC « PID_00148470 44

in turn dual models of community and commercial distributions. Examples
such as OpenSuse appear (based on the commercial SuSe), or Freespire (based
on Linspire).

Normally, the duo of Red Hat and the Fedora community present a certain
conservative vision (less accentuated at Fedora) of the software elements it
adds to the distribution, since its main market is businesses, and it tries to
make its distribution as stable as possible, even if it means not having the lat-
est versions. What it does do as an added value is to extensively debug the
Linux kernel with its distribution and to generate corrections and patches to
improve its stability. Sometimes, it can even disable a functionality (or driver)
of the kernel, if it considers that it is not stable enough. It also offers many
utilities in the graphics environment and its own graphics programs, includ-
ing a couple of administration tools; in terms of graphics environments, it
uses both Gnome (by default) and KDE, but through its own modified envi-
ronment called BlueCurve, which makes the two desktops practically identi-
cal (windows, menus etc.).

The version that we will use will be the latest available Fedora Core, which
we will simply call Fedora. In general, the developments and features that are
maintained tend to be fairly similar in the versions released later, meaning
that most comments will be applicable to the different versions over time.
We should take into account that the Fedora [Fed] community tries to meet
a calendar of approximately 6 months for each new version. And there is a
certain consensus over what new features to include.

Red Hat, on the other hand, leaves its desktop versions in the hands of the
community and focuses its activity on the business versions (Red Hat Linux
Enterprise WS, ES, and AS).

Let's look briefly at a few characteristics of this Fedora Core distribution:

a) The current distribution consists of 5 CDs, the first one being the bootable
one, which serves for the installation. There are also extra CDs containing
documentation and the source code of most of the software installed with
the distribution. The distribution is also provided on 1 DVD.

b) Linux kernel: it uses kernels of the 2.6.x series, which can be updated with
the rpm packages system (see unit on the kernel) (through the yum utility
for example). Red Hat, for its part, subjects the kernel to many tests and
creates patches for solving problems, which are normally also incorporat-
ed into the version of the Linux community, since many important Linux

collaborators also work for Red Hat.

c) Packaging format: Red Hat distributes its software through the RPM pack-
ages system (red hat package manager), which are managed by the rpm com-
mand or the yum utilities (we will comment on this in the unit on local

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 45

d)

e)

)

h)

i)

1)

k)

D

m)

administration). RPM is one of the best available packaging systems (sim-
ilar to Debian's deb), and some proprietary UNIX systems are including it.
Basically, the RPM system maintains a small database with the installed
packages and verifies that the package to be installed with the rpm com-
mand is not already installed or does not enter into conflict with any oth-
er software package, or on the other hand that a software package or the
version required by the installation is not missing. The RPM package is
basically a set of compressed files containing information on dependen-
cies or on the software that it requires.

Regarding start up, it uses scripts of the System V type (which we will look

at in the unit on local administration).

Some of the versions used are: Xorg (7.x), glibc (2.5.x) etc.

The desktop accepts Gnome (default desktop) and KDE as an option.

Where interesting applications are concerned, it includes most of the ones
we tend to find with almost all GNU/Linux distributions: editors such as
emacs (and xemacs), gcc compiler and tools, Apache web server, Firefox/
Mozilla web browser, Samba software for sharing files with Windows etc.

It also includes office suites such as OpenOffice and KOffice.

Additional software can be obtained through the yum update services
(among others) in a similar way to the Debian APT system or using differ-
ent update tools, or from the Internet using RPM packages designed for
the distribution.

Fedora uses the Grub boot loader by default to start up the machine.

Red Hat has replaced the configuration for listening to the TCP/IP net-
work services, which for most UNIX systems uses the inetd server (/etc/
inetd.conf), with xinetd, which has a more modular configuration (direc-
tory/etc/xinetd.d).

Upon start up it has a program called Kudzu which verifies any changes
in hardware and detects newly installed hardware. We expect that it will
be left out of following versions, because there is now a new API called
HAL, which performs this function.

There are several more distributions based on the original Red Hat, which
retain many of its characteristics, in particular Mandriva (formerly Man-
drake): a French distribution, that was originally based on Red Hat and
that together with Red Hat remains among the leaders in terms of user
preferences (especially for desktop work). Mandriva develops its own soft-
ware and lots of wizards to help with the installation and administration

Introduction to the GNU/Linux operating system

© FUOC « PID_00148470 46

of the most common tasks, separating itself from its origin based on Red
Hat. At the same time, Red Hat business versions have also given rise to
a series of very popular free distributions in server environments, such as
CentOS [Cen] (which tries to maintain 100% compatibility with the busi-
ness Red Hat), and Scientific Linux [Sci] (specialised in scientific comput-
ing for scientific research projects). As for the packaging system, it is worth
noting that the rpm system is used for a large number of distributions,

including SuSe.

© Soquearta parkata| & rechay hora
J saw P isoma

er @ impnmiendo
EX mona

&rchivo Edtar Yer K Marcadores Hemamienta
g @

f
3 Release Notes fFedora Project) Fedora Weel @@, pegsstro de actividad del sisterma | Core 6 MIRed Hat Magazine

T Inssrhares g g { -] or [C

Smart Card Manager

S fedorc®

Terminado

@ | @ Mozma Firefox 3 (root@jserver.~]

Figure 5. Fedora Core desktop with Gnome

Regarding the community distribution Fedora Core, and its commercial ori-
gins in Red Hat:

a) It is a distribution created by a community of programmers and users
based on development; it does not have any support for updates or main-
tenance on the part of the manufacturer. This aspect comes to depend on
the community, as in the case of the Debian GNU/Linux distribution.

b) These versions are produced fairly rapidly, and new versions of the distri-
bution are expected approximately every six months.

c) It also uses the RPM package management system. In terms of the process
of updating the distribution's packages or installing other new ones, it can
be achieved by means of different tools, via update, through the Fedora
update channels or the new Yum update systems and in some cases Apt
(inherited from Debian, but that works with RPM files).

d) Other more technical aspects (some of which we will look at in later chap-

ters) can be found in the Fedora Core version notes.

Introduction to the GNU/Linux operating system

Note

See Fedora Release Notes at:
http://docs.fedoraproject.org/

© FUOC » PID_00148470 47 Introduction to the GNU/Linux operating system

7. What we will look at...

Having studied this "philosophical" introduction to the world of open source
and the history of UNIX and GNU/Linux systems, as well as defining the tasks
of a system administrator, we will look at how to handle the typical tasks
involved in administrating GNU /Linux systems.

Next, we will look at the different areas involved in administering GNU/Linux
systems. For each area, we will try to examine a few basic theoretical founda-
tions that will help us to explain the tasks that need to be done and to under-
stand how the tools that we will use work. Each subject will be accompanied
by a type of tutorial where we will look at a small work session or how some
tools are used. We will simply remember that, as mentioned in the introduc-
tion, the field of administration is very broad and any attempt at covering it
completely (like this one) is destined to fail because of its limited size; there-
fore, you will find an abundant bibliography for each subject (in the form of
books, web pages, web sites, howtos etc.), where you can broaden your knowl-
edge from the brief introduction we have made on the subject.

The subjects we will look at are as follows:

e Under the section on migration, we will gain a perspective of the type of
computer systems that are being used and in what work environments; we
will also look at how GNU/Linux systems adapt better or worse to each one
of them and will consider a first dilemma when it comes to introducing
a GNU/Linux system: do we change the system we had or do we do it in
stages with both coexisting?

e Under the section on tools we will study (basically) the set of tools that
the administrator will have to live with (and/or suffer with) on a daily
basis, and that could comprise the administrator's toolbox. We will talk
about the GNU/Linux standards, which will allow us to learn about com-
mon aspects of all GNU/Linux distributions, in other words, what we can
expect to find in any system. Other basic tools will be: simple (or not so
simple) editors; some basic commands for learning about the system's sta-
tus or for obtaining filtered information depending on what we are inter-
ested in; programming command scripts (or shell scripts) that will allow
us to automate tasks; characteristics of the languages we may find in the
administration tools or applications; basic program compilation processes
based on source codes; tools for managing the installed software, as well as
commenting on the dilemma over using graphics tools or command lines.

© FUOC » PID_00148470 48 Introduction to the GNU/Linux operating system

e Under the section concerning the kernel, we will observe the Linux kernel
and how, by tailoring it, we can adjust it better to the hardware or to the
services that we wish to provide from our system.

e Under the local administration heading, we will deal with those aspects
of the administration that we could consider "local" to our system. These
aspects may comprise most of the administrator's typical tasks when it
comes to handling elements such as users, printers, disks, software, pro-
cesses etc.

e In the section on the network, we will examine all the administration tasks
that concern our system and its neighbourhood in the network, irrespec-
tive of its type, and we will look at the different types of connectivity that
we can have with neighbouring systems or the services that we can offer
or receive from them.

e In the section on servers, we will look at a few typical configurations of
servers that we can commonly find on a GNU/Linux system.

e Inthe section on data, we will look at one of today's most relevant themes,
the data storage and consultation mechanisms that GNU/Linux systems
can offer us, in particular, database systems and version control mecha-

nisms.

e In the section on security, we will handle one of today's most relevant and
important issues regarding the whole GNU/Linux system. The existence
of a world interconnected by the Internet entails a series of important
dangers for our systems' correct functioning and gives rise to the issue of
reliability, both of these systems and of the data that we may receive or
offer through the net. Therefore, our systems need to provide minimum
levels of security and to prevent unauthorised access to or handling of our
data. We will look at the most frequent types of attacks, security policies
that can be enforced and the tools that can help us to control our security
level.

e In the section on optimisation, we will see how, because of the large num-
ber of servers and services on offer, as well as the large number of environ-
ments for which the system is designed, GNU/Linux systems tend to have
many functioning parameters that influence the performance of the ap-
plications or services on offer. We can (or should) try to extract maximum
performance by analysing the system's own configurations to adjust them
to the quality of service that we wish to offer clients.

e In the section on clustering, we will look at some of the techniques for
providing high performance computing on GNU/Linux systems, exten-
sively used in the fields of scientific computing and becoming more fre-
quently used by a large number of industries (pharmaceuticals, chemistry,

© FUOC » PID_00148470 49 Introduction to the GNU/Linux operating system

materials etc.), for researching and developing new products. In addition
to the organisation of various GNU/Linux systems into clusters, to ampli-
fy the performance of individual systems, by creating groups of systems
that make it possible to scale the services offered to an increased client
demand.

© FUOC « PID_00148470 51

Activities

1) Read the Debian manifesto at:
http://www.debian.org/social_contract

2) Read up on the different distributions based on Debian: Knoppix, Linex, Ubuntu variants.
Apart from each distribution's website, the address www.distrowatch.com offers a good guide
to the distributions and their status, as well as the software that they include. Through this
webpage or by accessing the different communities or manufacturers we can obtain the ISO
images of the different distributions.

Introduction to the GNU/Linux operating system

© FUOC » PID_00148470 52
Bibliography
Other sources of reference and information (see references under Bibliography)

[LPD] The Linux Documentation Project (LDP), collection of Howtos, manuals and guides
covering any aspect of GNU/Linux.

[OSDb] Community with various websites, news, developments, projects etc.
[Sla] Open Source community news site and general sites on IT and the Internet.
[New] [Bar] Open Source News.

[Fre] [Sou] List of Open Source projects.

[Dis] Monitoring of GNU/Linux distributions and new features of the software packages. And
links to the sites for downloading the ISO images of the GNU/Linux distribution CDs/DVDs.

[His] [Bul] [LPD] General documentation and communities of users.

[Mag03] [JouO3] GNU/Linux magazines.

Introduction to the GNU/Linux operating system

Migration and
coexistence
with non-Linux
systems

Josep Jorba Esteve

© FUOC PID_00148467 Migration and coexistence with non-Linux systems

© FUOC PID_00148467 Migration and coexistence with non-Linux systems

Index
INtroducCtion.. ... S
1. Computer systems: environments.................ccoooeiiiiiiiiiiiiinennnnnn. 7
2. GNU/LINUX SEFVICES.........ccotuiiiiiiiiiiiiiiiiiii et 11
3. TYPES OF WSC...ouiiiiiiiiiiiiiiiiii ettt ettt 13
4. Migration or coexistence.................ccocoooiiiii 16
4.1. Identify service reqQUirementscc..ccceeueieiemuiiriiniieeiieeecenneeens 17
4.2, MiZratioOn PIOCESS ...cceiiieniiiuniiiniiiiiiiiiiiici ettt eea e eaaeeaes 18
5. Migration workshop: case study analysis..................c..o 24

5.1. Individual migration of a Windows desktop user to a

GNU/LINUX SYSTEIML ..utiiiiiiiiiiiiiiiiiiieitiieeetiie et e eenieeeenneeeenaaeee 24
5.2. Migration of a small organisation with Windows systems
and a few UNIX ... e 27
5.3. Migration of a standalone Windows server to a Samba server
running GNU/LINUX ...coeeiiiiiiiiiiiiiiiiiiiiicctin e eeeenaens 29
ACHIVIHI@S. ... 35

BibLIOZrapluy........ccoooiiiiiiiiiiiiiiii e 36

© FUOC » PID_00148467 5 Migration and coexistence with non-Linux systems

Introduction

Having had a brief introduction to GNU/Linux systems, the following step is
to integrate them in the work environment as production systems. According
to the current system in use, we can consider either a full migration to GNU/
Linux systems or a coexistence through compatible services.

Migration to the GNU/Linux environment may be done progressively by re-
placing services partially or by substituting everything in the old system by
GNU/Linux equivalents.

In current distributed environments, the most relevant concern is the client/
server environments. Any task in the global system is managed by one or more
dedicated servers, with the applications or users directly accessing the offered
services.

Regarding the work environment, whether in the simplest case of the individ-
ual user or the more complex case of a business environment, every environ-
ment will require a set of services that we will need to select, later adjusting
client and server machines so that they can access them or provide their use.

The services may encompass different aspects and there tend to be various
types for sharing resources or information. File servers, print servers, web
servers, name servers, e-mail servers etc., are common.

The administrator will normally select a set of services that need to be present
in the work environment according to the needs of the end users and/or the
organisation; and must configure the right support for the infrastructure, in
the form of servers that support the expected workload.

© FUOC » PID_00148467 7 Migration and coexistence with non-Linux systems

1. Computer systems: environments

During the process of installing some GNU/Linux distributions, we often find
that we are asked about the type of environment or tasks our system will be
dedicated to, which often allows us to choose a sub-set of software that will be
installed for us by default, because it is the most suited to the contemplated
job. We will often be asked if the system will be used as a:

a) Workstation: this type of system usually incorporates particular applica-
tions that will be used most frequently. The system is basically dedicated
to running these applications and a small set of network services.

b) Server: basically it integrates most network services or, in any case, a par-
ticular service, which will be the system's main service.

c) Dedicated calculation unit: calculation-intensive applications, renders,
scientific applications, CAD graphics etc.

d) Graphics station: desktop with applications that require interaction with
the user in graphic form.

We can normally set up our GNU/Linux system with one or more of these
possibilities.

More generally, if we had to separate the work environments [Mor03]
where a GNU/Linux system can be used, we could identify three main
types of environments: workstation, server and desktop .

We could also include another type of systems, which we will generically Note

call embedded devices or small mobile systems like a PDA, mobile telephone,

GNU/Linux systems can be
dedicated to server, worksta-

with smaller personalised kernels for them. tion or desktop functions.

portable video console etc. GNU/Linux also offers support for these devices,

Example

For example, we should mention the initial work done by the Sharp company on its
Zaurus models, a PDA with advanced Linux features (there are four or five models on the
market). Or also other Linux initiatives of an embedded type such as POS (point of sale)
terminals. Or video consoles such as GP2X, and Sony Playstation 3 linux support. Also
new smartphone/PDA platforms like Google Android, Nokia Maemo, Intel Moblin.

Regarding the three main environments, let's look at how each one of these
computer systems is developed in a GNU/Linux environment:

© FUOC » PID_00148467 8 Migration and coexistence with non-Linux systems

1) A workstation type system tends to be a high performance machine
used for a specific task instead of a general set of tasks. The workstation
classically consisted of a high performance machine with specific hard-
ware suited to the task that needed doing; it was usually a Sun's SPARC,
IBM's RISC or Silicon Graphics machine (among others) with its variants
of proprietary UNIX. These high cost machines were oriented at a clear
segment of applications, whether 3D graphic design (in the case of Silicon
or Sun) or databases (IBM or Sun). Nowadays, the performance of many
current PCs is comparable (although not equal) to these systems and the
frontier between one of these systems and a PC is no longer clear, thanks
to the existence of GNU/Linux as an alternative to the proprietary UNIX

versions.

2) A server type system has a specific purpose, which is to offer services to
other machines on the network: it offers a clearly distinct set of charac-
teristics or functionality from other machines. In small computer systems
(for example, with less than 10 machines), there is not usually an exclu-
sive server system, and it tends to be shared with other functionalities, for
example as a desktop type machine. Medium systems (a few dozen ma-
chines) tend to have one or more machines dedicated to acting as a serv-
er, whether as an exclusive machine that centralises all services (e-mail,
web etc.) or as a pair of machines dedicated to sharing the main services.

In large systems (hundreds or even thousands of machines), the load
makes it necessary to have a large group of servers, with each one usual-
ly exclusively dedicated to a particular service, or even with a set of ma-
chines exclusively dedicated to one service. Moreover, if these services
are provided inwards or outwards of the organisation, through access by
direct clients or open to the Internet, depending on the workload to be
supported, we will have to resort to SMP multicore type solutions (ma-
chines with multiple processors/code) or of the cluster type (grouping of
machines that distribute a particular service's load).

The services that we may need internally (or externally) can encompass
(among others) the following service categories:

a) Applications: the server can run applications and as clients we just
observe their execution and interact with them. For example, it may
encompass terminals services and web-run applications.

b) Files: we are offered a shared and accessible space from any point

of the network where we can store/recover our files.

c) Database: centralisation of data for consultation or production by
the system's applications on the network (or for other services).

© FUOC » PID_00148467 9 Migration and coexistence with non-Linux systems

d) Printing: there are sets of printers and their queues and jobs sent
to them from any point of the network are managed.

e) E-mail: offers services for receiving, sending or resending incoming

or outgoing mail.

f) Web: server (or servers) belonging to the organisation for internal
or external use by customers.

g) Network information: for large organisations it is vital for finding
the services offered or the shared resources; or users themselves, if
they need services that make this localisation possible and to consult
the properties of each type of object.

h) Names services: services are required to name and translate the
different names by which the same resource is known.

i) Remote access services: in the case of not having direct access, we
need alternative methods that allow us to interact from the outside,
giving us access to the system that we want.

j) Name generation services: in naming machines, for example, there
may be a highly variable number of them, or they may not always be
the same ones. We need to provide methods for clearly identifying
them.

k) Internet access services: many organisations have no reasons for

direct access and rather have access through gateways or proxies.

1) Filtering services: security measures for filtering incorrect informa-
tion or information that affects our security.

3) A desktop type machine would simply be a machine used for routine
everyday computer tasks (such as our home or office PC).

© FUOC « PID_00148467 10

Example

For example, we could establish the following as common tasks (included in some of the
most used GNU/Linux programs):

Office tasks: providing the classical software of an office suite: word processor, spread-
sheet, presentations, a small database etc. We can find suites like OpenOffice (free),
StarOffice (paid for, produced by Sun), KOffice (by KDE), or various programs like
Gnumeric, AbiWord which would form part of a suite for Gnome (known as Gnome-
Office).

Web browser: browsers such as Mozilla Firefox, Konqueror, Epiphany etc.

Hardware support (USB, storage devices...). Supported in GNU/Linux by the appro-
priate drivers, usually provided in the kernel or by the manufacturers. There are also
new hardware analysis tools such as kudzu (Fedora/Red Hat) or discover (Debian).
Media and entertainment (graphics, image processing, digital photography, games
and more). In GNU/Linux there is an enormous amount of these applications of a
very professional quality: Gimp (touching up photographs), Sodipodi, Xine, Mplay-
er, gphoto etc.

Connectivity (remote desktop access, access to other systems). In this regard, GNU/
Linux has an enormous amount of own tools whether TCP/IP or FTP, telnet, web
etc., or X Window, which has remote desktop capabilities for any UNIX machine,
rdesktop (for connecting to Windows desktops), or VNC (for connecting to UNIX,
Windows, Mac etc.).

Migration and coexistence with non-Linux systems

Web sites

Open Source office suites:

http://openoffice.org
http://www.koffice.org/
http://live.gnome.org/Gnome-
Office

© FUOC » PID_00148467 11 Migration and coexistence with non-Linux systems

2. GNU/Linux services

GNU/Linux has servers adapted for any work environment.

The service categories we have mentioned have equivalents that we can pro-
vide from our GNU/Linux systems to all other machines on the network (and
from which they can also act as clients):

a) Applications: GNU/Linux can provide remote terminal services, whether
by direct connection through series interfaces of dumb terminals, serving
to visualise or interact with the applications. Another possibility is remote
connection in text mode, from another machine via TCP/IP services such
as rlogin, telnet, or in a secure way with ssh. GNU/Linux provides servers
for all these protocols. In the case of running graphics applications, we
have remote solutions through X Window, any UNIX, Linux or Windows
client (or others) with an X Window client can visualise the running of the
environment and its applications. At the same time, there are other solu-
tions such as VNC for the same problem. Regarding the issue of web-run
applications, GNU/Linux has the Apache server, and any of the multiple
web running systems are available, whether Servlets (with Tomcat), JSP,
Perl, PHP, xml, webservices etc., as well as web application servers such as
BEA Weblogic, IBM Websphere, JBoss (free) which are also run on GNU/
Linux platforms.

b) Files: files can be served in various ways, either through FTP access to the
files, or by serving them in a transparent manner to UNIX and Linux ma-
chines with NFS, or by acting as client or server towards Windows ma-
chines through Samba.

c) Database: it supports a large number of relational client/server type
databases such as MySQL, PostgreSQL and several commercial ones such
as Oracle or IBM DB2, among others.

d) Printing: it can serve local or remote printers, for both UNIX systems with
TCP/IP protocols and Windows through Samba/CIFS.

e) E-mail: it offers services for clients to obtain mail on their machines (POP3
or IMAP servers), as mail transfer agents (MTA) to recover and retransmit
mail, such as the Sendmail server (UNIX standard) or others like Exim and,
in the case of outward sending, the SMTP service for outgoing mail.

© FUOC « PID_00148467 12

f)

8

h)

i)

i

k)

D

Web: we have the http Apache server, whether in its 1.3.x versions or the
new 2.0.x. or 2.2.x. versions Also, we can integrate web application servers,
such as Tomcat for servlets, JSP...

Network information: services such as NIS, NIS+ or LDAP allow us to cen-
tralise the information from the machines, users, and various resources
on our network, facilitating administration and service to users, in such a
way that the latter do not depend on their situation in the network. Or if
our organisation has a certain internal structure, these services will allow

us to model it allowing access to the resources to whoever needs it.

Names services: services such as DNS for machine names and their trans-
lation from or to IP, by means of the Bind server for example (the standard
UNIX DNS).

Remote access services: whether to run applications or to obtain remote
information on the machines. The servers could be the ones we have men-
tioned for the applications: X Window, VNC etc., and also those that al-
low some remote commands to be run without interactivity such as rexec,
rsh, ssh etc.

Name generation services: services such as DHCP allow TCP/IP networks,
to dynamically (or statically) generate the available IP addresses according
to the machines that need it.

Internet access services: in certain situations there may be a single out-
put to Internet (or several). These points tend to act as proxy, since they
have access and they redirect it to potential Internet accesses on behalf of
clients. They also tend to act as content cache. In GNU/Linux we can have
Squid for example. In this category, a gateway or router could also come
into action in a GNU/Linux system, whether to direct packages to other
networks or to find alternative resending routes. Also, in the case of small
installations such as domestic ones, we could include the Internet access
by modem through the PPP services.

Filtering services: one of the most commonly used security measures at
present is firewalls. They basically represent filtering techniques for in-
coming or outgoing packages, for the different protocols we are using, to
put up barriers against unwanted ones. In GNU/Linux, we have mecha-
nisms such as ipchains and iptables (more modern) for implementing fire-
walls.

Migration and coexistence with non-Linux systems

© FUOC » PID_00148467 13 Migration and coexistence with non-Linux systems

3. Types of use

GNU/Linux, as a system, offers characteristics that are valid for personal users
as well as users of a medium or large-scale infrastructure.

From the perspective of GNU/Linux system users, we could distinguish:

a) The individual or domestic user: normally, this type of user has one or
several machines at home that may or may not be shared. In general, in
this environment, GNU/Linux is used to develop a desktop system, which
means that the graphics part will be important: the GNU/Linux desktop.
For this desktop we have two main options in the form of Gnome and
KDE environments, both of which are perfectly valid. Either of the two
environments offers applications running and visualisation services, to-
gether with a broad range of basic own applications that allow us to de-
velop all sorts of routine tasks. The two environments offer a visual desk-
top with different menus, icon bars and icons, in addition to navigators
for own files and various useful applications. Any environment can run
its own applications and the others', although, in the same way as the ap-
plications, they run better in their own environment because their visual
aspect is more suited to the environment for which they were designed.
Regarding applications for the personal user, we should include the typical
ones of the desktop system. If the user has a home network, for example,
a small group of computers joined by an Ethernet type network, services
for sharing files and printers between machines could also be interesting.
Services such as NFS may be necessary if there are other Linux machines;
or Samba, if there are machines with Windows.

In the case of having an Internet connection through an ISP (Internet

Service Provider) depending on the type of connection used, we would

need to control the corresponding devices and protocols:

e Modem connection: telephone modems tend to use the PPP protocol
to connect with the provider. We would have to enable this protocol
and configure the accounts we have enabled with the provider. An
important problem with Linux is the winModems issue, which has
caused a lot of trouble. This modem (with some exceptions) is not sup-
ported, because it is not a real modem but rather a hardware simpli-
fication plus driver software, and most only function with Windows,
meaning that we need to avoid them (if not supported) and to buy
real (full) modems.

e ADSL modem connection: the functioning would be similar, the PPP
protocol could be used or another one called EoPPP. This may depend

© FUOC « PID_00148467 14

b)

<)

on the modem's manufacturer and on the type of modem: Ethernet
or USB.

e ADSL connection with a router: the configuration is very simple, be-
cause in this situation all we need to do is to configure the Ethernet
card and/or wireless card in our system to connect with the ADSL
router.

Once the interface to Internet is connected and configured, the last point
is to include the type of services that we will need. If we only want to
act as clients on Internet, it will be sufficient to use the client tools of the
different protocols, whether FTP, telnet, the web navigator, e-mail or news
reader etc. If we also wish to offer outgoing services — for example, to pub-
lish a website (web server) or to allow our external access to the machine
(ssh, telnet, FTP, X Window, VNC, services etc.), in this case, server — then
we must remember that this will only be possible if our provider gives us
fixed IP addresses for our machine. Otherwise, our IP address will change
every time we connect and the possibility of offering a service will become
either very difficult or impossible.

Another interesting service would be sharing access to the Internet be-
tween our available machines.

Mid-scale user: this is the user of a middle scale organisation, whether a
small company or group of users. Normally, this type of users will have
local network connectivity (through a LAN, for example) with some con-
nected machines and printers. And will have direct access to Internet,
either through some proxy (point or machine designed for an external
connection), or there will be a few machines physically connected to the
Internet. In general, in this environment, work is partly local and part-
ly shared (whether resources, printers or applications). Normally, we will
need desktop systems; for example, in an office we can use office suite
applications together with Internet clients; and perhaps also workstation
type systems; for example, for engineering or scientific jobs, CAD or im-
age processing applications may be used, as well as intensive mathemati-
cal calculation systems etc., and almost certainly more powerful machines
will be assigned to these tasks.

In this user environment, we will often have to share resources such as
files, printers, possibly applications etc. Therefore, in a GNU/Linux sys-
tem, NFS services will be appropriate, printer services, Samba (if there are
Windows machines with which files or printers need to be shared), and we
may also need database environments, an internal web server with shared

applications etc.

Large-scale users: this type of user resembles the preceding one and dif-
fers only in the size of the organisation and available resources, which
can be plenty, in such a way that some resources of the NIS, NIS+ or
LDAP type network system directory may be needed in order to handle
the organisation's information and reflect its structure, certainly also to

Migration and coexistence with non-Linux systems

© FUOC » PID_00148467 15 Migration and coexistence with non-Linux systems

have large service infrastructures for external clients generally in the form
of websites with various applications.

This type of organisation has high levels of heterogeneity in both system
hardware and software, and we could find lots of architectures and differ-
ent operating systems, meaning that the main tasks will consist of easing
data compatibility by means of databases and standard document formats
and to ease interconnectivity by means of standard protocols, clients and
servers (usually with TCP/IP elements).

© FUOC » PID_00148467 16 Migration and coexistence with non-Linux systems

4. Migration or coexistence

Next, we will consider another important aspect in adopting GNU/Linux sys-
tems. Let's suppose that we are amateurs at handling this system; or, the op-
posite, that we are experienced and wish to adopt one or several GNU/Linux
systems as individual users for working in our small organisation; or that we
are considering replacing the infrastructure of our large company or organi-
sation in full (or part).

Migrating to a new system is no trivial matter, it needs to be evaluated through
a study that analyses both the costs and the beneficial features that we expect
to obtain. Also, migration can be done in full or in part, with a certain degree

of coexistence with former systems.

We will be dealing with a full or partial migration project of our IT systems to
GNU/Linux and, as administrators, we will be responsible for this process.

As in any project, we will have to study the way of responding to questions
such as: Does the change make sense in financial terms or in terms of perfor-
mance benefits? What is the migration's objective? What requirements will
we want to or need to fulfil? Can we do a partial migration or do we need
to do a full migration? Is coexistence with other systems necessary? Will we
need to retrain users? Will we be able to use the same hardware or will we
need new hardware? Will there be important added costs? Or simply, will it
go okay? These and many others are the questions that we will have to try
and answer. In the case of a company, the answers would be provided in a mi-
gration project, specifying its objectives, requirements, the implementation
process, and including a financial analysis, user training plans etc. We will
not go into this in detail, but will consider some of these issues in a simple
manner. And in the final workshop we will examine a few small cases of how
we would implement the migration.

Also, the moment we start migrating to GNU/Linux, we will start to notice
the advantages the system brings to our organisation:

a) Costs: reduction in license costs for the system's software and applica-
tions. GNU/Linux has O cost for licenses if purchased from the Internet
(for example, in the form of images from the distribution's CDs), or a
negligible cost if we take into account that the nearest comparison for
systems with equivalent features would be Windows Server systems with
license costs ranging between € 1,500 and € 3,000, without including a
large amount of the additional software that a typical GNU/Linux distri-
bution would include.

© FUOC « PID_00148467 17

But careful, we should not underestimate maintenance and training costs.
If our organisation consists solely of users and administrators trained in
Windows, we may have high costs for retraining personnel and, possibly,
for maintenance. Therefore, many big companies prefer to depend on a
commercial distributor of GNU/Linux to implement and maintain the
system, such as the business versions offered by Red Hat, SuSe and others.
These GNU/Linux versions also have high license costs (comparable to
Windows), but at the same time are already adapted to business structures
and contain their own software for managing companies' IT infrastruc-
ture. Another important aspect, to conclude with cost estimates, is the
TCO concept (total cost of ownership), as a global evaluation of the asso-
ciated costs that we will find when we undertake a technological devel-
opment; we don't just have to evaluate the costs of licenses and machines,
but also the costs of training and support for the people and products
involved, which may be as high or more than the implemented solution.

b) Support: GNU/Linux offers the best maintenance support that any op-
erating system has ever had, and it is mostly free. Nevertheless, some com-
panies are reluctant to adopt GNU/Linux on the basis that there is no
product support and prefer to buy commercial distributions that come
with support and maintenance contracts. GNU/Linux has a well-estab-
lished support community worldwide, through various organisations that
provide free documentation (the famous HOWTOs), specialised user fo-
rums, communities of users in practically any region or country in the
world etc. Any question or problem we have can be searched on the Inter-
net and we can find answers within minutes. If we don't, if we have found
a bug, error, or untested situation, we can report it on various sites (fo-
rums, development sites, distribution bug sites etc.), and obtain solutions
within hours or, at the most, within days. Whenever we have a question
or problem, we should first try a few procedures (this is how we will learn)
and if we do not find the solution within a reasonable amount of time,
we should consult the GNU/Linux community in case any other user (or
group of users) has encountered the same problem and found a solution,
and if not, we can always post a report on the problem and see if we are
offered solutions.

4.1. Identify service requirements

Normally, if we have systems that are already functioning we will have to have
some services implemented for users or for helping the infrastructure of the IT
support. The services will fall within some of the categories seen above, with
the GNU/Linux options that we mentioned.

GNU/Linux systems are not at all new, and as we saw in the introduction,
stem from a history of more than thirty years of UNIX systems use and de-
velopment. Therefore, one of the first things that we will find is that we are
not lacking support for any type of service we want. If anything, there will

Migration and coexistence with non-Linux systems

Note

Linux Howto's: http://
www.tldp.org/

© FUOC « PID_00148467 18

be differences in the way of doing things. Also, many of the services used by
IT systems were conceived, researched, developed and implemented in their
day for UNIX, and only subsequently adapted to others systems (such as Win-
dows, more or less successfully).

Many companies with proprietary UNIX participate in GNU/Linux and
offer some of their developments to the community.

Any service available at the time may be adapted to GNU/Linux systems with
equivalent (if not the same) services.

Example

A famous case is the one of the Samba servers [Woo00] [Sam]. Windows offers what it
calls "sharing files and printers on the network" by means of its own protocols known
generically as SMB (server message block) [Smb] (with network support in the NetBios
and NetBEUI protocols). The name CIFS (common Internet file system) is also commonly
used, which is what the protocol was called in a second revision (which continued to
include SMB as a basic protocol). These protocols allowed the sharing of files (or disks)
and printers on a network of Windows machines (in a workgroup configuration or in
Windows domains). In UNIX this idea was already old when it appeared in Windows
and services such as NFS for sharing files or managing printers remotely were already
available using TCP/IP protocols.

One of the problems with replacing the Windows sharing services based on NetBios/Net-
Beui (and ultimately with NetBios over TCP/IP) was how to support these protocols, since
if we wanted to keep the client machines with Windows, we could not use the UNIX ser-
vices. For this purpose, Samba was developed as a UNIX server that supported Windows
protocols and that could replace a Windows server/client machine transparently, with
client users with Windows not having to notice anything at all. Moreover, the result in
most cases was that the performance was comparable if not better than in the original
machine with Windows services.

Currently, Samba [Sam] is constantly evolving to maintain compatibility with Windows
file and printer sharing services; because of the general changes that Microsoft subjects
SMB/CIFS [Smb] protocols to (the base implemented by Samba) with each new Windows
version, in particular the evolution of workgroup schemes in the operating systems' client
versions, to centralised server (or group of servers) schemes, with specific user authenti-
cation services (NTLM, NTLMv2, Kerberos), and centralised storage of the system's man-
agement such as Active Directory. In addition to this, the configuration of existing do-
main servers (whether with primary controller, backup or Active Directory).

Currently, in migration processes with Samba, we will need to observe what configura-
tions of Windows clients/servers (and its versions) exist on the system, as well as what
user authentication and/or information management systems are used. Also, we will
need to know how the system is structured into domains (and its controller servers,
members or isolated servers), in order to make a complete and correct mapping towards
Samba-based solutions, and into complementary user authentication (winbind, kerberos,
nss_ldap) and management services (for example openLDAP) [Sama] [Samb] .

4.2. Migration process

In the migration process, we need to consider how we want to migrate and
if we want to migrate totally or partially, coexisting with other services or
equipment that has a different operating system .

In the environments of large organisations, where we find a large number of
heterogeneous systems, we will need to take into account that we will almost
certainly not migrate every one of them, especially workstation type systems

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 19

that are dedicated to running a basic application for a specific task; it could be
that there is no equivalent application or simply that we wish to keep these
systems for financial reasons or in order to maximise an investment.

We can migrate various elements, whether the services we offer, the machines

that offer the services or the clients who access the services.

Elements that can be migrated include:

a) Services or machines dedicated to one or more services. In migrating,
we will replace the service with another equivalent one, normally with
minimum possible impact unless we also wish to replace the clients. In
the case of Windows clients, we can use the Samba server to replace the
file and printer services offered by the Windows machines. For other ser-
vices, we can replace them with GNU/Linux equivalents. In the case of
replacing just one service, normally we will disable the service on the ma-
chine that offered it and enable it on the new system. Client changes may
be necessary (for example, new machine addresses or parameters related
to the service).

If a server machine was responsible for an entire function, we will need to
analyse whether the machine was dedicated to one or more services and
whether they can all be replaced. If so, we will just have to replace the old
machine with the new one (or maintain the old one) with the services
under GNU/Linux and in any case, modify a client parameter if necessary.
Normally, before making a change, it is advisable to test the machine
separately with a few clients in order to make sure that it performs the
function correctly and then to replace the machines during a period when
the system is inactive.

In any case, we will certainly have to back up data existing prior to the
new system, for example, file systems or the applications available in the
original server. Another point to consider in advance is data portability; a
problem we often find is compatibility when the organisation used data
or applications that depended on a platform.

Example
To mention a few practical cases that some companies find nowadays:

e Web applications with ASP: these applications can only be executed on web platforms
with Windows and Microsoft's IIS web server. We should avoid them if we intend
to migrate platforms at any time and don't wish to rewrite them or pay another
company to do so. GNU/ Linux platforms have the Apache web server (the most
commonly used on the Internet), which can also be used with Windows, this server
supports ASP in Perl (in Windows it generally uses visual basic, C# and Javascript),
there are third party solutions to migrate ASP or to more or less convert them. But if
our company depended on this, it would be very costly in terms of time and money.
A practical solution would have been to make the web developments in Java (which
is portable between platforms) or other solutions such as PHP. On this point, we
should highlight the Mono project [Mon] (sponsored by Novell) for portability of
part of Microsoft's .NET environment to GNU/Linux, in particular a large amount
of the.NET API's, C# language, and the ASP.NET specification. Allowing a flexible

Migration and coexistence with non-Linux systems

© FUOC » PID_00148467 20 Migration and coexistence with non-Linux systems

migration of .NET applications based on .NET APIs that are supported by the Mono
platform. At the same time, we should mention the FSF's DotGnu [Dgn] project, as
a GPL alternative to Mono.

e Databases: using a Microsoft SQL Server for example, makes us totally dependant on
its Windows platform, plus, if we use proprietary solutions in a specific environment
for database applications, they will be difficult to transfer. Other databases such as
Oracle and DB2 (IBM) are more portable because they have a version in the different
platforms or because they use more portable programming languages. We could also
work with PostgreSQL or MySQL database systems (it also has a version for Windows)
available in GNU/Linux, and that allow an easier transition. At the same time, if
we combine it with a web development we have a lot of possibilities; in this sense,
nowadays we use systems such as: web applications with Java, whether servlets, ap-
plets, or EJB; or solutions such as the famous LAMP, the combination of GNU/Linux,
Apache, Mysql and Php.

b) Workstation: in these migrations, the biggest problem stems from the Note

applications, whether for CAD, animation, engineering or scientific pro-
For examples of GNU/Linux

. N . . o
grams, which are the workstation's main reason for being. Here it will equivalent applications, see:

be important to be able to replace them with equal or at least compat- http://www.linuxalt.com/

. http:

ible applications with the same expected features or functionality. Nor- wikFi).I/i:\uxquestions.org Jwi-

mally, most of these applications stem from a UNIX world, given that ki/Linux_software_equivalent
_to_Windows_software

most of these workstations were conceived as UNIX machines. Meaning http://www.linuxrsp.ru/win-

e lin-soft/table-eng.htmlg
that a compilation or minimum adaptation to the new GNU/Linux may

be enough, if we have source code (as tends to be the case with many
scientific applications). If we are dealing with commercial applications,
the manufacturers (of engineering and scientific software) are starting to
adapt them to GNU/Linux, although in these cases the applications are
usually very expensive (easily hundreds to thousands of euros).

c) Desktop client machines. Desktop machines continue to be a headache
for the world of GNU/Linux, because they involve a number of additional
problems. In servers, the machines are assigned clear functionalities, as a
rule they do not require complex graphic interfaces (often text commu-
nication is sufficient), and the normally specific high performance hard-
ware is purchased for a specific set of functions and the applications tend
to be the servers themselves included in the operating system or some
third party applications. Also, these machines are often managed by ad-
ministrators with extensive knowledge of what they are dealing with.
However, in the case of desktops, we are dealing with a problem factor (in
itself and more so for administrators): the system's end users. The users of
desktop systems expect to have powerful graphic interfaces that are more
or less intuitive and applications that allow them to run routine — usual-
ly office — tasks. This type of user (with a few exceptions) has no reason
to have advanced knowledge of computers; in general, they are familiar
with office suites and use a couple of applications with varying degrees
of skill. Here GNU/Linux has a clear problem, because UNIX as such was
never conceived as a purely desktop system and was only later adapted
with graphic interfaces such as X Window and the different desktops,

© FUOC » PID_00148467 21 Migration and coexistence with non-Linux systems

such as the current GNU/Linux ones: Gnome and KDE. Furthermore, the
end user tends to be familiar with Windows systems (which have almost
a 95% share of the desktop market).

In the case of desktops, GNU/Linux has a number of obstacles to over-
come. One of the most critical ones is that it does not come preinstalled
on machines, which obliges the user to have a certain amount of knowl-

edge in order to be able to install it. Other reasons could be:

Note

The desktop environment is a battle yet to be waged by GNU/Linux systems; which need
to defeat users' reluctance to switch systems and generate awareness of their ability to
offer simple alternatives and applications that can handle the tasks demanded by users.

e User reluctance: a question a user may ask is: Why should I switch
system? Will the new environment offer me the same thing? One of
the basic reasons for changing will be quality software and its cost,
since a large proportion will be free. On this point, we should con-
sider the issue of illegal software. Users seem to consider that their
software is free, when really they are in an illegal situation. GNU/Lin-
ux software offers good quality at a low cost (or at no cost in many
cases), with several alternatives for the same job.

e Simplicity: users are normally lost if the system does not have sim-
ilar reference points to those the user is already familiar with, such
as interface behaviour or tools with similar functionality. Users gen-
erally expect not to have to spend too much extra time on learning
how to handle the new system. GNU/Linux still has a few problems
with more or less automatic installations, which means that a certain
amount of knowledge is still required in order to install it correctly.
On this point, we should mention the ease of installing it in different
environments provided by recent desktop oriented distributions like
Ubuntu [Ubu]. Another common problem concerns support for the
PC hardware; even though it is improving all the time, manufactur-
ers still don't pay enough attention to it (partly for reasons of market
share). Until there is a clear intention in this regard, we will not be
able to have the same support as other proprietary systems (like Win-
dows). However, we should emphasise the work of the Linux kernel
community to offer the right support for new technologies, in some
cases by supporting the manufacturer or by preparing primary sup-
port (if not supported by the manufacturer) or alternative support to
that offered by the manufacturer.

e Transparency: GNU/Linux environments have many complex
mechanisms, such as daemons, services, difficult to configure ASCII
files etc. For end users, it should be necessary to hide all of these

© FUOC « PID_00148467 22

complexities by means of graphics programs, configuration wizards
etc. This is the path taken by some distributions such as Red Hat,
Mandriva, Ubuntu or SuSe.

e Support for known applications: a standard office suite user will
face the problem of data portability or handling data formats. What
to do with existing data? This problem is being solved daily, thanks
to the office suites that are starting to have the functionalities a desk-
top user needs. For example, if we consider a migration from using
a Windows Office suite, we can find suites such as OpenOffice (free
software) that can read (and create) the formats of Office files (with
some restrictions). Format compatibility is not difficult when it is
open, but in the case of Windows, Microsoft continues to maintain a
policy of closed formats; and a serious amount of work is needed in
order to be able to use these formats, by means of reverse engineering
(a fairly costly process). Also, in the Internet age, when information
is supposed to move about freely, undocumented closed formats are
more an obstacle than anything else. The best thing is to use open
formats such as RTF (although these also have some problems be-
cause of the many versions of it that there are), or XML based for-
mats (OpenOffice generates its own documents in XML), or PDF for
read-only documents. We should also highlight recent efforts by the
OpenOffice community to create the standard open document (used
by the suite from versions 2.x), which have made it possible to have
a free format as an ISO standard for document creation. This fact has
obliged Microsoft to (partially) open its format in versions starting
from Office 2007, to incorporate OpenXML formats.

e To provide valid alternatives: the software we stop using has to have
alternatives that do the same job as the previous system. Most ap-
plications have one or several alternatives with similar, if not better,
functionalities. On the Internet you can find different lists of (more
or less complete) applications for GNU/Linux that match the func-
tionality of Windows applications.

e Support for running applications for other systems: under some
conditions it is possible to run applications for other UNIX systems
(with the same architecture, for example, Intel x86), or for MS-DOS or
Windows, through compatibility packages or some type of emulator.

Most of the problems that affect desktop migrations are being overcome slow-
ly but surely and will allow us in future to have a larger number of GNU/Linux
desktop users, who, as they increase, will have access to better applications en-
couraging software companies to start implementing versions for GNU/Linux.

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 23

In the case of companies, it can be overcome with a gentle migration, starting
with servers and workstations, and then desktops after following an extensive
training program for users in the new systems and applications.

A process that will help to a large extent is to introduce open code software in
education and in public administrations, as in the case of Extremadura region
in Spain with its GNU/Linux distribution called Linex; or recent measures for
taking this software to primary education, or the measures taken by universi-
ties by running courses and subjects using these systems.

Migration and coexistence with non-Linux systems

© FUOC » PID_00148467 24 Migration and coexistence with non-Linux systems

5. Migration workshop: case study analysis

In this workshop we will try to apply what we have learned in this unit to anal-
yse some simple migration processes, and some detail of the required tech-
niques (in the case of network techniques, we will look at these in the units

on network administration).
We will consider the following case studies:

e Individual migration of a Windows desktop user to a GNU/Linux system.

e Migration of a small organisation with Windows systems and a few UNIX.

e Migration of a standalone Windows server to a Samba server running
GNU/ Linux.

5.1. Individual migration of a Windows desktop user to a
GNU/Linux system

A user considers migrating to GNU/Linux [Ray02b]. Normally, there will first
be a period of cohabitation, so that the user can have both systems and use
each one for a series of tasks: tasks will continue to be executed in Windows
while the user learns about the new system and finds equivalent software or
new software that does tasks for which no software was previously available.

Migration for a private user is perhaps one of the most complex processes; we
need to offer users alternatives to what they commonly use, so that adaptation
is as simple as possible and the user can adapt gradually and with ease to the
new system.

A first possibility would be a dual installation [Ban01] [SkoO3b] of the original Note

system (Windows) together with the GNU/Linux system.
Linux Hardware Howto: http:/
/www.tldp.org/HOWTO/Hard-

A first step for a determined machine configuration will consist of checking wareHOWTO/index.html

that our hardware is compatible with Linux [Pri02], either from a list of hard-
ware compatibility or by checking with the manufacturer if new components
need to be purchased or the existing ones require a particular configuration.
If we are unfamiliar with our hardware, we can check it through the Windows
"device administrator" (in the control panel) or using some type of hardware
recognition software. At the same time, an advisable method is to use LiveCD-
type GNU/Linux distributions, which will allow us to check the functioning of
GNU/Linux on our hardware without requiring a physical installation, since
the only requirement is the possibility of booting the system from a CD/DVD
(in some cases the BIOS configuration may have to be changed for this). There
are Live CDs such as Knoppix [Knp] with great support for hardware checks
and most GNU/Linux distributions tend to offer a Live CD in order to initially

© FUOC « PID_00148467 25

check its functioning (in some cases, Ubuntu [Ubn] for example, the full in-
stallation can be done using the same Live CD). In any case, we should men-
tion that checking with a specific Live CD does not mean that there will not
be any problems with the final installation, either because the Live CD is not
of the same GNU/Linux distribution that we eventually install or because the
versions of the system and/or applications will not be the same.

Regarding the physical installation on disk, we will either need to have un-
partitioned free disk space or, if we have FAT/32-type partitions, we can liber-
ate space using programs that make it possible to adjust the size of partitions,
reducing an existing partition (a previous data backup here is obviously ad-
visable). Currently, most distributions support various disk partitioning and
partition reduction schemes, although problems may arise depending on the
distribution. If there is not enough space or there are partitions with file sys-
tems that present problems (like NTFS with some distributions), we may have
to consider buying a new additional hard disk, to use totally or partially for
GNU/Linux.

After checking the hardware, we will have to decide on the distribution of the
GNU/Linux system that we will use (a possibility we mentioned before is to
choose a Live CD that has been satisfactory and to install that distribution).
If the user is inexperienced in GNU/Linux or only has basic computer knowl-
edge, it is preferable to choose one of the more user-friendly distributions such
as Fedora, Mandriva, SuSe, or similar (we would highlight the ease of Ubuntu
in this regard). If we are more knowledgeable or tempted to experiment, we
could try a Debian distribution. In the case of commercial distributions, on
most occasions the distributions with compatible hardware (business versions
like Red Hat and SuSe certify the hardware that they support), are installed
perfectly without any problem and basic configurations are made that allow
the operating system to be used immediately. During the process, we will have
to install the software, which will normally be defined by sets of oriented soft-
ware: for servers, specific applications or desktop applications, such as office
suites, development applications (if we are interested in programming) etc.

Once the system is installed, we have to tackle the issue of sharing data
[GonO0O] [KatO1], how will we share the data between the two systems? or is it
possible to share certain applications? There are various solutions for this:

e Indirect method: this consists of sharing data using a diskette for exam-
ple. For this, the best thing are the utilities known as mtools, which al-
low transparent access to diskettes in MS-DOS format, and there are sev-
eral commands that function in a very similar way to MS-DOS or Win-
dows. These commands have exactly the same names as the original MS-
DOS commands, except that they have an "m" in front, for example: mcd,
mcopy, mdir, mdel, mformat, mtype etc.

Migration and coexistence with non-Linux systems

© FUOC » PID_00148467 26 Migration and coexistence with non-Linux systems

e Direct method: this consists of using the file system in Windows directly.
As we will see in the unit on local administration, GNU/Linux can read
and write a large number of file systems, including FAT, FAT32, and NTFS
(read only in some cases, although most distributions already include the
ntfs-3g [Nt3] driver that allows writing). Mounting the Windows disk is
required first and that makes it possible to incorporate the Windows file
system into a point of the Linux file tree; for example, we could mount our
Windows disk in /mnt/Windows and from this point access its folders and
files for reading and writing. With ASCII text files, conversions need to
be considered, since UNIX and Windows treat them differently: in UNIX,
the end of a line has only one character, the line feed, ASCII 10, whereas
Windows has two, the return and the line feed, characters ASCII 13 and
10 (as a curious note, in Mac it is ASCII 13). Which means that usually
when we read a DOS/Windows ASCII file, it contains strange characters
at the end of a line. There are editors such as emacs that handle them
transparently and, in any case, there are GNU/Linux utilities that make
it possible to convert them into another format (utilities such as duconv,
recode, dos2UNIX, UNIX2dos).

e Use of applications: there are a few alternatives for running the applica-

tions (not all of them) for MS-DOS and Windows. For GNU/Linux there are
MS-DOS emulators such as Dosemu [Sun02] or DOsBox, and for Windows
there is the Wine [Win] software. It can run various Windows applications
(for example, it can run some version of Office and Internet Explorer),
but it is constantly being improved. If it is vital to run Windows applica-
tions, some commercial software can help us; these applications give ex-
tra support to Wine, for example, Win4Lin, CrossOver and in some cases
special support for games like Cedega. Another potential solution is to use
virtual machines; an example of extensively used software is VMware and
VirtualBox, which creates a full PC as a virtual machine, simulated by the
software, where a large number of different operating systems can be in-
stalled. VMware and VirtualBox are available in versions for Windows and
for GNU/Linux, which makes it possible to have a GNU/Linux installed
with a Windows running on it virtually, or a Windows installed with a
virtual GNU/Linux. There are also other solutions of free virtual machines
like QEmu, KVM, Bochs. In another segment, virtual machines or generi-
cally virtualisation is used oriented at the creation of virtual servers, with
solutions such as VMware server or the open projects Xen, OpenVZ, Vserv-
er; where it is possible to make several virtual machines running on an
operating system coexist (normally through modifications to the kernel
that support this virtualisation), or even directly on the hardware, with
small layers of software.
Aside from sharing the information (applications and/or data) you can
search for GNU/Linux applications that replace the original Windows ones
as the user gradually learns to use them and sees that they offer the ex-
pected functionalities.

© FUOC * PID_00148467 27
Example

A typical case would be the office suite that can be migrated to OpenOffice, which has
a high degree of compatibility with Office files and functions fairly similarly, or KOffice
(for the KDE desktop), or GNumeric and AbiWord (for Gnome). Or, in the case of image
processing, we can take Gimp, with similar functionalities to Photoshop. And numerous
multimedia players: Xine, Mplayer (or also a version of RealPlayer). On the Internet we
can find numerous lists of equivalent programs between Windows and GNU/Linux.

5.2. Migration of a small organisation with Windows systems
and a few UNIX

Migration within an organisation (even a small one) has several difficulties:
we will have different work environments and heterogeneous software, and,
once more, users who are resistant to change.

Now, let's consider an organisation with Windows machines and some UNIX
machines as servers or workstations and somewhat "anarchic" users. For ex-
ample, let's study the following situation: the organisation has a small local
network of Windows machines shared by users as equal machines in a Win-
dows workgroup (there are no Windows server domains).

The group is diverse: we have machines with Windows 98, ME, NT, XD, but
configured for each user with the software needed for their daily jobs: whether
Office, a browser, e-mail reader, or development environments for different
language programmers (for example, C, C++, Java).

There are some extra hardware resources available, such as various printers
connected to the local network (they accept TCP/IP jobs), which can be used
from any point within the organisation. At the same time, there is a shared
machine, with a few special resources, such as a scanner, CD recorder and
directories shared by the network, where users can leave their own directories
with their files for backup processes or to recover scanned images, for example.

We also have several workstations, in this case Sun Microsystem's SPARC,
which are running Solaris (commercial UNIX of Sun). These stations are dedi-
cated to development and to some scientific and graphics applications. These
machines have NFS services for file sharing and NIS+ for handling the infor-
mation of users who connect to them and who can do so from any machine
in a transparent manner. Some of the machines include specific services; one
is the company's web server and another is used as an e-mail server.

We are considering the possibility of migrating to GNU/Linux because of an
interest in software development and the particular interest from some users

to use this system.

Also, the migration will be made the most of in order to resolve certain prob-
lems related to security — some old Windows systems are not the best way of
sharing files; we want to restrict use of the printer (the cost in paper and asso-
ciated costs are high) to more reasonable quotas. At the same time we would

Migration and coexistence with non-Linux systems

Note

For examples of GNU/Linux
equivalent applications, see:

http://www linuxalt.com/
http://
wiki.linuxquestions.org/wi-
ki/Linux_software_equivalent
_to_Windows_software
http://www.linuxrsp.ru/win-
lin-soft/table-eng.htmlg

© FUOC « PID_00148467 28

like users to have a certain amount of freedom, they will not be obliged to
change system, although the suggestion will be made to them. And we will
also take advantage in order to purchase new hardware to complement exist-
ing hardware, for example if the workstations require additional disk space,

which imposes limits on e-mail and user accounts.

Following this small description of our organisation (in other more complex
cases it could fill several pages or be a full document analysing the present
situation and making future proposals), we can start to consider the possibil-
ities for solving all this:

e What do we do with the current workstations? The cost of maintenance
and software licenses is high. We need to cover the maintenance of faults
in the stations, expensive hardware (in this case, SCSI disks) and also ex-
pensive memory extensions. The cost of the operating system and its up-
dates is also expensive. In this case, we have two possibilities (depending
on the budget that we have to make the change):

— We can cut costs by converting the machines to GNU/Linux systems.
These systems have a SPARC architecture and there are distributions
that support this architecture. We could replace the services for their
GNU/Linux equivalents; replacement would be virtually direct, since
we already use a UNIX system.

— Another possibility would be to eliminate Sun's proprietary hardware
and to convert the stations into powerful PCs with GNU/Linux; this
would make subsequent maintenance simpler, although the initial
cost would be high.

e And what about the workstations software? If the applications have been
developed in-house, it may be enough to compile them again or to make
a simple adjustment to the new environment. If they are commercial, we
will have to see whether the company can provide them in GNU/Linux
environments, or if we can find replacements with a similar functionality.
In the case of the developers, their environments of C, C++ and Java lan-
guages are easily portable; in the case of C and C++, gcc, the GNU compil-
er, can be used and there are numerous IDEs for development (KDevelop,
Anjuta,...); or in the case of Java, the Sun kit can be used in GNU/Linux
and in various open code environments (IBM's Eclipse or Netbeans).

e And what about users? For those who are interested in GNU/Linux sys-
tems, we can install dual equipment with Windows and GNU/Linux so
that they can start to test the system and if they are interested, we can
finally transfer to just the one GNU/Linux system. We can find two types
of users: purely office suite users, who will basically need the suite, navi-
gator and e-mail; all of which can be offered with a GNU/Linux desktop
such as Gnome or KDE and software such as OpenOffice, Mozilla/Firefox
navigator, and Mozilla Mail or Thunderbird e-mail (or any other Kmail,

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 29

Evolution...). They are more or less directly equivalent, it all depends on
users' desire to test and use the new software. For developers, the change
can be more direct, since they are offered many more environments and
flexible tools; they could pass completely over to the GNU/Linux systems
or work directly with the workstations.

e And the printers? We could establish a workstation as a printer server
(whether through TCP/IP queues or Samba server), and control printing
by means of quotas.

e The shared machine? The shared hardware can be left on the same ma-
chine or can be controlled from a GNU/Linux system. Regarding the
shared disk space, it can be moved to a Samba server that will replace the
current one.

e Do we expand the disk space? This will depend on our budget. We can
improve control by means of a quota system that distributes space equi-
tably and imposes limits on saturation.

5.3. Migration of a standalone Windows server to a Samba server
running GNU/Linux

The basic required process tends to me much more extensive, consult the bib-
liography for the full steps to be taken.

In this case, the basic required process for a migration from a Windows server
that shares files and a printer to a Samba server in a GNU/Linux system.

Thanks to software such as Samba, migration from Windows environments is

very flexible and fast and even improves the machine's performance.

Let's suppose a machine belonging to a workgroup GROUP, sharing a printer
called PRINTER and with a shared file called DATA, which is no more than
the machine's D drive. Several Windows clients access the folder for reading/
writing, within a local network with IP 192.168.1.x addresses, where x will be
1 for our Windows server, and the clients will have other values (192.168.x.x
networks are often used as addresses to install private internal networks).

As part of our process we will build a Samba server, which is what, as we saw,
will allow us to run the SMB/CIFS (server message block / common Internet
file system) protocol in GNU/Linux. This protocol allows the file system and
the printers to interact through networks on different operating systems. We
can mount folders belonging to Windows on the GNU/Linux machines, or

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 30

part of the GNU/Linux folders on Windows and similarly with each other's
printers. The server consists of two daemons (system processes) called smbd
and nmbd.

The smbd process manages clients' requests from shared files or printers. The
nmbd process manages the machines' names system and resources under the
NetBIOS protocol (created by IBM). This protocol is independent from the
network used (currently, in NT/2000/XP Microsoft generally uses Netbios over
TCP/IP). The nmbd also offers WINS services, which is the name assignment
service that is normally run on Windows NT/Server if we have a collection
of machines; it is a sort of combination of DNS and DHCP for Windows envi-
ronments. The process is somewhat complex, but to summarise: when a Win-
dows machine starts up or has a static IP address or dynamic address through a
DHCP server and additionally possibly a NetBIOS name (that the user assigns
to the machine: in network identification), then the WINS client contacts the
server to report its IP; if a network machine subsequently requests the NetBios
name, the WINS server is contacted to obtain its IP address and communica-
tion is established. The nmbd runs this process on GNU/Linux.

Like any other network service, it should not be run without considering the
risk activating it could entail, and how we can minimise this risk. Regarding
Samba, we need to be aware of security issues, because we are opening part
of our local or network files and printers. We will also have to check the com-
munication restrictions properly in order to prevent access to unwanted users
or machines. In this basic example, we will not comment on these issues; in
a real case scenario, we would have to examine the security options and only

allow access for those we want.

In the migration process, we will first have to configure the GNU/Linux sys-
tem to support Samba [Wo0o000], we will need the Samba file systems support
in the kernel (smbfs), which is normally already activated. We should add that
currently there is additional support in the kernel through the cifs module
[SteO7], which as of kernel version 2.6.20 is considered the default method,
leaving smbfs as a secondary option. The cifs module offers support for new
features related to the CIFS protocol (as an extension of SMB). Through "smbfs"
and "cifs" file system names these modules allow us to conduct operations for
mounting Windows file systems onto the Windows directory tree (mount -t
smbfs or mount -t cifs). Apart from the fact that the kernel support is inclined
towards the cifs module, there are some characteristics that may need smbfs
support, which means that usually both modules are activated in the kernel.
We should also mention the configuration issue, whereas smbfs bases its func-
tioning on the Samba configuration (as we will see in the smb.conf file), the
cifs module is given its configuration through the operations (for example, in
the mounting process through mount).

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 31

In the case of using a Samba server, in addition to the kernel support, we will
need to install the associated software packages: we will have to examine what
packages related to Samba the distribution includes and install those associat-
ed to the functioning of the server. And also, if wanted, those related to Samba
as a client, in the event we wish to be clients of Windows machines or to test
resources shared with the Windows machines from our GNU/Linux system. In
a Debian distribution, these packages are: samba, samba-common, smbclient,
smbfs. It may also be interesting to install swat, which is a web-based graph-
ics tool for Samba services administration. For our GNU/Linux Samba server
[Woo000] [War03], for the proposed example, we will have to transfer the con-
tents of the previous D disk (where we had our shared file system) from the
original machine to the new machine and place its content in a path, like,
/home/DATA, whether through a backup copy, FTP transfer, or using Samba
as a client to transfer the files.

Regarding the use of GNU/Linux as a Samba client, it is fairly simple. Through
the use of client commands for occasional use of the file system:

a) We mount a Windows shared directory (for instance, host being the

name of the Windows server), on an existing predefined mounting point:

smbmount //host/carpeta /mnt/windows

b) We will place the access to the Windows folder of the host machine in
our local directory, accessing in the directory tree:

/mnt /windows

¢) Next, when it is no longer in use we can dismount the resource with:

smbumount /mnt/windows

If we are not aware of the shared resources, we can obtain a list with:

smbclient -L host

And we can also use smbclient //host/folder, which is a similar program to an
FTP client.

In the event of wanting to make the file systems available permanently, or
to provide certain special configurations, we can study the use of mount di-
rectly (the smbxxxx utilities use it), whether with the smbfs or cifs file sys-
tems (supported in the kernel), taking the parameters into account (Windows
users/groups authentication or other service parameters) that we will have to
provide depending on the case, and of the pre-existing Samba configuration
[SteO7].

Migration and coexistence with non-Linux systems

Note

Always consult the man pages,
or manuals, that come with
the software package.

© FUOC « PID_00148467 32

In the case of the Samba server, once we have installed all the Samba software,
we will have to configure the server through its configuration file. Depending
on the version (or distribution), this file may be in /etc/smb.conf or in /etc/
samba/smb.conf. The options shown here belong to a Samba 3.x.x installed
on a Debian distribution system. Other versions may have a few minor mod-

ifications.

During the installation of the software packages we will normally be asked for
data regarding its configuration. In the case of Samba, we will be asked for
the workgroup to be served; we will have to place the same group name as in
Windows. We will also be asked if we want encrypted passwords (advisable for
security reasons, in Windows 9x they were sent in raw text, in a clear case of

scarce security and high system vulnerability).

Next we will look at the process of configuring the file smb.conf. This file has

three main sections:

1) Global (basic functioning characteristics).

2) Browser (controls what other machines see of our resources).

3) Share (controls what we share).

In this file's extensive manual we can see the available options (man
smb.conf). We will edit the file with an editor and see some of the file's lines
(characters '#' or ';' at the beginning of a line are comments: If the line contains
';' it is a comment; to enable a line, if it is an optional configuration line we
must edit it and remove the ';'):

workgroup = GROUP

This shows the Windows workgroup that the Windows client machines will
be members of.

server string = %$h server (Samba %Vv)

We can place a text description of our server. The h and the v that appear
are variables of Samba that refer to the host name and version of Samba. For
security reasons, it is a good idea to remove the v, since this will inform the
exterior what version of Samba we have; if there are known security bugs, this
can be used.

hosts allow = 192.168.1

This line may or may not be present, and we can include it to enable what
hosts will be served; in this case, all of those in the 192.168.1.x range.

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 33

printcap name = /etc/printcap

The printcap file is where GNU/Linux stores the printers' definition, and this
is where Samba will look for information about them.

guest account = nobody

This is the guest account. We can create a different account, or just enable
access to Samba for the users registered on the GNU/Linux system.

log file = /var/log/samba/log.%m

This line tells us where the Samba log files will be stored. One is stored per
client (variable m is the name of the connected client).

encrypt passwords = true

For security reasons it is advisable to use encrypted passwords if we have client
machines with Windows 98, NT or above. These passwords are saved in a /etc/
samba/smbpasswd file, which is normally generated for users of the Samba
installation. Passwords can be changed with the smbpasswd command. There
is also an option called UNIX password sync, which allows the change to be
simultaneous for both passwords (Samba user and Linux user).

Next, we will jump to the Share Definitions section:

[homes]

These lines allow access to the users' accounts from the Windows machines.
If we don't want this, we will add some ';' to the start of these lines, and when
the machines connect they will see the name comment. In principle, writing

is disabled, to enable it, you just have to set "yes" as the writable option.

Any sharing of a specific directory (Samba tends to call a group of shared data
a partition), we will proceed as shown in the examples that appear (see, for
example the definition of sharing the CD-ROM in the lines that start with
[cdrom]). In path we will place the access route.

Example

In our case, for example, we would give the name DATA to the partition on the route
/home/DATA, where we had copied the D disk from the original Windows machine and
the path where it can be found, in addition to a large group of options that can be
modified, users authorised to access them and the way of doing so.

There is also a profiles definition, that makes it possible to control the profiles
of Windows users, in other words, the directory where their Windows desktop
configuration is saved, the start up menu etc.

Migration and coexistence with non-Linux systems

Note

See: man smb.conf

© FUOC « PID_00148467 34

The method is similar for the printers: a partition is made with the printer
name (the same one given in GNU/Linux), and in the path we place the queue
address associated to the printer (in GNU/Linux we will find it in: /var/spool/
samba/PRINTER). And the option printable = yes, if we want jobs to be sent
with Samba. And we can also restrict user access (valid users).

Once we have made these changes we will just have to save them and reinitiate
Samba so that it can read the new configuration. In Debian:

/etc/init.d/samba restart
Now, our shared directory and the printer through Samba will be available to

serve users without them noticing any difference in relation to the previous
connections with the Windows server.

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 35

Activities

1) In the GNU/Linux services description, do we find we are missing any functionality? What
other type of services would we add?

2) In the second case study of the tutorial (the one of the organisation), how would you
change the IT infrastructure if you had zero budget, an average budget, or a high budget?
Present some alternative solutions to the ones shown.

3) Virtualisation technologies like VMware Workstation or VirtualBox, virtual machine
through software, which can install operating systems on a virtual PC. You can obtain the
software from www.vmware.com or www.virtualbox.org. Test (in the case of having a Win-
dows license) installing it on Windows, and then on GNU/Linux on the virtual PC (or the
other way around). What advantages does this method for sharing operating systems offer?
What problems does it cause?

4) If we have two machines for installing a Samba server, we can test the server installation or
configuration in configurations of Samba UNIX client-Windows server, or Windows client-
Samba server in GNU/Linux. You can test it on a single machine using the same machine
as a Samba server and client.

Migration and coexistence with non-Linux systems

© FUOC « PID_00148467 36
Bibliography
Other sources of reference and information

[LPD] Linux Documentation Project offers Howtos regarding different aspects of a GNU/Lin-
ux system and a set of more detailed manuals.

[Mor03] Good reference for the configuration of Linux systems, with some case studies in
different environments; comments on different distributions of Debian and Red Hat.

Migration and coexistence with non-Linux systems

Basic tools for the
administrator

444444444444

© FUOC PID_00148464 Basic tools for the administrator

© FUOC PID_00148464 Basic tools for the administrator

Index
INtroducCtion.. ... 5
1. Graphics tools and command line................cc..oooiiiiiiiiii. 7
2. STANAArS.........cooeiiiiiiiiiii et 9
3. System documentation................ccoooiiiiiiiiiiiiiiiiiiiiii e 12
4. Shell scripting 14
4.1. Interactive SHellS...........ccoouiiiiiiiiiiiiiiiiiiiiiiiiiice e 15
4.2, SRELIS ittt e e 18
4.3. System variablesccccoiiiiiiiiiiiiiiiiiiii 21
4.4. Programming scripts in Bashoi 22
4.4.1. Variables in Bash 23
4.4.2. COMPATISOIIS .eeurirnriiiniiiiiiiiiiiiiieii et et ereeaaeaaaes 24
4.4.3. Control StrucCturescoooviiieiiiiiiiiiiiiiene 24
5. Package management toOls.................c....iiii 27
5.1. TGZ package 28
5.2. Fedora/Red Hat: RPM packagescccceeviiiiniiiiiiniiiiiinnniiiinnniennn. 30
5.3. Debian: DEB PacCKagescc.ceiiiiuuiiiiiiiiiiiiiieeeeieeeeeiee et e 34
6. Generic administration tools....................... 38
7. Other tOOlIS.. ... e 40
ACHIVEHIES......... 41

BibDLOGIrapILy . ..ottt eea e 42

© FUOC PID_00148464 5 Basic tools for the administrator

Introduction

On a daily basis, an administrator of GNU/Linux systems has to tackle a large
number of tasks. In general, the UNIX philosophy does not have just one tool
for every task or just one way of doing things. What is common is for UNIX
systems to offer a large number of more or less simple tools to handle the
different tasks.

Note

It will be the combination of the basic tools, each with a well-defined

task that will allow us to resolve a problem or administration task. GNU/Linux has a very broad
range of tools with basic func-
tionalities, whose strength lies
in their combination.

In this unit we will look at different groups of tools, identify some of their
basic functions and look at a few examples of their uses. We will start by ex-
amining some of the standards of the world of GNU/Linux, which will help
us to find some of the basic characteristics that we expect of any GNU/Linux
distribution. These standards, such as LSB (or Linux standard base) [Linc] and
FHS (filesystem hierarchy standard) [Linb], tell us about the tools we can ex-
pect to find available, a common structure for the file system, and the various
norms that need to be fulfilled for a distribution to be considered a GNU/Lin-
ux system and to maintain shared rules for compatibility between them.

For automating administration tasks we tend to use commands grouped in-
to shell scripts (also known as command scripts), through language interpret-
ed by the system's shell (command interpreter). In programming these shell
scripts we are allowed to join the system's commands with flow control struc-
tures, and thus to have a fast prototype environment of tools for automating
tasks.

Another common scheme is to use tools of compiling and debugging high
level languages (for example C). In general, the administrator will use them to
generate new developments of applications or tools, or to incorporate appli-
cations that come as source code and that need to be adapted and compiled.

We will also analyse the use of some graphics tools with regards to the usu-
al command lines. These tools tend to facilitate the administrator's tasks but
their use is limited because they are heavily dependent on the GNU/Linux
distribution and version. Even so, there are some useful exportable tools be-
tween distributions.

Finally, we will analyse a set of essential tools for maintaining the system up-
dated, the package management tools. The software served with the GNU/
Linux distribution or subsequently incorporated is normally offered in units
known as packages, which include the files of specific software, plus the vari-

© FUOC « PID_00148464 6

ous steps required in order to prepare the installation and then to configure it
or, where applicable, to update or uninstall specific software. And every distri-
bution tends to carry management software for maintaining lists of installed
or installable packages, as well as for controlling existing versions or various
possibilities of updating them through different original sources.

Basic tools for the administrator

© FUOC PID_00148464 7 Basic tools for the administrator

1. Graphics tools and command line

There are a large number of tools, of which we will examine a small share in
this and subsequent modules, which are provided as administration tools by
third parties, independent from the distribution, or by the distributor of the
GNU/Linux system itself.

These tools may cover more or fewer aspects of the administration of a specific
task and can appear with various different interfaces: whether command line
tools with various associated configuration options and/or files or text tools
with some form of menus; or graphics tools, with more suitable interfaces for
handling information, wizards to automate the tasks or web administration

interfaces.

All of this offers us a broad range of possibilities where administration is con-
cerned, but we will always have to evaluate the ease of using them with the
benefits of using them, and the knowledge of the administrator responsible
for these tasks.

The common tasks of a GNU/Linux administrator can include working with
different distributions (for example, the ones we will discuss Fedora [Fed] or
Debian [Debb] or any other) or even working with commercial variants of oth-
er UNIX systems. This entails having to establish a certain way of working that

allows us to perform the tasks in the different systems in a uniform manner.

For this reason, throughout the different modules we will try to highlight the
most common aspects and the administration techniques will be mostly per-
formed at a low level through a command line and/or the editing of associated
configuration files.

Any of the GNU/Linux distributions tends to include command line, text, or
especially, graphics tools to complement the above and to a greater or lesser
degree simplify task administration [SmO02]. But we need to take several things
into account:

a) These tools are a more or less elaborate interface of the basic command line
tools and corresponding configuration files.

b) Normally they do not offer all the features or configurations that can be
carried out at a low level.

c) Errors may not be well managed or may simply provide messages of the
type "this task could not be performed".

© FUOC « PID_00148464 8

d) The use of these tools hides, sometimes completely, the internal function-
ing of the service or task. Having a good understanding of the internal func-
tioning is basic for the administrator, especially if the administrator is respon-
sible for correcting errors or optimising services.

€) These tools are useful for improving production once the administrator
has the required knowledge to handle routine tasks more efficiently and to
automate them.

f) Or, in the opposite case, the task may be so complex, require so many pa-
rameters or generate so much data, that it may become impossible to control
it manually. In these cases, the high level tools can be very useful and make
practicable tasks that are otherwise difficult to control. For example, this cat-
egory would include visualisation tools, monitorisation tools, and summaries
of tasks or complex services.

g) For automating tasks, these tools (of a higher level) may not be suitable: they
may not have been designed for the steps that need taking or may perform
them inefficiently. For example, a specific case would be creating users, where
a visual tool can be very attractive because of the way of entering the data;
but what if instead of entering one or a few users we want to enter a list of
tens or hundreds of them? if not prepared for this, the tool will become totally

inefficient.

h) Finally, administrators normally wish to personalise their tasks using the
tools they find most convenient and easy to adapt. In this aspect, it is common
to use basic low-level tools, and shell scripts (we will study the basics in this
unit) combining them in order to form a task.

We may use these tools occasionally (or daily), if we have the required knowl-
edge for dealing with errors that can arise or to facilitate a process that the
tool was conceived for, but always controlling the tasks we implement and
the underlying technical knowledge.

Basic tools for the administrator

© FUOC PID_00148464 9 Basic tools for the administrator

2. Standards

Standards, whether generic of UNIX or particular to GNU/Linux, allow us to
follow a few basic criteria that guide us in learning how to execute a task and
that offer us basic information for starting our job.

Note

In GNU/Linux we can find standards, such as the FHS (filesystem hierar-

chy standard) [Linb], which tells us what we can find in the our system's See FHS in:
. .) www.pathname.com/fhs
file system structure (or where to look for it), or the LSB (Linux standard

base), which discusses the different components that we tend to find
in the systems [Linc].

The FHS filesystem hierchachy standard describes the main file system tree struc- Note

ture (/), which specifies the structure of the directories and the main files that
The FHS standard is a basic

they will contain. This standard is also used to a greater or lesser extent for tool that allows us to under-

commercial UNIX, where originally there were many differences that made stand the structure and func-
tionality of the system's main
each manufacturer change the structure as they wished. The standard original- file system.

ly conceived for GNU/Linux was made to normalise this situation and avoid
drastic changes. Even so, the standard is observed to varying degrees, most
distributions follow a high percentage of the FHS, making minor changes or
adding files or directories that did not exist in the standard.

A basic directories scheme could be:

e /bin:basic system utilities, normally programs used by users, whether from
the system's basic commands (such as /bin/ls, list directory), shells (/bin/
bash) etc.

e /boot: files needed for booting the system, such as the image of the Linux
kernel, in /boot/vmlinuz.

e /dev: here we will find special files that represent the different possible
devices in the system, access to peripherals in UNIX systems is made as if
they were files. We can find files such as /dev/console, /dev/modem, /dev/
mouse, /dev/cdrom, /dev/floppy... which tend to be links to more specific
devices of the driver or interface type used by the devices: /dev/mouse,
linked to /dev/psaux, representing a PS2 type mouse; or /dev/cdrom to
/dev/hdc, a CD-ROM that is a device of the second IDE connector and
master. Here we find IDE devices such as /dev/hdx, scsi /dev/sdx... with x
varying according to the number of the device. Here we should mention
that initially this directory was static, with the files predefined, and/or
configured at specific moments, nowadays we use dynamic technology

© FUOC « PID_00148464 10 Basic tools for the administrator

techniques (such as hotplug or udev), that can detect devices and create
/dev files dynamically when the system boots or while running, with the
insertion of removable devices.

e /etc: configuration files. Most administration tasks will need to examine
or modify the files contained in this directory. For example: /etc/passwd

contains part of the information on the system's user accounts.

e /home: it contains user accounts, meaning the personal directories of each

user.

e /lib: the system's libraries, shared by user programs, whether static (.a ex-
tension) or dynamic (.so extension). For example, the standard C library,
in libc.so files or libc.a. Also in particular, we can usually find the dynamic
modules of the Linux kernel, in /lib/modules.

e /mnt: point for mounting (mount command) file systems temporarily; for
example: /mnt/cdrom, for mounting a disk in the CD-ROM reader tem-

porarily.

e /media: for common mounting point of removable devices.

e /opt: the software added to the system after the installation is normally
placed here; another valid installation is in /usr/local.

e /sbin: basic system utilities. They tend to be command reserved for the
administrator (root). For example: /sbin/fsck to verify the status of the file

systems.

e /tmp: temporary files of the applications or of the system itself. Although
they are for temporary running, between two executions the application/
service cannot assume that it will find the previous files.

e /usr: different elements installed on the system. Some more complete sys-
tem software is installed here, in addition to multimedia accessories (icons,
images, sounds, for example in: /usr/share) and the system documenta-
tion (/usr/share/doc). It also tends to be used in /usr/local for installing

software.

e /var: log or status type files and/or error files of the system itself and of
various both local and network services. For example, log files in /var/log,
e-mail content in /var/spool/mail, or printing jobs in /var/spool/lpd.

© FUOC « PID_00148464 11

These are some of the directories defined in the FHS for the root system, then
for example it specifies some subdivisions, such as the content of /usr and /var,
and the typical data and/or executable files expected to be found at minimum
in the directories (see references to FHS documents).

Regarding the distributions, Fedora/Red Hat follows the FHS standard very
closely. It only presents a few changes in the files present in /usr, /var. In /etc
there tends to be a directory per configurable component and in /opt, /usr/
local there is usually no software installed unless the user installs it. Debian
follows the standard, although it adds some special configuration directories
in /etc.

Another standard in progress is the LSB (Linux standard base) [Linc]. Its idea is
to define compatibility levels between the applications, libraries and utilities,
so that portability of applications is possible between distributions without
too many problems. In addition to the standard, they offer test sets to check
the compatibility level. LSB in itself is a collection of various standards applied
to GNU/Linux.

Basic tools for the administrator

Note

See standard specifications:

http://
www . linuxfoundation.org/en/
Specifications

© FUOC « PID_00148464 12 Basic tools for the administrator

3. System documentation

One of the most important aspects of our administration tasks will be to have
the right documentation for our system and installed software. There are nu-
merous sources of information, but we should highlight the following:

a) man is by far the best choice of help. It allows us to consult the GNU/
Linux manual, which is grouped into various sections corresponding to
administration commands, file formats, user commands, C language calls

etc. Normally, to obtain the associated help, we will have enough with:
man command

Every page usually describes the command together with its options and,
normally, several examples of use. Sometimes, there may be more than
one entry in the manual. For example, there may be a C call with the
same name as a command; in this case, we would have to specify what

section we want to look at:
man n command
with n being the section number.

There are also several tools for exploring the manuals, for example xman
and tkman, which through a graphic interface help to examine the dif-
ferent sections and command indexes. Another interesting command is
apropos word, which will allow us to locate man pages that discuss a spe-
cific topic (associated with the word).

b) info is another common help system. This program was developed
by GNU to document many of its tools. It is basically a text tool where
the chapters and pages can be looked up using a simple keyboard-based
navigation system.

c) Applications documentation: in addition to certain man pages, it is
common to include extra documentation in the applications, in the form
of manuals, tutorials or simple user guides. Normally, these documenta-
tion components are installed in the directory /usr/share/doc (or /usr/doc
depending on the distribution), where normally a directory is created for
each application package (normally the application can have a separate
documentation package).

© FUOC « PID_00148464 13 Basic tools for the administrator

d) Distributions' own systems. Red Hat tends to come with several CDs
of consultation manuals that can be installed on the system and that
come in HTML or PDF formats. Fedora has a documentation project on
its webpage. Debian offers its manuals in the form of one more software
package that is usually installed in /usr/doc. At the same time, it has tools
that classify the documentation in the system, organising it by means of
menus for visualisation, such as dwww or dhelp, which offer web interfaces
for examining the system's documentation.

e) Finally, X desktops, such as Gnome and KDE, usually also carry their
own documentation systems and manuals, in addition to information for
developers, whether in the form of graphic help files in their applications
or own applications that compile all the help files (for example devhelp
in Gnome).

© FUOC « PID_00148464 14 Basic tools for the administrator

4. Shell scripting

The generic term shell is used to refer to a program that serves as an interface
between the user and the GNU/Linux system's kernel. In this section, we will
focus on the interactive text shells, which are what we will find as users once
we have logged in the system.

The shell is a system utility that allows users to interact with the kernel
through the interpretation of commands that the user enters in the
command line or files of the shell script type.

The shell is what the users see of the system. The rest of the operating system
remains mostly hidden from them. The shell is written in the same way as a
user process (program); it does not form part of the kernel, but rather is run
like just another user program.

When our GNU/Linux system starts up, it tends to offer users an interface
with a determined appearance; the interface may be a text or graphic interface.
Depending on the modes (or levels) of booting the system, whether with the
different text console modes or modes that give us a direct graphic start up
in X Window.

In graphic start up modes, the interface consists of an access administrator to
manage the user login procedure using a graphic cover page that asks for the
corresponding information to be entered: user identification and passsword.
Access managers are common in GNU/Linux: xdm (belonging to X Window),
gdm (Gnome) and kdm (KDE), as well as a few others associated to different
window managers. Once we have logged in, we will find ourselves in the X
Window graphic interface with a windows manager such as Gnome or KDE.
To interact through an interactive shell, all we will need to do is to open one
of the available terminal emulation programs.

If our access is in console mode (text), once logged in, we will obtain direct
access to the interactive shell.

Another case of obtaining an interactive shell is by remote access to the ma-
chine, whether through any of the text possibilities such as telnet, rlogin, ssh,
or graphic possibilities such as the X Window emulators.

© FUOC « PID_00148464 15 Basic tools for the administrator

Login: josep
Passwd:

Login: josep
Passwd:
Welcome!

$

Figure 1. Example of starting up a text shell textual and the system processes involved [Oke]

4.1. Interactive shells

Having initiated the interactive shell [QuiO1], the user is shown a prompt, in-
dicating that a command line may be entered. After entering it, the shell be-
comes responsible for validating it and starting to run the required processes,
in a number of phases:

e Reading and interpreting the command line.

e Evaluating wildcard characters such as $ * ? and others.

e Managing the required I/O redirections, pipes and background processes
(&).

e Handling signals.

e DPreparing to run programs.

Normally, command lines will be ways of running the system's commands,
interactive shell commands, starting up applications or shell scripts.

© FUOC « PID_00148464 16

Shell scripts are text files that contain command sequences of the sys-
tem, plus a series of internal commands of the interactive shell, plus
the necessary control structures for processing the program flow (of the
type while, for etc.).

The system can run script files directly under the name given to the file. To
run them, we invoke the shell together with the file name or we give the shell
script execution permissions.

To some extent, we can see shell script as the code of an interpreted language
that is executed on the corresponding interactive shell. For the administrator,
shell scripts are very important, basically for two reasons:

1) The system's configuration and most of the services are provided through
tools in the form of shell scripts.

2) The main way of automating administration processes is creating shell
scripts.

Returns prompt <«
—» Reads next command

Shell looks
for corlnmand

Is it an

internal Yes » Command is run
command?
No
i Parent shell
Creates cf*ld process ~ arent she
waits
Is it an % i
executable Yes . Kernel loaas a new program

program? and runs it as child

| New process runs
and completes

It is the end

. Yes » end
of a script
| Parent shell
wakes up
No

Figure 2. Basic shell flow control

Basic tools for the administrator

© FUOC « PID_00148464 17 Basic tools for the administrator

All the programs that are invoked by a shell possess three predefined files,
specified by the corresponding file handles. By default, these files are:

1) standard input: normally assigned to the terminal's keyboard (console);
uses file handle number O (in UNIX the files use whole number file han-
dles).

2) standard output: normally assigned to the terminal's screen; uses file
handle 1.

3) standard error: normally assigned to the terminal's screen; uses file han-
dle 2.

This tells us that any program run from the shell by default will have the
input associated to the terminal's keyboard, the output associated to the
screen, and that it will also send errors to the screen.

Also, the shells tend to provide the three following mechanisms:

1) Redirection: given that I/O devices and files are treated the same way
in UNIX, the shell simply handles them all as files. From the user's point
of view, the file handles can be reassigned so that the data flow of one
file handle goes to any other file handle; this is called redirection. For
example, we refer to redirecting file handles O or 1 as redirecting standard
I/0.

2) Pipes: a program's standard output can be used as another's standard
input by means of pipes. Various programs can be connected to each other
using pipes to create what is called a pipeline.

3) Concurrence of user programs: users can run several programs simul-
taneously, indicating that they will be run in the background, or in the
foreground, with exclusive control of the screen. Another way consists
of allowing long jobs in the background while interacting with the shell
and with other programs in the foreground.

In practice, in UNIX/Linux these shells entail:

e Redirection: a command will be able to receive input or output from other
files or devices.

© FUOC » PID_00148464 18
Example
let's see
command op file
where op may be:

e < :receive input from file.
e >:send output to file.
e >>:ijtindicates to add the output (by default, with > the file is created again).

e DPipes: chaining several commands, with transmission of their data:

commandl | command2 | command3

e This instruction tells us that command1 will receive input possibly from
the keyboard, send its output to command2, which will receive it as input
and produce output towards command3, which will receive it and send
its output to the standard output (by default, the screen).

e Background concurrence: any command executed with the '&' at the end
of the line will be run in the background and the prompt of the shell will
be returned immediately while it continues to be executed. We can follow
the execution of commands with the ps command and its options, which
allows us to observe the status of the system's processes. And we also have
the kill order, which allows us to eliminate processes that are still being
run or that have entered an error condition: kill -9 PID allows us to kill the
process with PID identification number. PID is the identifier associated to
the process, a whole number assigned to it by the system and that can be
obtained using the ps command.

4.2. Shells

The shell's independence in relation to the operating system's kernel (the shell
is just an interface layer), allows us to have several of them on the system
[QuiO1]. Although some of the more frequent ones are:

a) The Bash (initialism for Bourne-again shell). The default GNU/Linux
shell.

b) The Bourne shell (sh). This has always been the standard UNIX shell,
and the one that all UNIX systems have in some version. Normally, it is
the administrator's default shell (root). In GNU/Linux it tends to be Bash,
an improved version of the Bourne shell, which was created by Stephen
Bourne at AT&T at the end of the seventies. The default prompt tends to
be a'$' (in root a '#').

Basic tools for the administrator

© FUOC « PID_00148464 19 Basic tools for the administrator

c) The Korn shell (ksh). It is a supergroup of Bourne (some compatibility is
maintained), written at AT&T by David Korn (in the mid eighties), which
some functionalities of Bourne and C, with some additions. The default
prompt is the $.

d) The C shell (csh). It was developed at the University of Berkeley by Bill
Joy towards the end of the seventies and has a few interesting additions
to Bourne, like a command log, alias, arithmetic from the command line,
it completes file names and controls jobs in the background. The default
prompt for users is '%'. UNIX users tend to prefer this shell for interaction,
but UNIX administrators prefer to use Bourne, because the scripts tend to
be more compact and to execute faster. At the same time, an advantage
of the scripts in C shell is that, as the name indicates, the syntax is based
on C language (although it is not the same).

e) Others, such as restricted or specialised versions of the above.

The Bash (Bourne again shell) [Bas] [Coo] has grown in importance since it
was included in GNU/Linux systems as the default shell. This shell forms
part of the GNU software project. It is an attempt to combine the three
preceding shells (Bourne, C and Korn), maintaining the syntax of the
original Bourne shell. This is the one we will focus on in our subsequent

examples.

A rapid way of knowing what shell we are in as users is by using the
variable $SHELL, from a command line with the instruction:

echo $ SHELL

We will find that some aspects are common to all shells:

e They all allow shell scripts to be written, which are then interpreted
executing them either by the name (if the file has an execution per-
mission) or by passing it as a parameter to the command of the shell.

e System users have a default shell associated to them. This informa-
tion is provided upon creating the users' accounts. The administra-
tor will assign a shell to each user, or otherwise the default shell will
be assigned (bash in GNU/Linux). This information is saved in the
passwords file in /etc/passwd and can be changed with the chsh com-
mand, this same command with the option -1 will list the system's
available shells (see also /etc/shells).

e Every shell is actually an executable command, normally present

in the /bin directories in GNU/Linux (or /usr/bin).

© FUOC « PID_00148464 20 Basic tools for the administrator

e Shell scripts can be written in any of them, but adjusting to each
one's syntax, which is normally different (sometimes the differences
are minor). The construction syntax, as well as the internal com-
mands, are documented in every shell's man page (iman bash for ex-

ample).

e Every shell has some associated start up files (initialisation files),
and every user can adjust them to their needs, including code, vari-

ables, paths...

Note
e The capacity in the programming lies in the combination of each
shell's syntax (of its constructions), with the internal commands of To program a shell it is advis-
. able to have a good knowl-
each shell, and a series of UNIX commands that are commonly used edge of these UNIX com-
in the scripts, like for example cut, sort, cat, more, echo, grep, wc, awk, mands and of their different
options.

sed, mv, Is, cp...

e If as users we are using a specific shell, nothing prevents us from
starting up a new copy of the shell (we call it a subshell), whether it
is the same one or a different one. We simply invoke it through the
name of the executable, whether sh, bash, csh or ksh. Also when we
run a shell script a subshell is launched with the corresponding shell

for executing the requested script.

Some basic differences between them [QuiO1]:

a) Bash is the default shell in GNU/Linux (unless otherwise specified
in creating the user account). In other UNIX systems it tends to be the
Bourne shell (sh). Bash is compatible with sh and also incorporates some
features of the other shells, csh and ksh.

b) Start-up files: sh, ksh have .profile (in the user account, and is execut-
ed in the user's login) and ksh also tends to have a .kshrc which is ex-
ecuted next, csh uses .login (it is run when the user login initiates one
time only), .logout (before leaving the user's session) and .cshrc (similar to
the .profile, in each initiated C subshell). And Bash uses the .bashrc and
the .bash_profile. Also, the administrator can place common variables and
paths in the /etc/profile file that will be executed before the files that each

© FUOC « PID_00148464 21

user has. The shell start-up files are placed in the user's account when it
is created (normally they are copied from the /etc/skel directory), where
the administrator can leave some skeletons of the prepared files.

c) The system or service configuration scripts are usually written in
Bourne shell (sh), since most UNIX systems used them this way. In GNU/
Linux we can also find some in Bash and also in other script languages
not associated to the shell such as Perl or Python.

d) We can identify what shell the script is run on using the file command,
for example file <scriptname>. Or by examining the first line of the script,
which tends to be: #!//bin/name, where the name is bash, sh, csh, ksh... This
line tells us, at the moment of running the script, what shell needs to be
used to interpret it (in other words, what subshell needs to be launched in
order to run it). It is important for all scripts to contain it, since otherwise
they will try to run the default shell (Bash in our case) and the syntax
may not be the right one, causing many syntax errors in the execution.

4.3. System variables

Some useful system variables (we can see them using the echo command for

example), which can be consulted in the command line or within the pro-

gramming of the shell scripts are:

Basic tools for the administrator

Variable Value Example Description

HOME /home/juan Root directory of the user
LOGNAME |juan User ID at login

PATH /bin:/usr/local/bin:/usr/X11/bin Paths

SHELL /bin/bash User shell

PS1 $ Shell prompt, the user can change it
MAIL /var/mail/juan E-mail directory

TERM xterm Type of terminal used by the user
PWD /home/juan Current user directory

The different variables of the environment can be seen using the env com-

mand. For example:

$ env

SSH_AGENT_PID = 598
MM_CHARSET = IS0O-8859-15

TERM = xterm

DESKTOP_STARTUP_ID =

SHELL =

/bin/bash

© FUOC « PID_00148464 22

WINDOWID = 20975847

LC_ALL = es_ESQReuro

USER = juan

LS_COLORS = no = 00:fi = 00:di = 01;34:1n = 01;
SSH_AUTH_SOCK = /tmp/ssh-wJzVY570/agent.570
SESSION_MANAGER = local/aopcjj:/tmp/.ICE-unix/570
USERNAME = Jjuan
PATH=/soft/jdk/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/
X11l:/usr/games

MAIL = /var/mail/juan

PWD = /etc/skel

JAVA_HOME = /soft/jdk

LANG = es_ES@euro

GDMSESSION = Gnome

JDK_HOME = /soft/jdk

SHLVL = 1

HOME = /home/juan

GNOME_DESKTOP_SESSION_ID = Default

LOGNAME = Jjuan

DISPLAY = :0.0

COLORTERM = gnome-terminal

XAUTHORITY = /home/juan/.Xauthority

_ = /usr/bin/env

OLDPWD = /etc

4.4. Programming scripts in Bash

Here we will look at some basic concepts of the shell scripts in Bash, we advise
further reading in [Bas] [Coo0].

All Bash scripts have to start with the line:

#!/bin/bash

This line indicates the shell used by the user, the one active at the time, what
shell is needed for running the script that appears next.

The script can be run in two different ways:
1) By running directly from the command line, on condition it has an execu-
tion permission. If this is not the case, we can establish the permission with:

chmod +x script.

2) By running through the shell, we call on the shell explicitly: /bin/bash script.

Basic tools for the administrator

© FUOC « PID_00148464 23

We should take into account that, irrespective of the method of execution, we
are always creating a subshell where our script will be run.

4.4.1. Variables in Bash

The assignment of variables is done by:

variable = value

The value of the variable can be seen with:

echo $variable

where '$' refers us to the variable's value.

The default variable is only visible in the script (or in the shell). If the variable
needs to be visible outside the script, at the level of the shell or any subshell
that is generated a posteriori, we will need to "export" it as well as assign it.
We can do two things:

e Assign first and export after:

var=value

export var

e Export during assignment:

export var=value

In Bash scripts we have some accessible predetermined variables:

e $1-$N: It saves past arguments as parameters to the script from the com-
mand line.

e $0: It saves the script name, it would be parameter O of the command line.

e $*: It saves all parameters from 1 to N of this variable.

e $:Itsaves both parameters, but with double inverted commas (" ") for each
of them.

e $?: "Status": it saves the value returned by the most recent executed com-
mand. Useful for checking error conditions, since UNIX tends to return O

if the execution was correct, and a different value as an error code.

Another important issue regarding assignments is the use of inverted commas:

Basic tools for the administrator

© FUOC « PID_00148464 24 Basic tools for the administrator

e Double inverted commas allow everything to be considered as a unit.

e Single inverted commas are similar, but ignore the special characters inside

them.

e Those pointed to the left (command”) are used for evaluating the inside,
if there is an execution or replacement to be made. First the content is ex-
ecuted, and then what there was is replaced by the result of the execution.
For example: var ='Is' saves the list of the directory in $var.

4.4.2. Comparisons

For conditions the order test expression tends to be used or directly [expression].

We can group available conditions in:

e Numerical comparison: -eq, -ge, -gt, -le, -It, -ne, corresponding to: equal
to, greater than or equal to (ge), greater than, less than or equal to (le),

less than, not equal to.

e Chain comparison: :=, !=, -n, -z, corresponding to chains of characters:
equal, different, with a greater length than 0, length equal to zero or emp-

ty.

e File comparison: -d, -f -1, -s, -w, -x. The file is: a directory, an ordinary file,
is readable, is not empty, is writable, is runnable.

e Booleans between expressions: !, -a, -0, conditions of not, and, and or.

4.4.3. Control structures

Regarding the script's internal programming, we need to think that we are

basically going to find:

e Commands of the operating system itself.
e Internal commands of the Bash (see: man bash).
e Programming control structures (for, while...), with the syntax of Bash.

The basic syntax of control structures is as follows:

a) Structure if...then, evaluates the expression and if a certain value is obtained,
then the commands are executed.

if [expresion]
then

commands

© FUOC « PID_00148464 25 Basic tools for the administrator

b) Structure if...then...else, evaluates the expression and if a certain value is

obtained then the commands1 are executed, otherwise comands2 are execut-
ed:

c) Structure if..then...else if...else, same as above, with additional if structures.

d) Structure case select, multiple selection structure according to the selection _
value (in case)

Shells such as Bash offer a
wide set of control structures
that make them comparable
to any other language.

e) Loop for, replacement of the variable for each element of the list:

f) Loop while, while the expression is fulfilled:

© FUOC « PID_00148464 26 Basic tools for the administrator

g) Loop until, until the expression is fulfilled:

h) Declaration of functions:

or with a call accompanied by parameters:

and function calls with fname or fname2 p1 p2 p3 ... pN.

© FUOC « PID_00148464 27 Basic tools for the administrator

5. Package management tools

In any distribution, the packages are the basic item for handling the tasks
of installing new software, updating existing software or eliminating unused
software.

Basically, a package is a set of files that form an application or the
combination of several related applications, normally forming a single
file (known as a package), with its own format, normally compressed,
which is distributed via CD/DVD or downloading service (ftp or http
repositories).

The use of packages is helpful for adding or removing software, because it
considers it as a unit instead of having to work with the individual files.

In the distribution's content (its CD/DVDs) the packages tend to be grouped
into categories such as: a) base: essential packages for the system's functioning
(tools, start-up programs, system libraries); b) system: administration tools,
utility commands; c) development: programming tools: editors, compilers, de-
buggers... d) graphics: graphics controllers and interfaces, desktops, windows
managers... e) other categories.

Normally, to install a package we will need to follow a series of steps:

1) Preliminary steps (pre-installation): check that the required software
exists (and with the correct versions) for its functioning (dependencies),
whether system libraries or other applications used by the software.

2) Decompress the package content, copying the files to their definitive
locations, whether absolute (with a fixed position) or can be relocated to

other directories.

3) Post-installation: retouching the necessary files, configuring possible
software parameters, adjusting it to the system...

Depending on the types of packages, these steps may be mostly automat-
ic (this is the case in RPM [BaiO3] and DEB [Deb02]) or they may all be
needed to be done by hand (.tgz case) depending on the tools provided
by the distribution.

© FUOC « PID_00148464 28

Next, let's see perhaps the three most classical packages of most distribu-
tions. Each distribution has one as standard and supports one of the oth-
ers.

5.1. TGZ pacKkage

TGZ packages are perhaps those that have been used for longest. The first
GNU/Linux distributions used them for installing the software, and several
distributions still use it (for example, Slackware) and some commercial UNIX.
They are a combination of files joined by the tar command in a single .tar file
that has then been compressed using the gzip utility, and that tends to appear
with the .tgz or .tar.gz extension. At the same time, nowadays it is common
to find tar.bz2 which instead of gzip use another utility called bzip2, which in
some cases obtains greater file compression.

Contrary to what it may seem, it is a commonly used format especially by the
creators or distributors of software external to the distribution. Many software
creators that work for various platforms, such as various commercial UNIX and
different distributions of GNU/Linux prefer it as a simpler and more portable
system.

An example of this case is the GNU project, which distributes its software in
this format (in the form of source code), since it can be used in any UNIX,
whether a proprietary system, a BSD variant or a GNU/Linux distribution.

If in binary format, we will have to bear in mind that it is suitable for our
system, for example a denomination such as the following one is common (in

this case, version 1.4 of the Mozilla web navigator):

mozilla-i686-pc—-linux—-gnu—-1l.4-installer.tar.gz

where we have the package name, as Mozilla, designed for i686 architecture
(Pentium II or above or compatible), it could be 1386, 1586, 1686, k6 (amd k6),
k7 (amd athlon), amdé64 u x86_64 (for AMD64 and some 64bit intels with
emo64t), o ia64 (intel Itaniums) others for the architectures of other machines
such as sparc, powerpc, mips, hppa, alpha... then it tells us that it is for Linux,
on a PC machine, software version 1.4.

If it were in source format, it could appear as:
mozilla—-source-1l.4.tar.gz
where we are shown the word source; in this case it does not mention the

machine's architecture version, this tells us that it is ready for compiling on
different architectures.

Basic tools for the administrator

Note

TGZ packages are a basic tool
when it comes to installing un-
organised software. Besides,
they are a useful tool for back-
up processes and restoring
files.

© FUOC « PID_00148464 29 Basic tools for the administrator

Otherwise, there would be different codes for every operating system or
source: GNU/Linux, Solaris, Irix, bsd...

The basic process with these packages consists of:

1) Decompressing the package (they do not tend to use absolute path,
meaning that they can be decompressed anywhere):

tar —zxvf file.tar.gz (or .tgz file)

With the tar command we use z options: decompress, x: extract files, v:
view process, f: name the file to be treated.

It can also be done separately (without the tar's z):

gunzip file.tar.gz

(leaves us with a tar file)

tar —xvf file.tar

2) Once we have decompressed the tgz, we will have the files it contained,
normally the software should include some file of the readme or install
type, which specifies the installation options step by step, and also pos-
sible software dependencies.

In the first place, we should check the dependencies to see if we have the
right software, and if not, look for it and install it.

If it is a binary package, the installation is usually quite easy, since it will
be either directly executable from wherever we have left it or it will carry
its own installer. Another possibility is that we may have to do it manu-
ally, meaning that it will be enough to copy it (cp -1, recursive copy) or to
move it (mv command) to the desired position.

Another case is the source code format. Then, before installing the soft-
ware we will first have to do a compilation. For this we will need to read
the instruction that the program carries in some detail. But most devel-
opers use a GNU system called autoconf (from autoconfiguration), which
normally uses the following steps (if no errors appear):

e ./configure: it is a script that configures the code so that it can be
compiled on our machine and that verifies that the right tools exist.
The --prefix = directory option makes it possible to specify where the
software will be installed.

© FUOC « PID_00148464 30 Basic tools for the administrator

e make: compilation itself.

e make install: installing the software in the right place, normally

previously specified as an option to configure or assumed by default.

This is a general process, but it depends on the software whether it follows it
or not, there are fairly worse cases where the entire process needs to be carried
out by hand, retouching configuration files or the makefile, and/or compiling
the files one by one, but luckily this is becoming less and less common.

In the case of wanting to delete all of the installed software, we will have to
use the uninstaller if provided or, otherwise, directly delete the directory or
installed files, looking out for potential dependencies.

The tgz packages are fairly common as a backup mechanism for administra-
tion tasks, for example, for saving copies of important data, making backups
of user accounts or saving old copies of data that we do not know if we will
need again. The following process tends to be used: let's suppose that we want
to save a copy of the directory "dir", we can type: tar —-cvf dir.tar dir
(c: compact dir in the file dir.tar) gzip dir.tar (compress) or in a single
instruction like:

tar —cvzf dir.tgz dir

The result will be a dir.tgz file. We need to be careful if we are interested in
conserving the file attributes and user permissions, as well as possibly links
that may exist (we must examine the tar options so that it adjusts to the re-
quired backup options).

5.2. Fedora/Red Hat: RPM packages

The RPM packages system [BaiO3] created by Red Hat represents a step
forward, since it includes the management of software configuration
tasks and dependencies. Also, the system stores a small database with
the already installed packages, which can be consulted and updated
with new installations.

Conventionally, RPM packages use a name such as:

package—-version—-rev.arq.rpm

© FUOC « PID_00148464 31

where package is the name of the software, version is the numbering of the soft-
ware version, rev normally indicates the revision of the RPM package, which
indicates the number of times it has been built and arq refers to the archi-
tecture that it is designed for, whether Intel/AMD (i386, i586, 1686, x86_64,
emo64t, ia64) or others such as alpha, sparc, PPC... The noarch "architecture'is
normally used when it is independent, for example, a Set of scripts and src in
the case of dealing with source code packages. A typical execution will include
running rpm, the options of the operation to be performed, together with one
or more names of packages to be processed together.

Typical operations with RPM packages include:

e Package information: specific information about the package is consult-
ed using the option -q together with the package name (with -p if on an
rpm file). If the package has not yet been installed, the option would be
-q accompanied by the information option to be requested, and if the re-
quest is to be made to all the installed packages at the same time, the op-
tion would be -qa. For example, requests from an installed package:

Basic tools for the administrator

Note

The package: apache-1.3.19-
23.i686.rpm would indicate
that it is Apache software (the
web server), in its version
1.3.19, package revision RPM
23, for Pentium Il architectures
or above.

Request RPM options Results
Files rpm —-gl List of the files it contains
Information rpm -gi Package description
Requirements rpm —-gR Prior requirements, libraries or software

e Installation: simply rpm -i package.rpm, or with the URL where the

package can be found, for downloading from FTP or web servers, we just
need to use the syntax ftp:// or http:// to obtain the package's location.
The installation can be completed on condition that the package depen-
dencies are met, whether in the form of prior software or the libraries that
should be installed. In the case of not fulfilling this requirement, we will
be told what software is missing, and the name of the package that pro-
vides it. We can force the installation (although the installed software may
not work) with the options -—force or ——nodeps, or simply by ignoring
the information on the dependencies.
The task of installing a package (done by rpm) entails various sub-tasks:
a) checking for potential dependencies; b) examining for conflicts with
other previously installed packages; ¢) performing pre-installation tasks; c¢)
deciding what to do with the configuration files associated to the package
if they existed previously; d) unpackaging the files and placing them in the
right place; e) performing other post-installation tasks; finally, f) storing
the log of tasks done in the RPM database.

© FUOC « PID_00148464 32

e Updating: equivalent to the installation but first checking that the soft-
ware already exists rom -U package.rpm. It will take care of deleting the
previous installation.

e Verification: during the system's normal functioning many of the in-
stalled files will change. In this regard, RPM allows us to check files in or-
der to detect any changes from a normal process or from a potential error
that could indicate corrupt data. Through rpm -V package we verify a
specific package and through rpm -va we will verify all of them.

e Deletion: erasing the package from the RPM system (-e or --erase); if there
are dependencies, we may need to eliminate others previously.

Example
For a remote case:
rpm -i ftp://site/directory/package.rpm

would allow us to download the package from the provided FTP or web site, with its
directory location, and proceed in this case to install the package.

We need to control where the packages come from and only use known and
reliable package sources, such as the distribution's own manufacturer or trust-
worthy sites. Normally, together with the packages, we are offered a digital
signature for them, so that we can check their authenticity. The sums mdS are
normally used for checking that the package has not been altered and other
systems, such as GPG (GNU version of PGP), for checking the authenticity
of the package issuer. Similarly, we can find different RPM package stores on
Internet, where they are available for different distributions that use or allow
the RPM format.

For a secure use of the packages, official and some third party repositories
currently sign the packages electronically, for example, using the abovemen-
tioned GPG; this helps us to make sure (if we have the signatures) that the
packages come from a reliable source. Normally, every provider (the reposito-
ry) will include some PGP signature files with the key for its site. From official
repositories they are normally already installed, if they come from third par-
ties we will need to obtain the key file and include it in RPM, typically:

$ rpm —import GPG-KEY-FILE
With GPP-KEY-FILE being the GPG key file or URL of the file, normally this

file will also have sum md5 to check its integrity. And we can find the keys
in the system with:

$ rpm -ga | grep “gpg-pubkey

we can observe more details on the basis of the obtained key:

Basic tools for the administrator

Note

View the site:
www.rpmfind.net.

© FUOC PID_00148464 33
$ rpm -gi gpg-key-—xXXXXX-YYYYY

For a specific RPM package we will be able to check whether it has a signature
and with which one it has been used:

$ rpm —-checksig —-v <package>.rpm

And to check that a package is correct based on the available signatures, we

can use:

$ rpm —-K <package.rpm>

We need to be careful to import just the keys from the sites that we trust.
When RPM finds packages with a signature that we do not have on our system
or when the package is not signed, it will tell us and, then, we will have to
decide on what we do.

Regarding RPM support in the distributions, in Fedora (Red Hat and also in its
derivatives), RPM is the default package format and the one used extensively
by the distribution for updates and software installation. Debian uses the for-
mat called DEB (as we will see), there is support for RPM (the rpm command
exists), but only for consulting or package information. If it is essential to in-
stall an rpm package in Debian, we advise using the alien utility, which can
convert package formats, in this case from RPM to DEB, and proceed to install
with the converted package.

In addition to the distribution's basic packaging system, nowadays each one
tends to support an intermediate higher level software management system,
which adds an upper layer to the basic system, helping with software manage-
ment tasks, and adding a number of utilities to improve control of the process.

In the case of Fedora (Red Hat and derivatives) it uses the YUM system, which
allows as a higher level tool to install and manage packages in rpm systems, as
well as automatic management of dependencies between packages. It allows
access to various different repositories, centralises their configuration in a file
(/etc/yum.conf normally), and has a simple commands interface.

The yum configuration is based on:

Basic tools for the administrator

Note

YUM in: http://
yum.baseurl.org

/etc/yum.config (options file)

/etc/yum (directory for some associated utilities)

/etc/yum.repos.d (directory for specifying repositories, a file for each one, including access information and location of
the gpg signatures).

A summary of the typical yum operations would be:

© FUOC « PID_00148464 34

Basic tools for the administrator

Order Description

yum install <name> Install the package with the name

yum update <name> Update an existing package

yum remove <name> Eliminate package

yum list <name> Search package by name (name only)
yum search <name> More extensive search

yum provices <file> Search for packages that provide the file
yum update Update the entire system

yum upgrade As above, including additional packages

Finally, Fedora also offers a couple of graphics utilities for YUM, pup for con-
trolling recently available updates, and pirutas a software management pack-
age. There are also others like yumex, with greater control of yum's internal
configuration.

5.3. Debian: DEB packages

Debian has interactive tools such as tasksel, which makes it possible to select
sub-sets of packages grouped into types of tasks: packages for X, for develop-
ment, for documentation etc., or such as dselect, which allows us to navigate
the entire list of available packages (there are thousands) and select those we
wish to install or uninstall. In fact, these are only a front-end of the APT mid-
level software manager.

At the command line level it has dpkg, which is the lowest level command
(would be the equivalent to rpm), for managing the DEB software packages
directly [Deb02], typically dpkg -i package.deb to perform the installation. All
sorts of tasks related to information, installation, removal or making internal
changes to the software packages can be performed.

The intermediary level (as in the case of Yum in Fedora) is presented by the
APT tools (most are apt-xxx commands). APT allows us to manage the pack-
ages from a list of current and available packages based on various software
sources, whether the installation's own CDs, FTP or web (HTTP) sites. This
management is conducted transparently, in such a way that the system is in-
dependent from the software sources.

The APT system is configured from the files available in /etc/apt, where
/etc/apt/sources.list is the list of available sources; an example could
be:

deb http://http.us.debian.org/debian stable main contrib non-—

free

© FUOC « PID_00148464 35 Basic tools for the administrator

debsrc http://http.us.debian.org/debian stable main contrib
non—free
deb http://security.debian.org stable/updates main contrib

non—free

Where various of the "official" sources for a Debian are compiled (etch in this
case, which is assumed to be stable), from which we can obtain the software
packages in addition to their available updates. Basically, we specify the type
of source (web/FTP in this case), the site, the version of the distribution (stable
in this example) and categories of software to be searched for (free, third party
contributions, non-free or commercial licenses).

The software packages are available for the different versions of the Debian Note

distribution, there are packages for the stable, testing, and unstable versions.
Debian's DEB packages are

The use of one or the others determines the type of distribution (after chang- perhaps the most powerful in-

ing the repository sources in sources.list). It is possible to have mixed package stallation system existing in
GNUY/Linux. A significant ben-
sources, but it is not advisable, because conflicts could arise between the ver- efit is the system's indepen-
. . - . dence from the sources of the
sions of the different distributions. packages (through APT).

Once we have configured the software sources, the main tool for handling
them in our system is apt-get, which allows us to install, update or remove
from the individual package, until the entire distribution is updated. There is
also a front-end to apt-get, called aptitude, whose options interface is practical-
ly identical (in fact it could be described as an apt-get emulator, since the in-
terface is equivalent); as benefits it manages package dependencies better and
allows an interactive interface. In fact it is hoped that aptitude will become the
default interface in the command line for package management in Debian.

Some basic functions of apt-get:

e Installation of a particular package:
apt—-get install package

e Removing a package:

apt—-get remove package

e Updating the list of available packages:
apt—-get update

e Updating the distribution, we could carry out the combined steps:
apt—get update
apt—get upgrade

© FUOC « PID_00148464 36

apt—-get dist-upgrade

Through this last process, we can keep our distribution permanently updated,
updating installed packages and verifying dependencies with the new ones.
Some useful tools for building this list are apt-spy, which tries to search for
the fastest official sites, or netselect, which allows us to test a list of sites. On
a separate note, we can search the official sites (we can configure these with
apt-setup) or copy an available source file. Additional (third party) software
may need to add more other sources (to etc/sources.list); lists of available source
sites can be obtained (for example: http://www.apt-get.org).

Updating a system in particular generates a download of a large number of
packages (especially in unstable), which makes it advisable to empty the
cache, the local repository, with the downloaded packages (they are kept
in /var/cache/apt/archive) that will no longer be used, either with apt—-get
clean to eliminate them all or with apt—get autoclean to eliminate the
packages that are not required because there are already new versions and, in
principle, they will no longer be needed. We need to consider whether we may
need these packages again for the purposes of reinstalling them, since, if so,
we will have to download them again.

The APT system also allows what is known as SecureAPT, which is the secure
management of packages through veritfying sums (md5) and the signatures of
package sources (of the GPG type). If the signatures are not available during
the download, apt-get reports this and generates a list of unsigned packages,
asking whether they will stop being installed or not, leaving the decision to
the administrator. The list of current reliable sources is obtained using:

apt—-key list

The GPG keys of the official Debian sites are distributed through a package,
and we can install them as follows:

apt—-get install debian-archive-keyring

Obviously, considering that we have the sources.list with the official sites. It
is hoped that by default (depending on the version of Debian) these keys will
already be installed when the system initiates. For other unofficial sites that
do not provide the key in a package, but that we consider trustworthy, we
can import their key, obtaining it from the repository (we will have to consult
where the key is available, there is no defined standard, although it is usually
on the repository's home page). Using apt-key add with the file, to add the
key or also:

gpg —import file.key
gpg —export —armor XXXXXXXX | apt-key add -

Basic tools for the administrator

© FUOC « PID_00148464 37

With X being a hexadecimal related to the key (see repository instructions for
the recommended way of importing the key and the necessary data).

Another important functionality of the APT system is for consulting package
information, using the apt-cache tool, which allows us to interact with the
lists of Debian software packages.

Example

The apt-cache tool has commands that allow us to search for information about the
packages, for example:

e Search packages based on an incomplete name:
apt—-cache search name

e Show package description:
apt—-cache show package

e What packages it depends on:
apt—-cache depends package

Other interesting apt tools or functionalities:

- apt-show-versions: tells us what packages may be updated (and for what ver-
sions, see option -u).

Other more specific tasks will need to be done with the lowest level tool, such
as dpkg. For example, obtaining the list of files of a specific installed package:

dpkg -L package

The full list of packages with

dpkg -1

Or searching for what package an element comes from (file for example):

dpkg —-s file

This functions for installed packages; apt-file can also search for packages that
are not yet installed.

Finally, some graphic tools for APT, such as synaptic, gnome-apt for gnome,
and kpackage or adept for KDE are also worth mentioning, as well as the al-
ready mentioned text ones such as aptitude or dselect.

Conclusion: we should highlight that the APT management system (in com-
bination with the dpkg base) is very flexible and powerful when it comes to
managing updates and is the package management system used by Debian
and its derived distributions such as Ubuntu, Kubuntu, Knoppix, Linex etc.

Basic tools for the administrator

© FUOC « PID_00148464 38

6. Generic administration tools

In the field of administration, we could also consider some tools, such as those
designed generically for administration purposes. Although it is difficult to
keep up to date with these tools because of the current plans of distribution
with different versions, which evolve very quickly. We will mention a few
examples (although at a certain time they may not be completely functional):

a) Linuxconf: this is a generic administration tool that groups together
different aspects in a kind of text menu interface, which in the latest ver-
sions evolved to web support; it can be used with practically any GNU/
Linux distribution and supports various details inherent to each one (un-
fortunately, it has not been updated for a while).

b) Webmin: this is another administration tool conceived from a web
interface; it functions with a series of plug-ins that can be added for each
service that needs to be administered; normally it has forms that spec-
ify the service configuration parameters; it also offers the possibility (if
activated) of allowing remote administration from any machine with a

navigator.

c) Others under development like cPanel, ISPConfig.

At the same time, the Gnome and KDE desktop environments tend to
include the "Control Panel" concept, which allows management of the
graphical interfaces' visual aspect as well as the parameters of some system
devices.

With regards to the individual graphics tools for administration, the GNU/
Linux distribution offers some directly (tools that accompany both Gnome
and KDE), tools dedicated to managing a device (printers, sound, network card
etc.), and others for the execution of specific tasks (Internet connection, con-
figuring the start up of system services, configuring X Window, visualising
logs...). Many of them are simple front-ends for the system's basic tools, or are
adapted to special features of the distribution.

In this section, we should particularly highlight the Fedora distribution (Red
Hat and derivatives), which tries to offer several (rather minimalist) utilities for
different administration functions, we can find them on the desktop (in the
administration menu), or in commands like system-config-xxxxx for differ-
ent management functionalities for: screen, printer, network, security, users,
packages etc. We can see some of them in the figure:

Basic tools for the administrator

Note

We can find them
in: Linuxconf http://
www.solucorp.qc.ca/linuxconf

© FUOC « PID_00148464

39

o Applications Places
] @] Preferences

| |
‘ EB Help

W
Background Services | oy té APout GNOME

These services are starte 9 About Fedora
You can specify in which

Currently Running in Run 6 Lock Screen

B %) w g Log Out josep.

Start Stop Restart Shut Down...

NetworkManagerDispatcher| |
acpid

Z v

1
anacron 8

O
=2

]

L apmd
=

[auditd
[}

(€l

7 avahi-daemon

‘4 April
[Sun Mon Tue @ SELinux Policy Analysis

9 1c
15 16
2 23
atd 29 30

W NetworkManager = [¥ Ivarfiogic

autofs 2848 lines (!

IE] | 3 service configuration

I E Network

e@@é Py =

) Keyboard

Fle View Actions Ed B Administration » %Language

6:38 PM Q)
= w7

1) - System Log Viewer [§

=== Logical Volume Management |

£ Login screen

&R Network

{3 Printing

() Root Password

a} Security Level and Firewall
[FJ sELinux Audit Log Analysis
[e seLinux Management

[F3 seuinux policy Dirference

17 .
SELinux Troubleshooter
24 %

@ Services

| smart Card Manager
@) soundcard Detection
@ System Log

@ System Monitor

@ Users and Groups

Figure 3. A few of the administration graphics utilities in Fedora

18:02: 38 fedora syslogd 1.4.1:
18:02: 38 fedora kernel: klogd 1
L8:02: 38 fedora kernel: Linux v

Network Configurat

s Profile Help
S B -
New Edit Copy Ac

svices | Hardware |IPsec | DS | Hosts

L»' [You may configure network dey
(|

&

physical hardware here. Multip|
be associated with a single piec

rofile Status Device Nickname¢

] Active eth0 eth0

ssages (mon... | I[NNI ©

Basic tools for the administrator

© FUOC « PID_00148464 40

7. Other tools

In this unit's limited space we cannot comment on all the tools that can offer
us benefits for administration. We will cite some of the tools that we could
consider basic:

e The various basic UNIX commands: grep, awk, sed, find, diff, gzip, bzip2,
cut, sort, df, du, cat, more, file, which...

e The editors, essential for any editing task, like: vi, very much used for
administration tasks because of the speed of making small changes to
the files. Vim is the vi compatible editor, which GNU/Linux tends to car-
ry; it allows a syntax coloured in various languages. Emacs, a very com-
plete editor, adapted to different programming languages (syntax and edit-
ing modes); it has a very complete environment and an X version called

Xemacs. Joe, editor compatible with Wordstar. And many more...

e Scripting languages, tools for administration, like: Perl, very useful for
handling regular expressions and analysing files (filtering, ordering etc.).
PHP, language that is very often used in web environments. Python, an-
other language that can make fast prototypes of applications...

e Tool for compiling and debugging high level languages: GNU gcc (com-
piler of C and C++), gdb (debugger), xxgdb (X interface for gdb), ddd (de-
bugger for various languages).

Basic tools for the administrator

Note

See material associated to the
introduction course to GNU/
Linux, the man pages of the
commands or a tools reference
such as [StuO1].

© FUOC « PID_00148464 41

Activities

1) For a fast reading, see the FHS standard, which will help us to have a good guide for
searching for files in our distribution.

2) To revise and broaden concepts and programming of shell scripts in bash, see: [Bas] [Coo].
3) For RPM packages, how would we do some of the following tasks?:

e Find out what package installed a specific command.

® Obtain a description of the package that installed a command.

® Frase a package whose full name we don't know.

Show all the files that were in the same package as a specific file.

4) Perform the same tasks as above, but for Debian packages, using APT tools.

5) Update a Debian (or Fedora) distribution.

6) Install a generic administration tool, such as Linuxconf or Webadmin for example, on our

distribution. What do they offer us? Do we understand the executed tasks, and the effects
they cause?

Basic tools for the administrator

© FUOC » PID_00148464 42

Bibliography

Other sources of reference and information

[Bas][Coo] offer a broad introduction (and advanced concepts) of programming shell scripts
in bash, as well as several examples. [QuiO1] discusses the different programming shells in

GNU/Linux, as well as their similarities and differences.

[Deb02][Bai03] offer a broad vision of the software package systems of the Debian and Fedo-
ra/Red Hat distributions.

[Stu] is a wide introduction to the tools available in GNU/Linux.

Basic tools for the administrator

Linux kernel

Josep Jorba Esteve

PID_00148468

Universitat Oberta
de Catalunya

www.uoc.edu

© FUOC » PID_00148468 The kernel

© FUOC » PID_00148468 The kernel

Index
INtroducCtion.. ... 5
1. The Kernel of the GNU/Linux System............cccceeeiiiniiiiiinnienennnes 7
2. Configuring or updating the kermnel..................................... 15
3. Configuration and compilation process...............ccoceeeeevuiiieennnn. 18
3.1. Kernel compilation versions 2.4.Xcccceeeveiimiiiiiiniiiiiininicnnnneen. 19
3.2. Migration to kernel 2.6.x 24
3.3. Compilation of the kernel versions 2.6.x 26
3.4. Compilation of the kernel in Debian (Debian way) 27
4. Patching the Kernel........................ 30
5. Kermel modules................oooiiiiiiiiiiiiiiii e 32
6. Future of the Kernel and alternatives......................L 34
7. Tutorial: : configuring de Kernel to the requirements of
TE WSEE......ooiiiiiiiiiiii e 38
7.1. Configuring the kernel in Debianccccccoeeiiiiiiiiiiiiiiiniiiinne. 38
7.2. Configuring the kernel in Fedora/Red Hatcccceevvinniniiinnne 40
7.3. Configuring a generic kernelcccoceiviiiiiiiiiiiiiiiiiiiiiinnnennnnn, 42
ACHIVIHI@S. ..., 45

BibLIOZrapluy........ccoooiiiiiiiiiiiiiii e 46

© FUOC » PID_00148468 5 The kernel

Introduction

The kernel of the GNU/Linux system (which is normally called Linux) [Vasb] is
the heart of the system: it is responsible for booting the system, for managing
the machine's resources by managing the memory, file system, input/output,
processes and intercommunication of processes.

Its origin dates back to August 1991, when a Finnish student called Linus Tor-
valds announced on a news list that he had created his own operating system
core that worked together with the GNU project software and that he was of-
fering it to the community of developers for testing and suggesting improve-
ments for making it more usable. This was the origin of the operating system's
kernel that would later come to be known as Linux.

One of the particular features of Linux is that following the Free Software phi- Note

losophy, it offers the source code of the operating system itself (of the kernel),

The Linux kernel dates back

to 1991, when Linus Torvalds
made it available to the com-
munity. It is one of the few op-
Another main advantage, is that by having the source code, we can compile erating systems that while ex-
tensively used, also makes its
source code available.

in a way that makes it a perfect tool for teaching about operating systems.

it to adapt it better to our system and we can also configure its parameters to

improve the system's performance.

In this unit, we will look at how to handle this process of preparing a kernel for
our system. How, starting with the source code, we can obtain a new version
of the kernel adapted to our system. Similarly, we will discuss how to develop
the configuration and subsequent compilation and how to test the new kernel
we have obtained.

© FUOC » PID_00148468 7 The kernel

1. The Kernel of the GNU/Linux system

The core or kernel is the basic part of any operating system [Tan87], where
the code of the fundamental services for controlling the entire system lie.
Basically, its structure can be divided into a series of management components
designed to:

e Manage processes: what tasks will be run, in what order and with what
priority. An important aspect is the scheduling of the CPU: how do we op-
timise the CPU's time to run the tasks with the best possible performance
or interactivity with users?

e Intercommunication of processes and synchronisation: how do tasks com-
municate with each other, with what different mechanisms and how can
groups of tasks be synchronised?

e Input/output management (I/O): control of peripherals and management
of associated resources.

e Memory management: optimising use of the memory, paginating service,

and virtual memory.

e File management: how the system controls and organises the files present
in the system and access to them.

Shell, commands, applications

System basic services

File management

Process Memory
1/0 management management management

Core utilities

Figure 1. Basic functions of a kernel with regards to executed applications and commands

In proprietary systems, the kernel is perfectly "hidden" below the layers of the
operating system's software; the end user does not have a clear perspective of
what the kernel is and has no possibility of changing it or optimising it, other
than through the use of esoteric editors of internal "registers" or specialised

© FUOC » PID_00148468 8

third party programs, which are normally very expensive. Besides, the kernel
is normally unique, it is the one the manufacturer provides and the manufac-
turer reserves the right to introduce any changes it wants whenever it wants
and to handle the errors that appear in non-stipulated periods through up-
dates offered to us in the form of error "patches" (or service packs).

One of the main problems of this approach is precisely the availability of these
patches, having the error updates on time is crucial and if they are security-
related, even more so, because until they are corrected we cannot guarantee
the system's security for known problems. Many organisations, large compa-
nies, governments, scientific and military institutions cannot depend on the
whims of a manufacturer to solve the problems with their critical applications.

The Linux kernel offers an open source solution with the ensuing permissions
for modifying, correcting, generating new versions and updates very quickly
by anyone anywhere with the required knowledge for doing so.

This allows critical users to control their applications and the system itself
better, and offers the possibility of mounting systems with a "tailor-made"
operating system adjusted to each individual's taste and in turn to have an
open source operating system developed by a community of programmers
who coordinate via the Internet, accessible for educational purposes because it
has open source code and abundant documentation, for the final production
of GNU/Linux systems adapted to individual needs or to the needs of a specific

group.

Because the source code is open, improvements and solutions can be found
immediately, unlike proprietary software, where we have to wait for the
manufacturer's updates. Also, we can personalise the kernel as much as we
wish, an essential requirement, for example, in high performance applica-
tions, applications that are critical in time or solutions with embedded sys-
tems (such as mobile devices).

Following a bit of (quick) history of the kernel [Kera] [Kerb]: it was initially
developed by a Finnish student called Linus Torvalds, in 1991, with the in-
tention of creating a similar version to Minix [Tan87] (version for PC of UNIX
[Bac86]) for the Intel 386 processor. The first officially published version was
Linux 1.0 in March 1994, which only included the execution for the i386 ar-
chitecture and supported single-processor machines. Linux 1.2 was published
in March 1995, and was the first version to cover different architectures such
as Alpha, SPARC and Mips. Linux 2.0, in June 1996, added more architectures
and was the first version to include multiprocessor support (SMP) [Tum]. In
Linux 2.2, January 1999, SMP benefits were significantly increased, and con-
trollers were added for a large amount of hardware. In 2.4, released in January
2001, SMP support was improved, new supported architectures were incorpo-
rated and controllers for USB, PC card devices were included (PCMCIA for lap-
tops) part of PnP (plug and play), RAID and volumes support etc. Branch 2.6

The kernel

© FUOC » PID_00148468 9

of the kernel (December 2003), considerably improved SMP support, offered
a better response of the CPU scheduling system, use of threads in the kernel,
better support for 64-bit architectures, virtualisation support and improved

adaptation to mobile devices.

Where the development is concerned, since the kernel was created by Linus
Torvalds in 1991 (version 0.01), he has continued to maintain it, but as his
work allowed it and as the kernel matured (and grew) he was helped to main-
tain the different stable versions of the kernel by different collaborators, while
Linus continued (insofar as possible) developing and compiling contributions
for the latest version of the kernel's development. The main collaborators of

these versions have been [Ikm]:

e 2.0 David Weinehall.

e 2.2 Alan Cox (who also develops and publishes patches for most versions).
e 2.4 Marcelo Tosatti.

e 2.6 Andrew Morton / Linus Torvalds.

In order to understand a bit about the complexity of the Linux kernel, let's
look at a table with a bit of a summarised history of its different versions and
its size in relation to the source code. The table only shows the production
versions; the (approximate) size is specified in thousands of lines (K) of source

The kernel

Note

The kernel has its origins in the
MINIX system, a development
by Andrew Tanenbaum, as a
UNIX clone for PC.

code:
Version Publication date Code lines (thousands)

0.01 09-1991 10
1.0 03-1994 176
1.20 03-1995 311
2.0 06-1996 649
2.2 01-1999 1800
2.4 01-2001 3378
2.6 12-2003 5930

As we can see, we have moved from about ten thousand lines to six million.

Now, development of branch 2.6.x of the kernel continues, the latest stable Note

version, which most distributions include as the default version (although
some still include 2.4.x, but 2.6.x is an option during the installation); al-
though a certain amount of knowledge about the preceding versions is essen-
tial, because we can easily find machines with old distributions that have not
been updated, which we may have to maintained or migrated to more mod-
ern versions.

Today's kernel has reached a
significant degree of complexi-
ty and maturity.

© FUOC » PID_00148468 10

During the development of branch 2.6, the works on the kernel accelerated
considerably, because both Linus Torvalds, and Andrew Morton (who main-
tain Linux 2.6) joined (in 2003) OSDL (Open Source Developement Labora-
tory) [OSDa], a consortium of companies dedicated to promoting the use of
Open Source and GNU/Linux by companies (the consortium includes among
many other companies with interests in GNU/Linux: HP, IBM, Sun, Intel, Fu-
jitsu, Hitachi, Toshiba, Red Hat, Suse, Transmeta...). Now we are coming across
an interesting situation, since the OSDL consortium sponsored the works of
both the stable version of the kernel's maintainer (Andrew) and developer (Li-
nus), working full time on the versions and on related issues. Linus remains
independent, working on the kernel, while Andrew went to work for Google,
where he continued his developments full time, making patches with differ-
ent contributions to the kernel. After some time, OSDL became The Linux
Foundation.

We need to bear in mind that with current versions of the kernel, a high degree
of development and maturity has been achieved, which means that the time
between the publication of versions is longer (this is not the case with partial
revisions).

Another factor to consider is the number of people that are currently working
on its development. Initially, there were just a handful of people with com-
plete knowledge of the entire kernel, whereas nowadays many people are in-
volved in its development. Estimates are almost two thousand with different
levels of contribution, although the number of developers working on the
hard core is estimated at several dozen.

We should also take into consideration that most only have partial knowl-
edge of the kernel and neither do they all work simultaneously nor is their
contribution equally relevant (some just correct simple errors); it is just a few
people (such as the maintainers who have full knowledge of the kernel. This
means that developments can take a while to occur, contributions need to be
debugged to make sure that they do not come into conflict with each other
and choices need to be made between alternative features.

Regarding the numbering of the Linux kernel's versions ([lkm][DBo]), we
should bear in mind the following:

a) Until kernel branch 2.6.x, the versions of the Linux kernel were gov-
erned by a division into two series: one was known as the "experimental"
version (with the second number being an odd number, such as 1.3.xx,
2.1.x or 2.5.x) and the other was the "production" version (even series,
such as 1.2.xx, 2.0.xx, 2.2.x, 2.4.x and more). The experimental series
were versions that moved rapidly and that were used for testing new fea-
tures, algorithms, device drivers etc. Because of the nature of the exper-

The kernel

Note

The Linux Foundation:
www.linuxfoundation.org

© FUOC » PID_00148468 11 The kernel

imental kernels, they could behave unpredictably, losing data, blocking
the machine etc. Therefore, they were not suited to production environ-
ments, unless for testing a specific feature (with the associated dangers).

Production or stable kernels (even series) were kernels with a well defined
set of features, a low number of known errors and with tried and tested
device controllers. They were published less frequently than the experi-
mental versions and there were a variety of versions, some better than
others. GNU/Linux distributions are usually based on a specifically cho-
sen stable kernel, not necessarily the latest published production kernel.

b) The current Linux kernel numbering (used in branch 2.6.x), contin-
ues to maintain some basic aspects: the version is indicated by numbers
X.Y.Z, where normally X is the main version, which represents important
changes to the kernel; Y is the secondary version and usually implies im-
provements in the kernel's performance: Y is even for stable kernels and
odd for developments or tests; and Z is the build version, which indicates
the revision number of X.Y, in terms of patches or corrections made. Dis-
tributors do not tend to include the latest version of the kernel, but rather
the one they have tested most frequently and can verify is stable for the
software and components it includes. On the basis of this classical num-
bering scheme (followed during versions 2.4.x, until the early versions of
branch 2.6), modifications were made to adapt to the fact that the kernel
(branch 2.6.x) is becoming more stable (fixing X.Y to 2.6), and that there
are fewer and fewer revisions (thus the leap in version of the first num-
bers), but development remains continuous and frenetic.

Under the latest schemes, four numbers are introduced to specify in Z mi-
nor changes or the revision's different possibilities (with different added
patches). The version thus defined with four numbers is the one consid-
ered to be stable. Other schemes are also used for the various test versions
(normally not advisable for production environments), such as -rc suf-
fixes (release candidate), -mm which refers to experimental kernels with
tests for different innovative techniques, or -git which are a sort of dai-
ly snapshot of the kernel's development. These numbering schemes are
constantly changing to adapt to the way of working of the kernel com-
munity and its needs to accelerate the development.

c) To obtain the latest published kernel, you need to visit the Linux ker-

nels file (at http://www.kernel.org) or its local mirror in Spain (http:// NoLE
www.es.kernel.org). It will also be possible to find some patches for the Kernel repository:
original kernel, which correct errors detected after the kernel's publica- www.kernel.org

tion.

Some of the technical characteristics ([DBo][Arc]) of the Linux kernel that
we should highlight are:

© FUOC » PID_00148468 12 The kernel

e Kernel of the monolithic type: basically it is a program created as a
unit, but conceptually divided into several logical components.

e It has support for loading/downloading portions of the kernel,
these portions are known as modules, and tend to be characteristics
of the kernel or device drivers.

e Kernel threading: for internal functioning, several execution
threads are used internal to the kernel, which may be associated to a
user program or to an internal functionality of the kernel. In Linux,
this concept was not used intensively. The revisions of branch 2.6.x
offered better support and a large proportion of the kernel is run us-
ing these various execution threads.

e Multithreaded applications support: user applications support of
the multithread, since many computing paradigms of the client/serv-
er type, need servers capable of attending to numerous simultaneous
requests, dedicating an execution thread to each request or group of
requests. Linux has its own library of threads that can be used for
multithread applications, with the improvements made to the ker-
nel, they have also allowed a better use for implementing thread li-
braries for developing applications.

e The kernel is of a nonpreemptive type: this means that within
the kernel, system calls (in supervisory mode) cannot be interrupt-
ed while the system task is being resolved and, when the latter fin-
ishes, the execution of the previous task is resumed. Therefore, the
kernel within a call cannot be interrupted to attend to another task.
Normally, preemptive kernels are associated to systems that operate
in real time, where the above needs to be allowed in order to han-
dle critical events. There are some special versions of the Linux ker-
nel for real time, that allow this by introducing some fixed points
where they can be exchanged. This concept has also been especially
improved in branch 2.6.x of the kernel, in some cases allowing some
resumable kernel tasks to be interrupted in order to deal with others
and resuming them later. This concept of a preemptive kernel can
also be useful for improving interactive tasks, since if costly calls are
made to the system, they can cause delays in interactive applications.

e Multiprocessor support, known as symmetrical multiprocessing
(SMP). This concept tends to encompass machines that incorporate
the simple case of 2 up to 64 CPUs. This issue has become particularly
relevant with multicore architectures, that allow from 2 or 4 to more
CPU cores in machines accessible to domestic users. Linux can use
multiple processors, where each processor can handle one or more
tasks. But some parts of the kernel decreased performance, since they
were designed for a single CPU and forced the entire system to stop

© FUOC » PID_00148468 13 The kernel

under certain cases of blockage. SMP is one of the most studied tech-
niques in the Linux kernel community and important improvements
have been achieved in branch 2.6. Since SMP performance is a de-
termining factor when it comes to companies adopting Linux as an
operating system for servers.

e File systems: the kernel has a good file system architecture, internal
work is based on an abstraction of a virtual system (VFS, virtual file
system), which can be easily adapted to any real system. As a result,
Linux is perhaps the operating system that supports the largest num-
ber of file systems, from ext2, to MSDOS, VFAT, NTES, journaled sys-
tems, such as ext3, ReiserFS, JFS(IBM), XFS(Silicon), NTFS, ISO9660
(CD), UDF and more added in the different revisions.

Other less technical characteristics (a bit of marketing):

a) Linux is free: together with the GNU software and included in any
distribution, we can have a full UNIX-like system practically for the cost
of the hardware, regarding GNU/Linux distribution costs, we can have it
practically free. Although it makes sense to pay a bit extra for a complete
distribution, with the full set of manuals and technical support, at a lower
cost than would be paid for some proprietary systems or to contribute
with the purchase to the development of distributions that we prefer or
that we find more practical.

b) Linux can be modified: the GPL license allows us to read and to modify
the source code of the kernel (on condition that we have the required
know-how).

¢) Linux can run on fairly limited old hardware; for example, it is possible
to create a network server on a 386 with 4 MB of RAM (there are distribu-
tions specialised for limited resources).

d) Linux is a powerful system: the main objective of Linux is efficiency,
it aims to make the most of the available hardware.

e) High quality: GNU/Linux systems are very stable, have a low fault ratio
and reduce the time needed for maintaining the systems.

f) The kernel is fairly small and compact: it is possible to place it, together
with some basic programs, on a disk of just 1.44 MB (there are several
distributions on just one diskette with basic programs).

© FUOC » PID_00148468 14 The kernel

g) Linux is compatible with a large number of operating systems, it can
read the files of practically any file system and can communicate by net-
work to offer/receive services from any of these systems. Also, with certain
libraries it can also run the programs of other systems (such as MSDOS,
Windows, BSD, Xenix etc.) on the x86 architecture.

h) Linux has extensive support: there is no other system that has the
same speed and number of patches and updates as Linux, not even any
proprietary system. For a specific problem, there is an infinite number of
mail lists and forums that can help to solve any problem within just a few
hours. The only problem affects recent hardware controllers, which many
manufacturers are still reluctant to provide if they are not for proprietary
systems. But this is gradually changing and many of the most important
manufacturers in sectors such as video cards (NVIDIA, ATI) and printers
(Epson, HDP)) are already starting to provide the controllers for their de-

vices.

© FUOC » PID_00148468 15 The kernel

2. Configuring or updating the kernel

As GNU/Linux users or system administrators, we need to bear in mind the
possibilities the kernel offers us for adapting our requirements and
equipment.

At installation time, GNU/Linux distributions provide a series of preconfig-
ured and compiled binary Linux kernels and we will usually have to choose
which kernel from the available set best adapts to our hardware. There are
generic kernels, oriented at IDE devices, others at SCSI, others that offer a mix
of device controllers [ARO1] etc.

Another option during the installation is the kernel version. Distributions nor-
mally use an installation that they consider sufficiently tested and stable so
that it does not cause any problems for its users. For example, nowadays many
distributions come with versions 2.6.x of the kernel by default, since it is con-
sidered the most stable version (at the time the distribution was released). In
certain cases, as an alternative, more modern versions may be offered during
the installation, with improved support for more modern (latest generation)
devices that perhaps had not been so extensively tested at the time when the
distribution was published.

Distributors tend to modify the kernel to improve their distribution's be- Note

haviour or to correct errors detected in the kernel during tests. Another fairly

The possibility of updating and

common technique with commercial distributions is to disable problematic adapting the kernel offers a

features that can cause errors for users or that require a specific machine con- good adjustment to any sys-
tem through tuning and opti-
figuration or when a specific feature is not considered sufficiently stable to be misation.

included enabled by default.

This leads us to consider that no matter how well a distributor does the job
of adapting the kernel to its distribution, we can always encounter a number
of problems:

e The kernel is not updated to the latest available stable version; some mod-
ern devices are not supported.

e The standard kernel does not support the devices we have because they
have not been enabled.

e The controllers a manufacturer offers us require a new version of the kernel
or modifications.

e The opposite, the kernel is too modern, and we have old hardware that is
no longer supported by the modern kernels.

e The kernel, as it stands, does not obtain the best performance from our

devices.

© FUOC » PID_00148468 16

e Some of the applications that we want to use require the support of a new
kernel or one of its features.

e We want to be on the leading edge, we risk installing the latest versions
of the Linux kernel.

e We like to investigate or to test the new advances in the kernel or would
like to touch or modity the kernel.

e We want to program a driver for an unsupported device.

For these and other reasons we may not be happy with the kernel we have; in
which case we have two possibilities: updating the distribution's binary kernel

or tailoring it using the source.

Let's look at a few issues related to the different options and what they entail:

1) Updating the distribution's kernel: the distributor normally also publishes
kernel updates as they are released. When the Linux community creates a new
version of the kernel, every distributor joins it to its distribution and conducts
the relevant tests. Following the test period, potential errors are identified,
corrected and the relevant update of the kernel is made in relation to the one
offered on the distribution's CDs. Users can download the new revision of the
distribution from the website, or update it via some other automatic package
system through a package repository. Normally, the system's version is veri-
fied, the new kernel is downloaded and the required changes are made so that
the following time the system functions with the new kernel, maintaining the

old version in case there are any problems.

This type of update simplifies the process for us a lot, but may not solve
our problems, since our hardware may not yet be supported or the fea-
ture of the kernel to be tested is still not in the version that we have
of the distribution; we need to remember that there is no reason for
distributor to use the latest available version (for example in kernel.org)
but rather the one it considers stable for its distribution.

If our hardware is not enabled by default in the new version either, we will
find ourselves in the same situation. Or simply, if we want the latest version,

this process is no use.

2) Tailoring the Kernel (this process is described in detail in the following sec-
tions). In this case, we will go to the sources of the kernel and "manually" ad-
just the hardware or required characteristics. We will pass through a process
of configuring and compiling the source code of the kernel so as to create a
binary kernel that we will install on the system and thus have it available the

following time the system is booted.

The kernel

© FUOC » PID_00148468 17

Here we may also encounter two more options, either by default we will obtain
the "official" version of the kernel (kernel.org), or we can go to the sources
provided by the distribution itself. We need to bear in mind that distributions
like Debian and Fedora do a lot of work on adapting the kernel and correcting
kernel errors that affect their distribution, which means that in some cases we
may have additional corrections to the kernel's original code. Once again, the
sources offered by the distribution do not necessarily have to correspond to
the latest published version.

This system allows us maximum reliability and control, but at a high
administration cost; since we will need to have extensive knowledge of
the devices and characteristics that we are selecting (what they mean
and what implications they may have), in addition to the consequences
that the decisions we make may imply.

The kernel

© FUOC » PID_00148468 18 The kernel

3. Configuration and compilation process

Configuring the kernel [Vasb] is a costly process and requires extensive knowl- Note

edge on the part of the person doing it, it is also one of the critical tasks on
The process of obtaining a
new personalised kernel in-
the system's central component. volves obtaining the sources,
adapting the configuration,
and compiling and installing

. . . the obtained kernel on the sys-
Any error in the procedure can cause instability or the loss of the system. tem. 4

which the system's stability depends, given the nature of the kernel, which is

Therefore, it is advisable to make a backup of user data, configurations we
have tailored, or, if we have the required devices, to make a complete system
backup. It is also advisable to have a start up diskette (or Live CD distribution
with tools) to help us in the event of any problem, or a rescue disk which
most distributions allow us to create from the distribution's CDs (or by directly
providing a rescue CD for the distribution).

Without meaning to exaggerate, if the steps are followed correctly, we know
what we are doing and take the necessary precautions, errors almost never

occur.

Let's look at the process required to install and configure a Linux kernel. In
the following sections, we look at:

1) The case of old 2.4.x versions.

2) Some considerations regarding migrating to 2.6.x

3) Specific details regarding versions 2.6.x.

4) A particular case with the Debian distribution, which has its own more
flexible compilation system (debian way).

Versions 2.4.x are practically no longer offered by current distributions, but
we should consider that on more than one occasion we may find ourselves
obliged to migrate a specific system to new versions or to maintain it on the
old ones, due to incompatibilities or the existence of old unsupported hard-
ware.

The general concepts of the compilation and configuration process will be
explained in the first section (2.4.x), since most of them are generic, and we
will subsequently see the differences with regard to the new versions.

© FUOC » PID_00148468 19

3.1. Kernel compilation versions 2.4.x

The instructions are specifically for the Intel x86 architecture, by root user
(although part of the process can be done as a normal user):

1) Obtaining the kernel: for example, we can visit www.kernel.org (or its
FTP server) and download the version we would like to test. There are
mirrors for different countries. In most GNU/Linux distributions, such
as Fedora/Red Hat or Debian, the kernel's source code is also offered as a
package (normally with some modifications included), if we are dealing
with the version of the kernel that we need, it may be preferable to use
these (through the kernel-source packages or similar). If we want the latest
kernels, perhaps they are not available in the distribution and we will
have to go to kernel.org.

2) Unpack the kernel: the sources of the kernel were usually placed and
unpacked from the directory /usr/src, although we advise using a sep-
arate directory so as not to mix with source files that the distribution may
carry. For example, if the sources come in a compressed file of the bzip2

type:
bzip2 —-dc linux-2.4.0.tar.bz2 | tar xvf -

If the sources come in a gz file, we will replace bzip2 with gzip. When
we decompress the sources, we will have generated a directory linux-
version_kernel that we will enter in order to configure the kernel.

Before taking the steps prior to compilation, we should make sure that
we have the right tools, especially the gcc compiler, make and other com-
plementary gnu utilities for the process. For example, the modutils, the
different utilities for using and handling the dynamic kernel modules.
Likewise, for the different configuration options we should take into ac-
count a number of pre-requirements in the form of libraries associated to
the configuration interface used (for example ncurses for the menuconfig
interface).

In general, we advise checking the kernel documentation (whether via
the package or in the root directory of the sources) to know what pre-re-
quirements and versions of the kernel source will be needed for the pro-
cess. We advise studying the README files in this root directory of the
kernel source, and Documentation/Changes or the documentation index of
the kernel in Documentation/00-INDEX.

If we have made previous compilations in the same directory, we need to
make sure that the directory we use is clear of previous compilations; we
can clear it using make mrproper (from the "root" directory).

The kernel

© FUOC » PID_00148468 20

For the process of configuring the kernel [Vasb], we have several alterna-
tive methods, which offer us different interfaces for adjusting the various
parameters of the kernel (which tend to be stored in a configuration file,
normally .config in the "root" directory of the sources). The different al-

ternatives are:

e make config: from the command line we are asked for each option,
and we are asked for confirmation (y/n) — yes or no, the option, or we
are asked for the required values. Or the long configuration, where
we are asked for many answers, and depending on each version, we
will likewise have to answer almost a hundred questions (or more
depending on the version).

e make oldconfig: it is useful if we want to reuse an already used
configuration (normally stored in a .config file, in the root directory
of the sources), we need to take into account that it is only valid if we
are compiling the same version of the kernel, since different kernel
versions can have variable options.

e make menuconfig: configuration based on text menus, fairly con-
venient; we can enable or disable what we want and it is faster than

make config.

e make xconfig: the most convenient, based on graphic dialogues
in X Window. We need to have tcl/tk libraries installed, since this
configuration is programmed in this language. The configuration is
based on tables of dialogues and buttons/checkboxes, can be done
fairly quickly and has help with comments on most options. But it
has a defect, which is that some options may not appear (it depends
on whether the configuration program is updated and sometimes
it is not). In this last case, make config (or menuconfig) is the only
one we can be sure will offer all the options we can choose; for the
other types of configuration it depends on whether the programs
have been adapted to the new options in time for the kernel being
released. Although in general they try to do it at the same time.

The kernel

© FUOC » PID_00148468

21

Code maturity level options
Loadable module support

Processor type and features
General setup

Memory Technology Devices (MTD)
Parallel port support.

Plug and Play configuration

Block devices

Multi-device support (RAID and LVM)
Cryptography support (CryptoAPl)
Networking oplions

Telephony Support
ATA/IDE/MFM/RLL support

SCSI support

Fusion MPT device support

120 device support
Network device support
Amateur Radio support
IrDA (infrared) support
ISDN subsystem

Old CD-ROM drivers (not SCSI, not IDE)
Input core support
Character devices
Multimedia devices
Crypto Hardware support
File systems

Console drivers

Sound
USB support
Additional device driver support

Bluetooth support

Kemel hacking

Library routines

Save and Exit
Quit Without Saving
Load Configuration from File

Store Configuration to File

Figure 2. Configuration of the kernel (make xconfig) from graphic interface in X Window

Once the configuration process has been done, we need to save the
file (.config), since the configuration requires a considerable amount
of time. Also, it may be useful to have the configuration done if the
plan is to do it on several similar or identical machines.

Another important issue concerning configuration options is that in
many cases we will be asked if we want a specific characteristic inte-
grated into the kernel or as a module (in the section on modules we
will provide more details on them). This is a fairly important deci-
sion, since in certain cases our choice will influence the performance
of the kernel (and therefore of the entire system).

The Linux kernel has become very large, due both to its complexity
and to the device controllers (drivers) [ARO1] that it includes. If we
integrated everything, we could create a very large kernel file that
would occupy a lot of memory and, therefore, slow down some func-
tioning aspects. The modules of the kernel [Hen] are a method that
makes it possible to divide part of the kernel into smaller sections,
which will be loaded dynamically upon demand or when they are
necessary for either explicit load or use of a feature.

The normal choice is to integrate what is considered fundamental
for functioning or critical for performance within the kernel and to
leave parts or controllers that will be used sporadically as modules
for future extensions of the equipment.

e A clear case are the device controllers: if we are updating the ma-
chine, it may be that when it comes to creating the kernel we are not
sure what hardware it will have: for example, what network card; but
we do know that it will be connected to a network, so, the network
support will be integrated into the kernel, but for the card controllers
we can select a few (or all) of them and install them as modules.
Then, when we have the card we can load the required module or

The kernel

© FUOC » PID_00148468 22 The kernel

if we need to change one card for another later, we will just have to
change the module to be loaded. If just one controller were integrat-
ed into the kernel and we changed the card, we would be forced to
reconfigure and recompile the kernel with the new card's controller.

e Another case that arises (although it is not very common) is when
we have two devices that are incompatible with each other, or when
one or the other is functioning (for example, this tends to happen
with a parallel cable printer and hardware connected to the parallel
port). Therefore, in this case, we need to put the controllers as mod-
ules and load or download the one we need.

e Another example is the case of file systems. Normally we would
hope that our system would have access to some of them, like ext2
or ext3 (belonging to Linux), VFAT (belonging to Windows 95/98/
ME), and we will enable them in configuring the kernel. If at some
moment we have to read another unexpected type, for example data
stored on a disk or partition of the Windows NT/XP NTES system, we
would not be able to: the kernel would not know how to or would
not have support to do so. If we have foreseen that at some point (but
not usually) we may need to access these systems, we could leave the
other file systems as modules.

3) Compiling the kernel

We will start the compilation using make, first we will have to generate
the possible dependencies between the code and then the type of image
of the kernel that we want (in this case, a compressed image, which tends

to be the normal case):

make dep

make bzImage

When this process is completed, we will have the integrated part of the
kernel; we are missing the parts that we have set as modules:

make modules
At this point we have done the configuring and compiling of the kernel.
This part could be done by a normal user or by the root user, but now
we will definitely need the root user, because we will move onto the in-
stallation part.

4) Installation

We'll start by installing the modules:

© FUOC » PID_00148468 23 The kernel

make modules_install

And the installation of the new kernel (from the directory /usr/src/linux-
version or the one we have used as temporary):

cp arch/i386/boot/bzImage /boot/vmlinuz-2.4.0
cp System.map /boot/System.map-2.4.0

the file bzImage is the newly compiled kernel, which is placed in the /boot
directory. Normally, we will find the old kernel in the same /boot directory
with the name vmlinuz or vmlinuz-previous-version as a symbolic link to
the old kernel. Once we have our kernel, it is better to keep the old one,
in case any faults occur or the new one functions badly, so that we can
recover the old one. The file System.map contains the symbols available
for the kernel and is necessary for the processing of starting it up; it is
also placed in the same directory.

On this point, we also need to consider that when the kernel starts up it
may need to create initrd type files, which serve as a compound image
of some basic drivers and is used when loading the system, if the system
needs those drivers before booting certain components. In some cases, it
is vital because in order to boot the rest of the system, certain drivers need
to be loaded in a first phase; for example specific disk controllers such as
RAID or volume controllers, which would be necessary so that in a second
phase, the disk can be accessed for booting the rest of the system.

The kernel can be generated with or without an initrd image, depending
on the needs of the hardware or system in question. In some cases, the
distribution imposes the need to use an initrd image, in other cases it will
depend on our hardware. It is also often used to control the size of the
kernel, so that its basics can be loaded through the initrd image and later
the rest in a second phase in the form of modules. In the case of requiring
the initrd image, it would be created using the mkinitrd utility (see man,
or chapter workshop), within the /boot directory.

5) The following step is to tell the system what kernel it needs to boot
with, although this depends on the Linux booting system:

e From booting with lilo [Zan][Skoa], whether in the MBR (master
boot record) or from an own partition, we need to add the following
lines to the configuration file (in: /etc/lilo.conf):

image = /boot/vmlinuz-2.4.0

label = 2.4.0

© FUOC » PID_00148468 24

where image is the kernel to be booted, and label is the name that
the option will appear with during booting. We cam add these lines
or modify the ones of the old kernel. We recommend adding them
and leaving the old kernel, in case any problems occur, so that the
old one can be recovered. In the file /etc/lilo.conf we may have one or
more start up configurations, for either Linux or other systems (such

as Windows).

Every start up is identified by its line image and the label that ap-
pears in the boot menu. There is a line default = label that indicates
the label that is booted by default. We can also add root = /dev/...
to the preceding lines to indicate the disk partition where the main
file system is located (the '/'), remembering that the disks have de-
vices such as /dev/hda (1st disk ide) /dev/hdb (2 disk ide) or /dev/sdx
for SCSI (or emulated) disks, and the partition would be indicated as
root = /dev/hdaZ2 if the '/' of our Linux were on the second partition
of the first ide disk. Using "append =" we can also add parameters to
the kernel start up [Gor]. If the system uses initrd, we will also have
to indicate which is the file (which will also be located in /boot/ini-
trd-versionkernel), with the option "initrd=". After changing the lilo
configuration, we need to write it for it to boot:

/sbin/lilo -v

We reboot and start up with the new kernel.

If we have problems, we can recover the old kernel, by selecting the
option of the old kernel, and then, using the retouch lilo.conf, we can
return to the old configuration or study the problem and reconfigure

and recompile the kernel.

e Boot with grub [KanO1][Pro]. In this case, handling is simple, we
need to add a new configuration consisting of the new kernel and
adding it as another option to the grub file. Next, reboot in a similar
way as with lilo, but remembering that in grub it is sufficient to edit
the file (typically /boot/grub/menu.lst) and to reboot. It is also bet-
ter to leave the old configuration in order to recover from potential

€rTors.
3.2. Migration to Kernel 2.6.x

In the case of having to update versions of old distributions, or changing the
kernel generation using the source code, we will have to take some aspects

into account, due to the novelties introduced into kernel branch 2.6.x.

Here is a list of some of the specific points to consider:

The kernel

© FUOC » PID_00148468 25 The kernel

e Some of the kernel modules have changed their name, and some may have
disappeared, we need to check the situation of the dynamic modules that
are loaded (for example, examine /etc/modules and/or /etc/modules.conf)
and edit them to reflect the changes.

e New options have been added to the initial configuration of the kernel:
like make gconfig, a configuration based on gtk (Gnome). In this case, as
a prerequisite, we will need to look out for Gnome libraries. The option
make xconfig has now been implemented with the qt libraries (KDE).

e The minimum required versions of various utilities needed for the compi-
lation process are increased (consult Documentation/Changes in the ker-
nel sources). Especially, the minimum gcc compiler version.

e The default package for the module utilities has changed, becoming mod-
ule-init-tools (instead of modutils used in 2.4.x). This package is a prereq-
uisite for compiling kernels 2.6.x, since the modules loader is based on
this new version.

e The devfs system becomes obsolete in favour of udev, the system that con-
trols the hotplug start up (connection) of devices (and their initial recog-
nition, in fact simulating a hotplug start up when the system boots), dy-
namically creating inputs in the directory /dev, only for devices that are
actually present.

e In Debian as of certain versions of branch 2.6.x, for the binary images of
the kernels, headers and source code, the name of the packages changes
from kernel-images/source/headers to linux-image/source/headers.

e In some cases, new technology devices (like SATA) may have moved from
/dev/hdX to /dev/sdX. In these cases, we will have to edit the configura-
tions of /etc/fstab and the bootloader (lilo or grub) in order to reflect the
changes.

e There may be some problems with specific input/output devices. The
change in name of kernel modules has affected, among others, mouse de-
vices, which likewise can affect the running of X-Window, until the re-
quired models are verified and the correct modules are loaded (for example
psmouse). At the same time, the kernel integrates the Alsa sound drivers.
If we have the old OSS, we will have to eliminate them from the loading
of modules, since Alsa already takes care of emulating these.

e Regarding the architectures that the kernel supports, we need to bear in
mind that kernel 2.6.x, in its different revisions, has been increasing the
supported architectures which will allow us to have the binary images of
the kernel in the distributions (or the options for compiling the kernel)
best suited to supporting our processors. Specifically, we can find archi-

© FUOC » PID_00148468 26

tectures such as i386 (for Intel and AMD): supporting the compatibility
of Intel in 32 bits for the entire family of processors (some distributions
use the 486 as the general architecture), some distributions integrate dif-
ferentiated versions for i686 (Intel from pentium pro thereafter), for k7
(AMD Athlon thereafter), and those specific to 64 bits, for AMD 64 bits,
and Intel with em64t extensions of 64 bits such as Xeon, and multicores.
At the same time, there is also the IA64 architecture for 64bit Intel Itanium
models. In most cases, the architectures have SMP capabilities activated
in the kernel image (unless the distribution supports versions with and
without SMP, created independently, in this case, the suffix -smp is usually
added to the image that supports it).

e In Debian, to generate inirtrd images, as of certain versions of the kernel
(>=2.6.12) the mkinitrd tools are considered obsolete, and are replaced with
new utilities such as initramfs tools or yaird. Both allow the initrd image
to be built, but the former is the recommended one (by Debian).

3.3. Compilation of the kernel versions 2.6.x

In versions 2.6.x, bearing in mind the abovementioned considerations, the
compilation takes place in a similar way to the one described above:

Having downloaded the kernel 2.6.x (with x the number or pair of numbers
of the kernel revision) to the directory that will be used for the compilation
and checking the required versions of the basic utilities, we can proceed to the
step of compiling and cleaning up previous compilations:

make clean mrproper

configuration of parameters (remember that if we have a previous .config, we
will not be able to start the configuration from zero). We do the configuration
through the selected make option (depending on the interface we use):

make menuconfig

construction of the kernel's binary image

make dep

make bzImage

construction of the modules (those specified as such):

make modules

installation of the created modules (/lib/modules/version)

The kernel

© FUOC » PID_00148468 27 The kernel

make modules_install

copying of the image to its final position (assuming i386 as the architecture):

cp arch/i386/boot/bzimage /boot/vmlinuz—-2.6.x.img

and finally, creating the initrd image that we consider necessary, with the
necessary utilities according to the version (see subsequent comment). And
adjustment of the lilo or grub bootloader depending on which one we use.

The final steps (vimlinuz, system.map and initrd) of moving files to /boot can
normally also be done with the process:

make install

but we need to take into account that it does the entire process and will update
the bootloaders, removing or altering old configurations; at the same time, it
may alter the default links in the /boot directory. We need to bear this in mind
when it comes to thinking of past configurations that we wish to save.

Regarding the creation of the initrd, in Fedora/Red Hat it will be created au-
tomatically with the install option. In Debian we should either use the tech-
niques of the following section or create it expressly using mkinitrd (versions
<=2.6.12) or, subsequently, with mkinitramfs, or a utility known as update-
initramfs, specifying the version of the kernel (it is assumed that it is called
vmlinuz-version within the /boot directory):

update—-initramfs -c -k 'version'

3.4. Compilation of the Kkernel in Debian (Debian way)

In Debian, in addition to the examined methods, we need to add the config-
uration using the method known as Debian Way. A method that allows us to

build the kernel in a fast and flexible manner.

For the process, we will need several utilities (install the packages or similar):
kernel-package, ncurses-dev, fakeroot, wget, bzip2.

We can see the method from two perspectives, rebuilding a kernel equiva-
lent to the one provided by the distribution or tailoring it and then using the
method for building an equivalent personalised kernel.

© FUOC » PID_00148468 28

In the first case, we initially obtain the version of the kernel sources provided
by the distribution (meaning x the revision of the kernel 2.6):

apt—-get install linux-source—-2.6.x

$ tar —-xvjf /usr/src/linux—-source-2.6.x.tar.bz2

where we obtain the sources and decompress them (the package leaves the
file in /usr/src).

Installing the basic tools:

apt—-get install build-essential fakeroot

Checking source dependencies

apt—-get build-dep linux—-source—-2.6.x

And construction of the binary, according to the pre-established package con-
figuration (similar to that included in the official image packages of the kernel
in Debian):

$ cd linux—-source—-2.6.x

$ fakeroot debian/rules binary

There are some extra procedures for creating the kernels based on different
patch levels provided by the distribution and possibilities of generating dif-
ferent final configurations (view the reference note to complement these as-

pects).

In the second, more common case, when we would like a personalised kernel,
we will have to follow a similar process through a typical tailoring step (for
example, using make menuconfig); the steps would be:

obtaining and preparing the directory (here we obtain the distribution's pack-
ages, but it is equivalent to obtaining the sources from kernel.org):

apt—-get install linux-source—-2.6.x
$ tar xjf /usr/src/linux—-source-2.6.x.tar.bz2

$ cd linux-source-2.6.x
next, we configure the parameters, as always, we can base ourselves on .config
files that we have used previously, to start from a known configuration (for

tailoring we can also use any of the other methods, xconfig, gconfig...):

$ make menuconfig

The kernel

Note

We can see the Debian

way process in a detailed
manner in: http://kernel-
handbook.alioth.debian.org/

© FUOC » PID_00148468 29

final construction of the kernel depending on initrd or not, without initrd
available (we need to take care with the version we use; as of a certain version
of the kernel, the use of the initrd image can be mandatory):

$ make-kpkg clean

$ fakeroot make-kpkg ——-revision=custom.1l.0 kernel_image

or if we have initrd available (already built)

$ make-kpkg clean
$ f akeroot mMake—kpkg - —initrd - —revision=custom.1.0 kernel _image

The process will end with adding the associated package to the kernel image,
which we will finally be able to install:

dpkg —-i ../linux—-image—-2.6.x_custom.1.0_1386.deb

In this section, we will also add another peculiarity to be taken into consider-
ation in Debian, which is the existence of utilities for adding dynamic kernel
modules provided by third parties. In particular, the module-assistant utility
helps to automate this process on the basis of the module sources.

We need to have the headers of the kernel installed (package linux-headers-
version) or the sources we use for compiling the kernel. As of here, the mod-
ule-assistant can be used interactively, allowing us to select from an extensive
list of previously registered modules in the application, and it can be respon-
sible for downloading the module, compiling it and installing it in the exist-
ing kernel.

Also from the command line, we can simply specify (m-a is equivalent to mod-
ule-assistant):

m—-a prepare

m—-a auto—-install module_name

which prepares the system for possible dependencies, downloads the module
sources, compiles them and, if there are no problems, installs them for the
current kernel. We can see the name of the module on the interactive list of
the module assistant.

The kernel

© FUOC » PID_00148468 30

4. Patching the Kkernel

In some cases the application of patches to the kernel [Ikm] is also common.

A patch file in relation to the Linux kernel is an ASCII text file that
contains the differences between the original source code and the new
code, with additional information on file names and code lines. The
patch program (see man patch) serves to apply it to the tree of the kernel
source code (normally in /usr/src).

The patches are usually necessary when special hardware requires some mod-
ification of the kernel or some bugs (errors) have been detected subsequent
to a wide distribution of a kernel version or else a new specific feature is to
be added. In order to correct the problem (or add the new feature), it is usual
to distribute a patch instead of an entire new kernel. When there are already
several of these patches, they are added to various improvements of the pre-
ceding kernel to form a new version of the kernel. In all events, if we have
problematic hardware or the error affects the functioning or stability of the
system and we cannot wait for the next version of the kernel; we will have
to apply the patch.

The patch is usually distributed in a compressed file of the type bz2 (bunzip2,
although you can also find it in gzip with the extension .gz), as in the case
of for example:

patchxxxx—2.6.21-pversion.bz2

where xxxx is usually any message regarding the type or purpose of the patch
2.6.21 would be the version of the kernel to which the patch is to be applied,
and pversion would refer to the version of the patch, of which there can also
be several. We need to bear in mind that we are speaking of applying patches
to the sources of the kernel (normally installed, as we have already seen, in
/usr/src/linuxor a similar directory).

Once we have the patch, we must apply it, we will find the process to follow
in any readme file that accompanies the patch, but generally the process fol-
lows the steps (once the previous requirements are checked) of decompressing
the patch in the source files directory and applying it over the sources of the

kernel, for example:

cd /usr/src/linux (or /usr/src/linux—-2.6.21 or any other ver-—

sion) .

The kernel

© FUOC » PID_00148468 31

bunzip2 patch-xxxxx-2.6.21l-version.bz2

patch -pl < patch-xxxxx—-2.6.21l-version

and afterwards we will have to recompile the kernel in order to generate it

again.

The patches can be obtained from different places. Normally, we can find them
in the kernel storage site (www.kernel.org) or else in www.linuxhqg.com, which
has a complete record of them. Some Linux communities (or individual users)
also offer corrections, but it is better to search the standard sites in order to
ensure that the patches are trustworthy and to avoid possible security prob-
lems with "pirate" patches. Another way is the hardware manufacturer, which
may offer certain modifications of the kernel (or controllers) so that its devices
work better (one known example is Linux NVIDIA and the device drivers for

its graphic cards).

Finally, we should point out that many of the GNU/Linux distributions (Fedo-
ra/Red Hat, Mandriva...), already offer the kernels patched by themselves and
systems for updating them (some even automatically, as in the case of Fedo-
ra/Red Hat and Debian). Normally, in production systems it is more advisable
to keep up with the manufacturer's updates, although it does not necessarily
offer the latest published kernel, but rather the one that it finds most stable
for its distribution, at the expense of missing the latest generation features or
technological innovations included in the kernel.

The kernel

Note

For systems that we want to
update, for testing reasons or
because we need the latest
features, we can always go to
www.kernel.org and obtain
the latest published kernel.

© FUOC » PID_00148468 32 The kernel

5. Kernel modules

The kernel is capable of loading dynamic portions of code (modules) on de-
mand [Hen], in order to complement its functionality (this possibility is avail-
able from kernel version 1.2 and higher). For example, the modules can add
support for a file system or for specific hardware devices. When the function-
ality provided by the module is not necessary, the module can be download-
ed, freeing up memory.

On demand, the kernel usually identifies a characteristic not present in the
kernel at that moment it makes contact with a thread of the kernel known as
kmod (in kernel versions 2.0.x the daemon was called kerneld), this executes
a command, modprobe, to try and load the associated module from or of a
chain with the name of the module or else from an generic identifier; this
information is found in the file /etc/modules.conf in the form of an alias be-
tween the name and the identifier.

Next, we search in /1ib/modules/version_kernel/modules.dep

to find out whether there are dependencies with other modules. Final-
ly, with the insmod command the module is loaded from /lib/modules/
version_kernel/ (the standard directory for modules), the version_kernel is the
current version of the kernel using the uname -r command in order to set it.
Therefore, the modules in binary form are related to a specific version of the
kernel, and are usually located in /lib/modules/version-kernel.

If we need to compile them, we will need to have the sources and/or headers Note

of the version of the core for which it is designed.
The modules offer the system
a large degree of flexibility, al-

There are some utilities that allow us to work with modules (they usually ap- "?tW"EQ it to adapt to dynamic
situations.

pear in a software package called modutils, which was replaced by the module
-init-tools for managing modules of the 2.6.x branch):

e Ismod: we can see the loaded modules in the kernel (the information is
obtained from the pseudofile /proc/modules). It lists the names and de-
pendencies with others (in []), the size of the module in bytes, and the
module use counter; this allows it to be downloaded if the count is zero.

© FUOC » PID_00148468

Example

Some modules in a Debian distribution:

33

The kernel

Module Size Used by Tainted: P
agpgart 37.344 3 (autoclean)
apm 10.024 1 (autoclean)
parport_pc 23.304 1 (autoclean)
1p 6.816 0 (autoclean)
parport 25.992 1 [parport_pc 1lp]
snd 30.884 0

af_packet 13.448 1 (autoclean)
NVIDIA 1.539.872 10

esl371 27.116 1

soundcore 3.972 4 [snd es1371]
ac97_codec 10.9640 0 [es1371]
gameport 1.676 0 [es1371]
3c59x 26.960 1

e modprobe: tries the loading of a module and its dependencies.

e insmod: loads a specific module.

e depmod: analyses dependencies between modules and creates a file of de-
pendencies.

e rmmod: removes a module from the kernel.

e Other commands can be used for debugging or analysing modules, like mod-
info, which lists some information associated to the module or ksyms, which
(only in versions 2.4.x) allows examination of the symbols exported by the
modules (also in /proc/ksyms).

In order to load the module the name of the module is usually specified, either
by the kernel itself or manually by the user using insmod and specific param-
eters optionally. For example, in the case of devices, it is usual to specify the
addresses of the I/O ports or IRQ or DMA resources. For example:

insmod soundx io = 0x320 irg = 5

© FUOC » PID_00148468 34 The kernel

6. Future of the Kernel and alternatives

At certain moments, advances in the Linux kernel were released at very short
intervals, but now with a fairly stable situation regarding the kernels of the
2.6.x series, more and more time elapses between kernel versions, which in
some ways is very positive. It allows time for correcting errors, seeing what
ideas did not work well, and trying new ideas, which, if they work, are includ-
ed.

In this section, we'll discuss some of the ideas of the latest kernels and some Note

of those planned for the near future in the development of the kernel.
The kernel continues to evolve,
incorporating the latest in

The previous series, series 2.4.x [DBo], included in most current distributions, hardware support and im-
proved features.

contributions were made in:

e Fulfilling IEEE POSIX standards, this means that many existing UNIX pro-

grams can be recompiled and executed in Linux.

e Improved devices support: PnP, USB, Parallel Port, SCSI...

e Support for new file systems, like UDF (CD-ROM rewritable like a disc).
Other journaled systems, like Reiser from IBM or the ext3, these allow
having a log (journal) of the file system modifications and thus they are

able to recover from errors or incorrect handling of files.

e Memory support up to 4 GB, in its day some problems arose (with the 1.2x
kernels) which would not support more memory than 128 MB (at that

time it was a lot of memory).

e The /proc interface was improved. This is a pseudo-filesystem (the direc-
tory /proc) that does not really exist on the disc, but that is simply a way
of accessing the data of the kernel and of the hardware in an organised

manner.

¢ Sound support in the kernel: Alsa controllers, which were configured sep-
arately beforehand, were partially added,.

e Preliminary support for RAID software and the dynamic volumes manager
LVM1 was included.

In the current series, kernel branch 2.6.x [Pra] has made important advances in
relation to the previous one (with the different.x revisions of the 2.6 branch):

© FUOC » PID_00148468 35

e Improved SMP features, important for the multi-core processors widely
used in business and scientific environments.

e Improvements in the CPU scheduler.

e Improvements in the multithread support for user applications. New mod-
els of threads NGPT (IBM) and NPTL (Red Hat) are incorporated (over time
NPTL was finally consolidated).

e Support for USB 2.0.

e Alsa sound controllers incorporated in the kernel.

e New architectures for 64-bit CPUs, supporting AMD x86_64 (also known
as amd64) and PowerPC 64 and I1A64 (Intel Itanium architecture).

e Support for journaled file systems: JFS, JFS2 (IBM), and XFS (Silicon Graph-
ics).

e Improved I/O features, and new models of unified controllers.

e Improvements in implementing TCP/IP, and the NFSv4 system (sharing
of the file system with other systems via the network).

e Significant improvements for a preemptive kernel: allowing the kernel to
manage internally various tasks that can interrupt each other, essential for
the efficient implementation of real time systems.

e System suspension and restoration after rebooting (by kernel).

e UML, User Mode Linux, a sort of virtual Linux machine on Linux that
allows us to see a Linux (in user mode) running on a virtual machine.
This is ideal for debugging now that a version of Linux can be developed
and tested on another system, which is useful for the development of the
kernel itself and for analysing its security.

e Virtualisation techniques included in the kernel: the distributions have
gradually been incorporating different virtualisation techniques, which
require extensions to the kernel; we should emphasise, for example, ker-
nels modified for Xen, or Virtual Server (Vserver).

e New version of the volumes support LVM2.

e New pseudo file system /sys, designed to include the system information
and devices that will be migrating from the /proc system, leaving the latter

The kernel

© FUOC » PID_00148468 36

with information regarding the processes and their development during

execution.

e FUSE module for implementing file systems on user space (above all the
NTES case).

In the future, improvement of the following aspects is planned:

e Increasing the virtualisation technology in the kernel, for supporting dif-
ferent operating system configurations and different virtualisation tech-
nologies, in addition to better hardware support for virtualisation includ-
ed in the processors that arise with new architectures.

e The SMP support (multi-processor machines) of 64-bit CPUs (Intel's Itani-
um, and AMD's Opteron), the support of multi-core CPUs.

e Improved file systems for clustering and distributed systems.

e Improvement for kernels optimised for mobile devices (PDA, teléfonos...).

e Improved fulfilment of the POSIX standard etc.

e Improved CPU scheduling; although in the initial series of the 2.6.x
branch many advances were made in this aspect, there is still low perfor-
mance in some situations, in particular in the use of interactive desktop
applications, different alternatives are being studied to improve this and

other aspects.

Also, although it is separate from the Linux systems, the FSF (Free Software
Foundation) and its GNU project continue working on the project to finish
a complete operating system. It is important to remember that the main ob-
jective of the GNU project was to obtain a free software UNIX clone and the
GNU utilities are just the necessary software for the system. In 1991, when
Linux managed to combine its kernel with some GNU utilities, the first step
was taken towards the culmination in today's GNU/Linux systems. But the
GNU project continues working on its idea to finish the complete system.
Right now, they already have a core that can run its GNU utilities. This core
is known as Hurd; and a system built with it known as GNU/Hurd. There are
already some test distributions, specifically, a Debian GNU/Hurd.

Hurd was designed as a core for the GNU system around 1990 when its devel-
opment started, since most of the GNU software had already been developed
at the time, and the only thing that was missing was the kernel. It was in 1991
when Linus combined GNU with his Linux kernel that the history of GNU/

The kernel

Web site

POSIX specifications
www.UNIX-systems.org/

Web site

The GNU project:
http://www.gnu.org/gnu/
thegnuproject.html

Reference

GNU and Linux, by
RichardStallman: http://
www.gnu.org/gnu/linux-and-
gnu.html

© FUOC » PID_00148468 37

Linux systems began. But Hurd continues to develop. The development ideas
for Hurd are more complex, since Linux could be considered a conservative
design, based on already known and implemented ideas.

Specifically, Hurd was conceived as a collection of servers implemented on a
Mach microkernel [Vah96], which is a kernel design of the microkernel type
(unlike Linux, which is of the monolithic type) developed by the University
of Carnegie Mellon and subsequently by that of Utah. The basic idea was to
model the functionalities of the UNIX kernel as servers that would be imple-
mented on a basic Mach kernel. The development of Hurd was delayed while
the design of the Mach was being finished and this was finally published as
free software, which would allow its use for developing Hurd. At this point,
we should mention the importance of Mach, since many operating systems
are now based on ideas extracted from it; the most outstanding example is
Apple's MacOS X.

The development of Hurd was further delayed due to its internal complexi-
ty, because it had several servers with different tasks of the multithread type
(execution of multiple threads), and debugging was extremely difficult. But
nowadays, the first production versions of GNU/Hurd are already available, as
well as test versions of a GNU/Hurd distribution.

It could be that in the not too distant future GNU/Linux systems will coexist
with GNU/Hurd, or even that the Linux kernel will be replaced with the Hurd
kernel, if some lawsuits against Linux prosper (read the case of SCO against
IBM), since it would represent a solution for avoiding later problems. In all
events, both systems have a promising future ahead of them. Time will tell
how the balance will tip.

The kernel

© FUOC » PID_00148468 38 The kernel

7. Tutorial: configuring de Kernel to the
requirements of the user

In this section we will have a look at a small interactive workshop for the
process of updating and configuring the kernel in the two distributions used:
Debian and Fedora.

The first essential thing, before starting, is to know the current version of the
kernel we have with uname -r, in order to determine which is the the next
version that we want to update to or personalise. And the other is to have the
means to boot our system in case of errors: the set of installation CDs, the flop-
py disc (or CD) for recovery (currently the distribution's first CD is normally
used) or some Live CD distribution that allows us to access the machine's file
system, in order to redo any configurations that may have caused problems.
It is also essential to back up our data or important configurations.

We will look at the following possibilities:

1) Updating the distribution's kernel. Automatic case of Debian.

2) Automatic update in Fedora.

3) Adapting a generic kernel (Debian or Fedora). In this last case, the steps are
basically the same as those presented in the section on configuration, but we
will make a few more comments:

7.1. Configuring the Kernel in Debian

In the case of the Debian distribution, the installation can also be done au-
tomatically, using the APT packages system. It can be done either from the
command line or with graphic APT managers (synaptic, gnome-apt...).

We are going to carry out the installation using the command line with apt-
get, assuming that the access to the apt sources (above all to the Debian orig-
inals) is properly configured in the /etc/apt/sources.list file. Let's look at the
steps:

1) To update the list of packages.

apt—-get update

2) To list the packages associated with images of the kernel:

© FUOC » PID_00148468 39

apt—-cache search linux—image

3) To select a version suitable for our architecture (generic, 386/486/686 for
Intel, k6 or k7 for amd or in particular for 64Bits versions amdé64, intel and
amd or ia64, for Intel Itanium). The version is accompanied by kernel version,
Debian revision of the kernel and architecture. For example: 2.6.21-4-k7, ker-
nel for AMD Athlon, Debian revision 4 of the kernel 2.6.21.

4) Check for the selected version that the extra accessory modules are available
(with the same version number) With apt-cache we will search for whether
there are other dynamic modules that could be interesting for our hardware,
depending on the version of the kernel to be installed. Remember that, as
we saw in the Debian way, there is also the module-assistant utility, which
allows us to automate this process after compiling the kernel. If the necessary
modules are not supported, this could prevent us from updating the kernel
if we consider that the functioning of the problematic hardware is vital for
the system.

5) Search, if we also want to have the source code of the kernel, the Lin-
ux-source-version (only 2.6.21, that is, the principal numbers) and the corre-
sponding kernel headers, in case we later want to make a personalised kernel:
in this case, the corresponding generic kernel patched by Debian.

6) Install what we have decided: if we want to compile from the sources or
simply to have the code:

apt—-get install linux—-image-version
apt—-get install xxxx-modules-version (if some modules are

necessary)

and

apt—-get install linux-source-version-generic

apt—-get install linux-headers-version

7) Install the new kernel, for example in the lilo bootloader (check the boot
utility used, some recent Debian versions use grubas boot loader), this is done
automatically. If we are asked if the initrd is active, we will have to verify the
lilo file (/etc/lilo.conf) and, in the lilo configuration of the new image, include
the new line:

initrd = /initrd.img-version (or /boot/initrd.img-version)
once this is configured, we would have to have a a lilo of the mode (fragment),

supposing that initrd.img and vmlinuz are links to the position of the files of

the new kernel:

The kernel

© FUOC » PID_00148468 40

default = Linux

image = /vmlinuz
label = Linux
initrd = /initrd.img
restricted
alias =1
image = /vmlinuz.old
label = LinuxOLD
initrd = /initrd.img.old
restricted

alias = 2

We have the first image by default, the other is the former kernel. Thus, from
the lilo menu we can ask for one or the other or, simply by changing the
default, we can recover the former. Whenever we make any changes in /etc/
lilo.conf we should not forget to rewrite in the corresponding sector with the
command /sbin/lilo or /sbin/lilo -v.

7.2. Configuring the kernel in Fedora/Red Hat

Updating the kernel in the Fedora/Red Hat distribution is totally automatic
by means of its package management service or else by means of the graphic
programs that the distribution includes for updating; for example, in business
versions of Red Hat there is one called up2date. Normally, we will find it in
the task bar or in the Fedora/Red Hat system tools menu (check the available
utilities in tools/Administration menus, the currently available graphic tools
are highly distribution version dependent).

This updating program basically checks the packages of the current distribu-
tion against a Fedora/Red Hat database and offers the possibility of download-
ing the updated packages, including those of the kernel. This Red Hat service
for businesses works via a service account and Red Hat offers it for payment.
With this type of utilities the kernel is updated automatically.

For example, in figure 10, we can see that once running, a new available ver-
sion of the kernel has been detected, which we can select for downloading:

The kernel

© FUOC » PID_00148468 41

v Agente de Actualizacion RedHat . S— L=

Paquetes no seleccionados -~

[] Seleccione todos los paquetes

| lPackage Name |Version IReI. IArch |Size |Reason Skipped |
[kernel 2.4.20 209 athlon 13535 ki Pkg name/pattern

[kernel-source 2.4.20 20.9 i386 38046 ki Pkg name/pattern

Informacién del paquete Aviso de la visualizacion

Ha escogido actualizar los paquetes de forma no automatica
Si desea anular su configuracion e incluir uno de los paquetes de la
lista. selecciénelo en la casilla de verificacion.

® gancelar| ’ < Atras | | [> Adelante

Figure 3. The Red Hat updating service (Red Hat Network up2date) shows the available kernel update and its sources.

In Fedora we can either use the equivalent graphic tools or simply use yum
directly, if we know that new kernels are available:

yum install kernel kernel-source

Once downloaded, we proceed to install it, normally also as an automatic
process, whether with grub or lilo as boot managers. In the case of grub, it is
usually automatic and leaves a pair of options on the menu, one for the newest
version and the other for the old one. For example, in this grub configuration
(the file is in /boot/grub/grub.conf or else /boot/grub/menu.lst), we have two
different kernels, with their respective version numbers.

#file grub.conf
default 1

timeout = 10

splashimage = (hd0,1) /boot/grub/splash.xpm.gz

title Linux (2.6.20-2945)
root (hdO,1)

kernel /boot/vmlinuz—-2.6.20-2945 ro root = LABEL = /
initrd /boot/initrd-2.6.20-18.9.img

title LinuxOLD (2.6.20-2933)

root (hdO,1)

kernel /boot/vmlinuz—-2.4.20-2933 ro root = LABEL = /

initrd /boot/initrd-2.4.20-2933.img

The kernel

© FUOC » PID_00148468 42

Each configuration includes a title that appears during start up. The root or
partition of the disc from where it boots, the directory where the file corre-
sponding to the kernel is found and the corresponding initrd file.

In the case of having lilo (by default grub is used) in the Fedora/Red Hat as
manager, the system will also update it (file /etc/lilo.conf), but then we will
have to rewrite the boot manually with the command /sbin/lilo.

It is also important to mention that with the previous installation we had the
possibility of downloading the sources of the kernel; these, once installed, are
in/usr/src/linux-version and can be compiled and configured following the
usual procedure as if it was a generic kernel. We should mention that the Red
Hat company carries out a lot of work on the patches and corrections for the
kernel (used after Fedora) and that its kernels are modifications to the generic
standard with a fair number of additions, which means that it could be better
to use Red Hat's own sources, unless we want a newer or more experimental

kernel than the one supplied.

7.3. Configuring a generic kernel

Let's look at the general case of installing a kernel starting from its sources.
Let's suppose that we have some sources already installed in /usr/src (or the
corresponding prefix). Normally, we would have a Linux directory or linux-
version or simply the version number. This will be the tree of the sources of
the kernel.

These sources can come from the distribution itself (or we may have down-
loaded them during a previous udpate), first it will be interesting to check
whether they are the latest available, as we have already done before with Fe-
dora or Debian. Or if we want to have the latest and generic versions, we can
go to kernel.org and download the latest available version (better the stable
one than the experimental ones), unless we are interested in the kernel's de-
velopment. We download the file and in /usr/src (or another selected directory,
even better) decompress the kernel sources. We can also search to see if there
are patches for the kernel and apply them (as we have seen in section 4.4).

Next, we will comment on the steps that will have to be carried out: we will
do it briefly, as many of them have been mentioned before when working on
the configuration and tailoring.

1) Cleaning the directory of previous tests (where applicable):

make clean mrproper

2) Configuring the kernel with, for example: make menuconfig (or xconfig, gcon-
fig or oldconfig). We saw this in section 4.3.

The kernel

See also

It would be advisable to reread
section 3.4.3.

© FUOC » PID_00148468 43

root@® kaos:/usr/src/linux-2.4
Archivo Editar Ver Terminal Ira Ayuda
Linux Kernel v2.4.20-18.9custom Configuration

Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help.
Legend: [*] built-in [] excluded <M> module < > module capable

: e maturity level options ———

oadable module support --->

rocessor type and features --->

eneral setup --->
M mory Technology Devices (MID) -——->
arallel port support --->

lug and Play configuration --->

lock devices --->
M lti-device support (RAID and LVM) --->
ryptography support (CryptoAPI) --->

< Exit > < Help >

Figure 4. Configuring the kernel using text menus

4) Dependencies and cleaning of previous compilations:

make dep

5) Compiling and creating an image of the kernel: make bzImage. zImage
would also be possible if the image was smaller, but bzlmage is more normal,
as it optimises the loading process and compression of larger kernels. On some
ancient hardware it may not work and zlmage may be necessary. The process
can last from a few minutes to an hour on modern hardware and hours on
older hardware. When it finishes, the image is found in: /usr/src/directory-
sources/arch/i386/boot.

6) Now we can compile the modules with make modules. Until now we have
not changed anything in our system. Now we have to proceed to the instal-

lation.

7) In the case of the modules, if we try an older version of the kernel (branch
2.2 or the first ones of 2.4), we will have to be careful, since some used to
overwrite the old ones (in the last 2.4.x or 2.6.x it is no longer like this).

But we will also need to be careful if we are compiling a version that is the
same (exact numbering) as the one we have (the modules are overwritten), it

is better to back up the modules:

cd /lib/modules

tar —-cvzf old_modules.tgz versionkernel-old/

The kernel

© FUOC » PID_00148468 44 The kernel

This way we have a version in .tgz that we can recover later if there is any

problem And, finally, we can install the modules with:
make modules install
8) Now we can move on to installing the kernel, for example with:
cd /usr/src/directory-sources/arch/i386/boot
cp bzImage /boot/vmlinuz-versionkernel

cp System.map /boot/System.map-versionkernel

1n —-s /boot/vmlinuz-versionkernel /boot/vmlinuz

R

1n -s /boot/System.map-versionkernel /boot/System.map

This way we store the symbols file of the kernel (System.map) and the image
of the kernel.

9) Now all we have to do is put the required configuration in the configura-
tion file of the boot manager, whether lilo (/etc/lilo.conf) or grub (/boot/grub/
grub.conf) depending on the configurations we already saw with Fedora or
Debian. And rememeber, in the case of lilo, that we will need to update the
configuration again with /sbin/lilo or /sbin/lilo -v.

10) Restart the machine and observe the results (if all has gone well).

© FUOC » PID_00148468 45

Activities

1) Determine the current version of the Linux kernel incorporated into our distribution.
Check the available updates automatically, whether in Debian (apt) or in Fedora/Red Hat
(via yum).

2) Carry out an automatic update of our distribution. Check possible dependencies with
other modules used (whether pcmcia or others) and with the bootloader (lilo or grub) used.
A backup of important system data (account users and modified configuration files) is rec-
ommended if we do not have another sytem that is available for tests.

3) For our branch of the kernel, to determine the latest available version (consult http://
www.kernel.org) and carry out a manual installation following the steps described in the
unit. The final installation can be left optional, or else make an entry in the bootloader for
testing the new kernel.

4) In the case of the Debian distribution, in addition to the manual steps, we saw how there
is a special way (recommended) of installing the kernel from its sources using the kernel-
package.

The kernel

© FUOC « PID_00148468 46
Bibliography
Other sources of reference and information

[Kerb] Site that provides a repository of the different versions of the Linux kernel and its
patches.

[Kera] [Ikm] Web sites that refer to a part of the Linux kernel community. It offers various
documentary resources and mailing lists of the kernel's evolution, its stability and the new
features that develop.

[DBo] Book about the Linux 2.4 kernel, which details the different components, their im-
plementation and design. There is a first edition about the 2.2 kernel and a new update to

the 2.6 kernel.

[Pra] An article that describes some of the main innovations of the new 2.6 series of the
Linux kernel.

[Ker] [Mur] Documentation projects of the kernel, incomplete but with useful material.

[Bac86] [Vah96] [Tan87] Some texts about the concepts, design and implementation of the
kernels of different UNIX versions.

[Skoa][ZanO1][Kan][Pro] For further information on lilo and grub loaders.

The kernel

[.ocal
administration

000000000000

© FUOC » PID_00148465 Local administration

© FUOC » PID_00148465 Local administration

Index
INtroduction...............ccoooooiiii s 5
1. Distributions: special features..............ccco.oooiiiiiiiiiiiiiiiiiinieneee. 7
2. Bootand rumn levels ... 9
3. Monitoring system state...............ccoiiiiiiiiiiiiiiiiiiiiii e 12
3.1, SyStem DOOT ..covuuiiiiiiiiiiiiiiiiiiicc e 12
3.2. kernel: /proc directory 13
3.3. REIMCL: /SYS ittt e e e e e e 14
3.4, PIOCESSES ..ccevuiiiiiiiiiiiiii it 14
3.5, System LOZS ...oovuiiiniiiiiiiiiiiii e 15
IS TG TS Y (<5 0 6 Lo) o 200N 17
3.7. Disks and file systems 17
4. File Systems..........ccccoooiiiiiiiiiiiiiiii 21
4.1, MOUNt POINT eneiiiiiiii e e e e e e e 22
4.2, PermiSSionscccoiiiiiiiiiiiiiiiiiii i 25
5. Users and rouPsS.........cccooiiiiiiiiiiiiiiiiiiii e 27
6. Printing SErviCes............cccociiiiiiiiiiiiiiiiiiiiiii e 32
6.1. BSD LPD 36
6.2. 37
6.3. 39
7. Disk management....................ooooiii 42
7.1, RAID SOftWAT€ccooiimmiiiiiiiiiiiiiee et 44
7.2. Logical Volume Manager (LVM) 50
8. Updating Software.................c..ccooooiiiii 54
9. BatChl JODS....cooooiiiiiiii ettt 56
10. Tutorial: combined practices of the different sections........... 58
AcCtivities...........ooooooii 67

Bibliographiy.. ... e 68

© FUOC « PID_00148465 5 Local administration

Introduction

One of the administrator's first tasks will be to manage the machine's local
resources. Some of these aspects were basically covered in the GNU/Linux
course. In this course, we will cover these management tasks in more depth
as well as some of the customisation and resource efficiency aspects.

We will start by analysing the process for starting up a GNU/Linux system, Note

which will help us to understand the initial structure of the system and its

Local administration covers
many varied tasks, which are
possibly the ones that the ad-
ministrator will most use dur-
We will now learn how to obtain a general overview of the current state of ing their daily routines.

relationship with the various services that it provides.

the system, using different procedures and commands that are available for
evaluating the various parts of the system; this will allow us to make admin-
istrative decisions if we detect any faults or deficiencies in the performance or
if we find that we are missing any of the resources.

One of the administrator's main tasks is managing the user accounts, as any
configuration of the machine will be designed for the users; we will see how
we can define new user accounts and control the levels to which they may
access the resources.

With regard to the system's peripherals, such as disks and printers, there are
different management possibilities available, either through different servers
(for printing) or different filing systems that we can treat, as well as some
techniques for optimising the disks' performance.

We will also examine the need to update the system and how best to keep it
updated; likewise, we will examine how to install new applications and soft-
ware and how to make these programs available to the users. At the same time,
we will analyse the problems involved in executing predetermined timed tasks
in the system.

In the last tutorial, we will learn how to evaluate the state of a machine, fol-
lowing the points that we have seen in this module, and we will carry out
some of the basic administrative tasks we have described. In this module, we
will discuss some of the commands and subsequently, in the tutorial, we will
examine some of these in more detail, with regard to how they work and the
options available.

© FUOC « PID_00148465 7 Local administration

1. Distributions: special features

We will now try to outline some minor technical differences (which are con-
stantly being reduced) in the distributions (Fedora/Red Hat and Debian) used
[Mor03], which we will examine in more detail throughout the modules as
they appear.

Modifications to or particularities of Fedora/Red Hat:

e Using the grub boot loader (a GNU utility); unlike previous versions of Note

most distributions, which tend to use lilo, Fedora uses grub. GRUB (grand

It is important to know the de-

unified bootloader) has a text-mode configuration (usually in /boot/grub/ tails of a distribution, as they

grub.conf) that is quite simple and that can be modified when booting. It are essential for performing
a task or resolving an issue
is possibly more flexible than lilo. Lately, distributions tend to use grub; (for example, if there are extra

. . . . tools available).
Debian also includes it as an option.)

e Management of alternatives. If there is more than one equivalent program
present for a specific task, the alternative that will be used must be indi-
cated through a directory (/etc/alternatives). This system was borrowed
from Debian, which uses it a lot in its distribution.

e TCP/IP portscanning program based on xinetd; in /etc/xinetd.d we will
find the modular configuration files for some of the TCP/IP services, along
with the /etc/xinetd.conf. configuration file. In classic UNIX systems, the
program used for this was inetd, which had a single configuration file in
/etc/inetd.conf, which was the case, for example, in the Debian distribu-
tion, which uses inetd, leaving xinetd as an option.

e Some special configuration directories: /etc/profile.d, files that are execut-
ed when a user opens a shell; /etc/xinetd.d, configuration of some net ser-
vices; /etc/sysconfig, configuration data for various aspects of the system;
/etc/cron., various directories where the tasks that have to be performed
regularly are specified (through crontab); /etc/pam.d, where the authenti-
cation modules are known as PAM: the permissions for the particular ser-
vice or program are configured in each of the PAM files; /etc/logrotate.d,
rotation configuration (when it is necessary to clean, compress etc.) of
some of the log files for different services.

e There is a software library called kudzu, which examines the hardware
at start-up to detect any possible changes (in some previous versions of
Fedora) in the configuration and to create the appropriate elements or
configurations. Although there is currently a progressive migration to API
Hal that controls precisely this aspect.

© FUOC e PID_00148465 8

In Debian's case:

In-house packaging system based on DEB packages, with tools at various
levels for working with packages such as: dpkg, apt-get, dselect, tasksel.

Debian follows FHS, over the directories structure, adding some particu-
lars in /etc, such as: /etc/default, configuration files and default values for
some programs; /etc/network, data and network interfaces configuration
scripts; /etc/dpkg y /etc/apt, information on the configuration of the pack-
age management tools; /etc/alternatives, links to the default programs, in
which there are (or may be) various available alternatives.

Configuration system for many software packages using the dpkg-recon-
figure tool. For example:

dpkg-reconfigure gdm

makes it possible to select the incoming manager for X, or:
dpkg-reconfigure X-Window-system

allows us to configure the different elements of X.

Uses the TCP/IP services configuration through inetd; the configuration
isin file /etc/inetd.conf; there is an update-inetd tool for disabling or cre-
ating services entries.

Some special configuration directories: /etc/cron., several directories

where the tasks that have to be performed regularly are specified (though
crontab); /etc/pam.d, where PAM are authentication modules.

Local administration

© FUOC e PID_00148465

2.Boot and run levels

9 Local administration

A first important point in the analysis of a system's local performance is how it

works on the runlevels, which determine the current work mode of the system

and the services provided (on the level) [WmO02].

A service is a functionality provided by the machine, normally based on dae-

mons (or background execution processes that control network requests, hard-

ware activity or other programs that provide any task).

The services can be activated or halted using scripts. Most standard processes,

which are usually configured in the /etc directory, tend to be controlled with

the scripts in /etc/init.d/. Scripts with names similar to those of the service to

which they correspond usually appear in this directory and starting or stop-

ping parameters are usually accepted. The following actions are taken:

/etc/init.d/service start

start the service.

/etc/init.d/service stop

stop the service.

/etc/init.d/service restart

stop and subsequent

restart of the service.

When a GNU/Linux system starts up, first the system's kernel is loaded, then

the first process begins; this process is called init and it has to execute and

activate the rest of the system, through the management of different runlevels.

A runlevel is basically a configuration of programs and services that will

be executed in order to carry out determined tasks.

The typical levels, although there may be differences in the order, especially

at levels 2-5 (in the configuration table in Fedora and that recommended in

the LSB standard), are usually:

Runlevel Function Description

0 Halt Halts or shuts down the active services and programs, and umounts ac-
tive file systems for CPU.

1 Single-user mode Halts or shuts down most services, only permitting the (root) administra-
tor to login. Used for maintenance tasks and correcting critical errors.

2 Multi-user mode without networking No networking services are started and only local logins are allowed.

3 Multi-user Starts up all the services except the graphics associated to X Window.

© FUOC e PID_00148465 10

Local administration

Runlevel Function Description

4 Multi-user Not usually used; normally the same as 3.

5 Multi-user X As with 3, but with X support for user logins (graphic login).
6 Reboot For all programs and services. Reboots the system.

On the other hand, it should be noted that Debian uses a model in which
practically no distinction is made between runlevels 2-5 and performs exactly
the same task (although this may change in a future version, so that these
levels correspond with the LSB).

These runlevels are usually configured in GNU/Linux systems (and UNIX) by
two different systems: BSD or System V (sometimes abbreviated to sysV). In
the cases of Fedora and Debian, System V is used, which is the one that we
will examine, but other UNIX and some GNU/Linux distributions (such as
Slackware) use the BSD model.

In the case of the runlevel model of System V, when the init process begins, it
uses a configuration file called /etc/inittab to decide on the execution mode
it will enter. This file defines the runlevel by default (initdefault) at start-up
(by installation, 5 in Fedora and 2 in Debian), and a series of terminal services
that must be activated so that users may log in.

Afterwards, the system, according to the selected runlevel, will consult the
files contained in /etc/rcn.d, where 7 is the number associated to the runlevel
(the selected level), which contains a list of services that should be started or
halted if we boot up in the runlevel or abandon it. Within the directory, we
will find a series of scripts or links to the scripts that control the service.

Each script has a number related to the service, an S or K initial that indicates
whether it is the script for starting (S) or killing (K) the service, and a number
that shows the order in which the services will be executed.

A series of system commands help us to handle the runlevels; we must men-
tion:

e The scripts, which we have already seen, in /etc/init.d/ allow us to start-up,
halt or reboot individual services.

e telinit, allows us to change the runlevel; we simply have to indicate the
number. For example, we have to perform a critical task in root; with no
users working, we can perform a telinit 1 (S may also be used) to pass to
the single-user runlevel and then, after the task, a telinit 3 to return to
multi-user mode. The init command may also be used for the same task,
although telinit does provide a few extra parameters. For example, the
typical reboot of a UNIX system would be performed with sync; init 6, the

© FUOC e PID_00148465 11

sync command forces the buffers of the files system to empty, and then
we reboot at runlevel 6.

e shutdown allows us to halt ("h") or reboot the system ("r"). This may be
performed in a given period of time or immediately. There are also the
halt and reboot commands for these tasks.

e wall allows us to send warning messages to the system users. Specifically,
the administrator may warn users that the machine is going to stop at
a determined moment. Commands such as shutdown usually use them
automatically.

e pidof permits us to find out the process ID associated to a process. With ps
we obtain the lists of the processes, and if we wish to eliminate a service
or process through a kill, we will need its PID.

There are some small changes in the distributions, with regard to the start-up
model:

e Fedora/Red Hat: runlevel 4 has no declared use. The /etc/rcn.d directories
exist as links to /etc/rc.d subdirectories, where the start-up scripts are cen-
tralised. The directories are as follows: /etc/rc.d/rcn.d; but as the links ex-
ist, it is transparent to the user. The default runlevel is 5 when starting
up with X.

The commands and files associated to the system's start-up are in the
sysvinit and initscripts software packages.

Regarding the changes to files and scripts in Fedora, we must point out
that in /etc/sysconfig we can find files that specify the default values for
the configuration of devices or services. The /etc/rc.d/rc.sysinit script is
invoked once when the system starts-up; The /etc/rc.d/rc.local script is
invoked at the end of the process and serves to indicate the machine's
specific boots.

The real start-up of the services is carried out through the scripts stored
in /etc/rc.d/init.d. There is also a link from /etc/init.d. In addition, Fedora
provides some useful scripts for handling the services: /sbin/service to halt
or start-up a service by the name; and /sbin/chkconfig, to add links to the
S and K files that are necessary for a service or to obtain information on
the services.

e Debian has management commands for the runlevels such as update-rc.d,
that allows us to install or delete services by booting them or halting them
in one or more runlevels; invoke-rc.d, allows the classic operations for
starting-up, halting or rebooting the service.

The default runlevel in Debian is 2, the X Window System is not managed
from /etc/inittab; instead there is a manager (for example, gdm or kdm)
that works as if it were another of the services of runlevel 2.

Local administration

© FUOC e PID_00148465 12 Local administration

3. Monitoring system state

One of the main daily tasks of the (root) administrator will be to verify that
the system works properly and check for any possible errors or saturation of
the machine's resources (memory, disks etc.). In the following subsections,
we will study the basic methods for examining the state of the system at a
determined point in time and how to perform the operations required to avoid
any subsequent problems.

In this module's final tutorial, we will carry out a full examination of a sample
system, so that we may see some of these techniques.

3.1. System boot

When booting a GNU/Linux system, there is a large extraction of interesting
information; when the system starts-up, the screen usually shows the data
from the processes detecting the machine's characteristics, the devices, system
services boots etc., and any problems that appear are mentioned.

In most distributions, this can be seen directly in the system's console during
the booting process. However, either the speed of the messages or some of
the modern distributions that hide the messages behind graphics can stop us
from seeing the messages properly, which means that we need a series of tools
for this process.

Basically, we can use:

e dmesg command: shows the messages from the last kernel boot.

e /var/log/messages file: general system log that contains the messages gen-
erated by the kernel and other daemons (there may be many different log
files, normally in /var/log, and depending on the configuration of the sys-
log service).

e uptime command: indicates how long the system has been active.

e /proc system: pseudo file system (procfs) that uses the kernel to store the
processes and system information.

e /sys system: pseudo file system (sysfs) that appeared in the kernel 2.6.x
branch to provide a more coherent method of accessing the information
on the devices and their drivers.

© FUOC e PID_00148465 13

3.2. Kernel: /proc directory

When booting up, the kernel starts up a pseudo-file system called /proc, in
which it dumps the information compiled on the machine, as well as many
other internal data, during the execution. The /proc directory is implemented
on memory and not saved to disk. The contained data are both static and
dynamic (they vary during execution).

It should be remembered that, as /proc heavily depends on the kernel, the
structure tends to depend on the system's kernel and the included structure
and files can change.

One of the interesting points is that we can find the images of the processes
that are being executed in the /proc directory, along with the information that
the kernel handles on the processes. Each of the system's processes can be
found in the /proc/<process_pid, directory, where there is a directory with files
that represent its state. This information is basic for debugging programs or
for the system's own commands such as ps or top, which can use it for seeing
the state of the processes. In general, many of the system's utilities consult
the system's dynamic information from /proc (especially some of the utilities
provided in the procps package).

On another note, we can find other files on the global state of the system in

/proc. We will look at some of the files that we can examine to obtain important
information briefly:

File Description

Local administration

Note

The /proc directory is an ex-
traordinary resource for ob-
taining low-level information
on the system's working and
many system commands rely
on it for their tasks.

/proc/bus Directory with information on the PCl and USB buses.

/proc/cmdline Kernel startup line

/proc/cpuinfo

CPU data

/proc/devices

List of system character devices or block devices

/proc/drive

Information on some hardware kernel modules

/proc/filesystems

Systems of enabled files in the kernel

/proc/ide

Directory of information on the IDE bus, disks characteristics

/proc/interrups

Map of the hardware interrupt requests (IRQ) used

/proc/ioports

1/O ports used

/proc/meminfo

Data on memory usage

/proc/modules

Modules of the kernel

/proc/mounts

File systems currently mounted

© FUOC e PID_00148465 14

Local administration

File Description

/proc/net Directory with all the network information

/proc/scsi Directory of SCSI devices or IDEs emulated by SCSI

/proc/sys Access to the dynamically configurable parameters of the kernel
/proc/version Version and date of the kernel

As of kernel version 2.6, a progressive transition of procfs (/proc) to sysfs (/sys)
has begun, in order to migrate all the information that is not related to the
processes, especially the devices and their drivers (modules of the kernel) to

the /sys system.
3.3. Kernel: /sys

The sys system is in charge of making the information on devices and drivers,
which is in the kernel, available to the user space so that other APIs or appli-
cations can access the information on the devices (or their drivers) in a more
flexible manner. It is usually used by layers such as HAL and the udev service

for monitoring and dynamically configuring the devices.

Within the sys concept there is a tree data structure of the devices and drivers
(let us say the fixed conceptual model) and how it can subsequently be ac-
cessed through the sysfs file system (the structure of which may change be-

tween different versions).

When an added object is detected or appears in the system, a directory is cre-
ated in sysfs in the driver model tree (drivers, devices including their different
classes). The parent/child node relationship is reflected with subdirectories
under /sys/devices/ (reflecting the physical layer and its identifiers). Symbolic
links are placed in the /sys/bus subdirectory reflecting the manner in which
the devices belong to the different physical buses of the system. And the de-
vices are shown in /sys/class, grouped according to their class, for example
network, whereas /sys/block/ contains the block devices.

Some of the information provided by /sys can also be found in /proc, but it
was decided that this method involved mixing different elements (devices,
processes, data, hardware, kernel parameters) in a manner that was not very
coherent and this was one of the reasons that /sys was created. It is expected
that the information will migrate from /proc to /sys to centralise the device
data.

3.4. Processes

The processes that are executing at a given moment will be of a different na-

ture, generally. We may find:

© FUOC e PID_00148465 15

System processes, whether they are processes associated to the machine's
local workings, kernel, or processes (known as daemons) associated to the
control of different services. On another note, they may be local or net-
worked, depending on whether the service is being offered (we are acting
as a server) or we are receiving the results of the service (we are acting as
clients). Most of these processes will appear associated to the root user,
even if we are not present at that moment as users. There may be some
services associated to other system users (Ip, bin, www, mail etc.), which
are virtual non-interactive users that the system uses to execute certain

processes.

Processes of the administering user: when acting as the root user, our
interactive processes or the launched applications will also appear as pro-
cesses associated to the root user.

System users processes: associated to the execution of their applications,
whether they are interactive tasks in text mode or in graphic mode.

can use the following as faster and more useful:

ps: the standard command, list of processes with the user data, time, pro-
cess identifier and the command line used. One of the most commonly
used options is ps -ef (or -ax), but there are many options available (see
man).

top: one version that provides us with an updated list by intervals, dynam-
ically monitoring the changes. And it allows us to order the list of process-
es sorted by different categories, such as memory usage, CPU usage, so as
to obtain a ranking of the processes that are taking up all the resources. It is
very useful for providing information on the possible source of the prob-
lem, in situations in which the system's resources are all being used up.

kill: this allows us to eliminate the system's processes by sending com-
mands to the process such as kill -9 pid_of_process (9 corresponding to
SIGKILL), where we set the process identifier. It is useful for processes with
unstable behaviour or interactive programs that have stopped responding.
We can see a list of the valid signals in the system with man 7 signal

3.5. System Logs

Both the kernel and many of the service daemons, as well as the different

GNU/Linux applications or subsystems, can generate messages that are sent

to log files, either to obtain the trace of the system's functioning or to detect

Local administration

© FUOC e PID_00148465 16 Local administration

errors or fault warnings or critical situations. These types of logs are essential
in many cases for administrative tasks and much of the administrator's time
is spent processing and analysing their contents.

Most of the logs are created in the /var/log directory, although some
applications may modify this behaviour; most of the logs of the system
itself are located in this directory.

A particular daemon of the system (important) is daemon Syslogd. This dae- Note

mon is in charge of receiving the messages sent by the kernel and other ser-

The Syslogd daemon is the

vice daemons and sends them to a log file that is located in /var/log/messages. most important service for ob-

This is the default file, but Syslogd is also configurable (in the /etc/syslog.conf taining dynamic information
on the machine. The process
file), so as to make it possible to create other files depending on the source, of analysing the logs helps us
. . . to understand how they work,
according to the daemon that sends the message, thereby sending it to the log the potential errors and the
or to another location (classified by source), and/or classify the messages by performance of the system.

importance (priority level): alarm, warning, error, critical etc.

Depending on the distribution, it can be configured in different modes by de-
fault; in /var/log in Debian it is possible to create (for example) files such as:
kern.log, mail.err, mail.info... which are the logs of different services. We can
examine the configuration to determine where the messages come from and
in which files they are saved. An option that is usually useful is the possibil-
ity of sending the messages to a virtual text console (in /etc/syslog.conf the
destination console, such as /dev/tty8 or /dev/xconsole, is specified for the type
or types of message), so that we can see the messages as they appear. This is
usually useful for monitoring the execution of the system without having to
constantly check the log files at each time. One simple modification to this
method could be to enter, from a terminal, the following instruction (for the
general log):

tail -f /var/log/messages

This sentence allows us to leave the terminal or terminal window so that the

changes that occur in the file will progressively appear.

Other related commands:

e uptime: time that the system has been active. Useful for checking that no
unexpected system reboot has occurred.

e Jast: analyses the in/out log of the system (/var/log/wtmp) of the users,
and the system reboots. Or last log control of the last time that the users
were seen in the system (information in /var/log/lastlog).

© FUOC e PID_00148465 17 Local administration

e Various utilities for combined processing of logs, that issue summaries (or
alarms) of what has happened in the system, such as: logwatch, logcheck
(Debian), log_analysis (Debian)...

3.6. Memory

Where the system's memory is concerned, we must remember that we have:
a) the physical memory of the machine itself, b) virtual memory that can by
addressed by the processes. Normally (unless we are dealing with corporate
servers), we will not have very large amounts, so the physical memory will be
less than the necessary virtual memory (4GB in 32bit systems). This will force
us to use a swap zone on the disk, to implement the processes associated to
the virtual memory.

This swap zone may be implemented as a file in the file system, but it is more
usual to find it as a swap partition, created during the installation of the sys-
tem. When partitioning the disk, it is declared as a Linux Swap type.

To examine the information on the memory, we have various useful com-

mands and methods:

e /Jetc/fstab file: the swap partition appears (if it exists). With an fdisk com-
mand, we can find out its size (or check /proc/swaps).

e ps command: allows us to establish the processes that we have, with the

options on the percentage and memory used.
e tfop command: is a dynamic ps version that is updatable by periods of time.
It can classify the processes according to the memory that they use or CPU

time.

e free command: reports on the global state of the memory. Also provides
the size of the virtual memory.

e vmstat command: reports on the state of the virtual memory and the use
to which it is assigned.

e Some packages, like dstat, allow us to collate data on the different param-

eters (memory, swap and others) by intervals of time (similar to top).

3.7. Disks and file systems

We will examine which disks are available, how they are organised and which
partitions and file systems we have.

© FUOC e PID_00148465 18

When we have a partition and we have a determined accessible file system, we
will have to perform a mounting process, so as to integrate it in the system,
whether explicitly or as programmed at startup/boot. During the mounting
process, we connect the file system associated to the partition to a point in
the directory tree.

In order to find out about the disks (or storage devices) present in the system,
we can use the system boot information (dmesg), when those available are
detected, such as the /dev/hdx for IDE devices or /dev/sdx for SCSI devices.
Other devices, such as hard disks connected by USB, flash disks (pen drive
types), removable units, external CD-ROMs etc., may be devices with some

form of SCSI emulation, so they will appear as devices as this type.

Any storage device will present a series of space partitions. Typically,
an IDE disk supports a maximum of four physical partitions or more if
they are logical (they permit the placement of various partitions of this
type on one physical partition). Each partition may contain different
file system types, whether they are of one same operative or different
operatives.

To examine the structure of a known device or to change its structure by par-
titioning the disk, we can use the fdisk command or any of its more or less in-
teractive variants (cfdisk, sfdisk). For example, when examining a sample disk
ide /dev/hda, we are given the following information:

Local administration

fdisk -3j /dev/hda

Disk /dev/hda: 20.5 GB, 20520493056 bytes 255 heads, 63
sectors/track, 2494 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hdal * 1 1305 10482381 7 HPFS/NTFS
/dev/hda2 * 1306 2429 9028530 83 Linux
/dev/hda3 2430 2494 522112+ 82 Linux swap

20 GB disk with three partitions (they are identified by the number added to
the device name), where we observe two NTFS and Linux-type boot partitions
(Boot column with *), which indicates the existence of a Windows NT/2000/
XP/Vista along with a GNU/Linux distribution and a last partition that is used
as a swap for Linux. In addition, we have information on the structure of the
disk and the sizes of each partition.

© FUOC e PID_00148465 19

Some of the disks and partitions that we have, some will be mounted in our
file system, or will be ready for set up upon demand, or they may be set up
when the resource becomes available (in the case of removable devices).

We can obtain this information in different ways (we will see this in more

detail in the final workshop):

e The /etc/fstab file indicates the devices that are ready to be mounted on
booting or the removable devices that may be mounted. Not all of the sys-
tem devices will appear necessarily; only the ones that we want to appear
when booting. We can mount the others upon demand using the mount

command or remove them with umount.

e mount command. This informs us of the file systems mounted at that mo-
ment (whether they are real devices or virtual file systems such as /proc).
We may also obtain this information from the /etc/mtab file.

e df -k command. This informs us of the storage file systems and allows
us to verify the used space and available space. It's a basic command for
controlling the available disk space.

With regard to this last df -k command, one of our basic tasks as an adminis-
trator of the machine is to control the machine's resources and, in this case,
the space available in the file systems used. These sizes have to be monitored
fairly frequently to avoid a system crash; a file system must never be left at less
than 10 or 15% (especially if it is the /), as there are many process daemons
that are normally writing temporary information or logs, that may generate
a large amount of information; a particular case is that of the core files that
we have already mentioned and which can involve very large files (depending
on the process). Normally, some precautions should be taken with regard to
system hygiene if any situations of file system saturation are detected:

e FEliminate old temporary files. The /tmp and /var/tmp directories tend to
accumulate many files created by different users or applications. Some sys-
tems or distributions take automatic hygiene measures, such as clearing
/tmp every time the system boots up.

e Logs: avoiding excessive growth, according to the system configuration
(for example, Syslogd), as the information generated by the messages can
be very large. Normally, the system will have to be cleared regularly, when
certain amounts of space are taken up and, in any case, if we need the
information for subsequent analyses, backups can be made in removable
devices. This process can be automated using cron scripts or using spe-
cialised tools such as logrotate.

e There are other parts of the system that tend to grow a lot, such as: a) user
core files: we can delete these periodically or eliminate their generation;

Local administration

© FUOC e PID_00148465 20 Local administration

b) the email system: stores all of the emails sent and received; we can ask
the users to clean them out regularly or implement a quota system; c) the
caches of the browsers or other applications: other elements that usually
occupy a lot of space, which require regular clearing, are: d) the accounts
of the users themselves: they may have quotas so that pre-established al-
located spaces are not exceeded etc.

© FUOC e PID_00148465 21

4. File Systems

In each machine with a GNU/Linux system, we will find different types of file
systems [Hin].

To start with, it is typical to find the actual Linux file systems created
in various partitions of the disks [Koe]. The typical configuration is to
have two partitions: that corresponding to "/" (root file system) and that
corresponding to the swap file. Although, in more professional config-
urations, it is usual to separate partitions with "differentiated" parts of
the system, a typical technique is, for example (we will examine other
options later), to create different partitions so:

/ /boot /home /opt /tmp /usr /var swap

That will certainly be found mounted from different sources (different
disks, or even the network in some cases). The idea is to clearly separate
the static and dynamic parts of the system, so as to make it easier to
extend the partitions when any overload problems arise. Or more easily
isolate the parts to perform backups (for example, the user accounts in
the /home partition).

The swap partitions are Linux swap type partitions and that corresponding to
/ tends to be one of the standard file systems, either ext2 (the default type up
to kernels 2.4), or the new ones ext3, ext4, which is an upgrade of ext2 with
journaling, which makes it possible to have a log of what goes on in the file
system, for faster recoveries in the event of an error. Other file system types,
such as Reiser or XFS are also typical.

Another typical configuration may be that of having three partitions: /, swap,
/home, in which the /home will be used for the user accounts. This makes
it possible to separate the system's user accounts, isolating two separate parti-
tions and allocating the necessary space for the accounts in another partition.

Another configuration that is widely used is that of separating the static parts
of the system from the dynamic ones, in different partitions; for example one
partition is used for placing / with the static part (/bin /sbin and /usr in some
cases), which is not expected to grow or, if it does, not by much, and another
or various partitions with the dynamic part (/var /tmp /opt), supposing that
/opt, for example, is the installation point for new software. This makes it
possible to better adjust the disk space and to leave more space for the parts
of the system that need it.

Local administration

© FUOC e PID_00148465 22

Where the supported file systems are concerned, we must point out the variety
of these; we can currently find (among others):

e Systems associated to GNU/Linux, such as the ext2, ext3 and ext4 stan-
dards, developed from the previous concept of journaling (support log for
operations performed in the file system that allows us to recover it in the
event of any disaster that renders it inconsistent).

e Compatibility with non- GNU/Linux environments: MSDOS, VFAT, NTES,
access to the different systems of FAT16, FAT32 and NTFS. In particular, we
must point out that the kernel support, in the case of the kernel, is read-
only. But, as we have mentioned, there are user space solutions (through
FUSE, a kernel module that allows us to write file systems in the user
space), that make read/write possible, such as the abovementioned NTFS-
3g. There is also compatibility with other environments such as Mac with
HEFS and HFSplus.

e Systems associated to physical supports, such as CD/DVDs, for example
ISO9660 and UDFE

e Systems used in different Unix, which generally provide better perfor-
mance (sometimes at the cost of a greater consumption of resources, in
CPU for example), such as JFES2 (IBM), XFES (SGI), or ReiserFS.

e Network file systems (more traditional): NFS, Samba (smbfs, cifs), permit
us to access the file systems available in other machines transparently us-
ing the network.

e Systems distributed in the network: such as GFS, Coda.

e DPseudo file systems, such as procfs (/proc) or sysfs (/sys).

In most of these file systems (except in some special cases), GNU/Linux will
allow us to create partitions of these types, build the file systems of the re-
quired type and mount them as an integrating part of the directory tree, either
temporarily or permanently.

4.1. Mount point

Apart from the /root file system and its possible extra partitions (/usr /var /tmp
/home), it should be remembered that it is possible to leave mount points
prepared for mounting other file systems, whether they are disk partitions or
other storage devices.

In the machines in which GNU/Linux shares the partition with other oper-
ating systems, through some bootloader (lilo or grub), there may be various
partitions assigned to the different operating systems. It is often good to share

Local administration

Note

The file systems howto doc-
ument provides brief expla-
nations of the various file sys-
tems as well as the websites
that you may consult for each
of these.

© FUOC e PID_00148465 23

data with these systems, whether for reading or modifying their files. Unlike
other systems (that only register their own data and file systems and in some
versions of which some of the actual file systems are not supported), GNU/
Linux is able to treat, as we have seen, an enormous amount of file systems
from different operating systems and to share the information.

Example

If we have installed GNU/Linux in the PCs, we will certainly find more than one operat-
ing system, for example, another version of GNU/Linux with ext2 or 3 of the file system,
we may find an old MSDOS with its FAT file system, a Windows98/ME/XP Home with
FAT32 (or VFAT for Linux), or a Windows NT/2000/XP/Vista with NTFS systems (NTFS
for Linux) and FAT32 (VFAT) at the same time.

Our GNU/Linux system can read data (in other words, files and directories)
from all these file systems and write in most of them.

In the case of NTFS, up until certain points, there were problems with writ-
ing, which was experimental in most of the kernel drivers that appeared. Due
mainly to the different versions of the file system that progressively appeared,
as there were two main versions called NTFS and NTFS2, and some extensions
such as the so-called dynamic volumes or the encrypted file systems. And ac-
cessing with certain drivers caused certain incompatibilities, which could re-
sult in data corruption or faults in the file system.

Thanks to FUSE, a module integrated in the kernel (as of version 2.6.11), it
has been possible to develop the file systems more flexibly, directly in the user
space (in fact, FUSE acts as a "bridge" between the kernel requests, and access
from the driver).

Thanks to the features of FUSE, we have more or less complete support for
NTES, (provided Microsoft does not make any further changes to the specifi-
cations), especially since the appearance of the driver (based on FUSE) ntfs-3g
(http://www.ntfs-3g.org), and the combination with the ntfsprogs utilities.

Depending on the distribution, different ones are used, or we may also create
it ourselves. Normally, they exist either as root subdirectories, for example
/cdrom /win /floppy or subdirectories within /mnt, the standard mount point
(they appear as /mnt/cdrom /mnt/floppy...), or the /media directory, which
is lately preferred by the distributions. According to the FHS standard, /mnt
should be used for temporary mounting of file systems, whereas /media should
be used to mount removable devices.

The mounting process is performed through the mount command, with the
following format:

mount -t filesystem-type device mount-point

Local administration

© FUOC e PID_00148465 24

The type of file system may be: MSDOS (FAT), VFAT (FAT32), NTFS (NTFS
read), ISO9660 (for CD-ROM)... (of the possible ones).

The device is the in point in the /dev directory corresponding to the location
of the device, the IDEs had /dev/hdxy where x is a,b,c, or d (1 master, 1 slave,
2 master, 2 slave) e and, the partition number, the SCSI (/dev/sdx) where X is
a,b,c,d ... (according to the associated SCSI ID, 0,1,2,3,4 ...).

We will now look at some examples:

mount -t iso09660 /dev/hdc /mnt/cdrom

This would mount the CD-ROM (if it is the IDE that is in the second IDE in
master mode) at point /mnt/cdrom.

mount -t iso09660 /dev/cdrom /mnt/cdrom

This would mount the CD-ROM; /dev/cdrom is used as a synonym (it is a link)
for the device where it is connected.

mount -t vfat /dev/fd0H1440 /mnt/floppy

This would mount the diskette, /dev/fdOH1440. It would be a high-density
(1.44 MB) disk drive A; /dev/fdO can also be used.

mount -t ntfs /dev/hda2 /mnt/winXP

This would mount the second partition of the first NTFS-type IDE device (C:)
(for example, a Windows XP).

If these partitions are more or less stable in the system (in other words, they
are not changed frequently) and we wish to use them, the best thing will be
to include the mounts so that they take place during the execution period,
when booting the system, through the configuration of file /etc/fstab:

Local administration

/etc/fstab: Static information on the file system

#

#<Sys. files> <Mount points> <Type> <Options> <dump> <pass>
/dev/hda2 / ext3 errors = remountro 0 1
/dev/hdb3 none swap sw 0 0

proc /proc proc defaults 0 o]
/dev/£d0 /floppy auto user,noauto 0 0
/dev/cdrom /cdrom is09660 ro,user,noauto 0 0

© FUOC e PID_00148465 25

/dev/sdbl /mnt /usb viat user,noauto

Local administration

For example, this configuration includes some of the standard systems, such
as the root in /dev/hda2, the swap partition that is in hdb3, the proc system
(which uses the kernel to save its information). The diskette, the CD-ROM
and, in this case, a Flash-type USB disk (which is detected as a SCSI device).
In some cases, auto is specified as a type of file system. This permits the au-
todetection of the file system. If unknown, it is better to indicate it in the
configuration and, on another note, the noauto option will mean that it is
not always mounted automatically, but upon request (or access).

If we have this information in the file, the mounting process is simplified,
as it will take place either on execution, when booting up, or upon demand
(noautos). And it may now be performed by simply asking that the mount

point or device be mounted:

mount /mnt/cdrom

mount /dev/£do0

given that the system already has the rest of the information.

The reverse process, umounting, is quite simple, the umount command with
the mount point or device:

umount /mnt/cdrom

umount /dev/£d0

When using removable devices, such as CD-ROMs (or others), eject may be
used to extract the physical support:

eject /dev/cdrom

or, in this case, only:

eject

The mount and umount commands mount or umount all the available sys-
tems. The file /etc/mtab maintains a list of the mounted systems at a specific
point in time, which can be consulted, or a mount, without parameters, may
be executed to obtain this information.

4.2. Permissions

Another subject that we will have to control in the cases of files and directo-

ries is the permissions that we wish to establish for each of them, whilst re-

membering that that each file may have a series of permissions: rwxrwxrwx

© FUOC e PID_00148465 26

where they correspond with the owner rwx, the group rwx to which the user
belongs, and the rwx for other users. In each one, we may establish the access
rights for reading (r), writing (w) or executing (x). In the case of a directory,
x denotes the permission for being able to access that directory (with the cd

command, for example).

In order to modify the access rights to a directory or file, we have the
commands:

e chown: change file owner.
e chgrp: change file owner group.
e chmod: change specific permissions (rtwx) of the files.

The commands also provide the -R option, which is recursive if affecting

a directory.

Local administration

© FUOC e PID_00148465 27 Local administration

5. Users and groups

The users of a GNU/Linux system normally have an associated account (de-
fined with some of their data and preferences) along with an allocated amount
of space on the disk in which they can develop their files and directories. This
space is allocated to the user and may only be used by the user (unless the
permissions specify otherwise).

Among the accounts associated to users, we can find different types:

e The administrator account, with the root identifier, which should only
be used for administration operations. The root user is the one with most
permissions and complete access to the machine and the configuration
files. Consequently, this user is also the one that most damage can cause
due to any faults or omissions. It is better to avoid using the root account
as if it were that of just another user; it is therefore recommended that it
should only be used for administration operations.

e User accounts: the normal accounts for any of the machine's users have
the permissions restricted to the use of their account files and to some
particular zones (for example, the temporary files in /tmp), and to the use
of the particular devices that they have been authorised to use.

e Special service accounts: 1p, news, wheel, www-data... accounts that are
not used by people but by the system's internal services, which uses them
under these user names. Some of the services are also used under the root

account.

A user account is normally created by specifying a name (or user identifier), a
password and a personal associated directory (the account).

The information on the system's users is included in the following files:
/etc/passwd

/etc/shadow

/etc/group

/etc/gshadow

Example of some lines of the /etc/passwd:

juan:x:1000:1000:Juan Garcia,,, :/home/juan:/bin/bash

root:x:0:0:root:/root:/bin/bash

© FUOC e PID_00148465 28

where (if the :: appear together, the box is empty):

e juan: identifier of the user of the system.

e x: encoded user password; if there is an "x" then it is located in the /etc/
shadow file.

e 1000: user code, which the system uses as the identity code of the user.

e 1000: code of the main group to which the user belongs, the group's in-
formation is in /etc/group.

e Juan Garcia: comment, usually the user's full name.

e /home/juan: personal directory associated to his account.

e /bin/bash: interactive shell that the user uses when interacting with the
system, in text mode, or through the graphic shell. In this case, the GNU
Bash, which is the shell used by default. The /etc/passwd file used to con-
tain the user passwords in an encrypted form, but the problem was that
any user could see this file and, at the time, cracks were designed to try
and find out the passwords directly using the encrypted password as the
starting point (word encoded with the crypt system).

In order to avoid this, the passwords are no longer placed in this file; only
an "x" is, to indicate that they are located in another file, which can only be
read by the root user, /etc/shadow, the contents of which may be something
similar to the following:

juan:algNcs82ICst8CjVIS7ZFCVnuON2pBcn/:12208:0:99999:7: ::

where the user identifier is located, along with the encrypted password. In
addition, they appear as spaces separated by ":":

e Days since 1st January 1970 in which the password was changed for the
last time.

e Days left for it to be changed (O it does not have to be changed).

e Days after which the password must be changed (in other words, change
period).

e Days on which the user will be warned before the password expires.

e Days, after expiry, after which the account will be disabled.

e Days since 1st January 1970 that the account has been disabled.

e And a reserved space.

Local administration

© FUOC e PID_00148465 29

In addition, the encryption codes can be more difficult, as it is now possible
to use a system called md5 (it usually appears as an option when installing the
system) to protect the users' passwords. We will examine some more details
in the unit on security.

In /etc/group we will find the information on the user groups:

jose:x:1000:

where we have:

name-group:password-group:identifier-of-group:list-users

The list of the users in the group may or may not be present; given that this
information is already in /etc/passwd, it is not usually placed in /etc/group. If
it is placed there, it usually appears as a list of users separated by commas.
The groups may also posses an associated password (although this is not that
common), as in the case of the user, there is also a shadow file: /etc/gshadow.

Other interesting files are the ones in /etc/skel directory, which contains the
files that are included in each user account when it is created. We must re-
member that, as we saw with the interactive shells, we could have some con-
figuration scripts that execute when we enter or exit the account. The "skele-
tons", which are copied in user account when they are created, are saved in
the skel directory. The administrator is usually in charge of creating adequate
files for the users, providing the necessary execution paths, initialising the
system's variables that are needed for the software etc.

We will now see a series of useful commands for the administration of users
(we will mention their functions and perform some tests in the workshop):

e useradd: adding a user to the system.

e userdel: to delete a user from the system.

e usermod: to modify a user of the system.

e groupadd, groupdel, groupmod the same for groups.

e newusers, chpasswd: these can be very useful in large installations with
many users, as they allow us to create various accounts from the informa-
tion entered into a newusers file or change the passwords for a large num-

ber of users (chpasswd).

e chsh: to change the user login shell.

Local administration

© FUOC e PID_00148465 30

e chfn: to change the user information present in the /etc/passwd comment
file.

e passwd: to change a user's password. This may be executed as a user, and
it will then ask for the old password and the new one. When doing this,
the root account has to specify the user whose password will be changed
(otherwise, they would be changing the account's password) and the old
password is not necessary. This is perhaps the command that the root most
uses, when users forget their old password.

e su: a kind of identity change. It is used both by users and by the root to
change the current user. In the case of the administrator, it is used quite
a lot to test that the user account works properly; there are different vari-
ants: su (without parameters, it serves to switch to root user, after identifi-
cation, making it possible for us to pass, when we are in a user account, to
the root account to perform a task). The su iduser sentence (changes the
user to iduser, but leaves the environment as it is, in other words, in the
same directory...). The su - iduser mandate (which performs a complete
substitution, as if the second user had logged in the system).

With regard to the administration of users and groups, what we have men-
tioned here refers to the local administration of one sole machine. In systems
with multiple machines that the users share, a different management system
is used for the information on users. These systems, generically called net-
work information systems, such as NIS, NIS+ or LDAP, use databases for stor-
ing the information on the users and groups, effectively using servers, where
the database and other client machines are stored and where this information
can be consulted. This makes it possible to have one single copy of the user
data (or various synchronised copies) and makes it possible for them to enter
any available machine of the set administered with these systems. At the same
time, these systems incorporate additional concepts of hierarchies and/or do-
mains/machine and resource zones, that make it possible to adequately repre-
sent the resources and their use in organisations with different organisational
structures for their own personnel and internal departments.

We can check whether we are in a NIS-type environment by seeing if compat
appears in the passwd line and group configuration file, /etc/nsswitch.conf, if
we are working with local files, or nis or nisplus according to the system on
which we are working. Generally, this does not involve any modification for
the simple user, as the machines are managed transparently, more so if it is
combined with files shared by NFS that makes the account available, regardless
of the machine used. Most of the abovementioned commands can still be used
without any problem under NIS or NIS+, in which they are equivalent, except
for the command for changing the password, which, instead of passwd, we

Local administration

© FUOC e PID_00148465 31 Local administration

usually use yppasswd (NIS) or nispasswd (NIS+); although it is typical for the
administrator to rename them to passwd, (through a link), which means that
users will not notice the difference.

We will look at this and other methods for configuring the network adminis-

tration units.

© FUOC e PID_00148465 32 Local administration

6. Printing services

The GNU/Linux [Gt] [SmiO2] printing server derives from UNIX's BSD vari-
ant; this system was called LPD (line printer daemon). This is a very powerful
printing system, because it integrates the capacity to manage both local and
network printers. And it provides this service within the system for both the
client and the printing server.

LPD is a system that is quite old, as its origins date back to UNIX's BSD branch
(mid 1980s). Consequently, LPD usually lacks support for modern devices,
given that the system was not originally conceived for the type of printing
that takes place now. The LPD system was not designed as a system based on
device drivers, as it was typical to produce only printers in series or in parallel
for writing text characters.

Currently, the LPD system combines with another common software, such as Note

the Ghostscript system, which offers a postscript type output for a very wide
The UNIX systems provide,

range of printers for which it has the right drivers. At the same time, they are possibly, the most powerful

usually combined with filtering software, which, depending on the type of and complex printing systems,
which provide a lot of flexibili-
document that must be printed, selects the appropriate filters. Normally, the ty to printing environments.

procedure that should be followed is (basically):

1) The work is started by a command in the LPD system.

2) The filtering system identifies the type of job (or file) that must be used and
transforms the job into an outgoing postscript file, which is the one sent to
the printer. In GNU/Linux and UNIX, most of the applications assume that
the job will be sent to a postscript printer and many of them directly generate
a postscript output, which is why the following step needs to be taken.

3) The Ghostscript has to interpret the postscript file it receives, and, depend- Web site

ing on the driver of the printer to which the file has been sent, it performs the
Ghostscript: http://

transformation to the driver's own format. If the printer is a postscript type www.ghostscript.com/

printer, the printing process is direct; if not, it has to "translate" the job. The
job is sent to the printing queue.

Apart from the LPD printing system (that originated with UNIX's BSD), there
is also the system known as System V (originally in the other System V branch
of UNIX). Normally, for compatibility reasons, most UNIX systems integrate
both systems, so that either one or the other is used as the main one and
the other emulates the main one. In the case of GNU/Linux, a similar process
occurs, depending on the installation that we have, we can have only the LPD
commands of the printing system, but it will also be common to have the

© FUOC e PID_00148465 33

System V commands. A simple way of identifying the two systems (BSD or
System V) is using the main printing command (which sends the jobs to the
system), in BSD, it is Ipr, and it is Ip in System V.

This is the initial situation for the GNU/Linux printing systems, although over
the last few years, more systems have appeared, which provide more flexibility
and make more drivers available for the printers. The two main systems are
CUPS and, to a lesser extent, LPRng. In fact, recently, CUPS is GNU/Linux's
de facto standard, although the other systems must be supported for compat-
ibility with the existing UNIX systems.

Both (both CUPS and LPRng) are a type of higher-level system, but they are not
all that perceptibly different for average users, with regard to the standard BSD
and System V systems; for example, the same client commands (or compatible
commands in the options) are used for printing. There are perceptible differ-
ences for the administrator, because the configuration systems are different.
In one way, we can consider LPRng and CUPS as new architectures for printing
systems, which are compatible for users with regard to the old commands.

In the current GNU/Linux distributions, we can find different printing sys-
tems. If the distribution is old, it may only incorporate the BSD LPD system; in
the current distributions: both Debian and Fedora/Red Hat use CUPS. In older
versions of Red Hat, there was a tool, Print switch, which made it possible
to change the system, switching the printing system, although recently only
CUPS is available. In Debian, it is possible to install both systems, but they are
mutually exclusive: only one may be used for printing.

In the case of Fedora Core, the default printing system is CUPS (as LPRng
disappeared in Fedora Core 4), and the Print Switch tool no longer exists, as
it is no longer necessary: system-config-printer is used to configure devices.
By default, Debian uses BSD LPD, but it is common to install CUPS (and we
can expect it to continue to be the default option in future new versions) and
LPRng may also be used. In addition, we must remember that we also had
the possibility (seen in the unit on migration) of interacting with Windows
systems through the Samba protocols, which allowed you to share printers
and access to these printers.

Regarding each of the [Gt] systems:

e BSD LPD: this is one of UNIX's standards, and some applications assume
that the commands and the printing system will be available, for which
both LPRng and CUPS emulate the functions and commands of BDS LPD.
The LPD system is usable but not very configurable, especially with regard
to access control, which is why the distributions have been moved to oth-
er, more modern, systems.

Local administration

Web sites

LPRNng: http://www.lprng.org
CUPS: http://www.cups.org

© FUOC e PID_00148465 34

e LPRng: basically it was designed to replace BSD, and therefore, most of
the configuration is similar and only some of the configuration files are
different.

e CUPS: it is the biggest deviation from the original BSD and the configura-
tion is the same. Information is provided to the applications on the avail-
able printers (also in LPRng). In CUPS, both the client and the server have
to have CUPS software.

The two systems emulate the printing commands of System V.

For GNU/Linux printing, various aspects have to be taken into account:

e Printing system that is used: BSD, LPRng or CUPS.

e Printing device (printer): it may have a local connection to a machine or
be on the network. The current printers may be connected to a machine
using local connections, through interfaces in series, in parallel, USB etc.
Or they may simply be on the network, as another machine, or with spe-
cial ownership protocols. Those connected to the network can normally
act themselves as a printing server (for example, many HP laser printers
are BSD LPD servers) or they can be connected to a machine that acts as

a printing server for them.

e Communication protocols used with the printer or the printing system:
whether it is direct TCP/IP connection (for example, an HP with LPD) or
high level ones based on TCP/IP, such as IPP (CUPS), JetDirect (some HP
printers) etc. This parameter is important, as we have to know it so as to
install the printer in a system.

e Filtering systems used: each printing system supports one or more.

e Printer drivers: in GNU/Linux, there are quite a few different types; we
might mention, for example CUPS drivers, the system's or third parties'
(for example, HP and Epson provide them); Gimp, the image editing pro-
gram also has drivers optimised for printing images; Foomatic is a driver
management system that works with most systems (CUPS, LPD, LPRng
and others); Ghostscript drivers etc. In almost all printers, there are one
or more of the drivers in these sets.

With regard to the client part of the system, the basic commands are the same
for the different systems and these are the BSD system commands (each system
supports emulation of these commands):

e Ipr:ajob is sent to the default printing queue (or the one that is selected),
and the printing daemon (Ipd) then sends it to the corresponding queue
and assigns a job number, which will be used with the other commands.

Local administration

Web site

Information on the most
appropriate printers and
drivers can be found at: http:/
/www.openprinting.org/
printer_list.cgi

© FUOC e PID_00148465 35

Normally, the default printer would be indicated by the PRINTER system
variable or the first defined and existing one will be used or, in some sys-
tems, the Ip queue will be used (as the default name).

Example
Lpr example:
lpr -Pepson data.txt

This command sends the data.txt file to the print queue associated to a printer that we
have defined as "epson".

e Ipq: This allows us to examine the jobs in the queue.

Example

Example

Local administration

lpg -P epson

Rank Owner Job Files Total Size
1st juan 15 data.txt 74578 bytes
2nd marta 16 fpppp.F 12394 bytes

This command shows us the jobs in the queue, with the respective order and
sizes; the files may appear with different names, as this depends on whether
we have sent them with Ipr or with another application that might change
the names when it sends them or if any filters have had to be used when

converting them.

e [prm: eliminates jobs from the queue and we can specify a job number or
the user, to cancel these operations.

Example
lprm -Pepson 15

Delete the job with id 15 from the queue.

With regard to the administrative side (in BSD), the main command would be
Ipc; this command can be used to activate or deactivate queues, move jobs in
the queue order and activate or deactivate the printers (jobs may be received
in the queues but they are not sent to the printers).

We should also point out that, in the case of System V, the printing commands
are usually also available, normally simulated on the basis of the BSD com-
mands. In the client's case, the commands are: lp, lpstat, cancel and, for ad-
ministrative subjects, Ipadmin, accept, reject, IJpmove, enable, disable, Ipshut.

© FUOC e PID_00148465 36

In the following sections we will see that it is necessary to configure a printer
server for the three main systems. These servers may be used both for local
printing and for the network clients' prints (if they are enabled).

6.1. BSDLPD

In the case of the BSD LPD server, there are two main files that have to be
examined: on the one hand, the definition of the printers in /etc/printcap
and, on the other, the network access permissions in /etc/hosts.lpd.

With regard to the permissions, by default, BSD LPD only provides local access
to the printer and, therefore, it has to be expressly enabled in /etc/hosts.lpd.

Example
The file may be:

#file hosts.lpd
second
first.the.com
192.168.1.7
+@groupnis
-three.the.com

which would indicate that it is possible to print to a series of machines, listed
either by their DNS name or by the IP address. Machine groups that belong to
a NIS server (groupnis, as shown in the example) may be added or it is possible
to deny access to several machines by indicating this with a dash (-).

With regard to the configuration of the server in /etc/printcap, we define in-
puts, in which each represents a printing system queue that can be used to
stop the printing jobs. The queue may be associated to a local device or a re-
mote server, whether this is a printer or another server.

The following options may exist in each port:

e Ip =, indicates the device to which the printer is connected, for example,
Ip = /dev/lp0 would indicate the first parallel port. If the printer is an LPD-
type printer, for example, a network printer that accepts the LPD protocol

(such as an HP), then we can leave the box empty and fill in the following.

e rm =, address with name or IP of the remote machine that will use the
printing queue. If it is a network printer, it will be this printer's address.

e 1p =, name of the remote queue, in the machine indicated before with rm.
Let us examine an example::

Local printer input

lp|epson|Epson C62:\

Local administration

© FUOC e PID_00148465 37

:1p=/dev/1lpl:sd=/var/spool/lpd/epson:\
:sh:pw#80:pl#72:px#1440 :mx#0:\
:if = /etc/magicfilter/StylusColor@720dpi-filter:\filter
:af = /var/log/lp-acct:1f = /var/log/lp-errs:
Remote printer input
hpremote |hpr |remote hp of the department|:\
:lp = :\
:rm = server:rp = queuehp:\
:1f = /var/adm/lpd rem errs:\log file.

:sd = /var/spool/lpd/hpremote:local associated spool

6.2. LPRng

In the case of the LPRng system, as this was made to maintain BSD compatibil-
ity, and, among other improvements with regard to access, the system is com-
patible in terms of the configuration of queues and this is performed through
the same file format, /etc/printcap, with some additional intrinsic operations.

Where the configuration is different is with regard to access: in this case, we
generally obtain access through a /etc/lpd.perms file that is general for the
whole system and there may also be individual configurations for each queue
with the lpd.perms file placed in the directory corresponding to the queue,

usually /var/spool/lpd/name-queue.

These lpd.perms files have a greater capacity for configuring the access and

permit the following basic commands:

DEFAULT ACCEPT
DEFAULT REJECT
ACCEPT [key = valuel,valuel>*]*
REJECT [key = wvaluel[,valuel*]1*

where the first two allow us to establish the default value, of accepting every-
thing or rejecting everything, and the next two of accepting or rejecting a
specific configuration in the line. It is possible to accept (or reject) requests
from a specific host, user or IP port. Likewise, it is possible to configure the
type of service that will be provided to the element: X (may be connected), P
(job printing), Q (examine queue with 1pq), M (remove jobs from the queue,
Iprm), C (control printers, Ipc command Ipc), among others, as with the file:

ACCEPT SERVICE = M HOST = first USER = jose

ACCEPT SERVICE = M SERVER REMOTEUSER = root

REJECT SERVICE = M

Local administration

© FUOC e PID_00148465 38

Deleting jobs from the queue is allowed for the (first) user of the machine and
the root user from the server where the printing service is hosted (localhost)
and, in addition, whatsoever other requests for deleting jobs from the queue
that are not the already established are rejected.

With this configuration, we have to be very careful, because in some distribu-
tions, the LPRng services are open by default. The connection may be limited,

for example, with:

ACCEPT SERVICE = X SERVER

REJECT SERVICE = X NOT REMOTEIP = 100.200.0.0/255

Connection service only accessible to the server's local machine and denying
access if the machine does not belong to our subnet (in this case, we are as-
suming that it is 100.200.0.x).

For the administration of line commands, the same tools as the standard BSD
are used. With regard to the graphical administration of the system, we should
point out the Iprngtool tool (not available in all versions of the LPRng system).

Names (name|alias1]...) 1p 7
Comments 7
Spool Directory fwar fspool/lpd/ /P 7
Hostname/IP of Printer hl4 ?
Port number 9100 7
¢ IFHP User Specified Filter fusr/libexec/filters/ifhp 7

Select Printer Model and Filter Options | default 2
Job Options Select LPR Job and Filter Options | landscape %
Printcap for: 5

¢ Server and Client (BOTH) Server Only (:server) Client Only (:client)
Spool action:

Localhost (:force_localhost) Remote Queue or Device (:force_localhosti@) < Default
Printer Type: 7
Device Queue & TCPIIP Socket SMB/Novell/Apple Talk
Load Balance Dummy Unknown
OK Cancel Advanced Options

Figure 1. Iprngtool, configuration of a printer

There are various software packages related to LPRng; for example, in a Debian,
we might find:

lprng - lpr/lpd printer spooling system

lprng-doc - lpr/lpd printer spooling system (documentation)
lprngtool - GUI front-end to LPRng based /etc/printcap
printop - Graphical interface to the LPRng print system.

Local administration

© FUOC e PID_00148465 39

6.3. CUPS

CUPS is a new architecture for the printing system that is quite different; it
has a layer of compatibility with BSD LPD, which means that it can interact
with servers of this type. It also supports a new printing protocol called IPP
(based on http), but it is only available when the client and the server are
CUPS-type clients and servers. In addition, it uses a type of driver called PPD
that identifies the printer's capacities; CUPS comes with some of these drivers
and some manufacturers also offer them (HP and Epson).

CUPS has an administration system that is completely different, based on dif-
ferent files: /etc/cups/cupsd.conf centralises the configuration of the printing
system, /etc/cups/printers.conf controls the definition of printers and /etc/
cups/classes.conf the printer groups.

In /etc/cups/cupsd.conf, we can configure the system according to a series of
file sections and the directives of the different actions. The file is quite big; we
will mention some important directives:

e Allow: this permits us to specify which machines may access the server,
either in groups or individually, or segments of the network's IP.

e AuthClass: makes it possible to indicate whether the user clients will be
asked to authenticate their accounts or not.

e BrowseXXX: there is a series of directives related to the possibility of ex-
amining a network to find the served printers; this possibility is activated
by default (browsing on), which means that we will normally find that all
the printers available in the network are available. We can deactivate it,
so that we only see the printers that we have defined. Another important
option is BrowseAllow, which we use to determine who is permitted to ask
for our printers; it is activated by default, which means that anyone can
see our printer from our network.

We must point out that CUPS is, in principle, designed so that both clients
and the server work under the same system; if the clients use LPD or LPRng,
it is necessary to install a compatibility daemon called cups-lpd (normally in
packages such as cupsys-bsd). In this case, CUPS accepts the jobs that come
from an LPD or LPRng system, but it does not control the accesses (cupsd.conf
only works for the CUPS system itself and therefore, it will be necessary to
implement some strategy for controlling access, like a firewall, for example
(see unit on security).

For administering from the commands line, CUPS is somewhat peculiar, in
that it accepts both LPD and System V commands in the clients, and the
administration is usually performed with the SystemV's lpadmin command.

Local administration

© FUOC e PID_00148465 40

Where the graphic tools are concerned, we have the gnome-cups-manager,
gtklp or the web interface which comes with the same CUPS system, accessible
at http://localhost:631.

x| —1[=][=

File Edit View Go Bookmarks Tools window Help

~ OO \.) G \) [% http:slocalhost:63 1printers | [E5 search | <;5’o

. 4 Home JBookmarks % The Mozilla Org... % Latest Builds

ESP Administration Classes Help Jobs Printers Software

Printer

Default Destination: none

epson EPSON Stylus C62, CUPS+Gimp-Print v4.2.5

Description: epson C&82

Location:

Frinter State: idle, accepting jobs.
Device URI: epson:/dev/lp0

Print Test Page Stop Printer Reject Jobs Modify Printer Configure Printer

Add Printer

Copyright 1893-2003 by Easy Software Products, All Rights Reserved. The Common UNIX Printing
System, CUPS, and the CUPS logo are the trademark property of Easy Software Products. All other
trademarks are the property of their respective owners.

D=2 e B e

Figure 2. Interface for the administration of the CUPS system

With regard to the software packages listed with CUPS, in Debian, we can find
(among others):

cupsys - Common UNIX Printing System(tm) - server
cupsys-bsd - Common UNIX Printing System(tm) - BSD commands
cupsys-client - Common UNIX Printing System(tm) - client pro-
grams (SysV)

cupsys-driver-gimpprint - Gimp-Print printer drivers for CUPS
cupsys-pt - Tool for viewing/managing print jobs under CUPS
cupsomatic-ppd - linuxprinting.org printer support - transi-
tion package

foomatic-db - linuxprinting.org printer support - database
foomatic-db-engine - linuxprinting.org printer support - pro-
grams

foomatic-db-gimp-print - linuxprinting - db Gimp-Print print-
er drivers

foomatic-db-hpijs - linuxprinting - db HPIJS printers
foomatic-filters - linuxprinting.org printer support - £il-
ters

foomatic-filters-ppds - linuxprinting - prebuilt PPD files
foomatic-gui - GNOME interface for Foomatic printer filter

system

Local administration

© FUOC e PID_00148465 41

gimpprint-doc - Users' Guide for GIMP-Print and CUPS
gimpprint-locals - Local data files for gimp-print
gnome-cups-manager - CUPS printer admin tool for GNOME

gtklp - Front-end for cups written in gtk

Local administration

© FUOC e PID_00148465 42 Local administration

7. Disk management

In respect of the storage units, as we have seen, they have a series of associated
devices, depending on the type of interface:

e IDE: devices
/dev/had master disk, first IDE connector;
/dev/hdb slave disk of the first connector,
/dev/hdc master second connector,
/dev/hdd slave second connector.

e SCSI: /dev/sda, /dev/sdb devices... following the numbering of the periph-
eral devices in the SCSI Bus.

e Diskettes: /dev/fdx devices, with x diskette number (starting in 0). There
are different devices depending on the capacity of the diskette, for exam-
ple, a 1.44 MB diskette in disk drive A would be /dev/fdOH1440.

With regard to the partitions, the number that follows the device indicates
the partition index within the disk and it is treated as an independent device:
/dev/hdal first partition of the first IDE disk, or /dev/sdc2, second partition
of the third SCSI device. In the case of the IDE disks, these allow four parti-
tions, known as primary partitions, and a higher number of logical partitions.
Therefore, if /dev/hdan, n is less than or equal to 4, then it will be a primary
partition; if not, it will be a logical partition with n being higher than or equal
to S.

With the disks and the associated file systems, the basic processes that we can
carry out are included in:

e Creation of partitions or modification of partitions. Through commands
such as fdisk or similar (cfdisk, sfdisk).

e Formatting diskettes: different tools may be used for diskettes: fdformat
(low-level formatting), superformat (formatting at different capacities in
MSDOS format), mformat (specific formatting creating standard MSDOS
file systems).

e Creation of Linux file systems, in partitions, using the mkfs com-
mand. There are specific versions for creating diverse file systems,
mkfs.ext2, mkfs.ext3 and also non-Linux file systems: mkfs.ntfs,
mkfs.vfat, mkfs.msdos, mkfs.minix, or others. For CD-ROMs, commands
such as mkisofs for creating the ISO9660s (with joliet or rock ridge exten-
sions), which may be an image that might subsequently be recorded on

© FUOC e PID_00148465 43 Local administration

a CD/DVD, which along with commands such as cdrecord will finally al-
low us to create/save the CD/DVDs. Another particular case is the mkswap
order, which allows us to create swap areas in the partitions, which will
subsequently be activated or deactivated with swapon and swapoff.

e Setting up file systems: mount, umount. commands

e Status verification: the main tool for verifying Linux file systems is the fsck
command. This command checks the different areas of the file system to
verify the consistency and check for possible errors and to correct these
errors where possible. The actual system automatically activates the com-
mand on booting when it detects situations where the system was not
switched off properly (due to a cut in the electricity supply or an acciden-
tal shutting down of the machine) or when the system has been booted
a certain number of times; this check usually takes a certain amount of
time, usually a few minutes (depending on the size of the data). There are
also particular versions for other file systems: fsck.ext2, fsck.ext3, fsck.vfat,
fsck.msdos etc. The fsck process is normally performed with the device in
read only mode with the partitions mounted; it is advisable to unmount
the partitions for performing the process if errors are detected and it is
necessary to correct the errors. In certain cases, for example, if the system
that has to be checked is the root system (/) and a critical error is detect-
ed, we will be asked to change the system's runlevel execution mode to
the root execution mode and to perform the verification process there. In
general, if it is necessary to verify the system; this should be performed in
superuser mode (we can switch between the runlevel mode with the init

or telinit commands).

e Backup processes: whether in the disk, blocks of the disk, partitions, file
systems, files... There are various useful tools for this: tar allows us to copy
files towards file or tape units; cpio, likewise, can perform backups of files
towards a file; both cpio and tar maintain information on the permissions
and file owners; ddmakes it possible to make copies, whether they are files,
devices, partitions or disks to files; it is slightly complex and we have to
have some low-level information, on the type, size, block or sector, and
it can also be sent to tapes.

e Various utilities: some individual commands, some of which are used by
preceding processes to carry out various treatments: badblocks for find-
ing defective blocks in the device; dumpe2fs for obtaining information on
Linux file systems; tune2fs makes it possible to carry out Linux file sys-
tem tuning of the ext2 or ext3 type and to adjust different performance
parameters.

© FUOC e PID_00148465 44 Local administration

We will now mention two subjects related to the concept of storage space,
which are used in various environments for the basic creation of storage space.
The use of RAID software and the creation of dynamic volumes.

7.1. RAID software

The configuration of disks using RAID levels is currently one of the most wide-
ly-used high-availability storage schemes, when we have various disks for im-
plementing our file systems.

The main focus on the different existing techniques is based on a fault-tol-
erance that is provided from the level of the device and the set of disks, to
different potential errors, both physical or in the system, to avoid the loss of
data or the lack of coherence in the system. As well as in some schemes that
are designed to increase the performance of the disk system, increasing the
bandwidth of these available for the system and applications.

Today we can find RAID in hardware mainly in corporate servers (although it
is beginning to appear in desktops), where there are different hardware solu-
tions available that fulfil these requirements. In particular, for disk-intensive
applications, such as audio and/or video streaming, or in large databases.

In general, this hardware is in the form of cards (or integrated with the ma-
chine) of RAID-type disk drivers, which implement the management of one
or more levels (of the RAID specification) over a set of disks administered with
this driver.

In RAID a series of levels (or possible configurations) are distinguished, which
can be provided (each manufacturer of specific hardware or software may sup-
port one or more of these levels). Each RAID level is applied over a set of disks,
sometimes called RAID array (or RAID disk matrix), which are usually disks
with equal sizes (or equal to group sizes). For example, in the case of an array,
four 100 GB disks could be used or, in another case, 2 groups (at 100 GB) of 2
disks, one 30 GB disk and one 70 GB disk. In some cases of hardware drivers,
the disks (or groups) cannot have different sizes; in others, they can, but the
array is defined by the size of the smallest disk (or group).

We will describe some basic concepts on some levels in the following list (it
should be remembered that, in some cases, the terminology has not been fully
accepted, and it may depend on each manufacturer):

e RAID O: The data are distributed equally between one or more disks with-
out information on parity or redundancy, without offering fault-tolerance.
Only data are being distributed; if the disk fails physically, the informa-
tion will be lost and we will have to recover it from the backup copies.
What does increase is the performance, depending on the RAID O imple-

© FUOC e PID_00148465 45 Local administration

mentation, given that the read and write options will be divided among
the different disks.

RAID O

CAZD

"
M

A6

N

A8

Disk 0 Disk 1

Figure 3

e RAID 1: An exact (mirror) copy is created in a set of two or more disks
(known as a RAID array). In this case, it is useful for the reading perfor-
mance (which can increase lineally with the number of disks) and espe-
cially for having a tolerance to faults in one of the disks, given that (for
example, with two disks) the same information is available. RAID 1 is usu-
ally adequate for high-availability, such as 24x7 environments, where we
critically need the resources. This configuration also makes it possible (if
the hardware supports this) to hot swap disks. If we detect a fault in any
of the disks, we can replace the disk in question without switching off the
system with another disk.

© FUOC e PID_00148465 46 Local administration

RAID 1

'
"
"

A3

N

A4

Disk O Disk 1

Figure 4

e RAID 2: In the preceding systems, the data would be divided in blocks for
subsequent distribution; here, the data are divided into bits and redun-
dant codes are used to correct the data. It is not widely used, despite the
high performance levels that it could provide, as it ideally requires a high
number of disks, one per data bit, and various for calculating the redun-
dancy (for example, in a 32 bit system, up to 39 disks would be used).

e RAID 3: It uses byte divisions with a disk dedicated to the parity of blocks.
This is not very widely used either, as depending on the size of the data
and the positions, it does not provide simultaneous accesses. RAID 4 is
similar, but it stripes the data at the block level, instead of byte level, which
means that it is possible to service simultaneous requests when only a
single block is requested.

e RAID 5: Block-level striping is used, distributing the parity among the
disks. It is widely used, due to the simple parity scheme and due to the fact
that this calculation is implemented simply by the hardware, with good

performance levels.

© FUOC e PID_00148465 47 Local administration

RAID 5

Disk O Disk 1 Disk 2 Disk 3

Figure 5

e RAID 0+1 (or 01): A mirror stripe is a nested RAID level; for example, we
implement two groups of RAID O, which are used in RAID 1 to create a
mirror between them. An advantage is that, in the event of an error, the
RAID O level used may be rebuilt thanks to the other copy, but if more disks
need to be added, they have to be added to all the RAID 0 groups equally.

e RAID 10 (1+0): striping of mirrors, groups of RAID 1 under RAID O. In this
way, in each RAID 1 group, a disk may fail without ensuing loss of data. Of
course, this means that they have to be replaced, otherwise the disk that is
left in the group becomes another possible error point within the system.
This configuration is usually used for high-performance databases (due to
the fault tolerance and the speed, as it is not based on parity calculations).

© FUOC e PID_00148465 48 Local administration

RAID 10
RAID 0

RAID 1 RAID 1

Figure 6

Some points that should be taken into account with regard to RAID in general:

e RAID improves the system's uptime, as some of the levels make it possible
for the system to carry on working consistently when disks fail and, de-
pending on the hardware, it is even possible to hot swap the problematic
hardware without having to stop the system, which is especially impor-
tant in critical systems.

e RAID can improve the performance of the applications, especially in sys-
tems with mirror implementations, where data striping permits the lineal
read operations to increase significantly, as the disks can provide simulta-
neous read capability, increasing the data transfer rate.

e RAID does not protect data; evidently, it does not protect data from other
possible malfunctions (virus, general errors or natural disasters). We must
rely on backup copy schemes.

e Datarecovery is not simplified. If a disk belongs to a RAID array, its recov-
ery should be attempted within that environment. Software that is specif-
ic to the hardware drivers is necessary to access the data.

© FUOC e PID_00148465 49

e On the other hand, it does not usually improve the performance of typi-
cal user applications, even if they are desktop applications, because these
applications have components that access RAM and small sets of data,
which means they will not benefit from lineal reading or sustained data
transfers. In these environments, it is possible that the improvement in

performance and efficiency is hardly even noticed.

e Information transfer is not improved or facilitated in any way; without
RAID, it is quite easy to transfer data, by simply moving the disk from one
system to another. In RAID's case, it is almost impossible (unless we have
the same hardware) to move one array of disks to another system.

In GNU/Linux, RAID hardware is supported through various kernel modules,
associated to different sets of manufacturers or chipsets of these RAID drivers.
This permits the system to abstract itself from the hardware mechanisms and
to make them transparent to the system and the end user. In any case, these
kernel modules allow us to access the details of these drivers and to configure
their parameters at a very low level, which in some cases (especially in servers
that support a high I/O load) may be beneficial for tuning the disks system

that the server uses in order to maximise the system's performance.

The other option that we will analyse is that of carrying out these processes
through software components, specifically GNU/Linux's RAID software com-
ponent.

GNU/Linux has a kernel of the so-called Multiple Device (md) kind, which we
can consider as a support through the driver of the kernel for RAID. Through
this driver we can generally implement RAID levels 0,1,4,5 and nested RAID
levels (such as RAID 10) on different block devices such as IDE or SCSI disks.
There is also the linear level, where there is a lineal combination of the avail-
able disks (it doesn't matter if they have different sizes), which means that
disks are written on consecutively.

In order to use RAID software in Linux, we must have RAID support in the
kernel, and, if applicable, the md modules activated (as well as some specific
drivers, depending on the case (see available drivers associated to RAID, such
as in Debian with modconf). The preferred method for implementing arrays
of RAID disks through the RAID software offered by Linux is either during the
installation or through the mdadm utility. This utility allows us to create and
manage the arrays.

Let's look at some examples (we will assume we are working with some SCSI
/dev/sda, /dev/sdb disks... in which we have various partitions available for

implementing RAID):

Creation of a linear array:

Local administration

© FUOC e PID_00148465 50

mdadm -create -verbose /dev/md0 -level=linear -raid-de-

vices=2 /dev/sdal /dev/sdbl

where we create a linear array based on the first partitions of /dev/sda and
/dev/sdb, creating the new device /dev/mdO, which can already be used as a
new disk (supposing that the mount point /media/diskRAID exists):

mkfs.ext2fs /dev/mdo
mount /dev/md0 /media/diskRAID

For a RAID O or RAID 1, we can simply change the level (-level) to raidO or
raidl. With mdadm —detail /dev/mdO, we can check the parameters of the newly
created array.

We can also consult the mdstat entry in /proc to determine the active arrays
and their parameters. Especially in the cases with mirrors (for example, in
levels 1, 5...) we can examine the initial backup reconstruction in the created
file; in /proc/mdstat we will see the reconstruction level (and the approximate
completion time).

The mdadm utility provides many options that allow us to examine and man-
age the different RAID software arrays created (we can see a description and

examples in man mdadm).

Another important consideration are the optimisations that should be made
to the RAID arrays so as to improve the performance, through both the mon-
itoring of its behaviour to optimise the file system parameters, as well as to
use the RAID levels and their characteristics more effectively.

7.2. Logical Volume Manager (LVM)

There is a need to abstract from the physical disk system and its configuration
and number of devices, so that the (operating) system can take care of this
work and we do not have to worry about these parameters directly. In this
sense, the logical volume management system can be seen as a layer of storage
virtualisation that provides a simpler view, making it simpler and smoother
to use.

In the Linux kernel, there is an LVM (logical volume manager), which is based
on ideas developed from the storage volume managers used in HP-UX (HP's
proprietary implementation of UNIX). There are currently two versions and
LVM?2 is the most widely used due to a series of added features.

The architecture of an LVM typically consists of the (main) components:

Local administration

Note

The optimisation of the RAID
arrays, may be an important
resource for system tuning and
some questions should be ex-
amined in:

Software-RAID-Howto, or in
the actual mdadm man.

© FUOC e PID_00148465 51

e Physical volumes (PV): PVs are hard disks or partitions or any other el-
ement that appears as a hard disk in the system (for example, RAID soft-
ware or hardware).

e Logical volumes (LV): These are equivalent to a partition on the physi-
cal disk. The LV is visible in the system as a raw block device (completely
equivalent to a physical partition) and it may contain a file system (such
as the users' /home). Normally, the volumes make more sense for the ad-
ministrators, as names can be used to identify them (for example, we can

use a logical device, named stock or marketing instead of hda6 or sdc3).

e Volume groups (VG): This is the element on the upper layer. The admin-
istrative unit that includes our resources, whether they are logical volumes
(LV) or physical volumes (PV). The data on the available PVs and how the
LVs are formed using the PVs are saved in this unit. Evidently, in order
to use a Volume Group, we have to have physical PV supports, which are
organised in different logical LV units.

For example, in the following figure, we can see volume groups where we have
7 PVs (in the form of disk partitions, which are grouped to form two logical
volumes (which have been completed using /usr and /home to form the file

systems):
/usr Logical partition 1
/dev/hdal /dev/hdal
/dev/hda2 /dev/hda2
/dev/hda3
/dev/hda4 @ /dev/hda3

/home Logical partition 2

Figure 7. Scheme of an example of LVM

Local administration

© FUOC e PID_00148465 52

By using logical volumes, we can treat the storage space available (which may
have a large number of different disks and partitions) more flexibly, according
to the needs that arise, and we can manage the space by the more appropriate
identifiers and by operations that permit us to adapt the space to the needs

that arise at any given moment.

Logical Volume Management allows us to:

e Resize logical groups and volumes, using new PVs or extracting some of
those initially available.

e Snapshots of the file system (reading in LVM1, and reading and/or writing
in LVM2). This makes it possible to create a new device that is a snapshot
of the situation of an LV. Likewise, we can create the snapshot, mount it,
try various operations or configure new software or other elements and, if
these do not work as we were expecting, we can return the original volume

to the state it was in before performing the tests.

e RAID O of logical volumes.

RAID levels 1 or 5 are not implemented in LVM; if they are necessary (in other
words, redundancy and fault tolerance are required), then either we use RAID
software or RAID hardware drivers that will implement it and we place LVM
as the upper layer.

We will provide a brief, typical example (in many cases, the distributor in-
staller carries out a similar process if we set an LVM as the initial storage sys-
tem). Basically, we must: 1) create physical volumes (PV). 2) create the logical
group (VG) and 3) create the logical volume and finally use the following to
create and mount a file system:

1) example: we have three partitions on different disks, we have created three
PVs and started-up the contents:

dd if=/dev/zero of=/dev/hdal bs=1k count=1

dd if=/dev/zero of=/dev/hda2 bs=1k count=1

dd if=/dev/zero of=/dev/hdbl bs=1k count=1

pvcreate /dev/hdal

Physical volume "/dev/sdal" successfully created
pvcreate /dev/hda2

Physical volume "/dev/hda2" successfully created
pvcreate /dev/hdbl

Physical volume "/dev/hdbl" successfully created

2) placement of a VG created from the different PVs:

vgcreate group disks /dev/hdal /dev/hda2 /dev/hdbl

Local administration

© FUOC e PID_00148465 53

Volume group "group disks" successfully created

3) we create the LV (in this case, with a size of 1 GB) based on the elements

that we have in group VG group (-n indicates the name of the volume):

lvcreate -L1G -n logical_ volume group disks

lvcreate -- doing automatic backup of "group disks"
lvcreate -- logical volume "/dev/group disks/ logical volume"
successfully created

And finally, we create a file system (a ReiserFS in this case):

mkfs.reiserfs /dev/group disks/logical volume

Which we could, for example, place as backup space

mkdir /mnt/backup

mount -t reiserfs /dev/group disks/logical volume /mnt/

backup

Finally, we will have a device as a logical volume that implements a file system
in our machine.

Local administration

© FUOC e PID_00148465 54 Local administration

8. Updating Software

In order to administer the installation or to update the software in our system,
we will, in the first instance, depend on the type of software packages used

by our system:

e RPM: packages that use the Fedora/Red Hat distribution (and derivatives).
They are usually handled through the rpm command. Contains informa-
tion on the dependencies that the software has on other software. At a
high level, through Yum (or up2date in some distributions derived from
Red Hat).

e DEB: Debian packages that are usually handled with a set of tools that
work on different levels with individual packages or groups. Among these,
we must mention: dselect, tasksel, dpkg, and apt-get.

e Tar or the tgz (also tar.gz): these are simply package files that have been
joined and compressed using standard commands such as tar, and gzip
(these are used for decompressing). The packages do not contain informa-
tion on any dependencies and can normally be installed in different places
if they do not carry any absolute root (path) information.

There are various graphical tools for handling these packages, such as RPM:
Kpackage; DEB: Synaptic, Gnome-apt; Tgz: Kpackage,or from the actual graph-
ic file manager itself (in Gnome or KDE). There are also usually package con-
version utilities. For example, in Debian we have the alien command, with
which we can change RPM packages to DEB packages. Although it is neces-
sary to take the appropriate precautions, so that the package does not unex-
pectedly modify any behaviour or file system, as it has a different destination
distribution.

Depending on the use of the types of packages or tools: it will be possible to
update or install the software in our system in different ways:

1) From the actual system installation CDs; normally, all the distributions
search for the software on the CDs. But the software should be checked
to ensure that it is not old and does not, therefore, include some patches
like updates or new versions with more features; consequently, if a CD is
used for installation, it is standard practice to check that it is the latest
version and that no more recent version exists.

© FUOC e PID_00148465 55 Local administration

2) Through updating or software search services, whether they are free,
as is the case with Debian's apt-get tool or yum in Fedora, or through
subscription services (paid services or services with basic facilities), such
as the Red Hat Network of the commercial Red Hat versions.

3) Through software repositories that offer pre-built software packages for
a determined distribution.

4) From the actual creator or distributor of the software, who may offer a
series of software installation packages. We may find that we are unable

to locate the type of packages that we need for our distribution.

5) Unpackaged software or with compression only, without any type of
dependencies.

6) Only source code, in the form of a package or compressed file.

© FUOC e PID_00148465 56 Local administration

9. Batch jobs

In administration tasks, it is usually necessary to execute certain tasks at reg-
ular intervals, either because it is necessary to program the tasks so that they
take place when the machine is least being used or due to the periodic nature
of the tasks that have to be performed.

There are various systems that allow us to set up a task schedule (planning
task execution) for performing these tasks out-of-hours, such as periodic or
programmed services:

e nohup is perhaps the simplest command used by users, as it permits the
execution of a non-interactive task once they have logged out from their
account. Normally, when users log out, they lose their processes; nohup
allows them to leave the processes executing even though the user has
logged out.

e gt permits us to launch a task for later, programming the determined point
in time at which we wish for it to start, specifying the time (hh:mm) and
date, or specifying whether it will be today or tomorrow. Examples:
at 10pm task
to perform the task at ten o'clock at night.
at 2am tomorrow task

to perform the task at two o'clock in the morning.

e cron: it permits us to establish a list of tasks that will be performed with the
corresponding programming; this configuration is saved in /etc/crontab;
specifically, in each entry in this file, we have: hour and minutes at which
the task will be performed, which day of the month, which month, which
day of the week, along with which element (which might be a task or a
directory where the tasks that are to be executed are located). For example,
the standard content is similar to:

25 6 * * * root test -e /usr/sbin/anacron || run-parts --report /etc/cron.daily
47 6 * * 7 root test -e /usr/sbin/anacron || run-parts --report /etc/cron.weekly
52 6 1 * * root test -e /usr/sbin/anacron || run-parts --report /etc/cron.monthl

where a series of tasks are programmed to execute: each day ("*" indicates
'whichever'), weekly (7th day of the week) or monthly (the 1st day of each
month). Normally, the tasks will be executed with the crontab command, but
the cron system assumes that the machine is always switched on, and if this
is not the case, it is better to use anacron, which checks whether the task was
performed when it was supposed to be or not, and if not, it executes the task.

© FUOC e PID_00148465 57

Each line in the preceding file is checked to ensure that the anacron command
is there and the scripts associated to each action are executed; in this case,
they are saved in directories assigned for this.

There may also be cron.allow or cron.deny files to limit who can (or cannot)
put tasks in cron. Through the crontab command, a user may define tasks in
the same format as we have seen before, which are usually saved in /var/spool/
cron/crontabs. In some cases, there is also a /etc/cron.d directory where we
can place the tasks and they are treated as through they were an extension to
the /etc/crontab file.

Local administration

© FUOC e PID_00148465 58 Local administration

10. Tutorial: combined practices of the different
sections

We will begin by examining the general state of our system. We will carry
out different steps in a Debian system. It is an unstable Debian system (the
unstable version, but more updated); however, the procedures are, mostly,
transferable to other distributions such as Fedora/Red Hat (we will mention
some of the most important changes). The hardware consists of a Pentium 4
at 2.66 Ghz with 768 MB RAM and various disks, DVD and CD-writer, as well
as other peripherals, on which we will obtain information as we proceed step
by step.

First we will see how our system booted up the last time:

uptime
17:38:22 up 2:46, 5 users, load average: 0.05, 0.03, 0.04

This command tells us the time that the system has been up since it last boot-
ed, 2 hours and 47 minutes and, in this case, we have 5 users. These will not
necessarily correspond to five different users, but they will usually be opened
user sessions (for example, through one terminal). The who command pro-
vides a list of these users. The load average is the system's average load over
the last 1, 5 and 15 minutes.

Let's look at system's boot log (dmesg command), and the lines that were gen-
erated when the system booted up (we have removed some lines for the pur-
pose of clarity):

Linux version 2.6.20-1-686 (Debian 2.6.20-2) (waldi@debian.org)

(gcc version 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)) #1 SMP Sun Apr
15 21:03:57 UTC 2007

BIOS-provided physical RAM map:
BIOS-e820: 0000000000000000 - 000000000009f800 (usable)
BIOS-e820: 000000000009f800 - 00000000000a0000 (reserved)
BIOS-e820: 00000000000ce000 - 0000000000040000 (reserved)
BIOS-e820: 00000000000dc000 - 0000000000100000 (reserved)
BIOS-e820: 0000000000100000 - 000000002f6e0000 (usable)
BIOS-e820: 000000002f6e0000 - 000000002f6£0000 (ACPI data)
BIOS-e820: 000000002f6f0000 - 000000002£700000 (ACPI NVS)
BIOS-e820: 000000002£700000 - 000000002f780000 (usable)
BIOS-e820: 000000002£780000 - 0000000030000000 (reserved)
BIOS-e820: 00000000f££800000 - 00000000f£c00000 (reserved)
BIOS-e820: 00000000fffffc00 - 0000000100000000 (reserved)

OMB HIGHMEM available.

© FUOC e PID_00148465 59

759MB LOWMEM available.

These first lines already indicate some interesting data: the Linux kernel is
version 2.6.20-1-686, one version 2.6 revision 20 at revision 1 of Debian and
for 686 machines (Intel x86 32 bits architecture). They also indicate that we
are booting a Debian system, with this kernel which was compiled with a GNU
gcc compiler, version 4.1.2 and the date. There is then a map of the memory
zones used (reserved) by the BIOS and then the total memory detected in the
machine: 759 MB, to which we would have to add the first 1 MB, making a
total of 760 MB.

Kernel command line: BOOT_IMAGE=LinuxNEW ro root=302 lang=es acpi=force
Initializing CPU#0

Console: colour dummy device 80x25

Memory: 766132Kk/777728k available (1641k kernel code, 10968k reserved, 619k da-
ta, 208k init, Ok highmem)

Calibrating delay using timer specific routine.. 5320.63 BogoMIPS (1pj=10641275)

Here, we are told how the machine booted up and which command line has
been passed to the kernel (different options may be passed, such as lilo or
grub). And we are booting in console mode with 80 x 25 characters (this can
be changed). The BogoMIPS are internal measurements of the kernel of the
CPU speed. There are architectures in which it is difficult to detect how many
MHz the CPU works with and this is why this speed measurement is used.
Subsequently, we are given more data on the main memory and what it is
being used for at this booting stage.

CPU: Trace cache: 12K uops, L1 D cache: 8K

CPU: L2 cache: 512K

CPU: Hyper-Threading is disabled

Intel machine check architecture supported.

Intel machine check reporting enabled on CPU#O0.
CPUO: Intel P4/Xeon Extended MCE MSRs (12) available
CPUO: Intel(R) Pentium(R) 4 CPU 2.66GHz stepping 09

Likewise, we are given various data on the CPU: the size of the first-level cache,
the internal CPU cache, L1 divided in a TraceCache of the Pentium 4 (or cache
instruction), and the data cache and the unified second-level cache (L2), the
type of CPU, its speed and the system's bus.

Local administration

© FUOC e PID_00148465 60

PCI: PCI BIOS revision 2.10 entry at 0xfd994, last bus=3
Setting up standard PCI resources

NET: Registered protocol

IP route cache hash table entries: 32768 (order: 5, 131072 bytes)

TCP: Hash tables configured (established 131072 bind 65536)

checking if image is initramfs... it is

Freeing initrd memory: 1270k freed

fbO: VESA VGA frame buffer device

Serial: 8250/16550 driver $Revision: 1.90 $ 4 ports, IRQ sharing enabled
serial8250: ttySO at I/O 0x3f8 (irq = 4) is a 16550A

00:09: ttySO at I/O 0x3£8 (irq = 4) is a 16550A

RAMDISK driver initialized: 16 RAM disks of 8192K size 1024 blocksize
PNP: PS/2 Controller [PNP0303:KBCO,PNPOf13:MSEOQ] at 0x60,0x64 irq 1,12
i8042.c: Detected active multiplexing controller, rev 1.1.

serial: i8042 KBD port at 0x60,0x64 irq 1

serial: 8042 AUXO port at 0x60,0x64 irq 12

serial: i8042 AUX1 port at 0x60,0x64 irq 12

serial: i8042 AUX2 port at 0x60,0x64 irq 12

serial: i8042 AUX3 port at 0x60,0x64 irq 12

mice: PS/2 mouse device common for all mice

The kernel and devices continue to boot, mentioning the initiation of the net-
work protocols. The terminals, the serial ports ttySO (which would be com1)
and ttySO1 (com?2). It provides information on the RAM disks that are being
used, the detection of PS2 devices, keyboard and mouse.

ICH4: IDE controller at PCI slot 0000:00:1f.1

ide0: BM-DMA at 0x1860-0x1867, BIOS settings: hda:DMA, hdb:pio
idel: BM-DMA at 0x1868-0x186f, BIOS settings: hdc:DMA, hdd:pio
Probing IDE interface ideO...

hda: FUJITSU MHT2030AT, ATA DISK drive

ideO at 0x1f0-0x1f7,0x3f6 on irq 14

Probing IDE interface idel...

hdc: SAMSUNG CDRW/DVD SN-324F, ATAPI CD/DVD-ROM drive
idel at 0x170-0x177,0x376 on irq 15

SCSI subsystem initialized

libata version 2.00 loaded.

hda: max request size: 128KiB

hda: 58605120 sectors (30005 MB) w/2048KiB Cache, CHS=58140/16/63<6>hda:
hw_config=600b

, UDMA(100)

hda: cache flushes supported

hda: hdal hda2 hda3

kjournald starting. Commit interval 5 seconds

EXT3-fs: mounted file system with ordered data mode.

hdc: ATAPI 24X DVD-ROM CD-R/RW drive, 2048kB Cache, UDMA(33)
Uniform CD-ROM driver Revision: 3.20

Addinf 618492 swap on /dev/hda3.

Detection of IDE devices, detecting the IDE chip in the PCI bus and reporting
what is driving the devices: hda, and hdc, which are, respectively: a hard disk
(Fujitsu), a second hard disk, a Samsung DVD Samsung, and a CD-writer (giv-
en that in this case, we have a combo unit). It indicates active partitions. Sub-
sequently, the machine detects the main Linux file system, a journaled ext3,
that activates and adds the swap space available in a partition.

Local administration

© FUOC e PID_00148465 61

usbcore: registered new interface driver usbfs
usbcore: registered new interface driver hub
usbcore: registered new device driver usb

input: PC Speaker as /class/input/inputl

USB Universal Host Controller Interface driver v3.0
hub 1-0:1.0: USB hub found

hub 1-0:1.0: 2 ports detected

uhci_hcd 0000:00:1d.1: UHCI Host Controller
uhci_hcd 0000:00:1d.1: new USB bus registered, assigned bus number 2
uhci_hcd 0000:00:1d.1: irq 11, io base 0x00001820
usb usb2: configuration #1 chosen from 1 choice
hub 2-0:1.0: USB hub found

hub 2-0:1.0: 2 ports detected

hub 4-0:1.0: USB hub found

hub 4-0:1.0: 6 ports detected

More detection of devices, USB (and the corresponding modules); in this case,
two hub devices (with a total of 8 USB ports) have been detected.

parport: PnPBIOS parport detected.

parportO: PC-style at 0x378 (0x778), irq 7, dma 1
[PCSPP, TRISTATE, COMPAT,EPP,ECP,DMA|

input: ImPS/2 Logitech Wheel Mouse as /class/input/input2

ieee1394: Initialized config rom entry 'ip1394'

eepro100.c:v1.09j-t 9/29/99 Donald Becker

Synaptics Touchpad, model: 1, fw: 5.9, id: 0x2e6eb1, caps: 0x944713/0xc0000
input: SynPS/2 Synaptics TouchPad as /class/input/input3

agpgart: Detected an Intel 845G Chipset

agpgart: Detected 8060K stolen Memory

agpgart: AGP aperture is 128M

ethO: OEM i82557/i82558 10/100 Ethernet, 00:00:F0:84:D3:A9, IRQ 11.
Board assembly 000000-000, Physical connectors present: RJ45

e100: Intel(R) PRO/100 Network Driver, 3.5.17-k2-NAPI

usbcore: registered new interface driver usbkbd

Initializing USB Mass Storage driver...

usbcore: registered new interface driver usb-storage

USB Mass Storage support registered.

1pO: using parportO (interrupt-driven).
ppdev: user-space parallel port driver

And the final detection of the rest of the devices: Parallel port, mouse model,
FireWire port (IEEE1394) network card (Intel), a touchscreen, the AGP video
card (i845). More data on the network card, an intel pro 100, registry of usb as
mass storage (indicates a USB storage device as an external disk) and detection
of parallel port.

We can also see all this information, which we accessed through the dmesg
command, dumped in the system's main log, /var/log/messages. In this log,
we will find the kernel messages, among others, the messages of the daemons
and network or device errors, which communicate their messages to a special
daemon called syslogd, which is in charge of writing the messages in this file.
If we have recently booted the machine, we will observe that the last lines
contain exactly the same information as the dmesg command,

Local administration

© FUOC e PID_00148465 62

for example, if we look at the final part of the file (which is usually very large):

tail 200 /var/log/messages

We observe the same lines as before and some more information such as:

shutdown[13325]: shutting down for system reboot
kernel: usb 4-1: USB disconnect, address 3

kernel: nfsd: last server has exited

kernel: nfsd: unexporting all file systems

kernel: Kernel logging (proc) stopped.

kernel: Kernel log daemon terminating.

exiting on signal 15
syslogd 1.4.1#20: restart.

kernel: klogd 1.4.1#20, log source = /proc/kmsg started.

Linux version 2.6.20-1-686 (Debian 2.6.20-2) (waldi@debian.org) (gcc version 4.1.2
20061115 (prerelease) (Debian 4.1.1-21)) #1 SMP Sun Apr 15 21:03:57 UTC 2007
kernel: BIOS-provided physical RAM map:

The first part corresponds to the preceding shutdown of the system, informing
us that the kernel has stopped placing information in /proc, that the system is
shutting down... At the beginning of the new boot, the Syslogd daemon that
generates the log is activated, and the system begins to load, which tells us
that the kernel will begin to write information in its system, /proc; we look at
the first lines of the dmesg mentioning the version of the kernel that is being
loaded and we then find what we have seen with dmesg.

At this point, another useful command for finding out how the load process
has taken place is Ismod, which will tell us which modules have been loaded
in the kernel (summarised version):

lsmod

Module Size Used by

nfs 219468 (o]

nfsd 202192 17

exportfs 5632 1 nfsd
lockd 58216 3 nfs,nfsd
nfs_acl 3616 2 nfs,nfsd
sunrpc 148380 13 nfs,nfsd, lockd,nfs_acl
ppdev 8740 0

1p 11044 0

button 7856 (o]

ac 5220 0

battery 9924 0

md_mod 71860 1
dm_snapshot 16580 0
dm_mirror 20340 0

dm_mod 52812 2 dm_snapshot,dm mirror

Local administration

© FUOC » PID_00148465 Local administration

© FUOC e PID_00148465 64

We see that we basically have the drivers for the hardware that we have de-
tected and other related elements or those necessary by dependencies.

This gives us, then, an idea of how the kernel and its modules have been load-
ed. In this process, we may already have observed an error, if the hardware
is not properly configured or there are kernel modules that are not properly
compiled (they were not compiled for the appropriate kernel version), inex-
istent etc.

The next step for examining the processes in the system, such as the ps (for
process status) command, for example (only the system processes are shown,
not the user ones):

ps -ef
UID PID PPID C STIME TTY TIME CMD

Processes information, UID user that has launched the process (or the identi-
fier with which it has been launched), PID and process code assigned by the
system are consecutively shown, as the processes launch; the first is always O,
which corresponds to the init process. PPID is the id of the current parent pro-
cess. STIME, time in which the process was booted, TTY, terminal assigned to
the process (if there is one), CMD, command line with which it was launched.

root 1 0 0 14:52 ? 00:00:00 init [2]

root 3 1 0 14:52 ? 00:00:00 [ksoftirqd/0]

root 143 6 0 14:52 ? 00:00:00 [bdflush]

root 145 6 0 14:52 ? 00:00:00 [kswapdO]

root 357 6 0 14:52 ? 00:00:01 [kjournald]

root 477 1 0 14:52 ? 00:00:00 udevd --daemon
root 719 6 0 14:52 ? 00:00:00 [khubd]

Various system daemons, such as the kswapd daemon, which controls the
virtual memory swaps. Handling of system buffers (bdflush). Handling of file
system journal (kjournald), USB handling (khubd). Or the udev daemon that
controls the hot device connection. In general, the daemons are not always
identified by a d at the end, and if they have a k at the beginning, they are
normally internal threads of the kernel.

root 1567 1 0 14:52 ? 00:00:00 dhclient -e -pf ...
root 1653 1 0 14:52 ? 00:00:00 /sbin/portmap
root 1829 1 0 14:52 ? 00:00:00 /sbin/syslogd
root 1839 1 0 14:52 ? 00:00:00 /sbin/klogd -x
root 1983 1 0 14:52 ? 00:00:09 /usr/sbin/cupsd
root 2178 1 0 14:53 ? 00:00:00 /usr/sbin/inetd

Local administration

© FUOC e PID_00148465 65 Local administration

We have dhclient, which indicates that the machine is the client of a DHCP
server, for obtaining its IP. Syslogd, a daemon that sends messages to the log.
The cups daemon, which, as we have discussed, is related to the printing sys-
tem. And inetd, which, as we shall see in the section on networks, is a type of
"superserver" or intermediary of other daemons related to network services.

root 215410 14:537? 00:00:00 /usr/sbin/rpc.mountd
root 224110 14:537? 00:00:00 /usr/sbin/sshd

root 2257 10 14:537? 00:00:00 /usr/bin/xfs -daemon
root 257310 14:537? 00:00:00 /usr/sbin/atd
root 258010 14:537? 00:00:00 /usr/sbin/cron

root 267510 14:537? 00:00:00 /usr/sbin/apache

www-data 2684 2675 0 14:53 ? 00:00:00 /usr/sbin/apache
www-data 2685 2675 0 14:53 ? 00:00:00 /usr/sbin/apache

There is also sshd, a safe remote access server (an improved version that per-
mits services compatible with telnet and FTP). xfs is the fonts server (character
types) of X Window. The atd and cron commands can be used for handling
programmed tasks at a determined moment. Apache is a web server, which
may have various active threads for attending to different requests.

root 2499 2493 0 14:53 ? 00:00:00 /usr/sbin/gdm

root 2502 2499 4 14:53 tty7 00:09:18 /usr/bin/X :0 -dpi 96 ...
root 2848 1 0 14:53 tty2 00:00:00 /sbin/getty 38400 tty2
root 2849 1 0 14:53 tty3 00:00:00 /sbin/getty 38400 tty3
root 3941 2847 0 14:57 ttyl 00:00:00 -bash

root 16453 12970 0 18:10 pts/2 00:00:00 ps -ef

gdm is the graphical login of the Gnome desktop system (the entry point
where we are asked for the login name and password) and the getty process-
es are the ones that manage the virtual text terminals (which we can see by
pressing Alt+Fx (or Ctrl+Alt+Fx if we are in graphic mode). X is the process of
the X Window System graphic server and is essential for executing any desk-
top environment above this. An open shell (bash), and finally, the process that
we have generated when requesting this ps from the command line.

The ps command provides various command line options for adjusting the
information that we want on each process, whether it is the time that it has
been executing, the percentage of CPU used, memory used etc. (see man of
ps). Another very interesting command is top, which does the same as ps but
dynamically; in other words, it updates every certain period of time, we can
classify the processes by use of CPU or memory and it also provides informa-
tion on the state of the overall memory.

Other useful commands for resources management are free and vmstat, which Note

provide information on the memory used and the virtual memory system:

See man of the commands to
interpret outputs.

free total used free shared buffers cached

Mem: 767736 745232 22504 0 89564 457612

-/+ buffers/cache: 198056 569680

© FUOC e PID_00148465 66

Swap: 618492 1732 616760

vmstat

ProCs ----------- MEemory---------- --- swap-- ----- io-- --system-- ---- cpu----
r b swpd free buff cache si so bi bo in c¢s us sy id wa

101732 22444 89584 45764000 68 137 29141871857

The free command also shows the swap size, approximately 600 MB, which
are not currently used intensely as there is sufficient physical memory space;
there are still 22 MB free (which indicates a high use of the physical memory
and the need to use swap soon). The memory space and swap (as of kernels
2.4) add to each other to comprise the total memory in the system, which in
this case, means that there is a total of 1.4 GB available. This may seem a lot,
but it will depend on the applications that are being executed.

Local administration

© FUOC e PID_00148465 67

Activities

1) The swap space makes it possible to add to the physical memory so that there is more
virtual memory. Depending on the amounts to add extra space to the physical memory and
swap space, can all the memory get used up? Can we resolve this in any other way that does
not involve adding more physical memory?

2) Suppose that we have a system with two Linux partitions: one / and one swap partition.
How do we solve the situation if the user accounts use up all the disk space? And if we have
an isolated /home partition, which was also being used up, how would we solve this?

3) Install the CUPS printing system, define our printer so that it works with CUPS and try
administering through the web interface. As the system is now, would it be advisable to
modify, in any way, CUPS' default settings? Why?

4) Examine the default setting that comes with the GNU/Linux system for non-interactive
work using cron. Which jobs are there and when are they being performed? Any ideas for
new jobs that have to be added?

5) Reproduce the workshop analysis (plus the other sections of the unit) on the machine
that is available. Can we see any errors or irregular situations in the examined system? If so,
how do we solve them?

Local administration

© FUOC « PID_00148465 68
Bibliography
Other sources of reference and information

[WmO2] [Fri02] [SmiO2] GNU/Linux and UNIX administration manuals, which explain in
detail the aspects on local administration and printing systems management.

[Gt] Updated information on the printing systems and their settings, as well as the details
of some of the printers, can be found here. For specific details on the printer models and
drivers, we can go to http://www.linuxprinting.org/.

[Hin][Koe] We can find information on the different file systems available and the schemes
for creating partitions for the installation of the system.

Local administration

Network
administration

Remo Suppi Boldrito

© FUOC PID_00148471 Network administration

© FUOC PID_00148471 Network administration

Index
INtroduction...............ccoooooiiii s 5
1. Introduction to TCP/IP (TCP/IP suite).......cccccoevviiiiiiniiniiiiinnnnnn.e. 7
1.1. Services on TCP/IP 7
1.2, WHhat iS TCP/IP? ..ttt ettt e e e e e e ena e ees 9
1.3. Physical network devices (hardware)cccceeeeveeiiiiiiiiiiicineennnes 10
2. TCP/IP COMCEPES....c..oiiiiiiiiiiiiiiiiiiiiiiiiiee ettt et eeeaaees 13
3. How to assign an Internet address..................ccoooiiiiiiiiiiiiiiin.. 16
4. How to configure the networkK................cc..ooiiiiiiiiinin 20
4.1. Configuration of the network interface controller (NIC) 20
4.1.1. Configuration of network in Fedora stylec.....cc....... 22
4.1.2. Configuration of a Wi-Fi (wireless) network 23
4.2. Configuration of Name ResOlvercooiiiiiiiiiiiiiiiiiin, 25
4.3. Configuration of TOUtING ...cc.uiiiiiiiiiiiiiiii et 27
4.4. Configuration of inetdccceeiiiiiiiiiiiiiiiiiiiii e, 28
4.5. Additional configuration: protocols and networks 31
4.6. Security aspectsccccciiiiiiiiiiiiiiiiii s 31
4.7, IP OPLIONS .eieniiiiiiieie ettt ea e 33
4.7.1. Commands for solving problems with the network 33
5. DHCP Configuration..................cccoooiiiiiiiiiiiiii e, 35
6. TP AlBASIING......cooiiiiiiiiiiiiiiii et e 37
7. IP MasqQUerade.............ccooiiiiiiiiiiiiiiiiiiii e 38
8. NAT with Kernel 2.2 or higher....................ccoooiiiiiiniiinn. 39
9. How to configure a DialUP and PPP connection...................... 40
10. Configuring the network through hotplug............................... 43
11. Virtual private network (VPN)........ccoooiiiiiiiiiiiieeeeeeee 45
11.1. Simple eXamplecoooiiiiiiiiiiiiiiiiie e 45
12. Advanced configurations and tools............................ 48

ACHIVELE@S. ...ttt et et e e e e e et e e e e eaaanns 55

© FUOC PID_00148471 Network administration

Annex. Controlling the services linked to an FC6 network........... 56

© FUOC » PID_00148471 5

Introduction

The UNIX (GNU/Linux) operating system is used as an example of a standard
communications architecture. From the mythical UUCP (Unix-to-Unix CoPy
or service for copying between UNIX operating systems) to the current net-
works, UNIX has always proven its versatility in aspects related to communica-
tion and information exchange. With the introduction of computer networks
(Local Area Networks, Wide Area Networks or the latest Metropolitan Area
Networks) offering multipoint connections at different speeds (from 56 kbits/
sec to 1 Gbit/sec), new services that are based on faster protocols, portable be-
tween different computers and better adapted, such as TCP/IP (transport control
program / Internet protocol), have arisen. [ComO1, Mal96, Cis00, Gar98, KDO0O]

Network administration

© FUOC PID_00148471 7 Network administration

1. Introduction to TCP/IP (TCP/IP suite)

The TCP/IP protocol synthesises an example of a will to communicate and to
standardise the communication on a global scale.

The TCP/IP is, in reality, a set of basic protocols that have been added to
the original protocol, to meet the different needs in computer-to-com-
puter communication, such as TCP, UDP, IP, ICMP, ARP. [Mal96]

TCP/IP is most frequently used by most current users to remotely connect to Note

other computers (telnet, SSH Secure Shell), to use remote files (NFS network

file system) or to transfer them (FTP file transfer protocol, HTTP hypertext markup Ly;ii::al use of TCP/IP remote

protocol). telnet localhost Debian
GNU/Linux 4.0
login:

1.1. Services on TCP/IP
The most important traditional TCP/IP services are [Gar98]:

e File transfer: the file transfer protocol (FTP) allows the user of a computer
to obtain files or send them from one computer to another. In order to do
this, the user must have an account in the remote computer and identify
themselves through their login name and password or the user must con-
nect to computers containing an information repository (software, docu-
mentation etc.) under an anonymous account to read those computers on
their computer. This is not the same as the more recent Network File Sys-
tems (NFS) (or netbios protocols over TCP/IP, a completely insecure "in-
vention" in Windows, which should be replaced with an older but more
secure version called netbeui) that make it possible to virtualise the file
system in a machine so that it can be accessed interactively from another
computer.

e Remote connection (login): the terminal network protocol (telnet) allows
a user to remotely connect to a computer. The local computer is used as
the remote computer's terminal and everything is executed over it, whilst
the local computer remains invisible from the perspective of the user that
started the session. This service has now been replaced by the SSH (secure
shell), for security reasons. This can use a remote connection through tel-
net and the messages are sent as plain text; in other words, if someone
"examines" the messages on the network, it is equivalent to looking at the
user's screen. SSH encrypts the information (which is an added-value to

© FUOC » PID_00148471 8

the communication) so that the packages on the network cannot be read
by any foreign node.

e Email: this service makes it possible to send messages to users of oth-
er computers. This form of communication has become an essential ele-
ment for users and allows email messages to be sent to a central server, so
that they can then be recovered using specific programs (clients) or read
through an internet connection.

The progress in the technology and the increasingly lower cost of computers
has meant that determined services have specialised and are now configured
on determined computers working in a client-server model. A server is a sys-
tem that performs specific services for the rest of the network or connected
clients. A client is another computer that uses this service. All of these services
are generally offered within TCP/IP:

e File systems in network file systems: allows a system to access the files
through a remote system in a manner that is more integrated than FTP. The
storage devices (or part of them) are exported to the system that wishes to
access the files and this system can "see" them as if they were local devices.
This protocol permits in the server side to establish the rules and ways of
accessing the files, which (if properly configured) makes the place where
the information physically resides independent from the place where the
information is "accessed".

e Remote printing: permits users to access printers connected to other com-
puters.

e Remote execution: permits a user to execute a program on another com-
puter. There are various ways of executing a program in this way: either
through a command (xsh, ssh, rexec) or through systems with RPC (re-
mote procedure call), which allows a program on a local computer to ex-
ecute a function in a program on another computer. The RPC processes
have been studied in-depth and there are various implementations, but
the most common are Xerox's Courier and Sun's RPC (the latter has been
adopted in most UNIX systems).

e Name servers: in large-scale networks of computers, there are data that
have to be centralised so that they can be easily used; for example, user
names, passwords, internet addresses etc. All of this makes it easier for a
user to have an account for all the machines in an organisation. For ex-
ample, Sun's Yellow Pages (NIS in the current Sun versions) is designed
to handle all these types of data and it is available for most UNIX sys-
tems. The DNS (domain name system) is another domain-name service but
one that keeps a direct relationship between the hostname and the logical
identification name of this machine (IP address).

Network administration

© FUOC PID_00148471 9 Network administration

e Terminal Servers: connect terminals to a server that executes telnet so
as to connect to the central computer. These types of setup are basically
useful for reducing costs and improving the connections to the central
computer (in some cases).

e Graphical terminal servers (network-oriented window systems): these per-
mit a computer to visualise graphic information on a display that is con-
nected to another computer. The most common of these systems is X Win-

dow.

1.2. What is TCP/IP?

TCP/IP is in fact two communication protocols between computers that are
independent to each other.

On the one hand, TCP (transmission control protocol) defines the com-
munication rules so that a (host) computer can talk to another com-
puter (if we use the OSI/ISO communications model as a reference, it
describes layer 4, see following table).

TCP is a connection-oriented protocol, in other words, it is equivalent to a
telephone, and the communication is considered as a data stream.

IP (Internet protocol) defines the protocol to identify the networks and
establish the pathways between different computers.

In other words, it routes the data between two computers through the net-
works. It corresponds to layer 3 of the OSI/ISO model and it is a connection-
less protocol (see following table). [ComO1, Rid0O, Dra99]

An alternative to TCP is the UDP protocol (user datagram protocol), which treats
the data as a message (datagram) and sends packets. It is a connectionless pro-
tocol (the recipient computer does not necessarily have to be listening when
the other computer establishes communication with it) and it has the advan-
tage of creating less overload on the network than a TCP connection, but it is
less reliable (the packets may not arrive or arrive duplicated).

There is another alternative protocol called ICMP (Internet control message pro-
tocol). ICMP is used for error or control messages. For example, if one tries to
connect to a host computer, the local computer may receive an ICMP message
indicating "host unreachable". ICMP may also be used to extract information
on a network. ICMP is similar to UDP in that it handles messages (datagrams),

© FUOC » PID_00148471 10

but it is simpler than UPD, because it does not have port identification (the
ports are mailboxes where the data packets are left and where the server ap-
plications read the packets) in the message header.

In the OSI/ISO communications model (OS], open systems interconnection ref-
erence model, 1SO, International Standards Organization), is a theoretical model
applied by many networks.There are seven communication layers where each
one has an interface for communicating with the preceding and following

Network administration

one.
Level Name Use
7 Application SMTP, simple mail transfer protocol, the service itself
6 Introduction Telnet, FTP implements the service protocol
5 Session Generally not used
4 Transport TCP, UDP transformation in accordance with the communication protocol.
3 Network IP makes it possible to route the packet.
2 Link Drivers - transformation in accordance with the physical protocol.
1 Physical Ethernet, ADSL... physically sends the packet

To summarise, TCP/IP is a set of protocols including IP, TCP, UDP that provide
a set of low-level functions used by most of the applications. [KDOO, Dra99].

Some of the protocols that use the abovementioned services were designed by
Berkeley, Sun or other organisations. They are not imcluded (officially) as part
of the Internet protocol suite (IPS). However, they are implemented using TCP/IP
and they are therefore considered as a formal part of IPS. A description of the
protocols available by Internet can be found in RFC 1011 (see references on
REFC [IET]). There is currently a new version of protocol IPv6, also called IPng
(IP next generation) which replaces IPv4. This protocol significantly improves
the previous ones in elements such as having a greater number of nodes, traffic
control, security or improvements in the routing.

1.3. Physical network devices (hardware)

From the physical point of view (layer 1 of the OSI model), the most com-
monly used hardware for LAN is that known as Ethernet (or FastEthernet or
GigaEthernet). Its advantages consist of a lower cost, acceptable speeds (10,
100 or 1,000 megabits per second) and its user-friendly installation.

There are three connection modes, depending on the type of intercon-
nection: thick, thin and twisted pair.

© FUOC » PID_00148471 11

The first two are obsolete (they used coaxial cable) whereas the last is through
twisted pair cables and connectors similar to those used by telephones (known
as RJ45). The twisted pair connection is known as 10baseT or 100baseT (ac-
cording to the speed) and it uses repeaters known as hubs as interconnec-
tion points. Ethernet technology uses intermediate communication elements
(hubs, switches, routers) to configure multiple segments of the network and
divide the traffic to improve the performance of the data transfer. Normally,
in large organisations, these Ethernet LAN are interconnected through fibre
optic cables using FDDI (fibre distributed data interface) technology, which is
more expensive and more difficult to install, but with which we can obtain
transmission speeds equivalent to Ethernet whilst not having the limits on
distance involved in Ethernet (FDDI allows for distances of up to 200 km).
The costs are justified when they are used between buildings or other network
segments that are very congested. [Rid0O, KDOO].

At the same time, there are other types of hardware that are less common, but
no less interesting, such as ATM (asynchronous transfer mode). This hardware
allows us to set up a LAN with a high level of service quality and it is a good
option when we have to set up high-speed and low-latency networks, such as
those that require real time video streaming.

There is other hardware supported by GNU/Linux for interconnecting com-
puters, of which we would mention: Frame Relay or X.25 (used in comput-
ers that access or interconnect WANs and for servers with large data transfer
needs), Packet Radio (interconnection via radio using protocols such as AX.25,
NetRom or Rose) or dial-up devices that use serial lines, which are slow but
very cheap, through analogical or digital (RDSI, DSL, ADSL etc.) modems. The
latter are the ones commonly used domestically or in small and medium-sized
businesses, and they require another protocol for the transmission of packets,
such as SLIP or PPP. In order to virtualise the diverse hardware on a network,
TCP/IP defines an abstract interface through which all the packets that will be
sent by a physical device (which includes a network or network segment) are
concentrated. Consequently, for each communication device in the machine,
we will have a corresponding interface in the operating system's kernel.

Example

In GNU/Linux, Ethernet is called with ethx (where, "x" indicates an order number begin-
ning with 0), the interface to serial lines (modems) is called up with pppx (for PPP) or slx
(for SLIP); fddix is used for FDDI. These names are used by the commands to configure
them and assign them the identification that will subsequently permit them to commu-
nicate with other devices in the network.

Network administration

© FUOC » PID_00148471 12

In GNU/Linux, this may mean that we have to include the appropriate mod-
ules for the appropriate device (NIC network interface card) in the kernel or as
modules, and this means compiling the kernel after choosing, the appropri-
ate NIC, with, for example, make menuconfig, indicating it as internal or as a
module (in the latter case, the appropriate module must also be compiled).

The network devices can be seen in the /dev directory, where there is a file
(a special file, which may be a block file or a character file, according to the
transfer) that represents each hardware device.[KDOO, Dra99].

Network administration

Note

How do we see the network
interfaces that are available?
ifconfig -a

This command shows all of the

default interfaces/parameters
for each one.

© FUOC » PID_00148471 13

2. TCP/IP Concepts

As we have observed, communication involves a series of concepts that we
will now discuss [Mal96, ComO1]:

e Internet/intranet: the term intranet refers to the application of Internet
technology (the network of networks) within an organisation, basically
to distribute the company's internal information and to have it available
within the company. For example, the services offered by GNU/Linux as
Internet and Intranet services include email, WWW, news etc.

e Node: the (host) node refers to a machine that is connected to the network
(in a wider sense, a node may be a computer, a printer, a CD (rack) etc.);
in other words, an active and differentiable element in the network that
requires or provides some kind of service and/or shares information.

e Ethernet Network Address (Ethernet address or MAC address): a 48-bit
number (for example 00:88:40:73:AB:FF —in octal- 0000 0000 1000 1000
0100 0000 0111 0011 1010 1011 1111 1111 —in binary-) that is inside the
physical device (hardware) of the Ethernet driver (NIC) and that is record-
ed by the manufacturer (this number must be the only one in the world,
each NIC manufacturer has a pre-allocated range).

e Host name: each node must also have a unique network name. These may
simply be names or they may use a scheme based on a hierarchical domain
naming scheme. The names of the nodes must be unique, which is easy
in small networks, more complex in large networks and impossible on the
Internet unless some form of control is implemented. The names must
have a maximum of 32 characters within the a-z, A-Z and 0-9 ranges and
they may not contain spaces or # beginning with an alphabetic character.

e Internet Address (IP address): this consists of four numbers within the
range of 0-255 separated by dots (for example, 192.168.0.1) and it is used
universally to identify the computers on a network or on the Internet.
The names are translated into IP addresses by a DNS (domain name system)
server, that transforms the node names (legible to humans) in IP addresses
(this service is performed by an application called named).

e Port: numerical identifier of the mailbox in a node that allows a specific
application to read a message (TCP,UDP) (for example, two machines that
communicate by telnet, will do so through port 23, but if they have a FTP
transaction they will do so through port 21). There may be different ap-

Network administration

Note

Name of the machine:

more /etc/hostname

Note

Machine IP address:

more /etc/hosts

Note

Pre-assigned ports in UNIX:
more /etc/services

This command shows the
ports predefined with support
to TCP or UDP communica-
tions.

Note

Visualisation of the routing's
configuration:

netstat -r

© FUOC « PID_00148471 14 Network administration

plications communicating between two nodes through various different
ports simultaneously.

e Router node (gateway): it is a node that performs the routing (data trans- Note

fer). A router, depending on its characteristics, may transfer information
Domain and our DNS server is:

more /etc/default do-—
tive. main

between two similar or different network protocols and may also be selec-

more /etc/resolv.conf

e Domain name system (DNS): makes it possible to ensure one single name

and to provide the administration of the databases that perform the trans- Note

lation between the name and Internet address and that are structured in

the form of a tree. In order to do this, domains separated by points are de- arp tables: :

arp to NameNode

fined, of which the highest (from right to left) describes a category, insti-

tution or country (COM stands for Commercial, EDU for Education, GOV
for Governmental, MIL for Military (government), ORG, non-profit Or-
ganisation, XX which could be any two letters to indicate the country, or
special cases, such as CAT to indicate Catalan language and culture etc.).
The second level represents the organisation and the third and remaining
sections indicate the departments, sections or divisions within an organ-
isation (for example, www.uoc.edu or nteum@pirulo.remix.es). The first
two names (from right to left), uoc.edu in the first case, remix.es (in the
second) must be assigned (approved) by the SRI-NIC (global organisation
that manages the Internet domain registry) and the rest may be config-
ured/assigned by the institution.

e DHCP, bootp: DHCP and bootp are protocols that permit a client node to
obtain information on the network (such as the node's IP address). Many
organisations with many machines use this mechanism to facilitate the
administration of large networks or networks in which there are roaming

users.

e ARP, RARP: in some networks (such as IEEE 802 LAN, which is the stan-
dard for Ethernet), the IP addresses are dynamically discovered through
the use of two other members of the Internet protocol suite: address reso-
lution protocol (ARP) and reverse address resolution protocol (RARP). ARP uses
broadcast messages to determine the Ethernet address (MAC specification
for layer 3 of the OSI model), corresponding to a particular network-layer
address (IP). RARP uses broadcast messages (mmessages that reach all of the
nodes) to determine the network-layer address associated with a particu-
lar hardware address. RARP is especially important to diskless nodes, for
which network-layer addresses are usually unknown at boot time.

e Socket Library: in UNIX, all TCP/IP implementation is part of the kernel
of the operating system (either within the same or as a module that loads
at boot time, as is the case with the device drivers in GNU/Linux).

© FUOC » PID_00148471 15

The way for a programmer to use them is through an API (application program-
ming interface) which implements this source-code interface. For TCP/IP, the
most common API is the Berkeley Socket Library (Windows uses an equivalent
library that is called Winsocks). This library makes it possible to create a com-
munication end-point (socket), associate it to a remote node and port (bind)
and offer the communication service (through connect, listen, accept, send, send-
to, recv, recvfrom, for example). The library also provides a more general com-
munication mode (AF INET family) and more optimised communications for
cases in which the process are communicating within the same machine (AF
UNIX family). In GNU/Linux, the socket library is part of the C standard li-
brary, Libc, (Libc6 in current versions), and it supports AF_INET, AF_UNIX,
AF_IPX (for Novell protocols), AF_X25 (for the X.25 protocol), AF_ATMPVC-
AF_ATMSVC (for the ATM protocol) and AF_AX25,F NETROM, AF_ROSE (for
amateur radio protocol).

Network administration

© FUOC » PID_00148471 16

3. How to assign an Internet address

This address is assigned by the NIC and it has two section or parts.
The one on the left represents network identification and the one on
the right represents the node identification. In consideration of the
point mentioned above (four numbers between 0-255, or 32 bits or four
bytes), each byte represents either the network or the node. The NIC
assigns the net and the institution (or provider) assigns the node.

There are some restrictions: O (for example, 0.0.0.0) in the network space is
reserved for the routing by default and 127 (for example, 127.0.0.1) is reserved
for the (local loopback or local host), O in the node part refers to this net-
work (for example,192.168.0.0) and 255 is reserved for sending packets to all
(broadcast) machines (for example, 198.162.255.255). There may be different
types of networks or addresses in the different assignations:

Class A (network.host.host.host): 1.0.0.1 to 126.254.254.254 (126 networks, 16
million nodes) define the large networks. The binary standard is: O + 7 network
bits + 24 node bits.

Class B (network.network.host.host): 128.1.0.1 to 191.255.254.254 (16K net-
works, 65K nodes); (usually, the first node byte is used to identify subnets
within an institution). The binary standard is 10 + 14 network bits + 16 node
bits.

Class C (net.net.net.host): 192.1.1.1 to 223.255.255.254 (2 million of networks,
254 nodes). The binary standard is 110 + 21 network bits + 8 node bits.

Classes D and E (network.network.network.host): 224.1.1.1 to 255.255.255.254
reserved for multicast (from one node to a set of nodes that form part of the

group) and experimental purposes.

Some address ranges have been reserved so that they do not correspond to
public networks, and are considered private networks (interconnected com-
puters without external connection; the messages will not be sent through
Internet, but through an intranet). These address ranges are class A 10.0.0.0
to 10.255.255.255, class B 172.16.0.0 to 172.31.0.0 and class C 192.168.0.0
to 192.168.255.0.

The broadcast address is special, because each node in a network listens to
all the messages (as well as its own address). This address makes it possible
to send datagrams (generally routing information and warning messages) to a

Network administration

© FUOC » PID_00148471 17

network and all nodes on the network will be able to read them. For example,
when ARP tries to find the Ethernet address corresponding to an IP, it uses a
broadcast message, which is sent to all the machines on the network at the
same time. FEach node in the network reads this message and compares the IP
that is being searched and sends back a message to the sender node if they
match.

Two concepts that are related to the point described above are the subnets
and routing between these subnets. Subnets subdivide the node part into
smaller networks within the same network, so as to, for example, improve the
traffic. A subnet is in charge of sending traffic to certain IP address ranges,
extending to the same concept of Class A, B and C networks, but only apply-
ing this rerouting in the IP node part. The number of bits interpreted as a
subnet identifier is provided by a netmask, which is a 32-bit number (as is an
IP). In order to obtain the subnet identifier, we will have to perform a logical
AND operation between the mask and the IP, which will provide us with the
subnet IP. For example, an institution with a B class network, with number
172.17.0.0, would therefore have a netmask with number 255.255.0.0. Inter-
nally, this network is formed by small networks (one per floor in the building,
for example). In this way, the range of addresses is reassigned in 20 subnets
(floors in our example, except 172.17.1.0, that has a special role), 172.17.1.0
to 172.17.20.0. The point that connects all these floors, called the backbone,
has its own address, for example 172.17.1.0.

These subnets share the same network IP, whereas the third is used to iden-
tify each of the subnets within it (which is why it will use the netmask
255.255.255.0).

The second concept, routing, represents the mode in which the messages are
sent through the subnets. For example, let us say there are three departments
with Ethernet subnets:

1) Purchases (subnet 172.17.2.0),

2) Clients (subnet 172.17.4.0),

3) Human Resources, (subnet 172.17.6.0)
4) Backbone with FFDI (subnet 172.17.1.0).

In order to route the messages between the computers on the three networks,
we need three gateways that will each have two network interfaces to switch
between Ethernet and FFDI. These would be:

1) PurchasesGW 1Ps:172.17.2.1 and 172.17.1.1,

2) ClientsGW 1Ps:172.17.4.1 and 172.17.1.2

3) HumanResourcesGW 1Ps:172.17.6.1 and 172.17.1.3, in other words, one IP
on the subnet side and another on the backbone side.

Network administration

© FUOC « PID_00148471 18 Network administration

When messages are sent between machines in the purchases area, it is not
necessary to leave the gateway, as the TCP/IP will find the machine directly.
The problem arises when the PurchasesO machine wishes to send a message to
HumanResources3. The message must pass through the two respective gate-
ways. When PurchasesO "sees" that HumanResources3 is on another network,
it sends the packet through the PurchasesGW gateway, which in turn sends
it to HumanResourcesGW, which, in turn, sends it to HumanResources3. The
advantage of having subnets is obvious, given that the traffic between all the
purchases machines, for example, will not affect the Clients or Human Re-
sources machines (although this is more complex and expensive in terms of
designing and building the network).

/ Sales \ / Clients \ 7 Human

(g | [| 1] ‘ resources |

= I 2 I &= I

s), = R e I

\ === /. == =
T S B et = i SR g, S e Ay Sl e I e A

172 17.2.} ’7 172.17.4.1(172.17:6.1 (

SalesGW ClientsGW RRHHGW

}/1' 5
=/

17221071511 | 172.17.1.2‘ 1722177511533 ‘

Backbone FDDI 172.17.1.0
Gateway Internet

Figure 1. Configuration of segments and gateways in an intranet

IP uses a table to route the packets between the different networks, in which
there is a default routing associated to net 0.0.0.0. All the addresses coincide
with this one, as none of the 32 bits are necessary; they are sent through the
default gateway to the indicated network. In the purchasesGW, for example,
the table would be:

Address Mask Gateway Interface
172.17.1.0 255.255.255.0 - fddio
172.17.4.0 255.255.255.0 172.17.1.2 fddio
172.17.6.0 255.255.255.0 172.17.1.3 fddio

0.0.0.0 0.0.0.0 172.17.2.1 fddio
172.17.2.0 255.255.255.0 - ethO

The '-' means that the machine is directly connected and does not need rout-
ing. The procedure for identifying whether routing is required or not consists
of performing a very simple operation with the two logic ANDs (subnet AND

© FUOC « PID_00148471 19 Network administration

mask and origin AND mask) and comparing the two results. If they match,
there is no routing, but the machine defined as gateway must be sent in each
machine, so that this machine routes the message.

For example, a message from 172.17.2.4 to 172.17.2.6 would mean:

172.17.2.4 AND 255.255.255.0 =172.17.2.0
172.17.2.6 AND 255.255.255.0 =172.17.2.0

As the results are the same, there would be no routing. On the other hand, if
we do the same from 172.17.2.4 to 172.17.6.6 we see that there will be rout-
ing through 172.17.2.1 with an interface change (ethO to ffdiO) to 172.17.1.1
and from here to 172.17.1.2 with another interface change (fddiO to ethO) and
then to 172.17.6.6. The default routing will be used when none of the rules
match. If two rules match, the routing that matches the most precisely, in
other words, the one with the least zeros, will be used. In order to build the
routing tables, we can use the route command during machine startup; how-
ever, if it is necessary to use more complex rules (or automatic routing), we
can use the routing information protocol (RIP) command or, between indepen-
dent systems, the external gateway protocol (EGP) or also the border gateway pro-
tocol (BGP) commands. These protocols are implemented through the gated
command.

In order to install a machine on an existing network, it is necessary to
have the following information, obtained from the network provider
or the administrator: node IP address, network IP address, broadcast
address, netmask address, router address and DNS address.

If we are setting up a network that will never have an Internet connection,
we can choose the addresses that we wish, but it is advisable to maintain an
appropriate order corresponding to the size of the network that will be needed,
so as to avoid administrative problems within the network in question. We
will now see how to define the network and node for a private network (we
have to be careful, as, if the machine is connected to the network, we can
inconvenience another user to whom this address has been assigned): node
address 192.168.110.23, netmask 255.255.255.0, net part 192.168.110., node
part .23, net address 192.168.110.0, broadcast address 192.168.110.255.

© FUOC « PID_00148471 20 Network administration

4. How to configure the network

4.1. Configuration of the network interface controller (NIC)

Once the GNU/Linux kernel has loaded, it executes the init command, which,
in turn, reads the configuration file /etc/inittab and begins the start up pro-
cess. Generally, the inittab has sequences such as: si::sysinit: /etc/init.d/boot,
which represents the name of the commands file (script) that controls the
booting sequences. Generally, this script calls the other scripts, which include
the network startup script.

Example

In Debian, etc/init.d/network is executed to configure the network interface, depending
on the boot level; For example, in boot level 2, all the S* files in directory /etc/rc2.d
(which are links to the /etc/initd directory) will execute, and on the boot down level, all
the K* files in the same directory. In this way, the script is only there once (/etc/init.d)
and, depending on the services required in that status, a link is created in the directory
corresponding to the node-status.

The network devices are created automatically when the corresponding hard- Note

ware starts up. For example, the Ethernet driver creates the eth[0..n] interfaces

sequentially, when the corresponding hardware is located. Consult

man ifconfig
for the different command op-
The network interface may be configured as of that moment, which requires tions.

two steps: assign the network address to the device and boot the network
parameters to the system. The command used for this is ifconfig (interface
configure). An example might be:

ifconfig eth0 192.168.110.23 netmask 255.255.255.0 up

Which indicates that the ethO device should be configured with IP address
192.168.110.23 and netmask 255.255.255.0. Up indicates that the interface
will be activated (to deactivate it, execute ifconfig ethO down). If no values are
specified, the command assumes that the default values should be used. In the
previous example the kernel will configure this machine as a C-Type machine
with IP=192.168.110.23 and the broadcast address=192.168.110.255.

There are commands, such as ifup and ifdown, that make it possible to config-
ure/unconfigure the network more simply using the /etc/network/interfaces
file to obtain all the necessary parameters (consult man interfaces for syntax).

© FUOC » PID_00148471 21

In Debian, there is another simpler method for configuring the network (con-
sidered high-level), which uses the abovementioned commands ifup, ifdow-
nand the /etc/network/interfaces file. If we decide to use these commands, we
should not configure the network at low-level, as these commands are suffi-
cient for configuring/unconfiguring the network.

In order to modify the parameters of the ethO interface network, we can (con-
sult man interfaces in section 5 of the Unix manual included with the operat-

ing system for more information):

Network administration

ifdown ethO for all network services over ethO
vi /etc/network/interfaces edit and modify networks/interfaces parameters
ifup ethO start up the network services over ethO

Let us suppose that we wish to configure an ethO interface in Debian, which
has a fixed IP address 192.168.0.123 and has 192.168.0.1 as the gateway. We
must edit /etc/network/interfaces so that it includes a section such as:

iface ethO inet static
address 192.168.0.123
netmask 255.255.255.0
gateway 192.168.0.1

If we have installed the resolvconf packet, we can add lines to specify the DNS

information. For example:

iface ethO inet static
address 192.168.0.123
netmask 255.255.255.0

gateway 192.168.0.1
dns-search remix.org
dns-nameservers 195.238.2.21 195.238.2.22

After the interface has been activated, the command line arguments of the
options dns-search and dns-nameservers are available for resolvconf for inclu-
sion in resolv.conf. The command line argument remix.org of the dns-search
option corresponds to the argument of the search option in resolv.conf (we
will look at this in more detail later) and the arguments 195.238.2.21 and
195.238.2.22 of the dns-nameservers option corresponds to the arguments of
the nameserver options in resolv.conf (consult man resolv.conf). It is also pos-
sible to configure the network at low-level through the ip command (which
is equivalent to ifconfig and route). Although this command is much more
versatile and powerful (it can be used to establish tunnels, alternate routings
etc.), it is more complex and it is recommendable to use the preceding proce-

dures for basic network configurations.

© FUOC » PID_00148471

22 Network administration

4.1.1. Configuration of network in Fedora style

Red Hat and Fedora use a different file structure for network configuration:

/etc/sysconfig/network. For example, to configure the network statically:

NETWORKING=yes
HOSTNAME=my-hostname
FORWARD_IPV4=true

GATEWAY="XXX. XXX XXX.YYY"

Name of the host defined by the cmd hostname
True for NAT firewall gateways and routers.
False for any other case

Gateway leading out to Internet

To configure using DHCEP, it is necessary to delete the GATEWAY line, as it

will be assigned by the server. And if NIS is to be incorporated, a line with the
server domain must be added: NISDOMAIN=NISProject1

To configure interface ethO in the file

/etc/sysconfig/network-scripts/ifcfg-ethO:

DEVICE=ethO

BOOTPROTO=static
BROADCAST=XXX.XXX.XXX.255
IPADDR=XXX.XXX. XXX. XXX
NETMASK=255.255.255.0
NETWORK=XXX.XXX.XXX.0

ONBOOT=yes Activates the network on boot.

From FC3 on, it is also possible to add:
TYPE=Ethernet
HWADDR=XX:XX:XX:XX:XX:XX
GATEWAY=XXX XXX.XXX. XXX
IPV6INIT=no

USERCTL=no

PEERDNS=yes

Or else, for configuring using DHCP :
DEVICE=ethO

ONBOOT=yes
BOOTPROTO=dhcp

To disable DCHP, change BOOTPROTO=dhcp to BOOTPROTO=none. Any
change in these files must restart the services with service network restart (or,

otherwise, /etc/init.d/network restart).

The following three steps must be taken to change the hostname:

© FUOC » PID_00148471 23

1) Command hostname new-name.

2) Change the network configuration in /etc/sysconfig/network editing
HOSTNAME=new-name.

3) Restoring all the services (or rebooting):

® service network restart (or executing /etc/init.d/network
restart)
e Restarting the desktop by passing into console mode init 3 and

changing to GUIl mode init 5.

Verifying ifthe name is not registered in /etc/hosts. The hostname may
be changed during execution time with sysctl -w kernel.hostname=

"newname".

4.1.2. Configuration of a Wi-Fi (wireless) network

In order to configure Wi-Fi interfaces, we basically use the wireless-tools pack-
age (as well as ifconfig or ip). This package uses the iwconfig command to
configure a wireless interface, but this can also be carried out through /etc/

network/interfaces.

Example: Configure WiFi in Debian Sarge (Etch) (similar in FC6)

Let's assume that we wish to configure an Intel Pro/Wireless 2200BG wireless network
card (very common in many laptops, such as Dell, HP...). The software that controls
the cards is usually divided into two parts: the software module that will be loaded in
the kernel through the modprobe command and the firmware that is the code that will
be loaded in the card and which is given to us by the manufacturer (consult the Intel
site for this model). As we are discussing modules, it is interesting to use the Debian
module-assistant package which allows us to create and install a module easily (another
option would be to install the sources and create the corresponding module). We will
compile and install the software (which we can find on the manufacturers' website and
is called ipw2200) using the m-a command in the module-assistant package.

aptget install module-assistant (install the package)
m—a —t update

m-a -t —-f get ipw2200

m-a -t -build ipw2200

m-a -t install ipw2200

We can download the compatible firmware version from the site address provided by the
manufacturer (in the product documentation) along with the version of the driver we
need, which in our case, would be driver version 1.8 and firmware version 2.0.4, obtained
from the following address:

http://ipw2200.sourceforge.net/firmware.php
We should then decompress and install the firmware:

tar xzvf ipw2200fw2.4.tgz C /tmp/fwr/
cp /tmp/fwr/*.fw /usr/lib/hotplug/firmware/

This will copy three packages (ipw2200-bss.fw, ipw2200-ibss.fw and ipw2200-sniffer.fw).
The module is then loaded with: modprobe ipw2200, the system reboots and then, from
the console, we can execute the dmesg | grep ipw command, which will show us some
lines similar to the ones below and which indicate that the module is loading (this can
be checked with Ismod):

Network administration

© FUOC « PID_00148471 24 Network administration

ipw2200: Intel(R) PRO/Wireless 2200/2915 Network Driver, gitl1.0.8
ipw2200: Detected Intel PRO/Wireless 2200BG Network Connection

We should then download the wireless tools package that contains iwconfig
in order to install wireless tools with aptget, among others, and if we execute
iwconfig, something similar to the following will display:

ethl IEEE 802.11b ESSID:"Name-of-the-Wifi"
Mode:Managed Frequency:2.437 GHz

Access Point:00:0E:38:84:C8:72

Bit Rate=11 Mb/s TxPower=20 dBm

Security mode:open

We must then configure the network file, for example, gedit /etc/network/interfaces, and
add the eth1 wifi interface, for example:

iface ethl inet dhcp
pre—-up iwconfig ethl essid "Name of the Wifi"

pre—-up iwconfig ethl key open XXXXXXXXXX

The pre-up lines execute the iwconfig command before activating the interface. This config-
uration is used if we wish to use the service in DHCP mode (automatic IP assignation, as we
shall see). Instead of DHCP, the word static should be used and the following lines, as an
example, must be entered (as in a cable card):

address 192.168.1.132
netmask 255.255.255.0
network 192.168.0.0
broadcast 192.168.0.255
gateway 192.168.1.1

Another method for configuring the interface is:

iface ethl inet dhcp
wireless—-essid "Name of the Wifi"

wireless—key 123456789e

We can then start up the network with ifup eth1l and we will be given information on the
connection and the state and quality of reception. In order to scan the available WiFi net-
works (access points), we can use iwlist scan, which will show us information on the avail-
able networks, and if we want to connect to a different network, we can use the iwconfig
command to change the network or Access Point.

© FUOC « PID_00148471 25 Network administration

4.2. Configuration of Name Resolver

The next step is to configure the name resolver, which changes names like
pirulo.remix.com to 192.168.110.23. The /etc/resolv.conf file is used for this.
The format is very simple (one line of text per sentence). There are three
key words for this purpose: domain (local domain), search (list of alternate do-
mains) and name server (IP address of the domain name server).

Example of /etc/resolv.conf

domain remix.com

search remix.com piru.com

name server 192.168.110.1

name server 192.168.110.65

This list of name servers often depends on the network environment, which
may change depending on where the machine is or where it is connected.
The programs for connecting to telephone lines (pppd) or obtaining IP ad-
dresses automatically (dhclient) can modify resolv.conf toinsert or delete
servers; but these characteristics do not always work properly and they can
sometimes generate conflicts or incorrect configurations. The resolvconf
package adequately solves the problem and allows us to configure the name
servers easily and dynamically. resolvconf is designed to work without the
user having to configure anything manually; however, the package is quite
new and may require some manual assistance to make it work properly. For

more information:

http://packages.debian.org/unstable/net/resolvconf

Another important file is /etc/host.conf, which can be used to configure the
behaviour of the name resolver. This file is very important because it indicates
where the node address or name is first resolved. This can be consulted in the
DNS server or the local tables within the existing machine (/etc/hosts).

Example of /etc/host.conf

order hosts,bind
multi on

This configuration indicates that /etc/hosts should be verified first consulting
the DNS and it also indicates (2nd line) that all valid addresses found in /etc/
hosts should be returned. Consequently, the /etc/hosts file is where the local
addresses are placed and it can also be used to access the nodes without having
to consult the DNS.

The consulting process is much faster, but the disadvantage is that, if the node
changes, the address will be incorrect. In a system that is properly configured,
only the local node and an input for the loopback interface should appear.

© FUOC » PID_00148471 26

Example of /etc/hosts

127.0.0.1 localhost loopback
192.168.1.2 pirulo.remix.com pirulo

Aliases may be used for the name of a machine; this means that this machine
may have different names for the same IP address. The loopback interface
is a special type of interface that makes it possible for a node to connect to
itself (for example, to verify that the network subsystem is working without
accessing the net). By default, the IP address 127.0.0.1 has specifically been
assigned to the loopback (a telnet 127.0.0.1 command will connect with
the same machine). Configuring aliases is very easy (generally, the network
startup script configures them).

Example of loopback

ifconfig lo 127.0.0.1
route add host 127.0.0.1 lo

In version 2 of the GNU library, there is an important replacement with regard
to the functions of the host.conf. file. This improvement includes the central-
isation of information on different services for name resolution, which pro-
vides many advantages for the network administrator. All the information on
name and service consultations has been centralised in the /etc/nsswitch.conf
file, which allows the administrator to configure the order and the databases
in a very simple manner. In this file, each service appears, one per line, with
a set of options, such as the node name resolution option. This indicates that
the order for consulting the databases for obtaining the node's IP or its name
will be first through the DNS service (which uses the /etc/resolv.conf file to
determine the IP of the DNS node) and then, if it cannot be obtained here,
the databases of the local (/etc/hosts) will be used. Other options for this could
be nis or nisplus, which are other information services that are explained in
subsequent units. The method for each consultation may also be controlled
through actions (between []), for example:

hosts: xfn nisplus dns [NOTFOUND = return] files
This indicates that, when the DNS is consulted, if there is no registry for this
consultation, the program that made the consultation will return a zero. The

'I' may be used to deny the action, for example:

hosts dns [!UNAVAIL = return] files

Network administration

Note

Example of nsswitch.conf: ...
hosts: dns files

networks: files

© FUOC » PID_00148471 27

4.3. Configuration of routing

Another aspect that has to be configured is the routing. Although the process
is considered to be very complex, in general, the routing requirements are
very simple. In a node with multiple connections, routing consists of deciding
where to send and what to receive. A simple node (one single network connec-
tion) also needs routing, given that all the nodes have a loopback and a net-
work connection (for example, Ethernet, PPP, SLIP...). As we have explained,
there is a table known as a routing table that contains rows with various fields,
three of which are especially important: destination address, interface through
which the message will be sent and IP address, which will take the next step
in the gateway.

The route command can be used to modify this table so as to carry out
the appropriate routing tasks. When a message arrives, the destination
address is examined, compared with the entries in the table and sent
through the interface with the address that most resembles the packet's
destination. If a gateway is specified, it is sent to the appropriate inter-
face.

Let us assume, for example, that our node is in a C class network with the
address 192.168.110.0 and the address is 192.168.110.23; and the router con-
nected to the Internet is 192.168.110.3. The configuration will be:

e First, the interface:
ifconfig eth0 192.168.110.23 netmask 255.255.255.0 up

e Subsequently, indicate that all the datagrams for nodes with 192.168.0.*
addresses must be sent to the network device:
route add -net 192.1 ethernetmask 255.255.255.0 ethO

-net indicates that it is a network route but -host 192.168.110.3. may also be
used. This configuration will allow it to connect with all the nodes within a
network segment (192.1), but, what would happen if we wanted to connect
with another node outside this segment? It would be very difficult to have all
the appropriate entries for all the machines to which we wish to connect. To
simplify this task, we have the default route, which is used when the destination
address does not match any of the entries in the table. One configuration
possibility would be:

route add default gw 192.168.110.3 ethO

(the gw is the IP or name of a gateway or router node).

Network administration

Note

Consultation of routing tables:

route -n
or also
netstat -r

© FUOC » PID_00148471 28

Another method of doing this would be:

ifconfig eth0O inet down disable the interface
ifconfig lo
Link encap:Local Loopback

... (no entries for ethO will appear)
route
... (no entry in the routing table will appear)
Subsequently, the interface is enabled with another IP and a new route:
ifconfig ethO inet up 192.168.0.111 \
netmask 255.255.0.0 broadcast 192.168.255.255
route add —-net 10.0.0.0 netmask 255.0.0.0 \

gw 192.168.0.1 dev ethO

The bar (\) indicates that the command continues on the following line. The
result:

ifconfig

eth0 Link encap:Ethernet HWaddr 08:00:46:7A:02:BO0

inet addr:192.168.0.111 Bcast: 192.168.255.255 Mask:255.255.0.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.0.0 * 255.255.0.0 U 0 0 0
10.0.0.0 192.168.0.1 255.0.0.0 UG 0 0 0

For more information, see the ifconfig (8) and route (8) commands.

4.4. Configuration of inetd

The next step in the configuration of the network is to configure the servers
and services that will allow another user to access the local machine or its
services. The server programs will use the ports to listen to the requests from
the clients, which will be sent to this service as IP:port. The servers may work
in two different ways: standalone (in which the service listens to the assigned
port and is always active) or through inetd.

Network administration

© FUOC » PID_00148471 29

The inetd is a server that controls and manages the network connec-
tions of the services specified in the /etc/inetd.conf file, which, when
a service request is made, starts up the appropriate server and transfers
the request.

Two important files must be configured: /etc/services and /etc/
inetd.conf. In the first file, we associate the services, the ports and the pro-
tocol, and in the second, the server programs that will respond to a request to
a determined port. The /etc/services format is name port/protocol alias-—
es, where the first field is the service name, the second is the port where the
service is attended and the protocol that it uses, and the next field is an alias
of the name. There is a series of default pre-configured services. We will now
show an example of /etc/services (# indicates that what follows is a comment):

Network administration

tcpmux 1/tcp # # TCP port service multiplexer
echo 7/tcp

echo 7/udp

discard 9/tcp sink null

discard 9/udp sink sink null

systat 11/tcp users

ftp 21/tcp

ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp # SSH Remote Login Protocol
telnet 23/tcp

24 - private

smtp 25/tcp mail

The /etc/inetd.conf file is the configuration for the master network service
(inetd server daemon). Each line contains seven fields separated by spaces: ser-
vice socket_type proto flags user server_path server_args, where service is the service
described in the first column in /etc/services, socket_type is the type of socket
(possible values are stream, dgram, raw, rdm, or seqpacket), proto is the protocol
that is valid for this input (it must match that in /etc/services), flags indicates
the action that should be taken when there is a new connection on a service
that is attending another connection, (wait tells inetd not to start up a new
server or nowait means that inetd must start up a new server). user will be the
local user-name with which the client that has started up the service is iden-
tified, server_path is the directory where the server is located and server_args

© FUOC « PID_00148471 30 Network administration

are possible arguments that will be passed to the server. An example of some
/etc/inetd.conf lines is (# is a comment, so if a service has # before the name,
it means that it is not available):

telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd
ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd

fsp dgram udp wait root /usr/sbin/tcpd /usr/sbin/in.fspd

shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rshd
login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind

exec stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rexecd...

As of Debian Woody 3.0 r1, the inetd function has been replaced by xinetd
(recommendable), which needs the /etc/xinetd.conf configuration file
(see end of unit). If we wish to start up the inetd service, we must execute
(and create the appropriate links in the /etc/rcX.d directories) /etc/
init.d/inetd.real start (see the end of this chapter for examples of con-
figurations).

Apart from the inetd or xinetd configuration, the typical configuration of net-
work services in a desktop or basic server environment might also include

(some of these services will be examined in the chapter on servers):

e ssh: secure interactive connection to replace telnet that includes two con-
figuration files /etc/ssh/ssh_config (for the client) and /etc/ssh/
sshd_config (for the server)

e exim: multi transfer agent (MTA), includes configuration files: /etc/
exim/exim.conf, /etc/mailname, /etc/aliases, /etc/email-ad-

dresses.

e fetchmail: daemon for downloading the mail from a POP3 account, /

etc/fetchmailrc

e procmail: program for filtering and distributing local mail, ~/.procmailrc

e tcpd: Filtering services for enabled and disabled machines and domains
for connecting to the server (wrappers): /etc/hosts.allow, /etc/
hosts.deny

e DHCP. Service for managing (server) or obtaining an IP (client), /etc/
dhcp3/dhclient.conf (client), /etc/default/dhcp3-server (serv-
er), /etc/dhcp3/dhcpd.conf (server)

© FUOC « PID_00148471 31 Network administration

e CVS: system for managing concurrent versions, /etc/cvs—-cron.conft,

/etc/cvs—pserver.conf

e NFS: network file system, /etc/exports

e Samba: network file system and sharing printers in Windows networks,

/etc/samba/smb.conf

e Ipr: daemon for the printing system, /etc/printcap (for the Ipr system
-not CUPS-)

e Apache and Apache2: Web Server, /etc/apache/* and /etc/apache2/

*

e squid: Server proxy-cache, /etc/squid/*

4.5. Additional configuration: protocols and networks

There are other configuration files that are hardly ever used, but that can be
interesting. The /etc/protocols is a file that shows the protocol identifiers with
the protocol names; in this way, the programmers can specify the protocols
by their names in the programs.

Example of /etc/protocols

ip 0 IP # internet protocol, pseudo protocol number
#hopopt 0 HOPOPT # IPv6 Hop-by-Hop Option [RFC1883]
icmp 1 ICMP # internet control message protocol

The /etc/networks file has a function similar to /etc/hosts, but where the net-
works are concerned, it shows the network names in relation to its IP address
(the route command will show the name of the network and not its address

in this case).

Example of /etc/networks

loopnet 127.0.0.0
localnet 192.168.0.0
amprnet 44.0.0.0 ...

4.6. Security aspects

It is important to take into account the security aspects in network connec-
tions, as a significant amount of attacks occur through the network. We will
discuss this subject in more detail in the unit on security; however, there are

© FUOC » PID_00148471 32

some basic recommendations that should be taken into account in order to
minimise the risks immediately before and after configuring the network in
our computer:

e Do not activate services in /etc/inetd.conf that will not be used, insert an
before the name to avoid sources of risk.

e Modify the /etc/ftpusers file to deny access to certain users who may have

an FTP connection to your machine.

e Modify the /etc/securetty file to indicate from which terminals (a name
per line), for example: ttyl tty2 tty3 tty4, it will be possible for the root
superuser to connect. The root superuser will not be able to connect from
any of the remaining terminals.

e Use the tcpd program. This server is a wrapper that makes it possible to
allow/deny a service from a given node and it is placed in /etc/inetd.conf
as a service intermediary. The tcpd verifies certain access rules in two files:
/etc/hosts.allow /etc/host.deny.

If the connection is accepted, it starts up an appropriate service passed as an
argument (for example, the FTP service line shown earlier in inetd.conf:

ftp stream tcp nowait root/usr/sbin/tcpd/usr/sbin/in. ftpd.

tcpd first search /etc/hosts.allow and then inside of /etc/hosts.deny. The
hosts.deny file contains the rules on which nodes do not have access to a ser-
vice within this machine. A restrictive configuration is ALL: ALL, as it will only
allow access to the services from the nodes declared in /etc/hosts.allow.

The /etc/hosts.equiv file permits access to this machine without having to
enter the password. Using this mechanism is not recommended; users should
be advised not to use the equivalent from the user account, through the .rhosts
file.

In Debian, it is important to configure /etc/security/access.conf, the file that
indicates the rules on who and from where it is possible to log in to this ma-
chine. This file has a line by command with three fields separated by a "' of
the permission type: Users: origin. The first will be an +o- (allow or deny), the
second a user name/user names, group or user@host, and the third will be the
name of a device, node, domain, node or networks addresses or ALL.

Network administration

© FUOC » PID_00148471

Example of access.conf

33

This command does not permit root logins over tty1:

ALL EXCEPT root:ttyl ...

It permits access to ul, u2, g1 and all those in the remix.com domain:

+:ul u2 gl .remix.com:ALL

4.7. IP Options

There are further options with regard to IP traffic that we should mention.

This is configured by starting up the corresponding file in the /proc/sys/

net/ipv4/ directory. The file name is the same as the command and a 1 must

be placed in the file to activate them, or a O to deactivate them.

Example

For example, if we wish to activate ip_forward, we have to execute:

echo 1 > /proc/sys/net/ipv4/ip_forward

The most widely used are: ip_forward used for routing between interfaces or

with IP Masquerading; ip_default_ttl, which is the lifetime for an IP packet (64

milliseconds, by default) ip_bootp_agent logical variable (BOOLEAN) which

accepts packets (or not) with the origin address of the 0.b.c.d type and the

destination of this node, broadcast or multicast.

4.7.1. Commands for solving problems with the network

If there are problems in the configuration of the network, we can begin by

verifying the output of the following commands to obtain an initial idea:

ifconfig
cat /proc/pci
cat /proc/interrupts

dmesg | more

In order to verify the network connection, we can use the following com-

mands (netkit-ping, traceroute, dnsutils, iptables and net-tools must be in-

stalled):

ping uoc.edu
traceroute uoc.edu
ifconfig

route -n

dig [@dns.uoc.edu] www.uoc.edu

iptables -L —-n |less

netstat -a

H o FH H H*

verifies the Internet connection
scans IP packets
verifies the host configuration

verifies the routing configuration

verifies the registries in

on the dns.uoc.edu server.

verifies packet filtering (kernel >=2.4)

shows all the open ports

Network administration

© FUOC « PID_00148471 34 Network administration

© FUOC « PID_00148471 35 Network administration

5. DHCP Configuration

DHCP stands for dynamic host configuration protocol. It is very simple to
configure and it is useful because, instead of having to configure each node in
a network individually, this can be done in a centralised manner and adminis-
tering it is therefore easier. The configuration of a client is very easy, as we only
have to install one of the following packages: dhcp3-client (version 3, In-
ternet Software Consortium), dhcpced (Yoichi Hariguchi and Sergei Viznyuk),
pump (Red Hat); we then add the word dhcp in the section corresponding to
the interface that we wish to work under this dhcp client (e.g./etc/network/
interfaces must have iface ethO inet dhcp...).

Configuring the server requires more care, but it is not especially complicated.
First, for the server to serve all the DHCP clients (including Windows), we
must address some questions concerning the broadcast addresses. In order to
do this, first the server must be able to send messages to the 255.255.255.255
address, which is not valid in GNU/Linux. In order to try this, execute:

route add -host 255.255.255.255 dev ethO

If the following message appears: 255.255.255.255: Unknown host, then the
following entry must be added in /etc/hosts: 255.255.255.255 dhcp and try

again:
route add -host dhcp dev ethO

The configuration of dhcpd can be carried out with the graphic interface of
linuxconf (not advisable) or by editing /etc/dhcpd.conf. An example of this
file is:

Example of /etc/dhcpd.conf:
default-lease-time 1200;
max—lease—-time 9200;
option domain-name "remix.com";
deny unknown-clients;
deny bootp;
option broadcast-address 192.168.11.255;
option routers 192.168.11.254;
option domain-name-servers 192.168.11.1,192.168.168.11.2;
subnet 192.168.11.0 netmask 255.255.255.0
{ not authoritative;
range 192.168.11.1 192.168.11.254
host marte {

hardware ethernet 00:00:95:C7:06:4C;

© FUOC » PID_00148471 36

fixed address 192.168.11.146;
option host-name "marte";
}
host saturno {
hardware ethernet 00:00:95:C7:06:44;
fixed address 192.168.11.147;

option host-name "saturno";

This will allow the server to assign the address range from 192.168.11.1 to
192.168.11.254, as described for each node. If the corresponding host { ... }
segment does not exist, they will be assigned randomly. The IPs are assigned
for a minimum time of 1,200 seconds and a maximum of 9,200 (if these pa-
rameters do not exist, they will be assigned indefinitely).

Before executing the server, we must verify if the file /var/state/dhcp/
dhcpd. leases exists (otherwise, it will have to be created with touch /var/
state/dhcp/dhcpd. leases). To execute the server: /usr/sbin/dhcpd (or we
can put it in the startup scripts). With /usr/sbin/dhcpd -d-f, we can see
the activity in the server within the system's console. [Mou0O1, Rid00O, KDOO,
Dra99]

It is important not to forget the not authoritative phrase, as, otherwise,
this server may leave other dhcp servers that serve IP for other segments in-
active.

Network administration

© FUOC « PID_00148471 37 Network administration

6. IP aliasing

There are some applications in which it is useful to configure multiple IP ad-
dresses to a single network device. The ISPs (Internet service providers) frequent-
ly use this characteristic to provide personalised features (such as World Wide
Web and FTP) to their users. For this, the kernel must be compiled with the
Network Aliasing and IP (aliasing support) options. After installing the new
kernel, the configuration is very easy. The aliases are attached to the virtual
network devices associated with the new device with a format such as: device:
virtual number.

For example: eth0:0, pppO:8

Let us say that we have an Ethernet network that supports two different IP
subnets simultaneously and that our machine wants to have direct access to
them. An example of the configuration would be:

ifconfig eth0 192.168.110.23 netmask 255.255.255.0 up
route add -net 192.168.110.0 netmask 255.255.255.0 ethO
ifconfig eth0:0 192.168.10.23 netmask 255.255.255.0 up
route add -net 192.168.10.0 netmask 255.255.255.0 eth0:0

Which means that we would have two IPs, 192.168.110.23 and 192.168.10.23
for the same NIC. In order to delete an alias, add a '-' at the end of the name
(for example, ifconfig eth0:0- 0). [Mou0O1, Ran05]

A typical case is when we wish to configure a single Ethernet card so that it
acts as the interface for different IP subnets. For example, suppose we have
a machine that is on a LAN network, LAN 192.168.0.x/24. And we wish to
connect the machine to the Internet using a public IP address provided with
DHCP using the existing Ethernet card. For example, we can follow the pro-
cedure described in the preceding example or edit the /etc/network/interfaces
file so that it includes a section similar to the following:

iface ethO inet static
address 192.168.0.1
netmask 255.255.255.0
network 192.168.0.0
broadcast 192.168.0.255

iface eth0:0 inet dhcp

The ethO0:0 interface is a virtual interface and its parent interface, ethO, will
activate when it does.

© FUOC » PID_00148471 38

7. IP Masquerade

The IP Masquerade is a resource used so that a set of machines may
use a single IP address. This permits the hidden nodes (in other words,
the ones that use a private IP, such as 198.162.10.1) can go out to the
Internet; but they cannot directly accept external calls or services; only
through the machine that has the real IP.

This means that some services will not work (for example, talk) and others
must be configured in PASV (passive) mode for them to work (for example,
FTP). However, WWW, telnet or IRC will work properly. The kernel must be
configured with the following options: Network firewalls, TCP/IP networking,
IP: forwarding/gatewaying, IP: masquerading. Normally, the most common
configuration is to have a machine with a SLIP or PPP connection and to have
another network device (for example, an Ethernet card) with a reserved net
address. As we have seen and as described in RFC 1918, the following address
ranges (IP/Mask) can be used as private IPs: 10.0.0.0/255.0.0.0, 172.16.0.0/
255.240.0.0, 192.168.0.0/255.255.0.0. The nodes that must be masqueraded
will be on this second network. Each of these machines must have the address
of the machine that is masquerading such as default gateway or router. On
this machine, we can configure:

e Network route for Ethernet considering that the network has a IP =
192.168.1.0/255.255.255.0:
route add —net 192.168.1.0 netmask 255.255.255.0 ethO

e Default route for the rest of Internet:

route add default pppo

e All the nodes over the 192.168.1/24 network will be masqueraded:
ipchains -A forward —-s 192.168.1.0/24 -3 MASQ

e Ifiptables are used over a kernel, version 2.4 or higher:
iptables -t nat —-A POSTROUTING -o pppO —-j MASQUERADE

Consult the references in the unit covering security for information on
ipchains and iptables. [Ran05, KDOO]

Network administration

© FUOC « PID_00148471 39 Network administration

8. NAT with Kkernel 2.2 or higher

The IP network address translation, NAT, is a replacement that has made the fea-
tures of GNU/Linux IP Masquerade obsolete and that provides new features to
the service. One of the improvements included in the TCP/IP stack of GNU/
Linux 2.2 is that NAT is integrated into the kernel. In order to use it, we have
to compile the kernel with:

CONFIG_IP_ADVANCED_ROUTER, CONFIG_IP_MULTIPLE _TABLES and
CONFIG_IP_ROUTE_NAT.

And if we need comprehensive control of the NAT rules (for example, to acti-
vate the firewall we must also have

CONFIG_IP_FIREWALL and CONFIG_IP_ROUTE_FWMARK.

In order to work with these new features, we need to use the ip program (which
can be obtained at ftp://ftp.inr.ac.ru/ip_routing/). Then, to translate the in-
coming datagram addresses, we can use:

ip route add nat <extaddr>[/<masklen>] via <intaddr>

This will translate the destination address of an incoming packet addressed to
ext-addr (the address that is visible externally from Internet) to int-addr (the
address of the internal network through the gateway/firewall). The packet is
routed in accordance with the local route table. Single or block addresses can
be translated. For example:

ip route add nat 240.0.11.34 via 192.109.0.2
ip route add nat 240.0.11.32/27 via 192.109.0.0

The first makes the internal address 192.109.0.2 accessible as 240.0.11.34. The
second remaps the 192.109.0.0/31 block to 240.0.11.32/63. In this case, we
have used, as an example, translations to class D and E addresses, such as
240.0.*.* so as not to use a public address. The user must replace these address-
es (240.0.11.34 and 240.0.11.3263) for the corresponding public addresses to
which they wish to translate. [Ran05]

© FUOC « PID_00148471 40 Network administration

9. How to configure a DialUP and PPP connection

Configuring a dial-up connection using PPP in GNU/Linux is very simple.
PPP (point to point protocol) makes it possible to establish IP-Links between two
computers with a modem (that it must be a modem supported by GNU/Linux,
as not all modems, especially internal ones or those known as Winmodems,
can be configured because many of them need additional software in order to
establish communication). [Vas00, Law07, Sec00].

To start with, we must have the following information: the modem init-string
(this is not normally necessary but if it is and it is not available, we can use
ATZ, which works in most modems or we can consult specialised init-string
lists).

We also need the ISP data: connection ID (login name), password and tele-
phone number. The DNS addresses would be advisable, but this is optional
in the current versions of pppd. Also, we should verify that the modem is
connected properly. With an external modem, we must execute echo > /dev/
ttySO and check the LEDs on the modem to see if it is active. Otherwise, try
with ttyS1, if the modem is connected to the 2nd serial port. With an internal
modem, check the supported hardware manual to see if this modem can be
recognised by GNU/Linux; if this is the case, it may be necessary to reconfig-
ure the kernel in order to use it. We can also use cat /proc/pci in case it is in
the PCI bus. [PPPOO]

The easiest way to configure the modem now is through the kppp package (we
must install the kdenetwork-ppp* and ppp* packages). On a terminal, execute
/usr/bin/kppp. On the window, fill in the following boxes:

Accounts = New Connection

Dial = Authentication 'PAP/CHAP'

Store Password = yes

IP = Dynamic IP Address

Autoconfigure hostname = No

Gateway =Default Gateway = Assign the Default Route

DNS =Configuration Automatic =Disable existing DNS

Device =ttyS1(com1) o ttyS2 (com2)

Modem =Query Modem to see the results (if you do not obtain the results,
change the ttySx device).

© FUOC » PID_00148471 41

After entering the login name and password, we will be connected to the In-
ternet (to check that we are connected, execute ping www.google.com for exam-
ple). Here, we have used the kppp package, but we could as easily have used
linuxconf or gnomeppp indistinctly).

A quick way of configuring pppd in Debian consists of using the pppconfig
program, which comes with the package. pppconfig configures files such as the
preceding ones after asking the user some questions through the menu inter-
face. Another option for using pppd consists of executing it from wvdial, which
comes with the wvdial package. Instead of making pppd execute chat to dial
and negotiate the connection, wvdial dials, carries out the initial negotiation
and then starts up pppd so that it can do the rest. In most cases, with just the
telephone number, username and password, wvdial can start the connection.

Once PPP has been configured, for it to work with, for example, my_isp, we
must edit /etc/network/interfaces so that it includes a section such as the fol-
lowing (the ifup, ifdown commands use the pon and poff commands to config-
ure PPP interfaces):

iface pppO inet ppp
provider mi_isp

with this section, ifup pppO executes:
pon my_isp

It is not currently possible to use ifup down to perform a supporting config-
uration of the PPP interfaces. As pon disappears before pppd has finished es-
tablishing the connection, ifup executes the up scripts before the PPP inter-
face is ready to be used. Until this fault is resolved, it will still be necessary to
configure the connection later in /etc/ppp/ip-up or /etc/ppp/ip-up.d/.

Many broadband Internet Service Providers (ISP) use PPP to negotiate the con-
nection even when the clients' machines are connected through Ethernet and/
or ATM networks. This is achieved through PPP over Ethernet (PPPoE) which is
a technique for encapsulating PPP flow within Ethernet frames. Suppose that
the ISP is called my_isp. First, we must configure PPP and PPPOE for my _isp.
The easiest way of doing this consists of installing the pppoeconf package and
executing pppoeconf from the console. We then edit /etc/network/interfaces so
that it includes a fragment such as the following:

iface ethO inet ppp
provider mi_isp

Network administration

© FUOC » PID_00148471 42

Sometimes, problems arise with PPPoE that are related to the maximum trans-
mit unit (or MTU) in DSL (digital subscriber line) lines; you may consult DSL-
HOWTO for further details. If the modem has a router, as the modem/router
will handle the PPPoE connection on its own and it will appear on the LAN
side as a simple Ethernet to Internet gateway.

Network administration

© FUOC « PID_00148471 43 Network administration

10. Configuring the network through hotplug

The hotplug package supports hot swapping when booting (the package in
question must have been installed). The network hardware can be hot plugged
either at start up, after inserting the card in the machine (a PCMCIA card, for
example) or after a utility such as discover has been executed and the neces-
sary modules have been loaded. When the kernel detects new hardware, it
starts up the driver for the hardware and then executes the hotplug program
to configure it. If the hardware is subsequently removed, the program exe-
cutes hotplug again, with different parameters. In Debian, when hotplug is
called, this executes the scripts of /etc/hotplug/ and /etc/hotplug.d/.
The network hardware that was recently connected is configured by /etc/
hotplug/net.agent. Let us assume that the PCMCIA network card has been
connected, which would mean that the ethO interface would be ready to be
used. /etc/hotplug/net.agent performs the following:

ifup ethO=hotplug

Unless a logical interface called hotplug has been added in /etc/network/
interfaces, this command will have no effect. For this command to config-
ure ethO, we have to add the following lines to /etc/network/interfaces:

mapping hotplug
script echo

If you only want ethO to hotplug and not other interfaces, use grep instead
of echo as follows:

mapping hotplug
script grep
map ethO

ifplugd activates or deactivates an interface depending on whether the under-
lying hardware is connected to the network or not. The program can detect a
cable connected to an Ethernet interface or an access point associated to a Wi-
Fi interface. When ifplugd sees that the status of the connection has changed,
it will execute a script, which, by default, executes ifup or ifdown for the in-
terface. ifplugd works in combination with hotplug. When a card is inserted,
which means that the interface is ready to be used, /etc/hotplug.d/net/
ifplugd.hotplug starts up an instance of ifplugd for that interface. When
ifplugd detects that the card is connected to a network, it executes ifup for
this interface.

In order to associate a Wi-Fi card with an access point, we may have to pro-
gram it with an appropriate WEP encryption code. If ifplugd is being used to
control ifup, as we have explained, then evidently it will not be able to con-

© FUOC » PID_00148471 44

figure the encryption code using ifup, as this is only called once the card has
been associated. The simplest solution is to use waproamd, which configures
the WEP encryption code according to the available access points that are dis-
covered through a WiFi network search. For more information, consult man
waproamd and the information on the package.

Network administration

© FUOC » PID_00148471 45

11. Virtual private network (VPN)

A VPN (virtual private network) is a network that uses Internet to trans-
port data, but stops any external members from accessing that data.

This means that we have a network with connected VPN nodes tunnelled
through another network, through which the traffic passes and with which
no one can interact. It is used when remote users wish to access a corporate
network to maintain the security and privacy of the data. Various methods
can be used to configure a VPN, such as SSH (SSL), CIPE, IPSec, PPTP; they can
be consulted in the bibliography (we recommend consulting VPN PPP-SSH
HOWTO, by Scott Bronson and VPN-HOWTO by Matthew D. Wilson). [BroO1,
Wil02].

In order to perform the configuration tests in this section, we will use Open-
VPN, which is a solution based on SSL VPN and can be used for a wide range
of solutions, for example, remote access, VPN point to point, secure WiFi net-
works or distributed corporate networks. OpenVPN implements OSI layer 2 or
3 using SSL/TLS protocols and supports authentication based on certificates,
smart cards and other confirmation methods. OpenVPN is not a proxy appli-
cations server and does not operate through a web browser.

In order to analyse it, we will use an option in OpenVPN called OpenVPN
for Static key configurations, which provides a simple method for configuring
a VPN that is ideal for tests or point-to-point connections. The advantages
are the simplicity and the fact that it is not necessary to have a X509 public
key infrastructure (PKI) certificate to maintain the VPN. The disadvantages are
that it only permits one client and one server, as, because the public key and
private key are not used, there may be the same keys as in previous sessions
and there must be a text-mode key in each peer and the secret key must be
previously exchanged for a secure channel.

11.1. Simple example

In this example, we will configure a VPN tunnel on a server with IP=10.8.0.1
and a client with IP=10.8.0.2. The communication will be encrypted between
the client and server on a UDP port 1194, which is the default port in Open-
VPN. After installing the package (http://openvpn.net/install.html), we must
generate the static key:

openvpn —-—-genkey ——-secret static.key

Network administration

© FUOC « PID_00148471 46 Network administration

Then, we must copy the static.key file in the other peer over a secure chan-
nel (using ssh or scp, for example). The server configuration file of the
openVPN_server for example:

dev tun
ifconfig 10.8.0.1 10.8.0.2

secret static.key
The client configuration file for example openVPN_client

remote myremote.mydomain
dev tun
ifconfig 10.8.0.2 10.8.0.1

secret static.key

Before verifying that the VPN works, we must verify the firewall to check that
port 1194 UDP is open on a server and that the virtual interface tunO used
by OpenVPN is not blocked either over the client or over the server. Bear in
mind that 90% of the connection problems faced by new OpenVPN users are
related in some way to the firewall.

In order to verify the OpenVPN between two machines, we must change the
IPs for the real ones and the domain for the corresponding one, and then
execute the server side.

openvpn [server config file]
Which will provide an output such as:

Sun Feb 6 20:46:38 2005 OpenVPN 2.0_rcl2 i686-suse—linux [SSL]
[LzO] [EPOLL] built on Feb 5 2005

Sun Feb 6 20:46:38 2005 Diffie-Hellman initialized with 1024
bit key

Sun Feb 6 20:46:38 2005 TLS-Auth MTU parms [L:1542 D:138

EF:38 EB:0 ET:0 EL:0]

Sun Feb 6 20:46:38 2005 TUN/TAP device tunl opened

Sun Feb 6 20:46:38 2005 /sbin/ifconfig tunl 10.8.0.1 pointo-
point 10.8.0.2 mtu 1500

Sun Feb 6 20:46:38 2005 /sbin/route add -net 10.8.0.0 netmask
255.255.255.0 gw 10.8.0.2

Sun Feb 6 20:46:38 2005 Data Channel MTU parms [L:1542

D:1450 EF:42 EB:23 ET:0 EL:0 AF:3/1]

Sun Feb 6 20:46:38 2005 UDPv4 link local (bound): [undef]:1194
Sun Feb 6 20:46:38 2005 UDPv4 1link remote: [undef]

Sun Feb 6 20:46:38 2005 MULTI: multi_init called, r=256 v=256
Sun Feb 6 20:46:38 2005 IFCONFIG POOL: base=10.8.0.4 size=62
Sun Feb 6 20:46:38 2005 IFCONFIG POOL LIST

© FUOC » PID_00148471 47

Sun Feb 6 20:46:38 2005 Initialization Sequence Completed

And the client side:

openvpn [client config file]

In order to check that it works, we might ping 10.8.0.2 from the server and
ping 10.8.0.1 from the client. For more information, please check http://
openvpn.net/howto.html.

To add compression to the link, we must add the following line to the two
configuration files:

comp—1lzo

In order to protect the connection through a NAT router/firewall alive and
carry on the IP changes through a DNS, if one of the peers changes, add the
following to the two configuration files:

keng-timer—-rem
persist—-tun
peepalive 10 60
pirsist-key

To execute as a daemon with the privileges of the nobody user/group, add the
following to the configuration files:

user nobody
group nobody

Daemon

Network administration

© FUOC « PID_00148471 48 Network administration

12. Advanced configurations and tools

There is a set of additional packages (that replace the conventional ones) and
tools that either improve the machine's security (recommended in hostile en-
vironments) or help to configure the network (and the system in general) in
a more user-friendly style.

These packages may be of great help to the network administrator for
avoiding intrusions or avoiding local users exceeding their permissions
(usually not carried out by the local user but by someone assuming their
identity) or for helping new users to configure the services properly.

In this sense, we must examine:

e Advanced TCP/IP configuration: the sysctl command can be used to
modify the parameters of the kernel during execution or at start up, to
adjust them to the needs of the system. The parameters that may be mod-
ified are the ones in the /proc/sys/ directory and they can be consulted
with sysctl -a. The simplest way of modifying these parameters is through
the /etc/syscntl.conf. configuration file. After carrying out the modifica-
tion, we must restart the network:

/etc/init.d/networking restart

In this section, we will examine some modifications for improving the
network's performance (improvements depending on conditions) or the
system's security (consult the references for more details) [MouO1]:
net.ipv4.icmp_echo_ignore_all = 1

e Does not respond to ICMP packages, such as the ping command for ex-
ample, which could mean that there is a denial-of-service (DoS) attack.
net.ipv4.icmp_echo_ignore_broadcasts = 1

e Avoids congestion in the network not responding to the broadcast.
net.ipv4.conf.all.accept_source_route = O
net.ipv4.conf.lo.accept_source_route = O
net.ipv4.conf.ethO.accept_source_route = O
net.ipv4.conf.default.accept_source_route = O

e Inhibits the IP source routing packages, which could represent a security
threat (in all the interfaces).
net.ipv4.tcp_syncookies = 1
net.ipv4.conf.all.accept_redirects = O

© FUOC « PID_00148471 49 Network administration

e DPermits the rejection of a DoS by SYNC packages, which would consume
all the system's resources, forcing the user to reboot the machines.
net.ipv4.conf.lo.accept_redirects = O
net.ipv4.conf.ethO.accept_redirects = O
net.ipv4.conf.default.accept_redirects = O

e Useful for avoiding ICMP redirect acceptance attacks (these packages are
used when the routing does not have the appropriate route) in all the
interfaces.

net.ipv4.icmp_ignore_bogus_error_responses = 1

e Sends alerts on all the error messages in the network.
net.ipv4.conf.all.rp_filter = 1
net.ipv4.conf.lo.rp_filter = 1
net.ipv4.conf.ethO.rp_filter = 1
net.ipv4.conf.default.rp_filter = 1

e Enables protection against IP spoofing in all the interfaces.
net.ipv4.conf.all.log_martians = 1
net.ipv4.conf.lo.log_martians = 1
net.ipv4.conf.eth0.log_martians = 1
net.ipv4.conf.default.log_martians = 1
Generates a log of all the spoofed packets, source routed packets and redi-
rect packets.

e The following parameters will permit the machine to attend the TCP con-
nections faster and better.
net.ipv4.tcp_fin_timeout = 40, By default, 60.
net.ipv4.tcp_keepalive_time = 3600, By default, 7.200.
net.ipv4.tcp_window_scaling = O
net.ipv4.tcp_sack = 0
net.ipv4.tcp_timestamps = 0, By default, all at 1 (enabled).

e Iptables: the latest versions of GNU/Linux (kernel 2.4 or higher) include a
new feature for building package filters called netfilter [MouO1]. This new
feature is controlled by a tool called iptables that has better characteristics
than its predecessor (ipchains). As we will see in the unit on security, it is
extremely easy to build a firewall with this tool for detecting and warding
off the most common attacks, such as DoS, IP/MAC spoofing etc. Before it
is activated, we have to verify that the kernel is version 2.4 or later, which
is the one that is configured to support ipfilter (which means that it is nec-
essary to compile the kernel to activate the option network packet filtering
[CONFIG_NETFILTER], and all the specific suboptions). The specific rules
must be activated when booting (for example, through /etc/init.d and the
appropriate link in the appropriate rc directory) and will have a format
similar (check the references on capacities and complete syntax) to:

© FUOC « PID_00148471 50 Network administration

iptables —-A Type -1 Interface -p protocol -s SourcelIP -—-—
source—port Port —-d DestinationIP —--destination—-port Port

—j Action

e GnuPaG: this tool makes it possible to encrypt data for subsequent send-
ing (emails, for example) or storage, it can also generate digital signatures
(it meets the RFC2440 standard) and it does not use patented algorithms,
which means that is open source, but welose compatibility with other tools
(for example, PGP 2.0), which use algorithms such as IDEA and RSA. For
compiling and/or installing the tool, follow the instructions of the pro-
grammers at http://www.gnupg.org/. Firstly, we must create a pair of keys
(public and private) by executing, in root, the gpg ——gen-key command
twice and answering the questions that appear. Generally, these keys will
be stored in /root. Then we export (to a website, for example) the public
key so that other users can use it to encrypt the mail/information that
may only be seen by the user that generated the public key. For this, we
must use gpg -—export -ao UID, which will generate an ASCII file of
the UID user's public key.

In order to import another user's public key, we can use gpg —-—-import
filename, and to sign a key (which is to tell the system that we are satis-
fied that the signed key is from who it says it is), we can use gpg --sign-
key UID. To verify a key, we can use gpg —-verify file/data and to
encrypt/decrypt a key, gpg -sear UID file g, gpg -d file, respectively. [Gnu]

e Logcheck: one of a network administrator's main tasks is to check the log
files daily (more than once a day) to detect any possible attacks/intrusions
or events that may be evidence of these questions. This tool selects com-
pressed information on problems and potential risks (from the log files)
and then sends this information to the corresponding administrator, by
email, for example. The package includes utilities for executing in inde-
pendent mode and remembering the last entry verified for the subsequent
executions. For information on the configuration/installation, you may

consult the references. [Log]

e PortSentry and Tripwire: these tools help the network administrator to
carry out their security tasks. PortSentry makes it possible to detect and
respond to port searching processes (the preliminary step before attack-
ing or spamming) in real time and to make various decisions with regard
to the actions that are being performed. Tripwire is a tool that will help
administrators by warning them of possible modifications and changes
in the files, to avoid possible (severe) damage. This tool compares the dif-
ferences between the current files and a database previously generated to
detect changes (insertions and deletions), which is very useful for detect-
ing possible modifications to vital files such as, for example, configura-
tion files. Consult the references on the installation/configuration of these
tools. [Tri]

© FUOC « PID_00148471 51 Network administration

e Xinetd: this tool significantly improves the efficiency and performance of

inetd and tcp-wrappers. One of the biggest advantages of xinetd is that it
can avoid denial-of-access (DoA) attacks through the control mechanisms
for services based on the identification of client addresses, during the ac-
cessing time and (logging) time. It should not be assumed that Xinetd is
the most appropriate option for all the services (for example, it is better
if FTP and SSH execute only as daemons), as many of these processes will
overload the system and there are secure access mechanisms that do not
create interruptions in the system's security. [Xin]
Compiling and/or installing is simple; we only have to configure two files:
/etc/xinetd.conf (the configuration file of Xinetd) and /etc/rc.d/
init.d/xinetd (the Xinetd startup file). The first file contains two sec-
tions: defaults, which is where we find the parameters that will apply to
all the services, which will be the ones that activate through Xinetd.

A typical example of the configuration might be:

xinetd.conf

The default configuration options that are applied to all the
servers may be modified for each service
defaults

{

instances = 10

log_type = FILE /var/log/service.log
log_on_success = HOST PID
log_on_failure = HOST RECORD

}

The name of the service must be located in /etc/services to obtain
the right port

If the server/Port is not a standard one, use "port = X"
service ftp

{

socket_type = stream

protocol = tcp

wait = no

user = root

server = /ust/sbin/proftpd

}

#service telnet

#{

socket_type = stream

protocol = tcp

wait = no

user = root

no_access = 0.0.0.0

only_from = 127.0.0.1

banner_fail = /etc/telnet_fail

server = /usr/sbin/in.telnetd

#}

service ssh

{

socket_type = stream

protocol = tcp

wait = no
user = root
port = 22

server = /usr/sbin/sshd
server_args = -i

}

service http

{

socket_type = stream
protocol = tcp

wait = no

user = root

© FUOC » PID_00148471 52

The

server = /ust/local/apache/bin/httpd
}

#service finger

#{

socket_type = stream

protocol = tcp

wait = no

user = root

no_access = 0.0.0.0

only_from = 127.0.0.1

banner_fail = /etc/finger_fail
server = /usr/sbin/in.fingerd
server_args = -1

#}

End of /etc/xinetd.conf

The above mentioned services (#) will not be available. In the defaults sec-
tion, we can install parameters such as maximum number of simultane-
ous service requests, the type of registry (log) that we require, from which
nodes the requests will be received by default, the maximum number of IP
requests that will be attended or the services that execute as superservers
(imapd or popd), such as:

default {

instances = 20

log_type = SYSLOG

authpriv log_on_success = HOST
log_on_failure = HOST
only_from = 192.168.0.0/16
per_source = 3

enabled = imaps

}
service section, one for each service, such as:

service imapd {

socket_type = stream

wait = no

user = root

server = /ust/sbin/imapd

only_from = 0.0.0.0/0 #allows every client

no_access = 192.168.0.1

instances = 30

log_on_success += DURATION USERID

log_on_failure += USERID

nice =2

redirect = 192.168.1.1 993 #Makes it possible to redirect the traffic of port 993
to node 192.168.1.1

bind = 192.168.10.4

#Makes it possible to indicate the interface to which the service is associated to avoid
service spoofing problems.

}

The /etc/init.d/xinetd file makes it possible to start up the serv-
er (with the appropriate link, according to the selected runlevel, for ex-
ample, 3, 4 and 5). It is convenient to change the attributes of both
files to guarantee that they are not subsequently modified or disabled
with: chmod 700 /etc/init.d/xinetd; chown 0.0 /etc/init.d/
xconfig; chmod 400 /etc/xinetd.conf; chattr +i /etc/

xinetd.conf.

Network administration

© FUOC « PID_00148471 53 Network administration

e Linuxconf: this is a configuration and administration tool of a GNU/Lin-
ux system, but it is considered obsolete for most popular distributions, al-
though it can still be found in some distributions. More information at
http://www.solucorp.qc.ca/linuxconf/.

e Webmin: this is another tool (webmin-core, webmin-dhcp, webmin-in-
etd, webmin-sshd packages etc.) that makes it possible to configure and
add aspects related to the network through a web interface (we must have
installed the Apache server, for example). Although it is still being devel-
oped in many distributions, it is not included by default. For more infor-
mation, please visit http://www.webmin.com/. To execute the tool after it
has been installed from a browser, call the URL https://localhost:10000,
which will ask you to accept the SSL certificate and the username (root
user initially) and the corresponding password.

e System-config-*: in Fedora, there are a variety of graphic tools that are
called system-config-"something" and where "something" is what they
have been designed for. In general, if we are in a graphical environment,
we can reach each of them using a menu; however, each of these tools
means we have to remember the menu. One tool that centralises all the
system configs is system-config-control in one single entry in the menu
and one single graphical interface from which we can make our selections
using a set of icons. For this, we have to go to Applications -> Add/Remove
Software and this will start up, in root mode, in the graphical interface of
the Pirut software (the Fedora Extras repository must be enabled). In the
Pirut interface, the available packages can be searched for using, for ex-
ample, system-config-*; make the selection for the system-config-control*
and click on Apply. Among other options, we can configure almost all of
the features of the network and services here.

e Networkmanager: it is a tool that makes it possible to manage wireless
networks and cable networks easily, simply and without any complica-
tions, but it is not the most appropriate for servers (only for desktops). In-
stalling the tool is very easy: apt—get install network-manager—-xx,
where xx is gnome or kde depending on the installed desktop. To config-
ure the tool, we must fill in all the entries in (Debian) /etc/network/inter-
faces except for the loopback interface, for example, by only leaving:
auto lo
iface lo inet loopback
This step is not obligatory but it does make the process for discovering
networks/interfaces quicker. On Debian, there is an extra step that must
be taken, as the user must integrate within the netdev group, for reasons
related to the permissions. To do this, we must execute (as the root user, or
if not, with the sudo command first) adduser current_user netdev
and reboot the system (or restart the network with /etc/init.d/net-

© FUOC « PID_00148471 54 Network administration

working restart and logging out and back in, so that the current user
is included in the netdev group).

e Other tools: (some of these are explained in the unit on se-
curity) Nmap(explore and audit for network security purpos-
es), Nessus(evaluate the network security remotely), Wireshark
http://www.wireshark.org/download.html (ex-Ethereal) (network proto-
cols analyser), Snort(intrusion detection system, IDS), Netcat(simple
and powerful utility for debugging and exploring a net-
work), TCPDump(monitoring networks and information acquisition),
Hping2(generates and sends ICMP/UDP/TCP packages to analyse how a

network works).

© FUOC » PID_00148471 55

Activities

1) Define the following network scenarios:

a) Isolated machine.

b) Small local network (4 machines, 1 gateway).

c) 2 segmented local networks (2 groups of 2 machines and one router each and a general
gateway).

d) 2 interconnected local networks (2 groups of 2 machines + a gateway each).

e) 2 machines connected through a private virtual network. Indicate the advantages/disad-
vantages of each configuration, for which types of infrastructure they are appropriate and
which important parameters are needed.

2) Configure the network in options a, b and d.

Network administration

© FUOC « PID_00148471 56 Network administration

Annex. Controlling the services linked to an FC6 net-
work.

An important aspect for all the services is how they are started up. FC6 includes
a series of utilities for managing the service daemons (including the network
ones). As we have seen on the chapter on local administration, the runlevel is
the operating mode that will specify which daemons will be executed. In FC
we can find: runlevel 1 (single user), runlevel 2 (multiuser), runlevel 3 (mul-
tiuser with network), runlevel 5 (X11 plus /runlevel 3). Typically, we would
execute runlevel 5 or 3 if we do not need any graphical interfaces. In order
to determine the level that is being executed, we can use /sbin/runlevel, and
to know which level will start up by default cat /etc/inittab | grep
:initdefault :which will give us information such as id:5:initdefault: (we
can also edit /etc/inittab to change the default value.)

To visualise the services that are executing, we can use /sbin/chkconfig
-list and to manage them, we can use system-config-services in the graphic
mode or ntsysv in the command line. To enable individual services, we can
use chkconfig; for example the following command enables the crond service
for levels 3 and 5: /sbin/chkconfig --level 35 crond on. Regardless
of how the services were started up, we can use /sbin/service —status-all or
individually /sbin/service crond status to see the status of each service. And we
can also manage this (start, stop, status, reload, restart), for example service
crond stop to stop it or service crond restart to restart it.

It is important to not disable the following services (unless you know what
you are doing): acpid, haldaemon, messagebus, klogd, network, syslogd.
The most important services linked to the network (although this is not an
exhaustive list and some have been left out, most of the services are listed
here) are:

NetworkManager, NetworkManagerDispatcher: is a daemon with
which we can easily change networks (Wifi and Ethernet basically). If we
only have one network, it does not have to be executed.

avahi-daemon, avahi-dnsconfd: is an implementation of zeroconf and
it is useful for detecting devices and services on local networks without
DNS (it is the same as mDNS).

bluetooth, hcid, hidd, sdpd, dund, pand: Bluetooth wireless network
is for portable devices (it is not wifi, 802.11). For example, keyboards,
mouse, telephones, speakers/headphones etc.

© FUOC « PID_00148471 57 Network administration

capi, isdn: network based on ISDN hardware.

Iptables: this is the standard firewall service in Linux. It is essential for
security if we have a network connection (cable, DSL, T1).

Ip6tables: the same applies but for the protocol and networks based on
Ipvé.

netplugd: Netplugd can monitor the network and execute commands
when the status changes.

netfs: it is used to automatically mount the file systems through the net-
work (NFS, Samba etc.) during startup.

nfs, nfslock: these are the standard daemons for sharing file systems
through the network in Unix/Linux/BSD-type operating systems.

ntpd: server of time and date through the network.

portmap: is a complementary service for NFS (file sharing) and/or NIS
(authentication).

rpcgssd, rpcidmapd, rpcsvegssd: it is used for NFS v4 (new version of
NFS).

sendmail: this service can be used to manage the mails (MTA) or support
services such as IMAP or POP3.

smb: this daemon makes it possible to share files over Windows systems.

sshd: SSH allows other users to connect interactively and securely to the
local machine.

yum-updatesd: FC network updating service.
xinetd: alternative service of inetd that presents a set of features and im-

provements, such as, for example, launching multiple services through
the same port (this service may not be installed by default).

Server
administration

Remo Suppi Boldrito

000000000000

© FUOC » PID_00148466 Server administration

© FUOC » PID_00148466 Server administration

Index
INtroduction...............ccoooooiiii s 5
1. Domain name system (DNS)......c.coooiiiiiiiiiiiiiiiiiicee e, 7
1.1. Cache names server 7
1.2, FOIWATAEIS ...iiiiiiiiiiiiiiiiiiiii e e 10
1.3. Configuration of an own domainccceeeeeiiuiiiiiiiiiieiiiieeeeines 11
2. NIS (VP 14
2.1. (How do we initiate a local NIS client in Debian? 14
2.2. What resources must be specified in order to use NIS? 15
2.3. How should we execute a master NIS server?c...ccceeeerernnnnnene 16
2.4. How should we configure a S€rver?cccceeeeiuuiiiiiiniiiinnnniennnn. 17
3. Remote connection services: telnet and ssh 19
3.1. Telnet and telnetdcccccooeiviiiiiiiiiiiiiiii e 19
3.2. Secure shell Or SSHccccoiiiiiiiiiiiiiiiiiiiii e, 20
3.2.1. 20
3.2.2. 21
3.2.3. 22
4. File transfer services: FTP................... 23
4.1. FTP client (conventional)cccccoiiuiiiiiiiiiiiiiiiiie e eees 23
4.2, FTDP SEIVEIS ..couuiiiiiiiiiiiiiiiiiii ettt e 24
5. Information exchange services at user level.............................. 26
5.1. The mail transport agent (MTA)ccoeiiiiiiiiiiiiiiiiiiiiciecie e, 26
5.2. Internet message access protocol (IMAP)ccccoevviiuiiiiiiniiiinnnnnns 27
5.2.1. Complementary aspectscccoeeviiiiiiiiiiiiiiiiiiniiine. 28
5.3, NEWS oo 31
5.4. World Wide Web (httpd) 32
5.4.1. Manual (minimum) configuration of httpd.conf 32
5.4.2. Apache 2.2 + SSL + PHP + MySQLcccoiiiiiiiiiiiiiennnee 33
6. Proxy Service: Squuid..............coooiiiiiiiiiii 38
6.1. Squid as an http accelerator 38
6.2. Squid as Proxy-cachingcooceeeiiiiiiiiiiiiiiiiiieeceeece e 39
7. OpenLdap (Ldap)........ccccooiiiiiiiiiiiiiiiiiiiiiiiicei et eeraaaee 40
7.1. Creating and maintaining the database 42

8. File Services (NFS)ot e e e e e e e eans 44

© FUOC » PID_00148466 Server administration

8.1. WIKIL SEIVET .uiiniiiiiiiiiii it et e et e e e e e e re e ea e s aan e 45

ACHIVII@S. ..ot e e aaas 47

BibLIOZrapIly......cooooviiiiiiiiiiii et 48

© FUOC « PID_00148466 5 Server administration

Introduction

The interconnection between machines and high-speed communications has
meant that the resources that are used can be at a different geographical loca-
tion to that of the user. UNIX (and of course GNU/Linux) is probably the best
example of this philosophy, because from its beginning, the focus has always
been on the sharing of resources and the independence of the 'devices'. This
philosophy has been realized in the creation of something that has now be-
come very common: the services. A service is a resource (which may or not be
universal) that makes it possible to obtain information, share data or simply
process information remotely, under certain conditions. Our objective is to
analyse the services that make it possible for our network. Generally, within
a network, there will be a machine (or various machines, depending on the
configuration) that will make it possible to exchange information with all the
other elements. These machines are called servers and they contain a set of
programs that centralise the information and make it easily accessible. These
services help to reduce costs and increase the availability of information, but
it should be remembered that a centralised service also involves some disad-
vantages, as it can come offline and leave the users without the service.

The servers should be designed so that all the servers are mirrored to
solve these situations.

The services can be classified into two categories: those linking computers to
computers or those linking users to computers. In the first case, the services
are those needed by other computers, whereas in the second, the services are
those required by the users (although there are services that may fall into both
categories). In the first category, there are the naming services, such as the
domain name system (DNS), the user information service (NISYP), the LDAP
information directory or the services for storing in proxies. In the second cate-
gory, we have interactive connection and remote execution services (SSH, tel-
net), file transfer (FTP), user-level information exchange such as email (MTA,
IMAP, POP), news, World Wide Web, Wiki and files (NFS). To demonstrate all
the possibilities of GNU/Linux Debian-FC6, we will describe each of these ser-
vices with a minimal and operative configuration, but without leaving out the
aspects related to security and stability.

© FUOC « PID_00148466 7 Server administration

1. Domain name system (DNS)

The function of the DNS service (as we explained in the unit on network ad-
ministration) is to translate the machine names (legible and easy to remember
for users) into IP addresses or vice-versa.

Example

When we ask the IP address of pirulo.remix.com is, the server will respond 192.168.0.1
(this process is known as mapping); likewise, when we request an IP address, the service
will respond with the name of the machine (known as reverse mapping).

The domain name system (DNS) is a tree architecture that avoids du-
plicating information and makes any searches easier. For this reason, a
single DNS makes no sense unless it is part of the architecture.

The application that provides this service is called named, it is included in
most GNU/Linux distributions (/ust/sbin/named) and it is part of the package
called bind (currently version 9.x) coordinated by the ISC (Internet software
consortium). The DNS is simply a database, which means that the people that
modify it have to be aware of its structure, as, otherwise, the service will be
affected. As a precaution, special care must be taken to save copies of the files
to avoid any interruption in the service. The package in Debian comes as bind
and bind.doc. [LNO1, Deb03c, IET03]. The configurations are similar, as they
are FC, but you will have to install bind, bind-utils and caching-nameserver
which will be managed by the yum for example.

1.1. Cache names server

Firstly, we will configure a DNS server to resolve requests, which will act as
a cache for name queries (resolver, caching only server). In other words, the
first time, the appropriate server will be consulted because we are starting with
a database that contains no information, but all subsequent times, the cache
names server will respond, with the corresponding decrease in response times.
To configure the cache names server, we need the /etc/bind/named.conf
file (in Debian), which has the following (the original comments within the
file, indicated with //, have been respected):

options ({
directory "/var/cache/bind";
// query-source address * port 53;
// forwarders {
// 0.0.0.0;
//

© FUOC « PID_00148466 8 Server administration

¥
auth-nxdomain no; # conform to RFC1035
i
// prime the server with knowledge of the root servers}
zone "." {
type hint;
file "/etc/bind/db.root"; };
// be authoritative for the localhost forward and reverse zones, and for
// broadcast zones as per RFC 1912
}
zone "localhost" {
type master;
file "/etc/bind/db.local";
b7
zone "127.in-addr.arpa" ({
type master;
file "/etc/bind/db.127";
I e
zone "0.in-addr.arpa" {
type master;
file "/etc/bind/db.0";
I e
zone "255.in-addr.arpa" ({
type master;
file "/etc/bind/db.255";
I 6
// add entries for other zones below here

}

The directory sentence indicates where we will find the remaining configura-
tion files (/var/cache/bind in our case). The /etc/bind/db.root file will contain
something similar to the following (only the first lines, which are not com-
ments indicated by a '}, are shown, and care must be taken with the dots [.])
at the beginning of some lines —they can be obtained and updated directly
from the Internet-):

; formerly NS.INTERNIC.NET

. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

; formerly NS1.ISLEDU

. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107

; formerly C.PSI.NET

. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12

’

© FUOC » PID_00148466 9

This file described the root name servers in the world. These servers change,
which means that the file must be updated regularly from the Internet. The
following sections are the zones; the localhost and 127.in-addr.arpa zones,
that link the files to the etc/bind/db.local and /etc/bind/db.127 di-
rectories, refer to the direct and inverse resolution for the local interface. The
following zones are for the broadcast zones (see RFC 1912) and the appropri-
ate zones should be added at the end. For example, the db.local file could be
(;' means 'comment'):

; BIND reverse data file for local loopback interface

STTL 604800

@ IN SoA ns.remix.bogus . root.remix.bogus. (

1 ; Serial

604800 ; Refresh

86400 ; Retry

2419200 ; Expire

604800) ; Negative Cache TTL
@ IN NS ns.remix.bogus.
1.0.0 IN PTR localhost.

We will explain how it is used later. The next step is to put the name server
in /etc/resolv.conf:

search subdomain.your-domain.domain your-domain.domain
for example search remix.bogus bogus
nameserver 127.0.0.1

Where we will have to replace the subdomain.your-domain.domain with the
appropriate values. The search line indicates which domains will be searched
for any host that wants to connect (it is possible to replace search with do-
main, although they behave differently) and the name server specifies the ad-
dress of the name server (in this case, your actual machine, which is where
the naming process will execute). The search behaves as follows: if a client
is searching for the machine called pirulo, first, the pirulo.subdomain.your-
domain.domain will be searched, then pirulo.your-domain.domain and final-
ly, pirulo. This means that the search will take some time; however, if pirulo
will be in subdomain.your-domain.domain, it is not necessary to enter the
rest.

The next step is to start up named and look at the results of the execution.
To start up the daemon, we can directly use the /etc/init.d/bind9 start
startup script (if the named is already executi